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CONTENTS 11
Foreword

Power cables, flexible pipes and umbilicals (but also climbing ropes, sewing threads, gardeninghoses etc.) may display torsion-related motion under handling. As an example, while a cableis routed from an onshore turntable to an installation vessel, longitudinal markings can beobserved to roll, and torsion starts building up. This progresses until either the cable isdamaged (with the tensile armor showing a "bird cage" related behavior), or takes the shape ofa helix which is difficult to route and store.
Since 2009, SINTEF has been invited to investigate torsion-related failures that have occurredduring production, load-out (to installation vessels), installation, and even during operation.Some of these failures where extremely costly events. SINTEF’s role in such investigations isto gather all relevant data from all parties involved in the failure, review and analyze the dataand conclude on the mechanism (or the possible mechanisms) of the failure, and, where relevant,to propose solutions to avoid future problems. SINTEF has also provided less comprehensiveservices for other torsion related events and has studied information from dozens of incidents.Several lessons can be drawn from this experience:
The_costs_of_some_of_these_failures_are_considerable. Expensive products are damaged, de-liveries significantly delayed, installation of vessels remain on stand-by for months, in-stalled flexible products experience downtime and need repairs, and so forth. SINTEF isaware of several events that have each cost of the order of 100 million NOK (10 millionEuros).
Failures_are_unacknowledged. Luckily, the failures we know about have not caused death,injury or pollution. Therefore, they do not have to be reported to the authorities, and theproblem remains unmapped and largely unacknowledged. Yet, SINTEF has seen docu-mentation of dozens of events. Further, our understanding of the underlying mechanismssuggests that these incidents can easily happen, so there are probably many incidentswe have not yet heard about.
It’s_complicated. A glossary of all the terms needed to describe torsion-related concepts, justto make it possible to discuss a mishap, a failure or an improved design, takes severalpages. The mathematics applied to model the relevant processes includes advancedconcepts (rotations in 3D, material vs. spatial derivatives etc.). A variety of torsion-generating mechanisms, including several instability phenomena, have been identified.
In September 2019, SINTEF initiated a 3-year Joint Industry Project (JIP), sponsored by Ørsted,Equinor, Hellenic Cables, NKT HV Cables, Aker Solutions, and Petrobras. The JIP’s objectiveis to provide the industry with the insights and tools to prevent torsion-related failures. Thepresent “Torsion handbook” is one of the main deliverables of this project.
The document consists of two parts. Part I aims at providing insight into the mechanisms thatlead to the appearance of torsion during handling operations, and in the mechanisms of failureof cross sections subjected to torsion. Part II provides a guideline on how to evaluate the levelsof internal torque that may develop in various types of handling operations, on how to evaluatethe various torsion-related failure modes of flexible product.



12 NOMENCLATURE

Nomenclature
∂R
∂k

Spatial roll rate deg/m

DR
Dk

Material roll rate deg/m

κ Curvature vector m−1

ω Rotation rate vector m−1

Ω Rotation rate matrix m−1

e Family of orthonormal reference systems
e
l Longitudinal marking family of reference systems
e
w Torsion-free family of reference systems
e
fs Frenet-Serret family of reference systems
f Distributed external forces Nm−1

M Internal moments (torque, bending moments) Nm

m Distributed external moments N

R Internal forces (axial force, shear forces) N

τ Torsion Nm

τfs Frenet-Serret "torsion" of a curve m−1

ε Elongation m/m

k Payout of flexible product m

L Link deg

Mf Friction moment Nm

R Roll angle deg

R∗ Twist-induced roll rad

s Route coordinate m

T Twist deg

W Writhe deg

z Line coordinate m
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Part I

Understanding torsion



14 1 INTRODUCTION

1 Introduction

Part I studies the various mechanisms by which torsion can appear in flexible products whilethey are being handled, and how this torsion can lead to various forms of failures. Some of themechanisms are easy to grasp intuitively: if a flexible product is curved, and a transverse loadis applied in the correct direction, the flexible product is acting like a crank and will experiencean internal torque. Other mechanisms are maybe not immediately intuitive, as for example “fliptorques” or geometric instabilities.
Part I aims at providing engineers and operators with an intuitive understanding of these mech-anisms. Many concepts are involved, there is no single insight that will unlock comprehension.Hence, understanding the mechanisms of torsion generation does require time and effort. Still,gaining this understanding will make it easier to

– diagnose torsion-related problems,
– describe them with a precise vocabulary,
– make better operational decisions to prevent and mitigate torsion,
– chose modes of operation and route layouts that are less likely to induce torsion,
– apply guidelines for the quantitative assessment of internal torque (Part II) with insightand discernment.

A first step toward understanding torsion is to acquire a good vocabulary: Just like the notionof strain is necessary to study stresses, stiffness and thus equilibrium, the geometrical toolsprovided in this chapter are necessary to create models of how real-world flexible productsbehave and thus evaluate the level of internal torque developed under handling. In addition,these geometrical concepts are important in order to be able to report observations on thebehavior of a flexible product. Experience has shown that the confusion of various conceptsinto “there is torsion” in incident reports makes it difficult to diagnose the source of any problemexperienced.
Some mathematics are provided in Part I, and for some readers, will provide a deeper un-derstanding. These mathematics are descriptive (just as Isaac Newton’s F = ma describes“how the world goes round”) . However in Part I, no methods are provided for engineeringassessment of torsion levels: this is the object of Part II.
Section 2 reviews what is available in the scientific literature about the mechanisms of torsiongeneration.
Section 3 explores the geometry of torsion in flexible products: How to describe (not predict)the shape of a flexible product, and how this shape changes over time. The equivalent incontinuum mechanics would be the study of displacements, velocities, and strain - thingsthat can be defined independently of the material. For flexible products, the mathematicalvocabulary of 3D curves provides notions like curvature and deflections. But we need to gobeyond that to consider “curves with a longitudinal marking” in order to be able to talk oftorsion, and how flexible products roll around themselves.



15
Section 4 looks into cross-section behavior : how curvature (and its change over time) affectsbending moments, because of internal friction between components, or how “flexible” productsturn out to be extremely stiff against some particular patterns of deformations. It also addressestorsionally unbalanced cross-sections.
Section 5 uses the insight from the two previous sections to study how friction between thecomponents of the flexible product can cause large torques to appear.
Section 6 looks into the various forms of storage of flexible product and how they relate totorsion: friction holds the flexible product in place so that it will not roll. Basket continu-ously introduce writhe, causing the product to be stored with torsion (which does not need tobe a problem). The section then discusses friction between the flexible product and rollers,tensioners and chutes, and shows that these often oppose surprisingly little resistance to roll.
Section 7 remarks that many operations tend to stabilize into a state in which the torsion atany given point along the route does not vary much over time. In such operations, the torsionat steady state is the highest that will be induced by internal and external friction.
Section 8 however points out that there is no general guarantee that a steady state will alwaysbe achieved. Indeed, there are several forms of instabilities that can cause a rapid build-up oftorsion - the equivalent in the realm of torsion and friction, is buckling in columns. The sectionthen comes with a warning: there is no “rewind” or “undo” button in the handling of flexibleproducts. Reverting the actuators of the operation (tensioners, turntables) does not allow toturn back the clock.
Section 9 brings together the insights presented earlier in Part I to discuss several operationalcases, in which the overall behavior of the flexible product, affected by several factors, can bequite complex.
Section 10 describes the various types of local failure that may occur under torsion, dependingon how the flexible product is made.
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2 State of the art

“Curves” in 3 dimensions have have “writhe” [7, 8, 13, 5], a property of high importance whenmeasuring roll angles. This property has been extensively studied in biochemistry, because ofits relevance for the behavior of DNA and RNA molecules. It is also of relevance in the studyof magnetic fields, and in particular, solar flares.
The resistance to roll in a bent flexible line, due to internal friction is identified as a source oftorque in [19]. The study was concerned with an installed riser system (no transport along aroute was involved). The relevance of this effect to the appearance of torque in transport wasthen studied in [31].
Beam theory shows that introducing torque in in a curved beam will introduce bending momentsleading to deflections. This, and the unstable response this can induce, have been studied forelastic beams in [27, 4]. A numerical beam model, that accounts for the combination of transportand internal friction described in [31] was presented in [29, 30, 28].
Coilable designs are made a single tensile armor layer, or multiple layers laid in the samedirection. Such flexibles are by design strongly torsionally unbalanced. Other designs includetwo or more tensile armors laid in opposing directions. They are typically designed to betorsionally balanced. Both tests and numerical models [9] have been used to evaluate thiscoupling.
Flexible products under high torque loads can fail in a variety of ways. Hockling at the touchdown point [32, 21, 35] and the related helical buckling
Some failure mechanisms have been studied in contexts unrelated to torsion, but are stillrelevant: in-layer lateral buckling of armor wires [36, 37].
There is an obvious need to monitor torsion during operations. The use of radio-frequencyidentification tags embedded in flexible products is patented as a method for measuring roll,and from there assess torsion [56]. The use of optical fibers to measure strain in the tensilearmor is patented as a method for assessing torsion [57].
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3 Geometry

3.1 Route

During handling (including, production, load-out and installation) the flexible product is oftenmade to follow a given path. The path remains (more or less) unchanged while the flexibleproduct “flows” along the path, much like water following the course of a river. The flexibleproduct is said to be transported along a route.
Even tough circumstances may require a reversal, every operation has an intended directionof transport (e.g. from onshore storage to vessel). Downstream refers to the intended directionof transport, and upstream is the opposite direction.
In practice, the route is not completely fixed during an operation: free spans go from slackto tight, the touch down point in a turntable moves from the nave to the wall, and so forth.Still, many explanations in the following will be assuming a fixed route for simplicity. Otherreasoning will need to explicitly take into account variations of the route over time.
3.2 Coordinates

Coordinates are needed to define points along the flexible product and along the route, usingso-called arc-length coordinates. These coordinates describe distances “along a path” asopposed to “as the crow flies”. By convention in this document, these coordinates increase
in the downstream direction. Since flexible products are typically spooled back and forth, thisimplies that the direction of the line coordinate is changed with the phase of the operation.
Line_coordinates z [m]. A line coordinate uniquely defines a material point (“there is a mark-ing on the outer sheath at line coordinate z = 337m”). Typically, the tail end is chosento have line coordinate 0 (the origin of the line coordinate system). Line coordinatesincrease along the line, and the line coordinate of the head end is the length of the line.In this document, the mathematical symbol for a line coordinate is z with unit [m]. It willbe convenient to write za, zb and so forth, to refer to the line coordinates of cross-section

a and b along the line.
Route_coordinates s [m]. A route coordinate uniquely defines a point along the route (“thetensioner at route coordinate s = 540m”). Typically, the place where the flexible productleaves the upstream winding machine/turntable/spool, will be chosen to have route coor-dinate 0. In this document, the mathematical symbol for a route coordinate is s with unit

[m]. It will be convenient to write sa, sb and so forth, to refer to the route coordinate ofpoints a and b along the route.
Payout k [m]. The payout measures progress of the operation: the length of flexible productthat has been transported (“we aim for 200m more payout by the end of the shift”). Inthis document, the mathematical symbol for payout k with unit [m].
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If line and route coordinates are oriented in the same direction, then the route coordinate of amaterial point (defined by its line coordinate) at a given payout can be calculated (Figure 1)
s = z+ k+ s0 (1)

where s0 is a constant depending on the choice of origins of the line and coordinate system. Iffor example, at the start of the operation (k = 0), the head of the flexible product (z = L, where
λ is the length of the flexible product) is at the point of route coordinate s = 0, then the aboveequation can be written 0 = λ+ 0+ s0, implying that s0 = −λ. The above equation is, for thatcase, s = z+ k− λ.
If line and route coordinates are oriented in opposite directions, with the line coordinatesincreasing in the upstream direction, then

s = −z+ k+ s0 (2)
In the rest of this document only the case where the line and route coordinates are in the samedirection is considered. The other case is handled by switching the sign of z.

Figure 1: Line coordinates (z, black) and route coordinates (s, red). The top pipe shows the
flexible product at k = 0, the bottom pipe at k = 1.8.

3.3 Curvature

Simply put, the curvature of a route at a given point along the route is the inverse of thebending radius. However, it is useful to describe curvature as a vector κ. The length of thevector is the inverse of the bending radius [m−1], and the vector is orthogonal to the route andpoints inside the curve (Figure 2).
At a given point along the route, the curvature plane (known in mathematics as the osculatingplane) is the plane that contains the vector tangent to the route and the curvature vector (Figure3).
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In places where the route is straight, since the curvature vector has length zero, any planecontaining the tangent vector would do, so the curvature plane is undefined. In a segment ofthe route that is plane (for example, if the segment of the route was all in a given horizontalplane, never changing height), then the curvature plane at any point in this segment, is theplane containing the route.

Figure 2: Curvature vectors along a route curved: in a single plane (left), in 3 dimensions
(right).

Figure 3: Osculating plane, tangent and curvature vectors.

3.4 Longitudinal marking

Some flexible products carry longitudinal markings along all or part of their lengths (Figure4). These can be extruded together with the outer sheath, or applied with a marker pen thatis fixed on a point along the route while the flexible product runs past it. In the following,longitudinal markings will be discussed as if they were present in all flexible products, althoughthis is not the case. Longitudinal markings are typically not applied to flexible products whoseouter layer is made of polypropylene yarn spun around the flexible product. Even when nosuch marking is present, it is useful to imagine there was one, in order to introduce a varietyof important concepts.
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Figure 4: Longitudinal marking.

Ideally, if the flexible product was straight and not under tension or internal torque, then thelongitudinal marking would be a straight line running along the cylinder. Such a marking isreferred to as an ideal longitudinal marking. The marking applied to a flexible product maynot be ideal, for several possible reasons:
– The flexible product can have been rolling (turning around its own axis) while beingtransported past the marking system.
– The flexible product can have been loaded in torsion when marked. When relaxed thiswould transform the marking into a helix.
– Plastic deformations of components of the flexible product, or relative slip between thecomponents change the torsion and elongation at which the flexible product has zerointernal torque and axial force.

3.5 Roll angle

At points along a route where the route is horizontal, one can define the roll angle as the anglebetween the longitudinal marking and the vertical. It can be measured as in Figure 7, exceptthat as the ruler is held, it should be marked with “0” where it reads “90”.
Even if one defines roll as being positive when being clockwise, the sign of roll depends onthe direction along which one is looking (Figure 5). This makes it important to agree on whichdirection along the route is “downstream”, because swapping the direction of the arc-lengthcoordinate system swaps the sign of roll angles. The sign of roll is defined as being positiveif it is clockwise when looking downstream (Figure 6). A mnemonic is to use the right handwith the thumb pointing downstream and the curved index finger pointing in the direction ofpositive roll.
In this document, the mathematical symbol for a roll angle is R with unit [deg]. To be morespecific, the roll at a point a can be written R (sa) “the roll at the arc-length coordinate ofpoint a along the route”).
3.6 Torsion

Consider a straight piece of flexible product, on which we draw ideal longitudinal marks, andcircumferential marks (Figure 8, top). The longitudinal and circumferential marks are originallyat right angles to each other. Torsion is the part of the deformation of a flexible product
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Figure 5: Observing the same roll from two different directions

Figure 6: Sign convention for roll. The straight arrow points downstream (increasing route
and line coordinates). The curved arrow points in the direction of positive roll.

that changes the angle between longitudinal and circumferential marks (Figure 8, bottom, andFigure 9).
One could hence measure torsion by the change of angle between longitudinal and circumfer-ential marking. However, it turns out to be more convenient to measure it as a change of rollangle ∆R per unit length ∆s. In this document, the mathematical symbol for torsion is τ (tau)with unit [deg ·m−1]. For a straight segment

τ =
∆R

∆s
(3)

Figure 10 shows the same torsional deformation from two different perspective. In contrast toroll, torsion appears the same whether looking downstream or upstream: the sign of torsion isdefined independently of the choice of a positive direction along the flexible product. Figure 8(bottom) shows an example of positive torsion, the mirror image of which would be a negativetorsion. In positive (respectively, negative) torsion, the roll angle increases (decreases) as onetravels along the flexible product in the positive direction (the direction of increasing arc-length coordinate). DNA’s double helix, and screws mostly are positive helices. There are
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Figure 7: Roll angle measurement.

various nomenclatures for describing the direction of torsion, or the direction in which helicalcomponents are laid. Synonyms are shown in Table 1. In the present document, “positive” and“negative” are used, because this facilitates calculations.
This document Standards Rope making Helix
Positive Z-lay Right lay Right handed
Negative S-lay Left lay Left handed

Table 1: Torsion and helix sign nomenclature.

Torsion is also sometimes referred to as a twist angle in the literature. This expression willnot be used here, to prevent confusion with twist (Section 3.7).
3.7 Twist

The twist between two points a and b along a route or flexible product is the part of thedifference between the roll angles at these points that is due to torsion. In this document, themathematical symbol for twist is T with unit [deg]. The twist is the downstream roll minus theupstream roll. So if b is downstream of a this can be written, for a straight flexible product,
T (sa, sb) = R (sb) − R (sa) with sb > sa (4)Still for a straight flexible product, and if the torsion τ is uniform between both points, then

τ =
T (sa, sb)

sb − sa
=

R (sb) − R (sa)

sb − sa
(5)

If τ is not uniform the relation becomes
T (sa, sb) =

∫sb

sa

τ (s)ds (6)
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Figure 8: A mesh of longitudinal and circumferential markings. The bottom product has positive
torsion.

Figure 9: Torsion in a bend.

Swapping the direction of positive arc-length coordinate changes the signs of R (sa) and R (sb),but it also swaps which point is upstream and which is downstream, so neither twist nor torsionare affected: while a positive roll is only positive for a given direction of arc-length coordinates,the sign of twist is independent of the direction of the coordinates.Because the line coordinates and route coordinates are arc-length coordinates along the samecurve, but with difference in origin (the point of coordinate zero), one can also, if practical usethe line coordinates za and zb.
3.8 Writhe

In the above, the relation between torsion, twist and roll angles were given under the importantlimitation of dealing with a straight segment of a flexible product. Ignoring this limitation canlead to wrong estimations of the torsion, because of an interesting effect of 3-dimensionalgeometry: the writhe.Figure 11 provides an example of writhe: it shows a segment of flexible product in which eachof its 3 thirds are bent. If circumferential markings were shown, as was done in Figure 8,they would everywhere be at a right angle to the longitudinal markings: there is no torsionanywhere along the segment. Still the sequence of bends is such that the black longitudinalmarking, which is at 3 o’clock at the lower end of the pipe, is at 6 o’clock at the upper end.In this document, the mathematical symbol for writhe is W with unit [deg]. By convention, onewill compute the writhe as the roll at a downstream point minus the roll at an upstream point,
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Figure 10: Torsion seen from different viewpoints

in the absence of torsion:
W (sa, sb) = R (sb) − R (sa) with sb > sa (7)

In this example, the writhe between both ends of the segment is +90 [deg].

Figure 11: The roll angles at both ends of this flexible product are different because of writhe.
The flexible product shown here has no torsion, but is bent successively in three different and
orthogonal planes.

Figure 12 shows a more complicated example of a helix. Again it has zero torsion (the longi-tudinal marking is at a right angle to the (absent) circumferential marking), and yet as can beseen, the roll angle changes from pitch to pitch.
In the helix, the plane of curvature varies continuously while it varies in steps in Figure 11. Inboth examples above, dividing the difference in roll angle by the length of the pipe segment
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Figure 12: A helix (positive sign) is a more complicated example of writhe (negative sign). The
flexible product shown here has no torsion. Three longitudinal markings, 120 [deg] apart.

could lead to the wrong conclusion that the pipe is undergoing twist, while it is only bent.Writhe never occurs in flexible products that deform within a single plane. This is related tothe fact rotations around the same axis commute: changing the sequence does not change thefinal angles. By contrast, general rotations in 3D do not commute, and flexible products thatdeform in 3D exhibit writhe.Sections 3.7 and 3.6 discuss twist and torsion, which is twist by unit length. Can one similarlyspeak of a “writhe per unit length”? The answer is no: the writhe of a segment is a function ofthe geometry of the whole segment. For example, writhe for a curve in a single plane is zero.The flexible product in Figure 11 is composed of 3 plane segments, yet the writhe is not zero.In the two examples given above, one can evaluate the writhe analytically (for helices: Section3.11.9). In more general cases, for example to compute the writhe of a geometry obtained usingbeam elements, this is not possible. In that case, the writhe must be evaluated numerically(Section 3.11.5).As an exercise, one might want to consider the effect of coiling a short length of flexible product,starting from a straight line, ending with a single coil. This is relevant when coiling a rope perhand, or feeding a flexible product into a (non-rotating) basket. As Figure 13 suggests, andas experiments with a short length of tape will confirm, creating a coil introduces a 360 [deg]writhe in a flexible product.
3.9 Link

The link is simply the difference between the roll at two points along a route. In this document,the mathematical symbol for link is L with unit [deg]. By convention, one will compute the linkas the roll at a downstream point minus the roll at an upstream point:
L (sa, sb) = R (sb) − R (sa) (8)where sb > sa.In the above, it was discussed that both twist and writhe can contribute to a change of rollangle between two points. Hence the link is the sum of the twist and the writhe:

L = T +W (9)
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Figure 13: Creating a coil. Several snapshots superimposed. The flexible product is always
torsion-free.

This statement is known as Calugareanu’s theorem [7, 8].
One way to illustrate Eq. 9 is to consider a ribbon that has been coiled, and to pull one end
without allowing either end to rotate (as would be the case to a garden hose which coils areborn on a hook by the side of the house, or a coilable flexible product in a basket) (Figure14).

Figure 14: Pulling out a coiled ribbon (writhe) without allowing the ends to rotate results in
twist: Link is conserved.

3.10 Spatial and material roll rates

There are two ways to measure the roll rate, that is, the rate of change of the roll angle withtime. The first one is to put a bit of sticky tape on a flexible product that is being transported.One then measures the roll angle at the sticky tape, following it as it is transported along the
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route. The sticky tape marks a material point on the flexible product, and the roll rate thusmeasured is called the material roll rate.
The second way to measure the roll rate is for the observer to stand still at a given point alongthe route and measure the roll angle. One could be standing at the touch-down point in aturntable, by a tensioner or a given roller.
If the flexible product has torsion, both methods will yield different results. Consider for examplea straight segment of flexible product that has a positive twist. If the segment moves from leftto right, without rotating around its axis (zero material roll rate), then

1. A “material” observer (Figure 15, left) following the flexible product will observe no roll:the material roll rate is zero.2. A “spatial” observer (Figure 15, right) remaining immobile will observe a roll: the spatialroll rate is negative. More specifically, the spatial observer will observe a roll rate equalto minus the torsion, times the speed of the segment towards the right.

Figure 15: Material (left) and spatial (right) roll rates.

If we repeat the experiment, this time with the segment progressively rolling at the same timeas it is translating, then
1. A “material” observer following the flexible product will find a material roll rate identicalto the rate at which the segment rolls.2. A “spatial” observer remaining immobile will find a spatial roll equal to the material roll,minus the torsion times the speed of translation of the segment.

For a straight segment of route, this can be written DR
Dt

= ∂R
∂t

+τ v where DR/Dt is the materialroll rate, with unit [deg · s−1], ∂R/∂t is the spatial roll rate (same unit), τ is the torsion and
v is the transport velocity. However, this definition will not be used in the following: one cansimplify the above expression by using, as unit for time, “the time it takes to pay out 1 [m] ofthe flexible product”. This unit of time is in effect the payout k (t) (Section 3.2). We then have

DR

Dk
=

∂R

∂k
+ τ (10)

where the material roll rate is defined as DR/Dk, and the spatial roll rate as ∂R/∂k (Figure16). The notations D and ∂ have special meanings in mathematics, but this is not important:here DR/Dk and ∂R/∂k are just notations for material and spatial roll rates. Both have theunit [deg ·m−1]. Equation 10 can be read “the change of roll angle of a material point when theflexible product is transported 1 [m] is equal to the change of roll angle seen by an observer
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Figure 16: Relation between material roll rate, spatial roll rate and torsion. The longitudinal
marking (and a material point, in red) are shown before and after the flexible product is
transported by an amount ∆k = 1. Downstream is to the right, so a positive roll is downward,
and both roll rates are positive in this example.

standing on the ground, plus the change of roll angle seen by an observer walking 1 [m] alongthe immobile flexible”.
The sign of material and spatial roll rate is independent of the choice of a positive directionalong the flexible product. This is due to the choice of deriving with respect to the payout k -which sign depends on the choice of positive direction.
3.11 Mathematical formulation

3.11.1 Necessity

The present handbook aims at providing a practical and intuitive approach to torsion relatedproblems. This has its limitations, and for some advanced questions, will not be sufficient. Thepresent Section provides a slightly more rigorous mathematical base to the understanding oftorsion. It is however fully possible to skip Section 3.11.
The definitions of torsion, twist and writhe provided in Sections 3.6, 3.7 and 3.8 are designedto develop intuition, but lack of rigor, with “twist” being defined as a difference of roll anglesin the absence of writhe and “writhe” as a difference of roll angles in the absence of torsion.Further, the definition of roll angle in Section 3.5 breaks down for vertical segments of flexibleproducts.
As a consequence, the above definitions would cause problem when dealing with advancedproblem, or when writing software that must handle a range of cases. In the present Section,the above concepts are revisited. Alternative definitions which are rigorous and more widely
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appliflexible product are presented. On the other side, these definition require a stronger graspof the underlying mathematics.
3.11.2 Relation to knot theory

The definition of writhe presented in this section differs from that used in knot theory in severalrespect. A trivial difference is that here the writhe is measured in degrees, while turns (360degrees) are used in knot theory.
A deeper difference is that in knot theory, the writhe is defined only for closed curves (loops).This is impractical for engineering purposes, but allows to distinguish “positive” and “negativecrossing” in a way the definition below does not. The definition presented below providesvalues of the writhe “modulo 360 deg”. For example, for a coil added to a straight line, thedefinition below will lead to a writhe equal (or close) to zero, while the mathematical definitionwill provide a distinction with a value of +360 deg (or +1 turn) for a negative crossing (coilingone way) and −360 deg (or −1 turn) for a positive crossing (coiling the other way) (cf. Eq. 16in [61]).
In knot theory, to allow to distinguish the effect of crossings, the writhe is defined as a doubleintegral (the average over all directions in 3D space of the number of crossings in an orientedlink diagram). This integral is difficult to assess numerically. In contrast, computations ofwrithe as defined in this section are fast and stable.
The present definition can be made to provide absolute (as opposed to modulo one turn) valuesof writhe for open segment, by applying it to a continuous “movie” of curves, starting from astraight segment (defined to have zero writhe) to the actual configuration. The series of valuesof writhes obtained for each frame of the movie is “unwrapped” (made continuous), providingan absolute value. Computation times are slower of course, and there is the need to define theabove-mentioned “movie”.
3.11.3 Rotation rate

The rotation rate of a family of reference systems is not to be confused with the roll rate -although a relation exists.
In the above, the various definitions rely on the existence of a “roll angle”. This concept isproblematic, because it makes it difficult to describe cases with vertical or near vertical flexibleproducts. Hence, for the purpose of more general analyses, and in particular for softwaredevelopment, one must define the necessary concepts in another way.
Consider a route x, where s is a arc-length coordinate and x (s) is a point in a 3-dimensionalEuclidean space. To each coordinate s we associate the orthonormal triplet e(s) of vectors
ei (s) where i ∈ {1, 2, 3}, such that e1 (s) is tangent to x at x (s). This leaves many optionsopen on how to orient e2 and e3. Some of these options are of particular interest and arediscussed in Sections 3.11.4, 3.11.5 and 3.11.6.
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We define the rotation rate matrix
Ω ≜ lim

ds→0

e (s+ ds) · e (s)−1

ds
(11)

where the symbol ≜ represents a definition. We also define the rotation rate vector as
ω ≜

 Ω23

Ω31

Ω12

 (12)
with coordinates in e(s)

ωi ≜ ω · ei (13)
and finally the torsion of the set of reference systems

τe ≜ ω1 (14)
in [rad ·m−1].
Since e1 (s) is tangent to x, the relation between the curvature vector κ and the rotation ratevector ω can be written as

κ2 = ω3 (15)
κ3 = −ω2 (16)
ω = ω1e1 +ω2e2 +ω3e3 (17)

= τee1 − κ3e2 + κ2e3 (18)
κ = e2κ2 + e3κ3 (19)
= e2ω3 − e3ω2 (20)

3.11.4 Frenet-Serret families of reference systems

In Frenet-Serret reference systems [59, 18], noted e
fs, efs2 (s) point towards the inside (theconcave side) of the curvature for all s: efs2 is within the osculating plane (Figure 17). ωfs isthe corresponding rotation rate vector. We then write the Frenet-Serret “torsion” τfs ≜ ωfs ·efs1 .It describes the rate of change of the curvature plane in a route, independently of the state ofany flexible product that may follow that route. The Frenet-Serret “torsion” is a property of a

route, and it is important not to confuse it with the torsion τ of a flexible product, as definedin Section 3.6.
One issue with Frenet-Serret coordinates is that for straight segments of route, the plane ofcurvature, and hence the Frenet-Serret coordinate system and the Frenet-Serret torsion isundefined.
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Figure 17: Frenet-Serret reference systems. T , N and B respectively stand for tangential,
normal and binormal. N is always aligned with the curvature vector κ.

3.11.5 Torsion-free families of reference systems

We introduce a new family e
w or reference systems, with corresponding rotation rate vector

ωw. We set the requirement τw = ωw · ew1 = 0 everywhere along the route. This defines atorsion-free family of reference systems (Figure 18). The function which to s associates rew2 (s)(one could have chosen rew3 (s)) where r is the outer radius of the flexible product, is thetrajectory of a material point on a flexible product being transported along the route with zeromaterial roll rate, in other words, an ideal longitudinal marking.
If in a torsion-free marking, ew1 (sa) and ew1 (sb) are both orthogonal to a given normal vector
v (for engineering purposes, the vertical. If non zero, one can take v = ew1 (sa)× ew1 (b)) thenthe writhe can be defined as

W (sa, sb) = arctan
v · ew3 (sb)

v · ew2 (sb)
− arctan

v · ew3 (sa)

v · ew2 (sa)
(21)

3.11.6 Longitudinal marking families of reference system

We can require el2(s) to be oriented everywhere so that the points r el2(s) are the longitudinalmarking of a given flexible product of radius r. The “longitudinal marking” family of referencesystems is noted e
l. By extension, one can refer to the set of coordinate systems as as a“marking” (Figure 19).
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Figure 18: Torsion-free reference systems. Vectors ew2 cross a longitudinal marking that is
always at right angle to the circumference.

Figure 19: Longitudinal marking reference systems. Vectors el2 cross a longitudinal marking
that is not at right angle to the circumference.

The torsion in [rad ·m−1] of the flexible product is defined as
τ ≜ ω · el1 (22)

Where the definition of τ provided in Section 3.6 does not breakdown, it is equivalent to themore general definition provided here.
3.11.7 Flowline families of reference system

If the material roll rate is known, we can introduce a “flowline” family of reference systems.Vectors ef2 are oriented in such a way that if a material point is aligned with ef2 (sa) at point
a along the route, then it will be aligned with ef2 (sb) when it reaches point b. In other words,the intersection of the vectors ef2 with the surface of the flexible product define flowlines.
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When expressing the roll angle in flowline reference systems, by definition

DR

Dk
= 0 (23)

so that
∂R

∂k
= −τ (24)

In transient situations, where roll rates at a given position along the route vary over time, theflowlines and hence the family of reference systems change over time.
3.11.8 Twist-induced roll

Introducing a torsion-free set of reference systems, and a longitudinal marking, one can in-troduce the twist-induced roll angle R∗. It is defined as the angle of rotation around ew1 thataligns ew2 (from the torsion free set of reference system) with the longitudinal marking.
This differs from the definition of roll angles relative to the vertical, but has the advantage ofnot relying on the route being locally in a horizontal plane. The twist-induced roll angle isdistinct from the roll angle defined in Section 3.5. Consider a flexible product shaped into ahelix, and without torsion. As was discussed in Section 3.5, writhe causes the roll angle to varyalong the helix. On the other hand, ew2 (from the torsion free set of reference system) alignswith (or has the same angle to) the longitudinal marking everywhere, so the twist-induced rollis zero everywhere (or at least uniform).
We define

τ ≜
∂R∗

∂s
(25)

where s is the arc-length coordinate along the flexible product. Where the definition providedin Section 3.6 holds, it is equivalent to the one provided here. The twist is the integral oftorsion, so that
T (sa, sb) = R∗

b − R∗
a (26)

Eq. 10 is replaced by
DR∗

Dk
=

∂R∗

∂k
+ τ (27)

which is valid for arbitrary route geometries, including route geometries that change over time.
The advantage of the twist-induced roll rate is that it is well defined for points where theroute is not in a horizontal plane. This makes twist-induced roll the definition of choice in thedevelopment of computational methods. In fact, it appears naturally when using beam elements.
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3.11.9 Writhe in a helix

As discussed in Section 3.8, the writhe is defined between two points along a flexible products.The same applies to twist, but with a significant difference: one can define torsion as the twistper unit length, but as mentioned in Section 3.8, it is not possible to define a “writhe per unitlength” which would be a local property of the geometry of a flexible product,and which wouldalso be the derivative along the flexible, of the writhe.
In a helix, one can consider a writhe per pitch (since the helix has the same tangent at bothends of a pitch). We consider a helix of pitch p and helix radius a. For a positive helix, p > 0,and for a negative one p < 0. We introduce

b =
p

2π
(28)

c = sgn (b)
√
a2 + b2 (29)

Figure 20: Two tensile armor tendons wound around a flexible product. The left one has zero
torsion (and is hence not laid flat), the right one is laid flat (the normal to the wide surface
remains parallel with the normal to the cylinder, cf. e2 in Eq. 32).

The helix has equation
x (α) =

 a cosα
a sinα
bα

 (30)
the velocity is

v =
∂x

∂α
=

 −a sinα
a cosα

b

 (31)
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To help compute teh write, we define a family of orthonormal reference systems:

e1 =
v

c
=

1

c

 −a sinα
a cosα
b

 (32)
e2 =

 − cosα
− sinα

0

 (33)
e3 = e1 × e2 =

1

c

 b sinα
−b cosα

−a

 (34)
Picturing the helix as wound around a cylinder, e2 is normal to the cylinder, pointing inwards.This is the direction of the curvature, so that this is a Frenet-Serret family of reference systems.The torsion of the family of reference systems (the Frenet-Serret torsion) is

τ =
∂e2

∂α
· e3 (35)

=
1

c2

 sinα
− cosα

0

 ·

 b sinα
−b cosα

−a

 (36)
=

b

c2
(37)

Over a pitch, the length of the helix is 2πc, and we note the writhe as W . Calugareanu’sequation (Eq. 9) can be written
2π sgn (b) = 2π ⌈c⌉ b

c2
+W (38)

so that
W = 2π sgn (b)

(
1−

b

c

) (39)
The above is valid for any helix, whether this be a flexible product that takes a helical shape,or for components (armor wire, conductor) wound in a helix within the flexible.In other sciences, the expression would have been W = −2πb/c. The difference stems fromconsidering here a straight line to have zero writhe, while in other settings, a circle is consideredto have zero writhe.
3.12 Engineering implications

3.12.1 Relativity to longitudinal marking

It is often not practically feasible to have the flexible product free of tension and internaltorque when applying a longitudinal marking, so that longitudinal markings may not be ideal
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as defined in Section 3.4. As a consequence, we cannot reliably measure absolute values oftwist, writhe and link, but only their change for a given segment, from one time to another.
In contrast, the material roll rate at a given cross-section, does not depend on the position ofa dot drawn at that cross-section - it is not affected by the choice of longitudinal marking.
Like twist, writhe and link, the spatial roll rate depends on the longitudinal marking: translatinga straight pipe with a wavy longitudinal marking will cause fluctuations of the spatial roll rate.
3.12.2 Measuring roll rates in the absence of longitudinal marking

In the absence of longitudinal marking, it is still possible to mark the flexible product with adot (an ink mark or a piece of adhesive tape), and to measure the material roll of the mark asthe section is transported along a straight segment of the route. Without longitudinal marking,there is no obvious way to measure torsion, and without torsion, it is not possible to useEquation 10 to obtain the spatial roll rate.
Measuring zero material roll (the mark stays on top of the flexible product, for example) doesnot imply that there is no torsion in the flexible product (see also Section 9.2.1)
3.12.3 Measuring torsion

The Calugareanu theorem (Section 3.9) implies that link (that is, the difference in roll anglebetween two points along a route) is not the same as twist (which is the accumulated effect(integral) of torsion over the same length. Hence one must be careful when measuring link notto confuse it with twist. Conversely, attempts to force the roll angle to be the same at the topand bottom of a free span in a turntable (or similar) - with the purpose of avoiding torsion -will typically be counterproductive.
A operational case was with the head of a flexible product being latched to the nave of a ship’sturntable. Before latching, the head was rotated to zero the link. Because such a span hasa writhe that can be significant (90 [deg] is quite common). Forcing the link to be zero willintroduce a twist of 90 [deg] (for example, and in absolute value), which over the relative shortlength of the span, can lead to damaging levels of torsion.
To measure torsion along a general geometry, one needs to know the writhe between the twopoints. If the flexible follows a “roller highway” that fixes its geometry, one can in principleuse a numerically solution (Section 3.11.5) to evaluate the writhe. However, either the rollerhighway is so tight that one risks to over-stress the flexible (Section 4.7), or the geometry andhence the writhe will vary during the operation. In particular, changes in torque will affect thegeometry.
In practice, measuring torsion is done by choosing a segment where the writhe and the fliptorque (to be discussed in Section 3.11.5) are both zero. The first choice is a segment whichis straight. If this is not practical, then a segment that is within a single plane should be used
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Figure 21: No writhe in segments that are in a single plane.

(Figure 21). Care must be taken that in a route that is nominaly in a single plane, torque cancause the flexible product to get out of plane and hence have writhe (cf. Figure 54).
The flexible product must have a longitudinal marking, and the roll angle of the longitudinalmarking is measured at both ends of the segments. To evaluate the length L of segment neededto evaluate torsion, one needs to have some idea of the maximum torsion τ that the flexibleproduct can tolerate without failure or without disrupting operations. One must also havesome idea of the uncertainty δR with which roll angles are measured. Then the quality q ofthe torsion measurement is

q =
δR

τL
(40)If for example q = 0.05, (and in the absence of writhe, with an ideal longitudinal markingand assuming uniform torsion) then torsion is evaluated with an uncertainty of 0.05 times themaximum torsion the flexible product can tolerate.
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4 Cross-section behavior

4.1 Internal and external torques and moments

The vocabulary of forces in beam theory (which applies to flexible products) is well establishedand will not be revisited here, except for one point which requires precision: the distinctionbetween internal and external torques and bending moments.
Considering forces that act in the direction of a beam as an example, it is customary to distin-guish between an axial force, and tension (or compression, or as mathematicians would say, anegative tension). The axial force is applied by an external agent (the pull of a winch - a pointforce, gravity on a vertical flexible product - a distributed force). If there is a displacementof the point of application of the force, the force produces work, equal to the intensity of theforce times the displacement. Scientists would express that by saying that the axial force isthe energy conjugate of axial displacement. Tension is an axial force applied by one segmentof the beam on the other, it is the axial force acting through the cross-section separating thesegments. Tension is the energy conjugate of elongation (axial strain of the flexible productas a whole): think of the energy that would be released if a taut flexible product snapped.Tension is a stress resultant: it can be found by integration of stresses over a cross-section.
Conventional vocabulary is not as precise when it comes to torques: “friction of a flexibleproduct against chutes and rollers applies a torque on a flexible product, and the beam carriesa torque”. In the following, this ambiguity would become problematic, and it is hence necessaryto introduce the following definitions:
External_torque: The result of one or several external forces acting on the beam. An exampleis the action of a screwdriver on a screw: there are contact points on the screw headwhich are off the axis of the screw, and combined, the forces at these contact points exertan external torque on the screw. An example for flexible products is the external torqueinduced by friction of the surface of a flexible product against chutes, rollers or othercoils, thus resisting roll. The energy conjugate of an external torque is roll: think of theeffort needed to drive a screw.
Internal_torque: The torque induced by one segment of the beam on the next. The energyconjugate of internal torque is torsion: think of the energy stored in a torque bar.
In a bar (or a segment of flexible product), the combination of a positive external torque at thepositive end and a negative external torque at the negative end induce a positive internal torque(and a negative internal torque is obtained by swapping the signs of the external torques).
Consider a straight beam, clamped at the left end and free to rotate at the right. Let us say thatno external torque is applied at the right end, but external torques are applied at points alongthe beam (Figure 23, top). In that case, the external torque per unit length is the derivativealong the beam of the internal torque, and the internal torque at the right end is zero (Figure23 a) and b) ).
An external torque is positive if it tends to cause a positive roll. Since the sign of roll dependson the choice of a positive direction along the flexible product (Section 3.5), so does the sign of
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Figure 22: External (left) and internal (right) torque.

external torque. An internal torque is positive if it tends to create a positive torsion. Since thesign of torsion does not depend on the choice of a positive direction (Section 3.6), neither doesthe sign of internal torque. In Figure 23 a) and b) , the positive direction was chosen from left toright. Figure 23 c) and d) shows the same physical situation, with the positive direction chosenfrom right to left. Note that the external torque is still the derivative of the internal torque. Forcurved beams, the external torque is not the derivative of the internal torque (Sections 5 and5.5).
For curved beam, the relation between internal and external torque becomes more complicated(cf. the mathematical description in Section 5.5), and indeed, there are several ways to introduceinternal torque in a flexible product without applying an external torque (Sections 5 and 6.6).
All the above applies - with the necessary changes, to bending moments as well.
4.2 Curvature diagrams

At a given cross-section, one can introduce two vectors of unit length el2 and el3. They are bothin the plane of the cross section, and they are orthogonal to each other. el2 is chosen to bepointing from the axis of the product towards the longitudinal marking.
The curvature vector κ has a length equal to the curvature, is in the plane of the cross-sectionand in the plane of curvature. κ points inside the curvature (on the concave side of the product).
One can represent the curvature at that cross-section as a point on a graph (Figure 24). κ2 isthe curvature in direction el2, while κ3 is the curvature in direction el3. One can write

κ = el2κ2 + el3κ3 (41)
Figure 25 shows the curvature diagram of a cross-section that is originally straight, then curvedso that the longitudinal marking is inside the curvature, straightened, and then bent so thatthe longitudinal marking is outside the curvature. Figure 26 provides another example, with across-section that is original curved, and which curvature is then changed in direction (relativeto the longitudinal marking) but uniform in intensity.
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Figure 23: Diagrams of external and internal torque along a cantilever beam, for the two
possible choices of positive direction along the beam.

4.3 Moment-curvature diagram

A bending moment is required to change the curvature of a cross-section. Figure 27 shows therelation between curvature and bending moment during loading (increasing curvature startingfrom a straight configuration) for a typical flexible product. The black curve is typical of whatwould be measured in a test rig. For low curvature, all components are sticking to each other,and the whole cross-section nearly behaves like a solid, with a high bending stiffness. Ascomponents start to slip with respect to each other, the stiffness progressively decreases untilmost of the length of each components slipping, and the stiffness is the sum of the bendingstiffnesses of the components. This is the near-horizontal part of the black curve. As curvaturefurther increases, the stiffness builds up again because of the “curvature-pressure instability”(Section 8.3).
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Figure 24: Curved flexible products placed on the corresponding point on a curvature diagram.

In the following, it will be convenient to work with a simplified form of the moment-curvaturecurve (in red in Figure 27). Two simplifications are introduced. First, there is an abrupttransition between the steep “stick” part of the curve and the slack “slip” part at the slipcurvature κslip. This is because κslip is typically much smaller than the curvatures appliedduring operation. For large cross-sections, κslip is much smaller, compared to the maximumallowed curvature 1/MBR than suggested by Figure 27. Hence, details of this transition arenot important. The second simplification is not as innocent however: The secondary increasein stiffness because of bending-pressure instability is ignored.
The bending moment in the slip part of the idealized (red) curve is the sum of two contributions:
Elastic_moment: The sum of the bending moments of the individual components making upthe cross-section. Assuming that there is no plastic deformation of the components, thismoment is zero at zero curvature, and increases linearly with curvature.
Friction_bending_moment: The moment generated by friction between the components. Ifthe simplification presented in the red curve applies, this moment is independant of theintensity of the curvature. This moment is noted Mf for “friction bending moment”. Figure27 shows how Mf can be evaluated from test data, by finding the tangent to the slackestpoint of the moment curvature curve, and finding the point where it cuts the y-axis of thediagram. The friction bending moment plays a key role in some torsion-related problems(Section 5).
The friction bending moment strongly depends on the contact pressure between the components.This contact pressure depends on the production process (for example, shrinkage of extrudedsheaths, tension of plies, pre-bending of tensile armor), on the temperature, and the temperaturehistory (because of creep in materials). It also depends on the tension, and torsion (which bothchange the tension in helical components, and the contact pressure with layers inside andoutside of these components). Further, it depends on the curvature, which generates friction,thus tension in the component, affecting contact pressures. As a consequence the frictionbending moment is variable during an operation, and hard to calculate.
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Figure 25: Curvature diagram of a cross-section, that is first straight, then bent with the
marking inside the curvature, then bent back in the opposite direction.

Figure 26: Curvature diagram of a bent cross-section rolling around itself.

Another effect is that some flexible products are built using viscous fluids. These can be usedas a form of corrosion protection, or as an electrical insulator in mass-impregnated flexibleproducts. Viscosity implies that friction forces also depend on rates of sliding. This effect will
not be accounted for in the following, unless explicitly mentioned. This amounts to assumingthat the friction bending moment does not depend on how fast a given change of curvatureoccurs.

Some of the components of the flexible product may undergo plastic deformation under bending.This would be the case for example for polymer or lead sheaths, which have large diameters,and are thus subjected to high strains. The above reasoning still holds, but the expression“friction bending moment” must then be understood to stand for a more general “dissipativemoment” which is the sum of the moment needed to overcome friction, and the moment neededto drive additional plastic deformation.
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Figure 27: Typical moment curvature diagram of a flexible product. Realistic curve (black) and
idealized (red). “MBR” is the minimum bending radius of the flexible product.

4.4 Drawing a moment in a curvature diagram

The arguments in the remainder of Section 4 consider reference systems, but it is not relevantwhether this reference system is part of a Frenet-Serret, torsion-free, or longitudinal markingtype of family of reference systems. A positive internal bending moment around the e2 axiscauses a negative curvature κ3 < 0. A positive bending moment around the e3 axis causes apositive curvature κ2 > 0 (Figure 28).

Figure 28: Left: Bending moment M = M2e2 in positive e2 direction causes curvature κ = −κe3.
Right: Bending moment M = M3e3 in positive e3 direction causes curvature κ = κe2.

A point in the curvature diagram, and the associated elastic curvature would look like Figure29.
In Figure 30, the axes for the curvatures (but not the moments) have been changed, so thatthe elastic bending moment is shown as an arrow that points in the same direction as the
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Figure 29: A curvature diagram with the curvature (red circle) and the corresponding moment
(arrow).

corresponding curvature. The reader that has studied Section 5.5 will note that κ2 = ω3 and
−κ3 = ω2.
4.5 Complex curvature histories

As mentioned, the curvatures forced on flexible products during handling are usually con-siderably higher than the slip curvature κslip. Hence in practice, it is sufficient to study whathappens in the slip domain. Let us consider the two contributions to bending moment describedin Section 4.3.
The elastic moment is shown in Figure 31 as red-colored arrows. Several comments areneeded. The axes follow the system presented in Figure 30. While this is a curvature diagram,the arrows represent bending moments, so there is a discrepancy in units. The moment arrowsare shown with origins at the relevant point along the curvature curve, for readability1. The redarrows are all on a line going through the origin, and the length of the arrow is proportional tothe distance to the zero-curvature origin: the elastic moment is proportional to the curvature.
The friction bending moment is shown in Figure 31 as black-colored arrows. The arrows aretangent to to the curvature diagram, and are all of the same length: the moment that needs tobe applied to overwin friction in order to change the curvature is always in the direction of thechange of curvature, and has intensity equal to Mf, (see Figure 27).
This form of diagram will be exploited in Section 5.

1The drawback is that this may be misleading: the arrows do not represent forces, their origin do not representa point in space, and hence there is no question of finding the arm of a force to compute a moment.
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Figure 30: A curvature diagram with the curvature (red circle) and the corresponding moment
(arrow). Note the swapping of the moment components on the axes, and the change in sign,
compared to Figure 29.

4.6 Residual curvatures

Flexible products can have residual curvature: they can have a curvature in the absence ofbending moment. This can come about in several ways. First, as discussed in Section 4.5,internal friction implies that when bent and then released, a flexible product will often almostnot spring back. Second, polymer sheaths, lead sheaths, low-alloyed copper or aluminiumconductors and so forth can undergo (instantaneous) plastic deformation, or they can creepwhile coiled in storage. In the context of Section 4.5, a residual curvature means that thecurvature history does not start at the origin in a curvature diagram (Figure 31).
Residual curvatures due to creep have a particular effect if for example a polymer sheath, thathas crept while coiled, retains its residual curvature during an operation: superimposed to theforces depicted in Figure 31, the polymer sheath will tend to bring back the flexible product tothe coiled curvature. This can lead to an instability described in Section 8.5, which has beendocumented at least for steel pipelines under S-lay or reeling.
4.7 Non-uniform curvature

In Sections 4.2, 4.3, 4.4 and 4.5, it is assumed that the moment at a given cross-section is relatedto the curvature at that cross-section. This is a reasonable approximation when the curvature isuniform (in intensity and orientation) over lengths “significantly” larger than the pitch length ofcomponents. What is “significant” will depend on the level of friction (the lower it is, the furtherslip propagates, the worst the approximation). The effect might be most noticeable in flexibleproducts that are designed with low friction between components and low laying angles.
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Figure 31: Bending moment in the slip domain.

Consider a flexible product which has an outer and inner tensile armor, wound over each otherin opposite directions (a design typical of “dynamic” applications). We assume the flexibleproduct has taken a helical shape (of small amplitude) with the same sign and pitch length asits inner tensile armor (Figure 32). One of the threads (marked in red) of the armor is hence onthe outside of the helix over the whole length of the flexible product: the thread is elongated,can not relieve its stress by slipping, and carries large tensile forces. Correspondingly thegreen thread is heavily compressed: The bending moment in the cross-section is much higherthan if the flexible product had been subject to the same curvature within a given plane.

Figure 32: A flexible product following a helix of same pitch length as its tensile armor.

Another example can be borrowed from beam theory: consider a solid beam on which twoopposing bending couples are applied: between the couples, the beam has uniform curvature.Outside of the couples the beam is straight. If we replace the beam with a flexible productcontaining helical components (Figure 33), so that the couples are half a pitch length apart,then the curvature will not be uniform between the couples and will be non-zero close to the
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couples and outside of them. The difference between beam and flexible product lies in thehelical components: the tensile wire or component that is at the top of the product, halfwaybetween the couples would elongate, but avoids that by pulling in length from beyond thecouples, leading to some curvature there too.

Figure 33: A flexible product subjected to two opposite bending couples (marked), half a pitch
length apart.

Non-uniform curvature can be an important effect to consider in several settings:
1. It might affect the internal torque at which helical buckling occurs (See Section 8.6).2. It must be considered when creating routes: while slow change of curvature plane causehigh flip torques, rapid changes of curvature plane can cause high stresses and make theprocedure outlined in Section 16 questionable.

Creating software to compute these effects accurately and fast is expected to be a significantchallenge, for at least two reasons. First, this requires a good mathematical model of friction atlow levels of tension in the components. Second, numerically solving the sliding of componentsat this level of detail requires high computing power, and will require to deal with convergenceproblems.
4.8 Torsionally unbalanced cross-sections

A flexible product is torsionally unbalanced if putting it under tension tends to unwind it.A left-laid rope (components are wound as negative helices, Figure 34, top), when forced toelongate, tends to unwind (Figure 34, bottom). A longitudinal marking on the rope becomes apositive helix: the rope has positive torsion.
Flexible products can be designed to be torsionally unbalanced for several reasons, includingcheaper production (using only one tensile armor, or even none), and low torsional stiffnessin the unwinding direction, which is beneficial for storage in baskets (Section 9.4). On theother hand, torsional unbalance can lead to challenges under pull-in operations (Section 9.6).Torsional balanced products are more suitable when they will carry their own weight underoperation - for example for power flexible products between a floating wind turbine and theseafloor, or an umbilical connecting an offshore oil platform to a subsea template.
Torsional unbalance creates an interesting interplay between elongation and torsion on theone hand, and tension and internal torque on the other hand. If the rope is set under a giventension, it will elongate more if allowed to unwind than if the ends are restrained from rolling.
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Figure 34: A torsionally unbalanced “rope” (top) unwinding under tension (bottom).

Similarly, if the rope shown in Figure 34 is subjected to a negative (respectively, positive)internal torque, it will have a higher torsion if it is allowed to shorten (respectively, elongate).The torsion in the absence of internal torque depends on the elongation (the higher the tension,the more unwinding occurs). This is why in Section 3.4, ideal longitudinal marking is definedas being straight when the flexible product is “not subjected to any external forces, includingin particular tension or internal torques”. Similarly, the elongation in the absence of tensiondepends on the torsion (an unwound rope is longer than a tightly wound one).
The relation between elongation, torsion, tension and internal torque is generally non-linearin several ways. It takes less internal torque to unwind a flexible product to a given level of thetorsion, than it takes to wind the same product the other way (tight direction). Also, internalfriction plays a role: one can pre-stretch and pre-twist a flexible product.
Still, it can be useful to work with a linearized form of the relation between elongation ε,torsion τ, wall tension R1 (see Section 4.9) and internal torque M1. This can be written

R1 = Kε ε+ Kετ τ (42)
M1 = Kετ ε+ Kτ τ (43)

It is sometimes convenient to use these equations in matrix form:[
R1

M1

]
=

[
Kε Kετ

Kετ Kτ

]
·
[
ε

τ

] (44)
The coefficient Kε is the axial stiffness at restrained rotation. Kτ is the torsional stiffness atrestrained elongation. Kετ appears twice: it is the internal torque that must be applied to keeptorsion to zero, for a unit elongation. It is also the axial force that must be applied to resistelongation, for a unit torsion.
4.9 End-cap effects

Consider a segment of steel pipe, with bore cross section Ai and outer cross section Ae. Thepipe has end caps, and each end cap is connected to a wire. The tension in the wires is Re
1 (let
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us assume the segment is so short that its weight is negligible). If the internal pressure in thepipe is Pi and the external pressure is Pe, then the tension carried by the wall of the pipe is

Rw
1 = Re

1 +AiPi −AePe (45)
In other words, internal pressure forces the end caps apart, and the resulting force is taken upas additional tension in the wall. External pressure forces the end caps together, decreasingthe tension in the wall. Rw

1 and Re
1 stand respectively for wall and effective tension [60].

Equation 45 is also valid for flexibles, and (with the exception of flexibles that are constrainedand held from deforming) in the absence of end caps. For example, we consider the offshoreinstalling of a cable. In this case, Ai = 0. At any point p along the free span, Pe is thehydrostatic pressure, and (neglecting shear force at touch down point) Re
1 is calculated byintegrating the submerged weight of the cable from the touch-down point to p.

Re
1 is used in “global” analyses of the laying configuration, including the effect of currents anddynamic response (to waves and vortex-induced vibrations). The effective tension is to be usedwhen assessing the risk for helical buckling, and other “global” buckling (where the flexible asa whole.

Rw
1 is the force experienced by the cable. It is to be used when assessing all forms of “localbuckling” (with deformations of the cross section and individual components of the flexible). Itis also to be used when evaluating torsion due to torsional imbalance (Equation 44).

In principle a similar distinction should be introduced between effective and wall torque. How-ever this would only be relevant when handling an umbilical with tubes under high pressure,arguably not a relevant scenario. In practice effective and wall torque are thus the same.
In the absence of internal pressure, and in shallow water, the distinction between Rw

1 and Re
1is irrelevant. This can be established by comparing AePe at the depth of the sea floor, withthe tension Re

1 expected at the touch-down point.
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5 Flip torques

5.1 Preliminaries

Consider a straight flexible rod of rectangular cross-section: the rod is stiffer against bendingin the plane containing its long faces (the strong axis) than in the plane containing its shortfaces (the weak axis). If one tries to bend the rod along its strong axis, it will tend to flop(lateral torsional buckling), that is, to roll to present its weak axis to the curvature.Consider a bent segment of flexible product. We wish to cause it to roll without changingthe (vertical) plane within which it is bent (Figure 35). This deformation will cause plasticdeformations, and/or slip of helical components, and hence dissipated energy in the form ofheat. hence to achieve this deformation, an external torque (or one external torque at eachend, with both torques not necessarily equals) must be applied. Most electrical power cords(with a few exceptions that are almost perfectly elastic) will be convenient to make a smallexperiment.

Figure 35: Inducing a curved flexible product to roll requires external torque.

Figure 36 shows another deformation in which the plane of curvature is changed, but the theroll angle is kept constant. A cross-section that is transported along a route with curvaturein different planes will experience this kind of deformation. It can be seen that the segmentsin the lower halves of Figures 35 and 36 are identical, except for a stiff body rotation. hencegetting to the lower half of both figures caused exactly the same plastic deformation and slip,and thus required the same external torque.The torque that one needs to apply to the segment to thus reshape the flexible product (Figure36) can be considerable. Consider a segment of flexible of length λ, that has a uniform curvature
κ, and friction bending moment Mf (Section 4.3). The required torque, if we disregard the sign,has absolute value (Section 4.5)

∆M1 = λκMf (46)
The length times the curvature is the angle α (in radians) of the bend, so that [19]

∆M1 = αMf (47)
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Figure 36: Deformation with zero roll but change of curvature plane.

This is an important result: the torque that must be applied to overcome friction and roll theflexible is independent of whether the curve is short and sharp or long and progressive, itdepends only on the angle of the turn (half turn, quarter turn and so forth).
The torque that needs to be applied switches sign as the roll rate switches sign (Figure 37). Ifthe roll rate is zero, no deformation occurs, all components stick (do not slip), and the flexibleline behaves as if it was an elastic solid. So with a roll rate of zero, the torque can beanything between −αMf and αMf (just like in a contact without slip, the shear contact forcecan be within a range of values). But, other than that, the torque that needs to be applied isindependent of the roll rate: rolling fast and rolling slow in the same direction requires thesame torque to be applied.

Figure 37: Effect of the spatial roll rate per unit length on the flip torque for a bend.
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5.2 Transport along a route with change of curvature

Assuming Mf to be independant of curvature and torsion, let us consider a segment of routewith uniform curvature κ. Along the segment, the curvature changes plane, and this changeoccurs progressively over a length λ. One example would be a segment of positive helix (Figure38), in which the rate of change of the curvature plane is uniform.

Figure 38: As a cross-section is transported along the route, it experiences curvatures in
changing directions (relative to the longitudinal marking) - it needs to be re-bent, and tends
to flop.

We now further assume that the flexible product is transported along the route, and that thematerial roll rate at any point is equal to zero. As a consequence, at any time, all the cross-sections transported over the length λ will experience a change of curvature plane: the ratemay differ, but the change of curvature plane is assumed to occur in the same (in Figure 38:positive) direction. The torque that needs to be applied, per meter of length, to overcome this is
κMf, independently of whether the plane of curvature changes fast or slowly along the route.The total torque that must be applied to the segment to overcome friction over the length λ ishence

|∆M1| = λκMf (48)The torque that must be applied to the segment to overcome the friction is equal to the productof the length over which the change of curvature plane occurs, the curvature, and the frictionbending moment. The amount of change of curvature plane does not play a role, only the
length over which the change occurs. This result is important, and is quite counter intuitive.
In practice “the torque that must be applied to the segment” is applied by the neighboringlengths of flexible product: the sum of the torque exerted on the segment by the upstreamand downstream lengths must have absolute value λκMf. How much torque is exerted by theupstream and downstream segment depends on many factors, it’s a special case of a hyperstaticstructure. By the law of action and reaction, the segment applies to its neighbors the oppositetorques that the neighbors apply to it. Hence the segment applies to the line as a whole atorque with absolute value λκMf. In many respects (but not all, for mathematical details, seeSection 5.5) this is as if “a troll with a pipe wrench” was gripping the segment and applying atorque to it: the “flip torque”.
The sign of the torque can be found intuitively by looking at the direction in which the segmentwould roll in order to keep the same material point on the inside of the curvature, as transport
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progresses. For a positive “helix” (more precisely, for a positive Frenet-Serret torsion, as therate of change of curvature does not need to be uniform) as shown in Figure 38, the torque isin the positive direction.
The flip torque can be seen as the product of Mf and λκ . The second term is a characteristicof the geometry of the route: if a route is exactly known (because a flexible is boxed in byrollers), then one can compute the “quality of the route” and compare route designs againsteach other, independently of the flexible. In practice however, different flexible products willfollows slightly different routes, and these differences can impact the “quality” significantly.
Typical routes do not have uniform curvature, or uniform rate of change of the curvature plane.For these cases, Equation 48 must be replaced by a complex expression (Section 5.5).
5.3 Effect of roll rates

Let us consider the above example, but with a modification: while the flexible product istransported (towards the left, defined as the positive direction), the flexible product has a non-zero positive spatial roll rate. We assume torsion to be zero, so that spatial and material rollrates are identical. This is a reasonable approximation, as long as the torsion in the flexibleproduct is small compared to the Frenet-Serret torsion of the segment of route.
For small roll rates, the situation is identical to the one described in Section 5.2: the segmentapplies a positive flip torque to the rest of the flexible product.
As the spatial roll rate increases (Figure 39), the point eventually arrives where a materialpoint rolls (material roll rate) so as to exactly follow the change of curvature plane of theroute. The material roll rate is equal to the Frenet-Serret torsion: the cross-section does notexperience relative changes of the direction of the curvature plane, so no moment is generated.

Figure 39: Effect of roll rate. Red: a material point transported with zero material roll rate
experiences a change in the direction of curvature. Green: with a non-zero material roll rate,
the material point can be made to follow the change in the direction of curvature.

Beyond that point, the flexible is rolling “too much”, and a material point sees the plane ofcurvature changing orientation in the negative direction, and the flip torque becomes negative.One can make a graph of the flip torque as a function of the spatial roll rate (Figure 40).
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Figure 40: Effect of the spatial roll rate on the flip torque for a helical route (black) and an
example of general route (red).

For a negative helix, Figure 40, balck curve, remains the same, but the spatial roll rate at whichthe torque changes sign is negative.
In a more realistic free span, curvature and rate of change of the curvature plane are notuniform, and this results on a more progressive effect of the spatial roll rate on the internaltorque. Figure 40, right provides an illustration of how such a relation might look like.If thegeometry of the route is more like a positive helix, then the torque at zero spatial roll rate willbe positive (as in Figure 40, red curve), otherwise negative.
5.4 Pseudo-external flip torque

The flip torque induced by transport over a segment introduces a difference between theupstream (a) and downstream (b) internal torque:
∆MF = Ma −Mb (49)

A positive flip torque cause the torque to decrease as one follows the route from a to b. Curveswith positive Frenet-Serret torsion, including positive helices, and the touch down point areain a basket or turntable where the product is coiled clockwise.
The flip torque is not an external torque: curved beam theory (Section 5.5.1, Eq. 51) showsthat a torsional moment can appear in a curved beam in the absence of external torque. Oneexample of this is a wrench: a tool for applying torques on nuts and bolts, which is used byapplying a force to the handle to the wrench. Indeed, flip torque are often encountered in freespans where nothing comes into contact with the flexible product.
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However, deliberately misrepresenting the flip torque as if it was an external torque can beuseful to develop an intuition for which way things go. Equation 63 shows that the change ininternal torque along the route is caused by the sum of external torques and flip torque, so aflip torque can be imagined to be an external torque of the same sign (Figure 41). In the figure,the internal torque decreases as one moves into the figure.

Figure 41: Positive pseudo-external flip torque (red arrow) in a positive helix, with transport
(black arrow).

Swapping the direction of transport swaps the direction of the pseudo-external flip torque. Ifone swaps the coordinate system together with the direction of transport, the pseudo-externaltorque remains positive. Hence the rule of thumb “[pseudo-] external flip torque is positive inpositive helices” and curves with positive Frenet-Serret torsion.
5.5 Mathematical formulation

5.5.1 Equilibrium

Considering an infinitesimal beam segment of length dz and of tangent unit vector t, forceequilibrium can be written
∂R

∂z
= −f (50)

∂M

∂z
= −m− t× R (51)

where R and M are the forces and moments resultant vectors, f and m are external distributedforces and moments acting on the beam, and × is the cross product.
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In the above, all the terms are vectors, in the sense of objects existing independently of thechoice of reference system. Consider a family of orthonormal reference systems e (z) such thatany point z, e1 = t. The evolution of the components of the above vectors, in that family ofreference systems can be shown to be
−
∂R1

∂z
= f1 +ω2R3 −ω3R2 (52)

−
∂R2

∂z
= f2 +ω3R1 −ω1R3 (53)

−
∂R3

∂z
= f3 +ω1R2 −ω2R1 (54)

−
∂M1

∂z
= m1 +ω2M3 −ω3M2 (55)

−
∂M2

∂z
= m2 +ω3M1 −ω1M3 − R3 (56)

−
∂M3

∂z
= m3 +ω1M2 −ω2M1 + R2 (57)

where ωi are the components of the rotation rate vector of the family of reference systems(cf. Section 3.11). This way of rewriting the force equilibrium equations is convenient because,thanks to the choice of reference system, R1 is the axial force, R2 and R3 are shear forces, M1is the internal torque, and M2 and M3 are internal bending moments.
In Equation 55, m1 is an external distributed torque. Such an external torque can be causedby friction against external surfaces when the beam rolls around itself.
If the bending moment components are proportional to the rotation rate components (M2 = αω2and M3 = αω3), then the term ω2M3 −ω3M2 vanishes. Further, in Equation 55, the term isadded to m1: ω2M3−ω3M2 can be seen as an external torque (the flip torque) applied to thebeam, that arises when the curvature and the bending moment are misaligned.
This interpretation is imperfect: Substituting ω2M3 −ω3M2 with an external moment of thesame value works fine, but setting M2 and M3 to zeros in Equations 56 and 57 changes theseequations.
Because at any time ∂z/∂s = 1, all the above equations can also be written with derivativesrelative to the route coordinate s instead of the line coordinate s.
5.5.2 Integration along the route

We introduce a flowline family of reference systems e
f (Section 64). This is chosen becausethe e

f reference system follow material roll of the cross-section, making it convenient for theexpression of friction-induced moments. Curvatures and moments will now be expressed in thisfamily of reference systems.
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In Equation 55, the moments are each the sum of two terms: the elastic moment, and theinternal-friction moment.

Mi = Me i +Mpi (58)
= EIωi −Mf

ω̇i√
ω̇2

2 + ω̇2
3

(59)
The friction-related part has intensity Mf and is in the direction of the change of curvature.The notation

ω̇i ≜
Dωi

Dk
(60)

is used for brevity. As in Section 3.10, D/Dk is a material derivative (the rate of change aspayout progresses, at a material point).
The term ω2M3 −ω3M2 (from Equation 55) can be developed

−
∂M1

∂z
= m1 +ω2M3 −ω3M2 (61)
= m1 +

�����������:0

ω2EIω3 −ω3EIω2 +Mf

ω̇2ω3 − ω̇3ω2√
ω̇2

2 + ω̇2
3

(62)
The expression ω2M3 −ω3M2 can be recognized as a cross product and a determinant: it isthe signed area of a parallelogram which sides are the rotation rate vector [ω2,ω3] and thefriction bending moment vector [M2,M3] (Figure 42).

Figure 42: Geometric interpretation of the cross product as the area of a parallelogram. Fric-
tion’s contribution to moments (black) curvature (red).
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Equation 62 can be integrated along a segment of flexible, yielding
M1 (a) −M1 (b) =

∫ b

a

m1ds−

∫ b

a

Mf

ω̇2ω3 − ω̇3ω2√
ω̇2

2 + ω̇2
3

ds (63)
The term ∫b

a
m1ds is the contribution from external torques, including these arising from frictionagainst rollers, chutes, tensioner, other coils, etc. The second term, the “flip torque” is thecontribution of internal friction. Figure 43 represents this integral graphicaly. Note that aslow evolution of the direction of torsion results in many shadowed triangles contributing tothe integral.

Figure 43: Geometric interpretation of the flip-torque integral. Double shadows count double.

Assuming Mf to be uniform along the route, it can be taken out of the integral, so that the fliptorque can be written
Mf

∫ b

a

ω̇2ω3 − ω̇3ω2√
ω̇2

2 + ω̇2
3

ds (64)
The flip torque is the product of Mf (a property of the flexible product) and an integral which
only depends on the geometry of the route. The simplest way to keep this integral equal tozero is to ensure that ω̇3ω2−ω̇2ω3 = 0 everywhere along the route. This implies that [ω̇2, ω̇3]and [ω2,ω3] are co-linear everywhere: change of curvature can only occur in the direction ofcurvature, unless the curvature is zero (Section 5.6).
5.5.3 Interaction between pitch and change of curvature plane

Non-uniform curvature (Section 4.7) implies that the moment at a cross-section can not becomputed from the curvature (and its history) at that cross-section alone. This is studied inthe following.
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Let ew (z) be a torsion-free set of reference systems. The coordinates ci of a helical compo-nent (e.g. a tensile armor thread) in this reference system are (in the absence of transversedisplacement of the component).

c2 = r cosα (65)
c3 = r sinα (66)

with
α (z) =

2πz

p
+ α (0) (67)

where z is the coordinate along the flexible product, p and r are the pitch length (positive forpositive helical components) and the distance between the component and the flexible product’sneutral axes, respectively.
Let us consider a helix-shaped route. It has a curvature of uniform intensity κ and Frenet-Serrettorsion τf (Section 3.11.4), so that

ω2 = cosβ (68)
ω3 = sinβ (69)

with
β = τfz+ β (0) (70)where ωi are the coordinates of the rotation vector expressed in the torsion-free family ofreference systems.

The elongation of the trajectory of the component at a section z is
ϵ = κ (ω2c3 −ω3c2) (71)
= κr (cosβ sinα− sinβ cosα) (72)
= κr sin (α− β) (73)
= κr sin

((
2π

p
− τf

)
z+ α (0) − β (0)

) (74)
= κr sin (az+ γ) (75)

with a ≜ 2π
p
− τf and γ ≜ α (0) −β (0). By a change of origin of the reference system, we canset γ = 0 without loss of generality

ϵ = κr sinaz (76)
5.6 Engineering implications

5.6.1 Route optimisation

The results in Section 5.5.2 point to a simple strategy to minimize flip torques: Keep each
curve in a single plane (Figure 44). This does not mean that the whole route has to be within a
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Figure 44: A good route has well-separated areas of curvature, each curve being in a single
plane.

single plane, but that when the flexible product comes out of a curve, it needs to be straightenedbefore it is bent in another plane.
The above is usually impractical in free spans of turntables or baskets: the flexible productcan not be straightened between the sag bend and the coil - essentially because of the waythe turntables tend to be designed. Still, with some skill one can manipulate the free span toensure a more abrupt change of plane of curvature.
5.6.2 Chutes

Chutes are surfaces positioned at a transition between a section of the route in which theflexible product is well guided, and a free span, and serve to prevent excessive curvature atthat transition. The are typically positioned at the bulwark of a vessel or at a quay side.
Some chutes are constructed with hard chines, that is, by welding bent plates together. Thiscan create route geometries with abrupt changes of curvature plane. Figure 45 shows the samegeometry seen from three different angles. The crests (in blue, green and red, respectively showthe curvature in the free span, in the part of the flexible product in contact with one side panel,and with a side panel and the bottom panel, respectively.
As can be seen, the plane of curvature changes along the route. In the case illustrated, thisresults in a negative flip torque.
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5.7 Active geometry control in a turntable free span

5.7.1 Requirements

A common torsion problem occurs when flip torque is generated in the free span of a turntable,during the loading out of a flexible product to an installation vessel, or similar operation. Aprocedure for the mitigation of torsion during operation is proposed here. Importantly, at thetime of writing, this procedure has not been tested or studied. It is not known under whatcircumstances the procedure will be able to prevent torsion problems, and it is not knownwhether it might under some circumstances contribute to cause torsion problems.
The procedure requires that the following conditions are met:

1. The free span in the downstream turntable or basket is the dominating source of fliptorque along the route.2. The flexible product has one (or several) longitudinal markings.3. The variation over time of the writhe between the upstream end of the route (e.g. onshore carousel) and the downstream end (on board carousel) is small.4. The spatial roll rate of the flexible product leaving the upstream storage is small. If theupstream storage is a turntable or a spool, this amounts to having only a small torsionin the upstream storage.
The procedure is designed to prevent high torques at steady state, due to flip torque in thedownstream storage. To this effect, two measures are to be combined: monitoring of the spatialroll at touch-down-point, and control of the geometry in the free span.
5.7.2 Monitoring of spatial roll

Given that conditions 3 and 4 in Section 5.7.1 are met, then the evolution over time of thetwist along the route is approximately equal to that of the spatial roll angle at the entry ofthe downstream storage. The implication is that, if the spatial roll angle at the entry of the
downstream storage is kept nearly constant from the start of the operation, then the twist, and
hence torsion along the route will be small.
For turntables and spools “the entry of the downstream storage” refers to the touch-down point.However for baskets, this refers to the top of the goose neck (the upper end of the free spaninto the basket) or alternatively, the touch down point, but correcting the roll angle with oneturn per coil. For readability, further description is given assuming a downstream turntable.
The roll angle at the entry of the downstream storage must be measured as the head of theflexible product reaches it, and then monitored regularly. “Regularly” means

– Often enough to avoid confusing one longitudinal marking with another if there are severalmarkings, or to avoid being unsure about whether a whole turn of roll may have takenplace since the last measurement.



62 5 FLIP TORQUES

– Often enough compared to how fast the shape of the free span changes during operation.
The objective is to keep the total change of the roll angle at the entry of the downstreamstorage to a small value, by reacting early with geometry control when this roll is observed tochange.
5.7.3 Geometry control

Flip torque is closely related to the geometry of the route, and in particular, of the free span.In a downstream turntable rotating clockwise, the touch down point area will induce a positiveflip torque. With actuators, one can attempt two things to limit or counterbalance the fliptorque and hence control the roll angle:
1. Limit the flip torque in the touch down point area. This is achieved by avoiding a pro-gressive change of the curvature plane, and promoting an abrupt one (Figure 46). Thereis however a lack of knowledge on the consequences of doing this: helical componentsmay become overloaded at radii of curvature above the minimum bending radius (MBR),because the components remain on the inside or the outside of the curvature for morethan half a pitch length.2. Use actuators to give the upper free span a negative Frenet-Serret torsion (that is, ashape like a negative helix), this induces a negative flip torque in the upper free span(Figure 47). The flip torques in the lower and upper free span can compensate eachother and control the roll rate. Importantly, while this controls the twist upstream in theroute, this does not limit the torque between the upper and lower free span. In the aboveexample, a positive internal torque would be present in the free span.

A coilable product entering (for example) a positive downstream basket (Figure 49) would haveits tensile armor laid in the positive direction. The touch down point area will have a positiveFrenet-Serret torsion and a longer length of tensile armour (than would be the case withoutchange of curvature plane) can be outside of the curvature, leading to overloading of the armour.
When using actuators to manipulate the shape of the free span, it is essential to do so byapplying small forces continuously while transport is ongoing. High forces can induce crankingtorques and thus damage the flexible product (Section 17).
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Figure 45: Flexible product in a chute
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Figure 46: Abrupt and progressive change of curvature plan at touch-down point

Figure 47: Free span seen from the top deck. The upper part of the free span is manipulated
to ressemble a positive helix, while the bottom part resembles a negative helix.
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6 Storage and routing

6.1 Turntables

A turntable rotates around a vertical axis as the flexible product is fed in or out of it. In an ideal“steady state” (Section 7), in which a flexible is fed into a turntable without any changes to theshape of the free span (which is not completely realistic as the flexible product is fed towardsthe nave or away from it, and the basket is progressively filled), the writhe in the free spanis constant: zero spatial roll rate a the top of the free span entering the basket correspondsto zero spatial roll rate at the touch down point (where the flexible product comes to rest onthe flexible product already coiled in the turntable). This is a useful approximation: in practicevariations of writhe in the free span of turntables impose limited changes in the roll at thetouch-down point. Combined with the changes in the writhe being slow, this does not resultin large torsion stored in the turntable. One important exception is discussed in Section 6.6.
We can assume that the flexible stored in the turntable has zero material roll. There are atleast two reasons for that. First, one coil of the flexible product is stacked against other coilsor the floor, nave of wall of the turntable, and the friction between the components preventsroll. Second, as discussed in Section 5, internal friction prevents a curved flexible productfrom rolling. More specifically, if the flexible product has an internal torque at the entry ofthe storage device, the internal torque may win over friction over the first few meters. Theroll angle involved will generally be small, so in this section, the discussion will proceed as ifabsolutely no material roll occurs.
So in the absence of material roll (DR/Dk = 0), Equation 10, which states that

DR

Dk
=

∂R

∂k
+ τ

becomes
∂R

∂k
= −τ (77)

This implies that when a flexible product is paid out of a turntable, the torsion in the storedcoils is unaffected by the downstream internal torque and torsion, hence the spatial roll rateis the opposite of the stored torsion. When a flexible product is stored into the turntable, thetorsion in the upstream product is “frozen” in place by friction in the coils, so the torsion in thecoils is equal to the upstream torsion, and the roll rate is the opposite of the torsion.
As an example, a flexible product with an ideal marking is stored in a turntable. It is paid out,but the winch pulling out the flexible product (somehow) also imposes an external torque T ,causing a torsion τ in the part paid out (Figure 48). Then, the flexible product is taken backinto the turntable, with the winch still maintaining an external torque T . This results in theflexible product being stored with torsion τ. The difference between paying out and taking inis a case of irreversibility in operations (Section 8.7).
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Figure 48: A flexible product is paid out (left) of a turntable while an external torque is applied
to its end. When the product is taken in in again (right), torsion is stored.

6.2 Spools

In a first approximation, storing a flexible product in a turntable and in a spool is exactly thesame, and all the results in Section 6.1. There is one substantial difference however, due tothe presence of writhe in the spool. Each layer in the spool has the shape of a helix with pitch
p = ±2r where r is the external radius of the flexible product. The pitch is positive if the layeris a positive helix. Considering a layer with radius R (the distance to the axis of the spool tothe axis of the flexible product), using Equation 39, the writhe per turn (pitch) is (assuming apositive helix)

a = R (78)
b =

r

π
(79)

c =
√
a2 + b2 (80)

W = 2π sgn (b)

(
1−

b

c

) (81)
= 2π sgn (b)

1−
2r√

R2 +
(
r
π

)2
 (82)

Two extreme cases are worth considering. In the first, the flexible product is stored withouttorsion on the spool. This is difficult to achieve in practice, but a slow underwater crane liftwhere the load is allowed to rotated to keep the torque zero in the flexible product would bethe least unlikely realization. There is hence no twist in the spool, and the link is equal tothe writhe. For each turn in the spool, the link between the head of the flexible product onthe spool and the product entering the spool increases by W . Since the head is preventedfrom rotating by external friction, internal friction, and hitching to the spool, the roll at thetouch down changes by −W . When spooling out again, the convention in this document is thatthe direction of increasing coordinates s or z is swapped. So although the direction of roll isswapped, it would still be described as −W for each turn paid out.
The other extreme case is in many case closer to reality: We assume that the spatial roll at theentrance of the the spool is zero. This would occur at steady state (Section 7), assuming there
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is zero spatial roll at the point of origin of the flexible product (upstream storage or productionmachine). In such a situation the link between the head of the flexible product on the spool andthe entry to the spool is constantly equal to zero. This implies that the twist is the opposite ofthe writhe: at any point in the spool, the torsion is

τ = −
W

2πR
(83)

negative in layers that are positive helices. When the flexible product is paid out of the spool,“the film plays in reverse” and the spatial roll at the exit of the touch down point remainszero: the flexible product, which had zero torsion before entering storage, has zero torsionafter leaving it. More generally, the product has the same torsion before entering and afterleaving storage.
Reality will generally be between the two above-mentioned extreme cases.
6.3 Baskets

Baskets can be distinguished according to the direction in which the touch down point turns asflexible product is taken from the basket. Figure 49 shows a positive basket. The mirror imageof Figure 49 would present a negative basket. The choice of name is related to the geometrybeing (an irregular) positive helix.

Figure 49: A positive basket (the mirror image is then a negative basket).
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In order to understand baskets, let us start with a peculiar turntable in which the flexibleproduct is fed vertically (as it would in a basket, and as shown in Figure 49). Imagine that thewhole picture of the turntable rotates counterclockwise to compensate for the rotation given tothe turntable when feeding flexible product into it. Two things occur:
1. The turntable does not appear to rotate, the touch down point moves counterclockwisewhen flexible product is fed in: this is now a basket.2. The point in Figure 49 at which the flexible is vertical is now rotating counterclockwise (anegative spatial roll rate): each time a new coil is laid in the basket, the flexible productrotates in the same direction as the touch down point (This is the same as the 360 [deg]roll that occurs when a new coil is created, as shown in Figure 13).

In order to discuss how storing a flexible product in a basket induces torsion, it is necessary tointroduce the roll Rvert of a cross-section where the flexible product is vertical as it enters thebasket (Figure 49. Since the usual definition of roll (relative to the vertical) would fail here, wecan define the roll at that point relative to the north. In a positive basket, if the cross-sectionat the vertical point is not rotating relative to the touch-down point, it has a negative roll raterelative to the north. For a positive basket, this can be written (for roll angles in degrees)
∂Rtdp

∂k
=

∂Rvert

∂k
+

360

λ
(84)

where λ is the length of a coil.
If the flexible product does not rotate relative to the north, in the vertical part (as would bethe case in steady-state operation, Section 7), then for a positive basket (Figure 49, a negativetwist is stored into the basket. In the present case, Equation 77 is

∂Rtdp

∂k
= −τ (85)

Then, using Equation 84, this leads to
0 = τ+

∂Rvert

∂k
+

360

λ
(86)

For negative baskets, 360/λ becomes −360/λ. When the flexible product is paid out of thebasket, several things happen: The sign of the torsion stored in the basket is unchanged.The movie plays backwards, so roll is physically reversed but the positive direction along theproduct, and hence the convention for roll sign is flipped: the roll rate value is unchanged. Thesame argumentation applies to the writhe term: 360/λ remains unchanged. To summarize, theequation
0 = τ+

∂R

∂k
+ s

360

λ
(87)

applies for paying in and out, and with s = 1 for positive baskets and s = −1 for negativebaskets.
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6.4 Chutes and other fixed surfaces

A simple but useful engineering model for dry friction is Coulomb’s friction model. In its simplestform, consider a body A (flexible product) pressing against a body B (a chute) with a forceorthogonal to the contact surface (a “normal force”) Fn. Three source of normal forces are oftenrelevant: weight, tension in a curved product, and wedging and clamping. If the force Ft exertedby B on A in the direction tangential to the contact surface is small enough
Ft < µFn (88)(where µ is the friction coefficient), then no sliding occurs. On the other hand, if A does sliprelative to B, then the friction force has intensity
Ft = µFn (89)and direction opposite to the motion of A relative to B. Friction coefficients vary between

0.02 (walking on wet ice) and 0.9 (rubber on dry rock). Polyethylene against polyethyleneor steel has friction coefficients around 0.2. One key feature of this simple model is that thefriction force does not depend on how the contact pressure is distributed: the total frictionforce is related to the total contact force. According to the model, pulling a flexible productover metallic chutes requires the same force: unevennesses of the chute have no effect.
If we look at the direction of the friction force “from above” (from a direction orthogonal to theplane of contact), when slip occurs, the friction force vector has length µFn (Figure 50). Theequation of the “stick circle” is √

F2tr + F2tt = µFn (90)where Ftr and Ftt are respectively the components of the transverse force vector Ft in the rolland transport directions.

Figure 50: The friction force has a length lower than (when sticking) or equal to (when slipping)
µFn, and direction opposite to the motion.

Consider 1m of flexible product, with outer radius r. The contact force Fn is now a force perunit length. If the flexible product rolls in the positive direction (by sliding against the chute,
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not by rolling like a wheel), without any transport, Ftt = 0, and the chute will exert on theproduct a friction force
Ftr = −µFn (91)

in the direction orthogonal to the direction of rotation. This amounts to an external momentper unit length
mx = rFtr (92)

= −rµFn (93)
on the product.
The situation changes significantly if the product is being transported: As the product istransported, it has a material roll rate DR/Dk (positive, for example). For every meter theflexible product is transported downstream, the surface of the product also slides in the directionorthogonal to transport, by an amount rDR/Dk. The component of the friction force in thedirection orthogonal to the direction of transport has value (Figure 51)

Ftr = −µFn
rDR
Dk√(

∂R
∂k

)2
+
(
rDR
Dk

)2 (94)
= −µFn

rDR
Dk√

1+
(
rDR
Dk

)2 (95)
where ∂k/∂k is the rate of displacement in the transport direction. Since we use the conventionto measure “time” by the length k of product transported, this rate of transport is equal to 1.
Hence in the presence of transport, the moment (per unit length) applied by the chute on theflexible product is

mx = rFtr (96)
= −rµFn

rDR
Dk√

12 +
(
rDR
Dk

)2 (97)
≈ −rµFn r

DR

Dk
(98)

the last simplification being good for small roll rates.
The term DR/Dk in Equation 98 is important: the moment mx is proportional to the roll rate. Inthe absence of transport, even for a completely straight flexible product, friction against chuteswould be so high that the product, in practice, does not roll, no matter how large the internaltorques are in the product. Here, under transport, small roll rates result in small externaltorques from friction: under transport, with slip occurring anyway in the axial direction, frictiondoes not prevent roll, it only limits the roll rate.
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Figure 51: A flexible product is transported downstream (to the right) and rolls in the positive
direction. The red arrow shows the force exerted by the chute on the flexible product. It is on
the “stick cone” (Equation 90): the component that resists roll is small, yet there is roll.

6.5 Tensioners and rollers

Usually, tensioners are operated with clamping forces (and hence contact pressures σnn) highenough to prevent slip. In principle, this would imply that the material roll rate at a tensioneris zero. If for example, the upstream torsion entering the tensioner is zero, this would implythat the spatial roll rate upstream of the tensioner is zero. Experience, however, shows thatthis is not the case: torsion downstream of a tensioner has been documented to propagateupstream (against the direction of transport) during operation.
In tensioners, the mechanism is thought to be as follows (Figure 52): the track plates have someslack, allowing them to move sideways, or the track plates carry pads with some compliance,and the outer sheath (or ply of yarn) also deforms under load. This allows a material point ofthe flexible product to roll as it passes through the tensioner. The material roll rate is directlyrelated to the tracking angle α2:

DR

Dk
=

α

r
(99)

where r is the outer radius of the flexible product. For tires operating well within the stickdomain, the tracking angle is modeled as being proportional to the transverse force on thewheel. In our context, the tracking angle is modeled as being proportional to the externaltorque that the tensioner exerts on the flexible product. No experimental confirmation of this
2The term of “slip angle” common in tire engineering is avoided here, to avoid confusion with actual slippingbetween surfaces.
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model is available. There is no known procedure available to compute the proportionality factorbetween the above-mentioned external torque and the tracking angle.

Figure 52: Flexible product passing a tensioner towards the left in the picture, with positive
spatial roll. This causes the pads in contact with the product to shift: original center-line in
black, shifted center-line in red. The angle between the original and shifted centerlines is the
tracking angle α.

A similar thing happens in support rollers (and in automobile tires, where the phenomena iswell studied). Here the compliance does not come from pads shifting, but from tiny deformationsin the roller and the surface of the flexible product (and in the tire).
Another effect comes into play, that is present even if the tracking angle remains equal to zero,so that the material roll is zero (Equation 99).
The tracking angle is related to the material roll. Material and spatial roll are related byEquation 99 (cf. Section 3.10). The implication is that, if there is torsion, even for a zero rollangle, the spatial roll rate will be non-zero. More specifically, it is the torsion entering thetensioner that is relevant (Section 6.2).
To produce an equation that models tensioners and rollers in the absence of slip, we note
M−

1 and M+
1 the internal torque in the product respectively upstream and downstream of thetensioner (or roller). The external torque applied by the tensioner on the product is

∆M1 = M−
1 −M+

1 (100)The resulting track angle is
α =

c

r
(M+

1 −M−
1 ) (101)where c measures the compliance of the tensioner and r is the outer radius of the product.Replacing this in Equation 99gives

DR

Dk
=

c

r2
(M+

1 −M−
1 ) (102)
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The torsion of the product frozen in the tensioner is equal to the upstream torsion

τ =
M−

1

Krr

(103)
where Krr is the torsional stiffness. Replacing Equations 102 and 103 into the relation betweenspatial and material roll (Equation 10) and rearranging leads to the “tensioner roll equation”

∂R

∂k
=

c

r2
M+

1 −

(
c

cr2
+

1

Krr

)
M−

1 (104)
An ideal tensioner has no compliance (c = 0) in which case

∂R

∂k
= −

1

Krr

M−
1 (105)

downstream internal torque does not cause any roll. When compliance is considered, upstreaminternal torque cause more roll than the same downstream internal torque, but importantly,downstream internal torque does cause roll: tensioners (and rollers) do not prevent the prop-agation of roll against the direction of transport.
6.6 Hydraulic actuators

A crank is a tool that transforms a force (applied by hand, or a piston) into an internal torque.The internal torque is equal to the force (in [N]) times the arm (in [m]). Hydraulic tools usedto guide large-diameter flexible products during operations, in particular to stack them intoturntables can thus generate significant internal “cranking” torques. Even though these forcesmay only be present for a short duration, they come in addition to flip torques induced by theroute geometry, and the combination of both can cause a failure. The mathematics of how aforce can induce a internal torque in a curved beam are discussed in Section 5.5, where theactuator force appears as f in Equation 50.
The objective in using hydraulic tools is not actualy to apply forces to the flexible product, butto control its position. There is a parallel with external friction resistance to roll (Section 6.4):In the present case, internal friction between the components of the flexible product, makesthe product very stiff, opposing with large forces attempts to deform it. But if the deformationis applied progressively while the flexible product is being transported, the product is morecompliant: Changes of curvature induced by routing already cause the components to sliprelative to each other. The hydraulic tool then only needs moderate forces to adjust the patternof slipping of the components. From a practical point of view, good use of hydraulic actuatorsreminds of the way a potter “throws” (works) a ball of clay on a potter’s wheel: the fingerspress gently and continuously on the material while the wheel spins.
When handling products with long component pitch lengths in small spaces (the free spans ofon-board turntables can be short), one must account for non-uniform curvature (Section 4.7).The changes of curvature planes induced by the hydraulic actuator can occur over lengthscomparable to the pitch lengths of the components. This can make the flexible product muchstiffer, leading to large actuator forces and hence internal torques.
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Figure 53: An actuator (red ) exerts a sideways force which induces an internal torque at the
upper end of the flexible product.
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7 Steady state and transients

7.1 Definitions

A transport operation is said to be in a steady state if:
1. The geometry of the route does not change over time.2. The tension and the internal torque at any given point along the route do not changeover time.

A transport operation is defined to be in a transient state if it is approaching a steady stateover time.
7.2 Occurrence

Even if the route and the tension are constant (they do not change over time), there is noguarantee that a steady state for the internal torque will be reached. Sections 8.2, 8.6 and 8.4discuss mechanisms that would prevent a smooth evolution towards a steady state.
A real transport operation will typical not have an exactly constant route. For example the routehas to change when feeding a flexible product into a turntable: from empty to full turntable,from laying near the nave to near the wall. Variations in tension occur, due to the difficulty tocoordinate tensioners, spools and turntables.
While there is no general guarantee that a near constant route and tension will move towardsa near-steady state situation in which the internal torque changes little over time at any givenpoint along the route, successful operations do approach such a steady state.
The results from Section 7.3 imply that, under the restrictions stated there,

1. Operations with constant route geometry on flexible products with balanced cross-sectionswill approach a steady state.2. If starting from configuration with no internal torque, the steady state is the situationwith the highest internal torques.
7.3 Mathematical formulation

We lack general results on the existence of steady states, and the same goes for transients.But with a set of assumptions, relevant results can be obtained. We assume
– a route of constant geometry,
– Mf unchanged over time at any point along the route,
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– the graph relating the flip torque to the spatial roll rate, at any point along the route,(Figure 40) is linear,
– the cross-section is torsionally balanced,
– the torsional stiffness KRR is a constant.Under the above assumptions, using Equation 55, the differential equation defining the evolutionof roll at a flip location is of the form

−
∂

∂s

(
KRR

∂R (s,k)

∂s

)
= a (s) − b (s)

∂R (s,k)

∂k
(106)

where a (s) is the flip torque at zero roll rate at point s along the route, and −b (s) the influenceof the spatial roll rate on the flip torque, and b (s) ⩾ 0 for any geometry. The above is a lineardifferential equation, of the first order (with only first derivatives) with respect to the payout k.This can be rewritten
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The roll at tensioners follows Equation 104
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R (s, k) (111)where γ (s) can be described using Dirac’s distribution.The roll at chutes follows Equation 98
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Storage follows Equation 77
∂

∂k
R (s,k) = −τ upstream storage (stored torsion) (114)
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Combining these equations together to obtain a differential equation for the whole systemyields an equation of the form

∂
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∂
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R (s, k) + γ (s)

∂2

∂s2
R (s,k) (117)

where γ (s) > 0 everywhere.
Deliberately using notations from linear algebra, we note R (k) the function s −→ R (s, k), and
Γ · R (k) the transformation of that function by the differential operator appearing on the righthand side of Equation 117. Equation 117 is of the form

∂

∂k
R (k) = v+ Γ · R (k) (118)

which has has solutions of the form
R (k) = R0 exp

(
Γk
)
− Γ

−1

· v (119)
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8 Instabilities and irreversibility

8.1 Torsion-pressure instability

In the present document, and in particular in Section 5, it was a convenient simplification toassume the friction bending moment Mf to be a constant for any given cross-section. However,this is not always realistic. For example, a positive internal torque will press positive-helixcomponent inwards, negative-helix component outwards increasing the contact pressure be-tween these layers and hence the friction forces.
The dependency of Mf on the internal torque makes the following feedback loop possible,depending on circumstances:

1. Increased internal torque,2. Increased contact pressure between some layer,3. Increased friction bending moment,4. Increased flip torque,5. and so on.
Typically, the flip torque is balanced by internal torsion upstream of the 3D curve in which theflip torque is generated. However, because the flip torque is distributed along the span, partof the span do experience internal torque, making the instability a possibility.
A simple mathematical model for torsion-pressure instability is shown
8.2 Mathematical formulation

Consider again Equation 63, but we now assume that Mf is a function of the internal torque
M1.

−
∂M1
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= m1 +Mf (M1)
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(120)
As a simple example, let us assume than m1 = 0 (no applied external torque) and that γ ≜
ω̇l
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l
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3

is uniform along the route (as would be the case in a helix). Further, we assumethat Mf = aM1 + b, where a and b are constants. This is a reasonable approximation over alimited range of values of M1. In this range, Mf must remain positive.
Then Equation 120 can be written

−
∂M1

∂z
= aγM1 + bγ (121)
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This differential equation has solutions of the form

M1 (s) = M0
1 exp (−aγs) −

b

a
(122)

from which we can compute the friction bending moment
Mf (s) = aM0

1 exp (−aγs) (123)
In other words, if Mf depends on M1, then M1, instead of varying linearly along a helix,can vary exponentially, leading to finite but very high internal torques, a situation dubbeda “torsion-pressure instability”. Qualitatively, the same remains true for more complex routegeometries, including for routes with separate bends, as internal torque is transmitted betweenbends.
8.3 Curvature-pressure instability

In fatigue analysis of marine risers that are bending dynamically under wave loads, it is oftenconvenient to assume the contact pressure between components to be almost constant as theriser bends: the contact pressure is mostly dictated by the tension in the components (andother components further out). The tension in the components is mostly related to the tensionin the flexible product, and the contribution from bending, while important for fatigue because itvaries over time, is moderate. In such a context, it makes sense to assume Mf to be a constant.
In handling operations, tension in the flexible product is often low, so that the friction associatedto bending can contribute significantly to the tension in the component and then again to thecontact pressure. The result is that as the curvature at a given point along the flexible productis increased, the following feedback loop comes into effect:

1. Bending causes components to slip, inducing friction forces,2. Friction forces increase tension in the components,3. Increased tension leads to increased contact pressures,4. and so on, with increasing friction forces.
8.4 Flip torque-geometry instability

In the flip effect (Section 5) the geometry of a route has a major influence on the internal torquesthat will develop. On the other hand, if one considers the force equilibrium in a free span, theinternal torque in the flexible product influences the geometry. In some cases, the influenceon the geometry is such that it will exacerbate the flip effect, typically with geometries of freespan that tend towards helices (Figure 54).
This effect is quite different from helical buckling (Section 8.6): helical buckling is not drivenby friction or other energy dissipation, and does not require transport. One can induce helical
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buckling in a thin rod by subjecting it to a internal torque and low tension. By contrast, fliptorque-geometry instability can start with an initial internal torque too low to cause helicalbuckling internal torque, but it requires both transport and friction.
As an example, consider a sag-bend - a long portion of flexible product hanging free betweenrollers or chutes. The sag-bend is originally within a vertical plane (Figure 54, left). Then,for some unspecified reason, a positive internal torque appears in the sag bend. This can becaused, by a geometry, somewhere downstream, inducing flip torque. This positive internaltorque alters the geometry of the free span (Figure 54, right). The new geometry has positiveFrenet-Serret torsion (it is like a positive helix). Transport of the flexible product along thisgeometry generates a positive flip torque.
What happens next depends on how stiffly the downstream (respectively upstream) flexibleproduct will resist a roll at the downstream (upstream) end of the free span. Let us considertwo limit cases. In the following “increase” and “decrease” must be understood as “change to amore positive value” (respectively: negative). For example, torque “increases” from −5 kN ·mto −2 kN ·m.

1. The downstream end of the free span does not resist roll. In other word, the internal torquedownstream does not change as the flip torque in the span increases. The increase ofthe flip torque thus causes a increase in the upstream internal torque.2. The upstream end of the free span does not resist roll. In other word, the internal torqueupstream does not change as the flip torque increases. The increase of the flip torquethus causes a decrease downstream internal torque.
The flip torque is actualy distributed, so in case 1. we get an increase of the internal torque(mostly in the upstream half of the free span). This increases the internal torque that originallymade an out-of-plane geometry appear. While there are stabilising factors, in particular gravity,these could be overwhelmed, causing an instability. In case 2., on the contrary, the internaltorque is decreased (mostly in the downstream half of the free span), stabilizing the situation.

Figure 54: A sag-bend, foreshortened by perspective, looking downstream. Left: in the absence
of internal torque, right: with positive internal torque.
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Figure 55: The positive flip torque in the free span is increased as the span deforms under a
positive internal torque (left). The situation can evolve into helical buckling (right) (anonymous
source, by permission).

To summarize, the feedback loop, supposing that there is a bent free span, and that there istransport, is as follows:
1. Internal torque in the span causes the span to deform out of plane (Figure 54),2. This results in a curvature that changes of curvature plane,3. This produces a flip torque,4. If the downstream flexible product is compliant, the flip torque increases the internaltorque in the span,5. and so on.

8.5 Residual curvature realignment

Section 4.6 mentions the special case of sheaths that have crept while the flexible product wasin storage, inducing a residual curvature. Simply put, if a flexible product with such a residualcurvature “to the right”, passes at a point along the route that takes a turn “too the left”, rollingthe product 180 [deg] (either in the positive or negative direction), will release stresses inthe sheath. This type of instability has been documented in the installation of steel pipelines[14, 15, 55], but not, to the authors knowledge, in flexible products.
This effect is distinct from flip (Section 5). The roll in residual curvature is self limiting: fora purely elastic product (no plasticity or friction), the roll to realign the curvature is at most
180 [deg]. In contrast, flip require friction (or plastic deformation), and roll is not limited by theflip mechanism itself, only by (typically) the fact that spatial roll is zero (or related to storedtorsion) at the upstream turntable.
The idea of feedback loop is adequate for self-amplifying phenomena. If the curvature is alreadyat a 90 [deg] angle to the bending moment, this just generates a torque, that will decrease asbending and moment align. But starting with curvature and moment in the same plane, yetboth in opposite directions, the feedback loop is:
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1. The curvature is slightly out of plane with the moment,
2. This produces a torque,
3. The torque drives the curvature further out of plane,
4. and so on.

8.6 Helical buckling

Helical buckling is not typically a mechanism of internal torque generation. This is howevertreated in the present Section I for two reasons. First, this Section is close to Section 8.4, toemphasize that helical buckling and flop-torque-geometry instability are two distinct mecha-nisms, that occur under quite distinct circumstances. At the same time, helical buckling changesthe geometry of the flexible product, and so does indeed influence internal torque generation.
As discussed in Section 3, the link between two ends of a segment of flexible product is thesum of the twist and the writhe. Consider a straight segment that has a link (Equation 56,top).Since it is straight, there is no writhe, and the link is equal to the twist: the segment is undertorsion.
A segment under torsion, like a loaded spring, stores elastic energy (“careful when releasing”).If the link is completely transformed into writhe (if the straight flexible product takes theshape of a helix), then the torsion in the segment is zero, and the torsional elastic energyhas been released (Equation 56,bottom). But whether this transformation happens depends onhow much energy is absorbed to create the new shape: the segment has now some bendingenergy (some spring-back if the boundary condition are released). But mostly, the energy hasbeen dissipated as heat produced by sliding of components to accommodate the new geometry.Another “energy cost” is that, since the straight line is the shortest path between two points,the helix is not: to create the helix, it was necessary to pull in neighboring flexible product.
All in all, whether buckling occurs depends on whether the torsional energy that could bereleased is larger that all the work that has to be spent (bending, friction, pulling in).
The feedback loop is:

1. A small curvature, combined with torque, gives rise to moments,
2. The moments drive the curvature,
3. and so on until the helix reaches a stable form.
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Figure 56: Flexible product under torsion (top), and after helical buckling (bottom).

Figure 57: Examples of helical buckling (left: courtesy of TenneT, right: anonymous source, by
permission)

In a typical scenario, the internal torque along a route increases over time (see Section 7), andsome slacker free span will suddenly take a helical shape. Alternatively, the internal torquemay be at a constant level, but the tension in a free span decreases, triggering helical buckling.Buckling can also occur during a pause in transport if tension is released.
While the helical geometry may not necessarily cause damage to the flexible product, it isawkward to handle and store. In general reverting the operation will not undo the buckling(Section 8.7). In particular, pulling on a helix or a loop thus created is likely to create a hockle,[62], in which the bending is concentrated very locally, causing potentially severe damage tothe cross-section.
The pitch length of the helix at the initiation of buckling is roughly

P = 2π

√
EI

R1

(124)
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where EI is the bending stiffness and R1 the tension (Figure 58).

Figure 58: Buckling shapes: increasing tension (from left to right) result in lower pitch length
P

8.7 Irreversibility

When a transport operation leads to an unwanted state with for example a build up of internaltorque, one option that comes under consideration is to backtrack to a safe situation, and fromthere, to make a second attempt.
In practice, this may or may not work. As an example, consider a heavy cube on a smooth slope.As the cube is left undisturbed, friction is sufficient to prevent the cube from sliding down theslope. Let us assume that we can only apply forces towards the left or the right (followingaltitude contours), but not up or down (Figure 59. We apply a force to move the cube 1m to theright, then another force to move 1m to the left. However, as the the cube slips right and left, itwill also slip downwards (Section 6.4). As a consequence, without applying vertical forces, wecan never bring the cube back to its original height. The 2nd law of thermodynamics (“entropycan not decrease”) translates in practical mechanical engineering as follows: in the presenceof friction, viscosity flow or plastic deformations (anything that creates heat), reverting whatcan be controlled will often not revert the parameters that can not be directly controlled.
The handling of flexible products offers many examples of this: actuators (winches, tension-ers, turntables etc.) give control over some aspects of the movement of the flexible product(movements along the route, some aspects of the shape of free spans) but not over others(roll, the details of the shape of free spans, the sliding of internal components). The revertingthe controllable aspects will generally not revert the uncontrollable ones, and this may besignificant.
One example of irreversibility is helical buckling (Section 8.6) followed by hockling: in a straightproduct under internal torque and tension, reducing tension can give rise to helical buckling. Ifthe span is long compared to the diameter, the instability can give rise to small curvatures andno slip occurs. In more realistic cases, this buckling is accompanied by slip of the components
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Figure 59: A cube on a slope can not be brought back to its original state by forces across the
slope.

and hence energy dissipation into heat. Increase the tension back above the value at which theinstability occurred can cause a hockle to occur [62]. Even if the helix was so little pronouncedthat a damaging hockle does not appear, the flexible product will not be straight. The particularissue of hockling at the touch-down point during installation on the seafloor is considered inSection 9.5.2.
Another example of irreversibility was discussed in Section 6.2: spooling and unspooling behavedifferently.
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9 System behaviour

9.1 Introduction

The object of Part 9 is to present relevant cases that show the interplay between the effectsdiscussed so far in preceding sections. This interplay is sometimes complex and can give rise tosurprising behaviour of the operation as a whole. The emphasis here is on providing an insightin these interplay, and so the discussions presented here are qualitative: no hand calculationsor numerical simulations are provided.
The behaviors described in this Section all come from reports received in confidence fromthe industry. They are presented in anonymized form. The cases were reported with variousdegrees of documentations. For some of them, the mechanism was established with a highdegree of confidence. In other cases, the mechanism described here may be only one of severalpossible causes of the reported event, given the available data.
9.2 Torsion in factory

9.2.1 Unbalanced winding machine

A winding machine has the potential to apply considerable external torque to the flexibleproduct that it builds. The winding machine can apply external torque through tension in thecomponents, and through radial forces applied to wrap components around the product. Thisraises the question of how to ensure that the flexible product coming out of a winding machinedoes not carry a significant internal torque (Figure 60).

Figure 60: Example of component for which there is no obvious way of defining “zero torsion”.

At the beginning of the production of the flexible product, the head end is typically attached to asteel flexible product through a swivel with which it is pulled through the extrusion machinery:there is at this stage little or no resistance against roll from the product downstream of theproduction machinery, and hence little torsion. One can easily measure the material roll rateby setting a tag (for example a patch of adhesive tape) on the product (Section 3.12.2), and in theabsence of torsion, material and spatial roll rates are identical. This provides an opportunityto tune the winding machines by zeroing the roll rate.
The situation changes later in production, when the head of the flexible product is stored ina downstream turntable or spool, adding resistance against roll (Sections 6.2 and 6.1), so thattorsion can no longer be relied upon to be zero. Without ideal longitudinal marking, there is
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no obvious way to measure torsion, and without torsion, it is not possible to use Equation 10to obtain the spatial roll rate.A longitudinal marking extruded on the polymer sheath does not provide additional information:A straight longitudinal marker is the same as having a series of point markers and observingzero material roll on all of them (Figure 61). With reference to Section 3.4, this is not necessarilyan ideal longitudinal marking, and absence of material roll does not imply the absence ofinternal torque. A parallel might be helpful: consider a piece of metal that is under tension. Astrain gauge is glued to the metal under tension, and calibrated. Reading zero strain does notimply zero stress.

Figure 61: Unbalanced winding machine (in grey) and longitudinal markings. The marking in
black is what would be applied by e.g. extrusion. The markings in red are ideal longitudinal
markings following a positive helix because of the positive internal torque. The multiple red
markings show the motion of a single ideal longitudinal marking. Downstream to the right.

Figure 62: Same as Figure 9.2.1, but the winding machine does not apply an external torque,
while the route geometry applies a negative flip torque (cross-section marked in green).

A situation in which a flexible product is stored (spool or turntable) out of the productionmachine, with internal torque, yet with a straight (non-ideal) longitudinal marking is referredto as “built-in torsion”.
9.2.2 Flip torque

A related behavior can occur with the following (idealized) situation: the winding machineleaves the flexible product free to roll and does thus not apply any torque to it. The flexible
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product then passes through a route which geometry induces a flip torque (Section 5) whichwill be assumed to be negative, before being stored in a turntable.
At steady state (Section 7), the flip torque must be balanced by external torques applied up-stream or downstream. During transport, external torques from friction against chutes (Section6.4), tensioners and rollers (Section 6.5) are generally small, and in this case, it is conservativeto neglect them. As a result, the flip torque is counterbalanced by the downstream turntable:the downstream segment carries a positive internal torque (Figure 62).
Hence at the winding machine, there is no external torque, but the flexible product is rollingin the negative direction. A longitudinal marking extruded there will be seen to follow anegative helix around the flexible product, even though the flexible product carries no internaltorque. Downstream of the flip geometry, the positive internal torque induces a negative torsion.Whether the longitudinal marking then will follow a negative or positive helix depends on thetorsional stiffness of the product, and on the effect of roll rate on the flip torque (Section 5.3).
The scenarios presented in Section 9.2.1 and the present Section are limit cases: more re-alistically, winding machines and route geometry will both introduce internal torques in theproduct. The two scenarios show that it is difficult to guarantee that a longitudinal marking isan ideal longitudinal marking (Section 3.4). In other words, a flexible product with a straightlongitudinal marking can have a internal torque. The situation complicates further if the flex-ible product is torsionally unbalanced (Section 4.8). Scenarios with torsional unbalance arediscussed in Sections 9.5.2 and 9.6.
9.2.3 Bird-nesting

The scenarios discussed in Sections 9.2.1 and 9.2.2 result in similar situations at the downstreamturntable (or spool): the flexible product carries a positive internal torque (due to negativeexternal torques applied upstream), and material-rolls steadily in the negative direction.
In mild cases, the internal torque is stored in the turntable in the form of a negative torsion(being measured with an ideal longitudinal marking) (Section 6.2). In more severe case, “birdnesting” can occur. Typically, the tension drops downstream of the last tensioner before theturntable, below the tension at which helical buckling can occur (Section 8.6).
Helical buckling can be “self-limiting”: the formation of a positive helix relaxes internal torque,and only a limited length of helix appears. However in the present scenario, the upstreamsetup induces a continued spatial roll, so that the helix formation does not stop: the helix iscontinually generated downstream of the last tensioner and is stored in the turntable. Theproduct stored in the turntable has an aspect suggestive of a bird’s nest (Figure 63). Flexibleproducts of smaller diameters are typically undamaged, yet unserviceable if no solution is foundto remove the link in the flexible product.



9.3 From storage to storage 89

Figure 63: Bird’s nest: a flexible product having undergone continuous helical buckling.

9.3 From storage to storage

9.3.1 Long-distance conservation of torsion

In the following “storage” will stand for turntables, spools and the seafloor - locations in whichfriction prevents the flexible product from rolling over long distances. The special case ofbaskets will be addressed in Section 9.4. Transfer of flexible products between storages aremade in a variety of settings, including:
– In factory, when a product is shuttled between two turntables, to perform several passesthrough winding, extruding or other machines.
– In load-out operation, where the flexible product is transferred from a turntable storingthe completed product , to a turntable on board and installation vessel.
– During installation, where the product is transferred from an on-board turntable to theseafloor.
– In a detailing operation, where the flexible product is transferred to spools and segmentedfor road transport.

Generally, the distance between storages is small compared to the length of flexible productbeing transported. This makes it reasonable, barring instabilities, to assume the operation willapproach a steady state (Section 7). Further assuming ideal longitudinal marking (Section 3.4),internal torque and tension both not changing over time implies that torsion will be constantover time at any given point. Hence the twist between any two points along the route will beconstant. Since for a fixed route the writhe between any two points along the route does notchange with time, the link between two points does not change with time. This implies that
at steady state with an ideal longitudinal marking, the spatial roll rate is uniform along the
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route. In practice, the value of that roll rate depends on the upstream boundary condition. Inparticular, if a flexible product is stored without twist in the upstream storage, then at steadystate the roll-rate will be zero along the whole route.
The material roll rate DR/Dk at the upstream storage has to be zero, so Equation 77

∂R

∂k
= −τ

applies here, where τ is the torsion of the flexible product in storage. Let us assume that τis uniform along the flexible product in the storage. ∂R/∂k at the downstream storage is thesame as at the upstream one, and hence at steady state the torsion τof the flexible product
stored in the downstream storage is the same as in the upstream storage.
Hence over long lengths of flexible products, and as a first approximation, the torsion in theinstalled product is equal to the built-in torsion (Section 9.2).
The above reasoning is not applicable for the head and tail section of the flexible product:while the head of the flexible product is traveling along a route, it is relatively free to roll(Sections 6.4 and 6.5). In the absence of flip torque, for example, this implies that the internaltorque in the segment behind the head can be released (and the same applies to the tail).
9.3.2 Torque buildup

An important class of problems occurs when a flip torque (Section 5) is present along a routebetween two storages (as defined in Section 9.3.1). To simplify the discussion, it is assumedthat the upstream storage stores product with zero torsion, the flip torque is applied in apositive direction, at one single point on the route, and the route does not vary over time. Theconclusions will still largely hold when relaxing these assumptions. The setup is schematizedin Figure 64.

Figure 64: Upstream and downstream storages and flip torque.

To further simplify reasonings, let us imagine that the head of the product has reached thedownstream storage, and that somehow it does so with zero torsion everywhere along the
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route. Then again somehow, the flip torque is “switched on”, and the operation continues.The flip torque causes a positive roll at the point of application, spreading upstream anddownstream as the operation progresses. The spread is slowed down but not stopped, byrollers and tensioners (Section 6.5), curves (Section 5.3) and chutes (Section 6.4).At the upstream storage, since no torsion is stored in it, the spatial roll rate is zero (Section6.2), so that a positive twist builds up between the upstream storage and the point with fliptorque. At the downstream storage, the downstream twist gets stored (Section 6.2).If the operation reaches a steady state (Section 7), then the spatial roll rate everywhere becomeszero. Downstream, since the twist between the head of the flexible product and the point offlip torque is distributed over that whole length, the torsion approaches zero. At zero spatialroll rates, the external torques from rollers, tensioners, curves and chutes becomes zero: theflip torque is balanced by external torque at due to friction at the upstream storage. As aconsequence, the internal torque in the flexible product, upstream of the flip torque point, isequal to the flip torque (Figure 65).One should be careful to assume that the steady state provides a safe upper bound for thetorques that can be produced during installation: It is suspected that instabilities like torsion-pressure instability (Section 8.2) and flop-torque-geometry instability (Section 8.4), as well ascracking with hydraulic tools (Section 6.6) can cause significant increases in torques.

Figure 65: Steady state configuration.

If the flip torque is high enough, the internal torque can be high enough to cause helicalbuckling (Section 8.6), or local damage to the cross-section (Section 10), somewhere betweenthe upstream storage and the flip torque point.Multiple incidents are thought to share the mechanism described above. In a load-out operation,the free span above the onboard turntable generated a flip torque. The intensity of the fliptorque varied with the geometry of the free span, and waves of roll were documented topropagate upstream, across several tensioners. The internal torque ultimately caused damageto the cross-section, rendering the product unfit for use, causing severe financial loss. Similarly,in various operations, multiple documentations of helical buckling near the upstream storagehave been seen.
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9.3.3 Evolution of a loadout operation

A loadout operation between two turntables is considered. Tens of kilometers of flexible productare to be out-loaded, to an installation vessel. The length of the route is a few hundred meters.It is assumed that near the downstream turntable, the route geometry imposes a positive pseudoexternal flip torque (Section 5.4).
At the start of the operation, the flexible product is stored in the upstream turntable with zerointernal torque (Figure 66). The longitudinal marking is ideal, so there is zero torsion.
The head of the flexible product is winched along the route (Figure 67). The head of the flexibleproduct has not yet reached the flip area, and so there is neither torque not torsion in theflexible product.
The head of the flexible product has just reached the flip area (Figure 68). Because there isno flexible product downstream of the flip area, the downstream torque is zero. Because rollhas just started, no torsion build-up has yet occurred upstream, and the upstream torque mustthus be zero. To respect force equilibrium, the flip torque must hence be zero. This in turnimplies that the roll rate (in the absence of torsion: material as well as spatial) is equal tothe value for which the flip torque becomes zero (Figure 40, red curve), which is roughly “the”Frenet-Serret torsion of the flip geometry (typically, this Frenet-Serret torsion is not uniformover the span).
The head of the flexible product has just reached the floor of the turntable (Figure 69), and it iseither latched to the turntable, or enough flexible product has been stored that friction preventsmaterial roll at the touch down point. Under the same argument as above, the upstream torqueis still zero. Because the distance between the flip area and the downstream turntable is veryshort, the spatial roll rates at both points are equal, and hence the spatial roll rate in theflip area is positive equal to the opposite of the downstream torsion. By stating that spatialand material roll rates in the flip area are nearly the same (assuming that the torsion is smallcompared to the Frenet-Serret torsion), this allows to determine the roll rate from the “effectof roll rate on flip torque” diagram.
The level of downstream torsion thus generated depends on the torsional stiffness of the product.Two limit cases are of interest: If the torsional stiffness is high, torsion will be small, and thetorque will be the opposite of the flip torque at near-zero material roll rate. If it is low, thedownstream torsion will be the opposite of the Frenet-Serret torsion. Either way, in this phase,the consequences of flip are felt downstream, and torque-induced failures would be observedin the vicinity of the touch down point in the downstream carousel.
As the operation progresses, the positive spatial roll at the flip area leads to the build upof positive torsion upstream. This has several effects: the spatial roll rate at the flip area isreduced, increasing the flip torque. Reducing the spatial roll rate also reduces (in absolutevalue) the downstream torsion. This progresses until steady state is reached (Figure 70) inwhich the upstream torsion is constant, causing the downstream torsion and torque to be zero,so that the upstream torque is equal to the flip torque. The flip torque is a value correspondingto zero spatial roll rate (near zero material roll rate).
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At this point of the operation, the maximum value of the upstream torque is reached, and failurecan be experienced anywhere between the upstream turntable and the flip area.
The tail of the flexible product has just left the upstream turntable, and is thus no longerrestrained to a material roll equal to zero (Figure 71). The upstream torque is just relaxed byroll of the flexible product along the route. Relatively rapidly, the upstream torque gets closeto zero. From the point of view of torque equilibrium at the flip area, the situation is verysimilar to that just after the head of the flexible product reached the downstream turntable:this is another phase of the operation where failure at the touch down point can occur.
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Figure 66: Flexible product stored in the upstream turntable.

Figure 67: Flexible product winched along the reach approaches the flip area.
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Figure 68: Flexible product enters the flip area and experiences high roll rate.

Figure 69: Flexible product latched to the turntable, high torsion or torque downstream of the
flip area.
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Figure 70: Steady state, with flip torque taken up upstream.

Figure 71: New transient as the cable tail leaves the upstream turntable.
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9.4 Baskets

Unlike turntables, baskets do not rotate around a vertical axis, and as a consequence, storinga flexible product in a basket induces torsion in the stored product (Section 6.3)
Let us consider a positive basket (Figure 49) in which a flexible product is stored as it isproduced, coming from a winding machine that induces zero spatial roll rate, or from a spoolor turntable. Equation 86 states

0 = τ+
∂R

∂k
+

360

λwhere λ is the length of a coil and τ the torsion stored in the coils.
At steady state with the above mentioned absence of spatial roll at the winding machine,
∂R/∂k = 0 near the basket, hence τ = −360/λ (here steady state is a simplification, assumingall coils to have the same length). This means that there is a negative internal torque storedin the basket. In order to ensure equilibrium, this implies that there is a negative internaltorque in the flexible product between the winding machine and the basket (assuming thatthere is no flip torque, Section 5). In the period before steady state, this negative internaltorque will propagate upstream from the basket, slowed down but not stopped by tensioners,rollers (Section 6.5) and chutes (Section 6.4).
The torsion τ = −360/λ is usually quite large, and hence baskets are used with either flexibleproducts of small diameters, or flexible products in which by construction have a low torsionalstiffness. Low torsional stiffness in one direction is achieved by winding all layers in the samedirection. In the present case, a basket with positive top feed, inducing negative torsion, thiswould require components laid as positive helices (Z-laid).
When the flexible product is taken out of storage, “the movie is played backwards” but thesign convention for roll is flipped, so the spatial roll has the same value as when paying in. Inmathematical terms. The sign of the stored torsion is unchanged, because it is independent ofthe choice of positive direction along the route.
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As can be seen in Figure 72, with the two spatial roll rates being identical, this is in a wayas if the storage in the basket had not happened - and this is also true before steady state.However, as mentioned above, while being loaded, the basket imposes an external negativeinternal torque, resulting in a negative internal torque upstream. While being unloaded, underthe above assumptions and at steady state, the basket imposes ∂R/∂k = 0. Whether there willbe a internal torque downstream of the turntable depends on the rest of the route.
Industrial experience leads to favoring top-feeding into baskets from points placed high abovethe basket. A possible explanation is as follows: in a positive basket, the free span is a positive
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Figure 72: Flexible product entering (left) and leaving (right) a positive basket, with zero spatial
roll at the top.

spiral, and feeding the flexible product through the free span induces a positive flip torque.This external torque partly balances the negative internal torque in coils, thus decreasing theinternal torque upstream of the basket. When paying out from the basket, the flip torque isstill positive (with the sign convention flipped). The internal torque tends to release the torsionstored in the coils, and is balanced by friction in the basket. An obvious challenge is to chosethe height of the free span adjust the length over which the curvature changes plane, in orderto approximately cancel out the internal torque stored in the coils.
9.5 J-lay installation

9.5.1 Torque build up

During the installation of a flexible product from a vessel to the seafloor, the same situation asdescribed in Section 9.3.2 can occur: The seafloor takes the place of the downstream storage,freezing material roll through friction. “Spatial roll” then needs to be understood relative tothe vessel, or to the touch-down point, not relative to a point on the seafloor.
The geometry of the route on board the vessel is often a source of flip torque. Another potentialsource that needs to be excluded is strong cross currents, which may cause the free spanbetween the touch down point and the installation vessel not to be restricted within a verticalplane.
In one case, an offshore laying operation had to be interrupted when helical buckling appearedbetween the on-board storage and a part of the on-board route generating flip torque. It was
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not possible to pass the buckled geometry through tensioners and thence overboard, so theproduct ultimately had to be cut and abandoned on the seafloor.
9.5.2 Touch-down point hockling

In the free span between the installation vessel and the touch down point, the tension will vary,increasing from the seafloor towards the vessel. If the flexible product is torsionally unbalanced(Section 4.8), then torsion τ and elongation ε both influence internal torque M1 and axial force
R1 (Equation 6). The axial force R1 appearing in this equation is the tension in the flexibleproduct, not the effective tension [60].To simplify reasoning, it is assumed that the free span to the touch down point is in a verticalplane, so that no flip torques are developed there. Also, the unbalanced cross-section has abehavior dominated by a tensile armor laid as a positive helix (Z-laid). This implies that ifelongated, it tends to unwind and acquire a negative torsion. Alternatively, if elongated butprevented from rolling, it acquires a positive internal torque.If the depth and the top tension have been held constant long enough, steady state is ap-proached (Section 7): The internal torque in the free span will approach zero (Section 6.2),hence there is a negative torsion, varying in intensity with depth (Figure 73 b).

Figure 73: a) Unloaded product, with tensile armor in positive direction (stippled helix). b)
Under high tension and at steady state, negative torsion and no internal torque. c) As tension
is relaxed under constant link, negative internal torque. d) With decreasing tension, internal
torque is relaxed by helical buckling. e) Reapplying tension may lead to a damaging hockle.

In the next step, the top tension is rapidly decreased by paying out a length of flexible productwithout the laying vessel moving forward by the same length, or by holding the top of theflexible product and letting the vessel surge aft. This decreases the tension along the catenary.Because the decrease is rapid, the link (Section 3.9) in the free span does not change and thetorsion remains unchanged3 (Figure 73 c).
3Actually the torsion can redistribute along the free span, but the link, which is the integral of the torsion,does not change. This does not affect the present reasoning.
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Figure 74: Helical buckling, liable to cause a hockle if tensioned (anonymous source, by
permission)

With the elongation decreasing while torsion remains unchanged, a negative internal torqueappears along the free span. Tension is lowest at the touch-down point. The combination ofinternal torque, and low tension can be unfavorable enough to cause helical buckling (Section8.6) near the touch down point (Figure 73 d).
Reapplying a higher top tension may either resolve the helical buckling, or lead to a localizedhockle with the potential for serious damage to the cross-section (Figure 73 e).
9.6 Shore pull-in

At the start of a shore pull-in operation, the flexible product is stored on board an installationvessel anchored or beached as close to the high tide line as possible. The head of the flexibleproduct is then hitched to a steel flexible product and winched to the shore terminal. Theproduct paid out can either be carried by an alley of rollers temporarily set up on the beach,or supported by a series of floaters. In this section, only the scenario of an alley of rollers isdiscussed.
The winch force needs to be large enough to drive the deformation of the flexible product asit passes the rollers. The longer the pull in, the higher the force becomes. If the cross-sectionis torsionally unbalanced, the flexible product will tend to unwind. In Figure 75, it is assumedthat the flexible product has a single tensile armor laid as a positive helix (Z-laid). The headof the flexible product is usually free to roll (it is hitched to the winch flexible product via aswivel), and the rollers only slow down roll during the pullout (Section 6.5). Towards the endof the pullout, the flexible product is elongated, has torsion, but a low internal torque (Figure75 middle).
Once the flexible product head has reached the shore terminal, the winch load is slowlyreleased. Spring back, from relaxing tension in the flexible product is small. So although thehead is free to roll, friction against the rollers, as well as internal friction, will almost completely
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Figure 75: Flexible product at rest (top) at steady state during pull-in (middle) and after
relaxing tension (bottom).

Figure 76: Phases of a pull-in operation and effect of armor wire strain.

prevent the roll of the flexible product so that torsion is unchanged. This results in a internaltorque (Figure 75 bottom).
Figure 76 shows series of lines of constant value of tension and torque in the flexible product,and strain in the tensile armor, as a function of elongation and torsion. The bold line shows theidealized history of elongation and torsion of a cross-section: it first follows a line of constant(zero) torque, and then a line of constant torsion to the point of zero tension. As can be seen,this leads to compressive strains in the tensile armor. This may result in a local failure of thetensile armor (Section 10). Helical buckling (hockling) is expected to be prevented by the highamount of work needed to pull in “slack” needed for the helical geometry.
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10 Local failure mechanisms

10.1 General remarks

Section 10 discusses the various mechanisms by which flexible products can fail when subjectedto torque. More specifically, failures with large local plastic deformations are described. Helicalbuckling is handled in Section 8.6 because of its apparent similarity with mechanisms of torquegeneration.
While torque generation is related to only a few properties of the flexible product (for examplethe friction bending moment Mf), failure mechanisms are more dependent on details of theconstruction of the flexible product. Skew-kinking (Section 10.2) is only relevant for flexiblepipes, while herniation buckling (Section 10.4) is strongly influenced by the presence or absenceof multiple tensile layers around the product.
Design codes do not, generally, address the issue of determining the torque that a flexibleproduct can safely be exposed too. Attempts to use extent codes to do so may thus lead tounconservative results. Further, the failures modes are not always recognized as torque related,making it more difficult to improve future operations.
In the following, figures depict the aftermath of failure under a positive internal torque. Thecorresponding figures for negative internal torque are obtained by mirroring. This mirroringwill also change the sign of the helices in the component. For example, a product with a singletensile armor will fail differently if torque increases, or decreases tension in the armor.
10.2 Skew-kinking

Skew-kinking is a mechanism that has been observed in flexible pipes, and that is relatedto kinking. Kinking can occur when e.g. a pipe is bent: it first ovalizes. Then as bending isincreased, the ovalization becomes more pronounced and localizes, leading to local high plasticdeformations. Ultimately, this results in a kink, that is a flattened cross-section of the pipe,with the wall of the pipe (nearly) self-contacting along a line orthogonal to the axis of the pipe(red line in Figure 77, left).

Figure 77: Kinked pipe (left), and skew-kinked pipe under positive internal torque (right).
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Figure 78: Skew-kinking can easily be confused with crushing.

When torque is present in addition to bending moment, the kink-line is no longer orthogonalto the axis of the pipe, and the kink can occur at curvatures that would otherwise have beenacceptable (Figure 77, right).
Where the torque is high, the kink axis can be almost tangent to the pipe, and this gives riseto a geometry that can be misinterpreted as resulting from crushing (Figure 78). High externalpressures or high tensioner contact forces can contribute to this failure mode.
The mechanism is not know to have occurred in cables or umbilicals: clearly the “payload”(e.g. insulators and conductors) resists compression and thus limits ovalization.
10.3 Birdcaging

Birdcaging is a failure of the tensile armor of a flexible product, in which the tendons, near agiven cross-section of the flexible product, displace outwards radially, creating the name-giving“birdcage” shape. The birdcage is limited in extent along the flexible product because of theresistance of outer layers (for example an outer PE sheath or PP twine).
Birdcaging is due to compression of the tensile armor(s), around the circumference of the flexibleproduct. Compression of a tensile armor can have several causes:

– Compression (negative “wall” tension) of the whole cross-section.
– Torque in the product. A tensile armor laid as a positive (respectively negative) helix willexperience compression under a negative (respectively positive) internal torque. This isthe so called “slack” direction, in which torsion decreases the contact pressure betweenthe tensile armor and the underlying layers or components.

For products with two tensile armors laid in opposite directions, the two load scenarios aboveare expected to cause different patterns of failure, providing more forensic information on themechanism of failure:
– Compression would cause both tensile armors to buckle (Figure 79).
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– A positive (respectively negative) torque would cause the outer armor to buckle if it is anegative (respectively positive) helix. This is a torque in the “slack” direction, meaning itdecreases the contact pressure between the two tensile armors. The inner tensile armorwould be in tension, pressing against underlying layers and would not buckle (Figure80).
– A torque that sets the outer armor in tension and the inner in compression (in the “tight”direction) will not cause birdcaging, but possibly herniation-buckling (Section 10.4).

Figure 79: Birdcaging due to compression: the inner tensile armor buckles.

Figure 80: Birdcaging under positive internal torque: the inner tensile armor does not buckle.

10.4 Herniation buckling

Herniation buckling can occur when a flexible product with two tensile armor laid in oppositedirections has been subjected to an excessive torque in the “tight” direction: the torque has putthe outer tensile armor in tension, and the inner armor in compression. A known variation is aflexible product with a tensile armor surrounded by a layer of yearn (typiclay polypropylene)laid in the opposite direction to the armour’s.
The number of tensile tendons in tensile armor layers is normally chosen so that there is someslack between the tendons and they do not press against each other in the hoop direction.Hence it is possible to create a larger gap between two neighboring tendons, by pressingtogether all the other gaps.
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Figure 81: Probable birdcaging (Courtesy of TenneT)

If the compressive forces in the inner tensile layer is high enough, it can buckle outwardsthrough the gap in the outer tensile armor, causing large local plastic deformation (Figure 82).The name hernia is borrowed from medicine.

Figure 82: Herniation buckling under positive internal torque.

Friction could be expected to prevent transverse motions of the tendons of the outer armor topack, thus making it improbable to have one major gap: if torsion causes the internal tensilearmor to expand, and the external tensile armor to contract in the radial direction, there will behigh contact forces between the layers. According to the Coulomb friction model (Section 6.4),any slip will be resisted by contact forces tangent to the surface of contact. Yet, experienceshows that herniation buckling can occur as soon as, assuming there is a gap in the outertensile layer, the compression in the inner tensile layer are enough to cause local deformation:somehow friction is “effectively zero”.
It is believed that when the flexible product is being transported, bending and unbendingcause the tendons to slip in their longitudinal direction. As discussed in Section 6.4, slip in thelongitudinal direction makes it possible to have slip in the transverse direction driven by verysmall transverse forces. This opens for an instability with the following feedback loop:
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1. At some position over the surface of the flexible product, the inner tensile armor is raised.2. The combination of slope on the inner tensile armor, and tension in the outer tensilearmor result in a “downhill” transverse force.3. With bending and unbending effectively “canceling” friction, this results in transversedisplacement of tendons of the outer tensile armor, away from the bulge of the innertensile armor.4. This results in fewer tendons of the outer tensile armor (or a gap in the outer armor), andthus less forces preventing the inner tensile armor from bulging.5. and so on.
10.5 Inward radial buckling

Inward radial buckling is a situation in which a tensile armor (in compression) works its wayinward in a flexible product (Figure 83). For it to occur, the layer under the tensile armor mustbe soft and the layer above stiff. This has been observed to occur with an inner tensile armorwithin an outer tensile armor (stiff) laying on a layer with filers (soft) as found in three-phasepower cables or umbilicals.

Figure 83: Inward radial buckling under positive internal torque

10.6 Lateral buckling of tensile armour

Lateral buckling is another form of buckling of a tensile armor in compression. Again, com-pression of a tensile armor can be due to wall compression, and to torque (or any combination
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of both). In this failure mode, instead of buckling in the radial direction (as in birdcaging orherniation buckling, Sections 10.3 and 10.4), the tendons of the armor buckle within the layer,displacing in the hoop direction as illustrated in Figure 84. The dramatic consequence of thisfailure for round armour wires is shown in Figure 86.

Figure 84: Lateral buckling under positive internal torque.

Figure 85: Torsional-flexural lateral buckling under positive internal torque.

Where the tendons are not circular in cross-section, a variant of this failure mode exists, inwhich the tendons undergo torsional-flexural buckling: they flip by a quarter turn to presenttheir “weak axis” to the curvature introduced by buckling as shown in Figure 85. This is knownas torsional-flexural lateral buckling.
10.7 Payload buckling

Payload buckling is an in-layer buckling of “payload components” (phases in an electricalcable, tubes or wires on an umbilical). It has been observed both in flexible products withsingle tensile armor and two tensile armors wound in opposite direction. The mechanism offailure in the later case is not well understood.
For a single tensile armor, wound in the direction opposite to that of the payload, then a torsionthat puts the tensile armor in tension (Figure 87, top) puts the payload in compression causingbuckling. This is not a typical construction of a coilable product: payload and tensile armor arewound in the same direction, but a similar mechanism applies: if the lay angle of the payload islower than that of the tensile armor (Figure 87, middle), then torsion in the tight direction willcompress the payload in the axial direction. If the lay angle of the payload is higher than thatof the payload (Figure 87, bottom), then torsion in the slack direction compress the payload inthe axial direction.
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Figure 86: Example of lateral buckling of tensile armour (Courtesy of TenneT)

10.8 Unwinding at termination

Pulling heads - the termination to a flexible product allowing to tow it through a route maybe based on different principles. One of them is to attach each wire in the tensile armor to thepulling head. In a torsionally unbalanced cross section, this can result in the unwinding of thetensile armor in the vicinity of the pulling head (Figure 88).
When this happens, the tensile armor must slide over the underlying layers. As a consequence,friction limits the distance from the pulling head over which unwinding occurs. If the flexibleproduct is subjected to curvature changes while under tension, the tensile armor slips in thetendons axial direction, facilitating slip in the transverse direction and thus unwinding.
A flexible product always unwinds under tension, but generally does so as a whole - witheach cross section rolling as a whole, without relative slip of the components. Thus othercomponents contribute to the torsional stiffness. When slip occurs near the pulling head, thetensile armor is free to unwind, and indeed has been documented to align with the flexibleproduct.
As the tensile armor unwinds, its lay angle approaches zero: for the same length along atendon, more length along the flexible product is covered, and the pulling head rolls and movesforward relative to layers under the tensile armor (in black in Figure 88, seen through gaps inthe tensile armor).
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Figure 87: Buckling of the phases in an electrical cable

Figure 88: Unwinding of an unbalanced flexible product near the pulling head (red)
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Part II

Assessing torsion
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11 Introduction

11.1 Intention and disclaimer

Part II of the present document provides a guidance for the assessment of the level of torquesthat are likely to develop during the handling of flexible products, as well as for the assessmentof the level of torque that the product can tolerate without incident or damage.
Many of the criteria proposed in this document have not been validated experimentally yet.Also, no partial safety factors have been introduced, as would be necessary to provide satis-factory reliability in the presence of uncertainties. Finally, not all known failure mechanismsare satisfactorily understood and covered in this guidance.
This document is not prescriptive or normative: Users remain free to create and market innova-tive products, solutions, tests or analysis procedures not foreseen in the guideline. Neither isthe application of the present guideline absolving its users from their respective responsibilitiestowards ensuring successful operations.
Neither the SINTEF Ocean nor its affiliates, nor the members of the Torsion JIP consortium,accept responsibility for any consequence arising from the use of the present guideline.
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12 Units

12.1 Requirements

All calculations described in this guideline should be carried out using a “consistent unitsystem”, to be chosen for that purpose, as described in the remainder of Section 12. This is inorder to prevent mistakes arising from the use of quantities with inconsistent units.
Where inputs to the assessment are available in other units than those in the chosen consistentunit system, they should first be converted to the consistent unit. Where the results of analysesneed to be reported in other units, the output of the procedures presented in this documentshould be converted after completion of the respective procedures.
12.2 Base units

Units for time, length and mass can be freely chosen. One possible choice is the SI base unitssecond s, the meter m, and the kilogram kg. Other choices are acceptable.
Units for the other basic quantities defined in e.g. the SI unit system (electric current, temper-ature, amount of substance and luminous intensity) will not appear in calculations, althoughsome properties may be tabulated as a function of temperature. There is no need to selectbase units for these quantities.
12.3 Dimensionless quantities

Angles should be expressed in rad (radians). Other measures of angle should be used withcare: firstly, most numerical programming languages use radians in their trigonometric function.Secondly, some results presented in the following are only valid for radians. In particular,moments (whether bending moments or torque) are energy conjugate of angle in gradients,and the symmetry of the stiffness matrix in Eq. 44 will consequently be lost if an other angularmeasure is used.
All strains should be calculated as the length after deformation divided by length before defor-mation, minus one. The use of non-linear strain measures is acceptable, the only requirementbeing that linearisation for small deformations and rotations is equal to the above definition.This is the case for strain measures like Euler-Lagrange or Almansis-Euler strains. The use ofmicrostrains is not recommended, again because it is not the energy conjugate of stress in aconsistent system of units.
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12.4 Derived units

The unit for any other quantity is derived from the base units and measures described inSections 12.2 and 12.3.
For example, assuming the SI base units are chosen, then

– The unit for a force must be kg ·m · s−2, which is the Newton N (the kilogram force isnot the correct unit for force with this choice of base units).
– The unit for torsion must be rad ·m−1.
– The unit for weight per length is N ·m−1 (not to be confused with mass per length).



114 13 CROSS SECTION PROPERTIES

13 Cross section properties

13.1 Axial and torsional stiffness

13.1.1 Definitions

Equation 44 provides the relation between elongation and torsion and the corresponding ten-sion and torque: [
R1

M1

]
=

[
Kε Kετ

Kτε Kτ

]
·
[
ε

τ

] (128)
where ε and τ are respectively the elongation and torsion of the product and R1 and M1 arerespectively the axial force and torque. The matrix entries are:
Axial_stiffness Kε is the change of the tension divided by the change of elongation of the cable,when neither end of the cable is free to rotate.
Torsional_stiffness Kτ is the change of torque divided by the change of torsion of the cable,when neither end of the cable is free to translate.
Axial-torsional_cross_stiffness Kετ is the change of tension divided by the change of torsionof the cable, when neither end of the cable is free to translate.
Torsional-axial_cross_stiffness Kτε is the change of torque divided by the change of elongationof the cable, when neither end of the cable is free to rotate.Unless significant energy dissipation occurs in torsion and in elongation, and provided anglesare measured in radians, then Kετ = Kτε are equal. Procedures in the following are based onthe assumption that Kετ = Kτε.Torsional stiffness and axial-torsional cross stiffness can change significantly with the sign ofthe torque, due to the loss or gain of contact between components. This is true both for coilableproducts and torsionally balanced products. The procedures in the following must be repeatedto provide values of stiffness the stiffness coefficients for both signs of torsion.
13.1.2 Evaluation by numerical analysis

The evaluation can be carried out with a numerical analysis software that models a segmentof the flexible product (which may be short), and satisfying the following requirements:1. It represents the geometry of the various components.2. At the cross section at each end of the model, each component is free to rotate in alldirections.3. At the cross section at each end of the model, each component is free to translate inthe radial direction of the flexible product. If the component is itself a sub-component ofa larger component (for example a copper wire within one of three conductors within acable), then the sub-component must be free to translate in the larger component’s radialdirection, instead of the product’s radial direction.
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4. At the cross section at each end of the model, each component is constrained to translatein the axial direction and in the hoop direction together with the cross section of theflexible product.5. The elasticity of the materials involved is correctly represented.6. Components can gain and loose contact with respect to each other.

2D formulations considering only a cross section are acceptable if they are formulated to carryout an analysis equivalent to what is mentioned above.
The following load cases are to be applied:

1. An elongation ∆L is applied to the model, which is of length L, to produce tensions upto the product’s rated tension. The end cross sections are not allowed to roll. The axialstrain is computed as ∆ε = ∆L/L. The tension ∆R1 in the flexible product and the torque
∆M1 are logged. The axial stiffness and the torsional-axial cross stiffness are computedas

Kε =
∆R1

∆ε
(129)

Kτε =
∆M1

∆ε
(130)

2. A twist ∆T is applied to the model, to produce internal torques up to the product’s ratedtorque, or a torsion up to the product’s rated torsion. The end cross sections are notallowed to translate. The torsion is computed as ∆τ = ∆T/L. The tension ∆R1 in theflexible product and the torque ∆M1 are logged. The torsional stiffness and the axial-torsional cross stiffness are computed as
Kτ =

∆M1

∆τ
(131)

Kετ =
∆R1

∆τ
(132)

3. Verify that
Kτε ≈ Kετ (133)

13.1.3 Experimental evaluation

A straight sample of flexible product must be terminated by end-fittings so that all componentsare prevented from moving relative to each other, at each end of the sample.
The length L of the sample between the terminations should preferably be longer than 10 timesthe outer diameter of the sample, and no shorter than 5 times the outer diameter of the sample,in order to limit the uncertainty related to compliance in the end-fittings.
The test rig should be able to apply tension the highest tension that the flexible product willencounter during the operation. For each direction of torque, the test rig should be able to
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apply a torsion or torque up to 100% of the flexible product’s rated torsion or torque for thatdirection. The tests can also be carried out at lower loads provided that they explore all therelevant contact conditions and that there are no material non-linearities that would invalidatea linear extrapolation of response at higher loads,
The test rig must allow to measure elongation, tension, torsion and torque in the specimen.
The load cases and the procedure for determination of the stiffness coefficients are identical towhat is described in Section 13.1.2.
An alternative procedure is the following:

1. An axial force is applied through the end fittings, to produce a tension ∆R1 up to theproduct’s rated tension. The end fittings are allowed to roll freely (no external moments,either from actuators or friction are applied by the rig to the end fittings). ∆ε = ∆L/Land ∆τ = ∆T/L are measured as before. We then compute
a =

∆ε

∆R1

(134)
b =

∆τ

∆R1

(135)
2. External torques ares applied to the end fittings, to produce an internal torque ∆M1 upto the product’s rated torque, or a torsion ∆τ up to the product’s rated torsion. The endfittings are allowed to translate freely (no axial forces, either from actuators or frictionare applied by the rig to the end fittings). ∆ε = ∆L/L and ∆τ = ∆T/L are measured asbefore. We then compute

c =
∆ε

∆M1

(136)
d =

∆τ

∆M1

(137)
3. Verify that

b ≈ c (138)
4. Compute

Kε =
d

ad− bc
(139)

Kτε = −
b

ad− bc
(140)

Kτ =
a

ad− bc
(141)

Kετ = −
c

ad− bc
(142)
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13.1.4 Stiffnesses at constant torque and axial force

Kε is the axial stiffness at constant torsion. The axial stiffness at constant torque K∗
ε is relevantin situations where an unbalanced cross section can unwind freely as the flexible productelongates. It is computed as

K∗
ε = Kε −

KετKτε

Kτ

(143)
= Kε −

K2
ετ

Kτ

(144)
Kτ is the torsional stiffness at constant elongation. The torsional stiffness at constant tension
K∗

τ is relevant in situations where an unbalanced cross section can elongate (or shorten) freelyas the flexible product undergoes torsion. It is computed as
K∗

τ = Kτ −
KτεKετ

Kε

(145)
= Kτ −

K2
ετ

Kε

(146)
Kτε = Kετ is the “cross stiffness” term: it gives the increase in tension due to an increase intorsion at constant axial strain, and the increase in torque due to an increase in axial strainat constant torsion. K∗

τε = K∗
ετ gives the increase in tension due to an increase in torsionat constant torque, and the increase in torque due to an increase in axial strain at constanttension

K∗
ετ = Kετ −

KεKτ

Kετ

(147)
Where the inverse is needed, it is convenient in numerical procedures to use

K∗−1
ετ =

1

K∗
ετ

=
Kετ

K2
ετ − KεKτ

(148)
to prevent division by zero when Kετ = 0 for balanced cross sections.
13.2 Moment-curvature diagram, friction bending moment

13.2.1 Importance and sensitivity

In the assessment of torque generation, the moment-curvature curve is important for two rea-sons. First, it is needed in order to carry out a global static analysis, to obtain the geometry ofthe flexible product, in particular in free spans. Second, the moment-curvature relation is usedin order to assess the friction bending moment Mf, which in turn is needed in the assessmentof flip torque.
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The moment curvature curve of the flexible product depends on the material properties ofeach cross-section component, the friction properties of the tensile armour and neighbouringlayers, and interlayer radial contact pressures. These properties are affected, in particular, bytemperature.
Assuming dry friction, the friction forces depend on the contact forces between the compo-nents. These are affected by temperature: in particular, temperature causes polymer sheathsto contract, pressing their contents together. Tension also causes helical components to moveor press in the radial direction. Torsion, affecting tension in individual components, also causeschanges in the contact pressures and hence in the friction forces.
Viscous fluids (including tar or asphalt-like compounds) are used in some flexible products forcorrosion protection, partially or completely filling the space between components. The viscousproperty of the fluid affects Mf in terms of both the temperature and deformation rates.
When evaluating Mf for the purpose of torque assessment it is crucial to obtain an upperbound value. This will typically be achieved by assuming lower bound temperatures, maximumexpected tension in the operation, and both negative and positive torque with magnitude asclose as possible to the maximum expected torque in the operation.
13.2.2 Moment-curvature by numerical analysis

The analysis can be carried out with a numerical analysis software satisfying the followingrequirements:
1. It represents the geometry of the various components2. At the cross section at each end of the model, each component is free to rotate in alldirections, and free to translate in the radial direction of flexible product. If the componentis itself a sub-component of a larger component (for example a copper wire within on ofthree conductors within a cable), then the sub-component must be free to translate in thelarger component’s radial direction, instead of the product’s radial direction.3. At the cross section at each end of the model, each component is free to translate in theaxial direction, but constrained to translate in the hoop direction of the flexible product,together with the cross section.4. The elasticity of the materials involved is correctly represented5. Components can gain and loose contact with respect to each other.6. The software must be able to model friction forces between components, correctly ac-counting for contact pressures between the components.7. The model is 4 times or more the longest pitch length of any component.

The following load case is to be applied: one end of the specimen is constrained to neithertranslate nor rotate. The specimen should be modelled without gravity load. An externalbending moment is applied to the other end. The external bending moment is increased in
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steps until the minimum bending radius is reached. This should be repeated for various valuesof torque applied to the cross section.Curvature at the middle of the model (to minimize effect from either end of the truncated model)is extracted at each step, and plotted against the applied bending moment (cf. Figure 89).2D formulations assume constant curvature in the longitudinal direction. Such formulations areacceptable if they allow to carry out an analysis equivalent to what is mentioned above.
13.2.3 Moment-curvature by test

The specimen must be either terminated as described in Section 13.1.3, or simply cut at bothends, with components free to translate in and out of the cross sections.The length of the specimen between terminations (or between point of application of couples)must be at least equal to twice the longest pitch length of any helical component.The test rig must allow to apply a load on the specimen equivalent to that described in Section13.2.2.The curvature of the specimen must be evaluated at the middle of the specimen. Care must betaken when doing this, because the curvature will generally not be uniform along the specimendue to end effects. The curvature is continuously monitored and plotted against the appliedbending moment.The effect of gravity must be corrected for when a horizontal rig is used. Further, the specimenis likely to have an initial curvature in its moment-free state. These effects are simply correctedfor by setting the zero-reference for the curvature measurements equal to the curvature priorto application of the external bending moment.Where possible, the test should be repeated with various values and direction of torque appliedto the specimen.A test rig for bending may not allow to apply tension up to the level encountered in someoperations (J-lay, beach åull in). In that case, the data obtained from the test at low tensionmust be completed by values computed by numerical analysis for high tension
13.2.4 Evaluation of the friction bending moment

Once a moment-curvature graph has been obtained from the specimen, the graph can be usedto estimate the friction bending moment Mf, as shown in Figure 89. Where any doubt arisesconcerning the selection of a tangent to the curve in the “full slip” area, a conservative choiceis made by selecting the highest value of Mf.An alternative method is shown in Figure 90.Where moment curvature curves have been established under various conditions of torqueand/or temperature, one value of Mf is evaluated for each condition.
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Figure 89: Typical moment curvature diagram of a flexible product. Realistic curve (black) and
idealized (red). MBR is the minimum bending radius of the flexible product.

Figure 90: Alternative method: the specimen is bent back and forth. This difference between
moments for loading and reversed loading, at zero curvature, is equal to 2Mf.
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14 Overall torque load assessment procedure

The handling of a flexible product, from production to installation is, for analysis purposes,separated into phases. For each route the product is following, up to three phases are relevant:the early transient, steady state, and the late transient. The phases of handling can include:
1. Start of the winding process, before the cable head reaches the downstream turntable.2. Steady state of winding process.3. End of winding process, after the cable tail leaves the winding machines.4. Start of the extrusion process, before the cable head reaches a new downstream turntable.5. Steady state of extrusion process.6. End of extrusion process, after the cable tail leaves the extrusion machines.7. Start of loadout operation, before the cable head reaches the installation vessel.8. Steady state of loadout operation.9. End of loadout operation, after the cable tail leave onshore storage.10. Start of installation operation, while the head of the cable is routed out of the vessel.11. Pull in while cable head is pulled over the beach.12. Steady state of installation operation.13. End of installation operation, as tail of the cable leaves the vessel.

For each phase a variety of mechanisms may generate torques:
1. Coiling writhe (Section 15).2. Flip torque (Section 16).3. Cranking (Section 17).4. Torsional imbalance (Section 18).5. Residual curvature (Section 19).

In principle each mechanism must be assessed for each phase, leading to a substantial analysismatrix. However some combinations can quickly be dismissed as irrelevant: for example,if a product follows a straight line between two spools at low tension, then coiling writhe,flip torque, cranking and torsional imbalance can be judged irrelevant for the correspondingtransients and steady state.
For each phase and mechanism, a diagram of the torque along the route is obtained. Eachdiagram is split into a positive part and a negative part (Figure 91, top).
For each phase, the positive parts for all mechanisms are added into one diagram of totalpositive torque for the phase, and the same for the negative part (Figure 91, bottom). In Figure91, the sums of the positive (respectively negative) parts is drawn in black. The highest positivetorque is extracted from the diagram of sums of positive torque for the phase (marked with asmall circle). The same is done for the negative parts.
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Figure 91: For a phase, addition of the positive (left) and negative (right) parts of the torque
induced by various mechanisms. Small offsets between the curves were introduced for read-
ability. No such offsets are to be introduced in an actual assessment.

Once all the phases have been analyzed, the overall highest positive torque for all phases isidentified, and the same is done for the overall highest negative torque. These two values arethen to be compared to the torque capacity (Sections 20 and 21).
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15 Coiling writhe at steady state

Coiling refers here to the storage of a flexible product in a basket or ship hold which can notrotate (as opposed to a spool or a turntable). Typically, each coil is within a horizontal plane.
Figure 92 shows a positive basket (the mirror image would be a negative basket).
When coiling a flexible product into a positive basket, at steady state, torsion and torque

τ = −
1

r
(149)

M1 = −
K∗

τ

r
(150)

are caused by change of writhe. r is taken as the smallest radius of curvature in the coil. Fora negative basket, the signs are changed
τ =

1

r
(151)

M1 =
K∗

τ

r
(152)

Only the coiling writhe from a downstream basket is considered as a source of torque for theroute: Coiling writhe from an upstream basket is considered not to induce torques. Coilingwrithe from a downstream basket is ignored in the early transient phase, and considered to beuniform over the route during the steady-state and late transient phases.
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Figure 92: A positive basket (the mirror image is then a negative basket).



125
16 Flip torque

16.1 Introduction

The assessment of flip torque is done in two phases (Sections 16.3 and 16.4), with the possibilityfor iterations (Section 16.7). The first phase is a global static analysis using a linear elasticbeam element model, in order to obtain an approximation of the geometry of the cable alongthe route, in particular, in free spans (Section 16.3). Once the geometry of the route has beencomputed, this is used to compute the flip torque (Section 16.4). Where flip torque geometryinstability is a potential concern, the approach must be iterated (Section 16.7).
The choice of segments to analyze depends on the context, as discussed in Section 7.
16.2 Limitation

The procedure presented in this chapter has an important limitation in its domain of validity:it assumes that the material roll rate is uniform along the segment of route that is analysed.This is only valid if, at the relevant levels of torque, the torsion in the flexible product is smallcompared to the Frenet-Serret torsion of the segments of the route that generate flip torque.
Flexible products with two or more tensile armour layers will as a rule of thumb have so hightorsional stiffness that the above assumption is verified. On the other hand, “coilable” flexibleproducts, and other flexible products designed with a low torsional stiffness (with a singletensile armour or none at all) will generaly not verify the above assumption, and the flip torqueassessment procedure is not valid.
A procedure that does not assume that torsion is small would require the solution of what iscalled a boundary value problem, and so in practice, a finite element solution of the torsionalong the route. Combined with the need for a finite element solution to determine the geometryof the route by a separate finite element analysis (Section 16.3), and for the need to iterate(Section 16.7), this points to the future of flip torque evaluation by a single, specialised, finiteelement analysis tool.
16.3 Global finite element analysis

The objective of the global finite element analysis is to compute an approximate geometryfor the flexible product along the route. The flexible product is modeled using Euler-Bernoullibeam elements (as opposed to Timoshenko beam elements that account for shear deformations),with a linear elastic bending stiffness. The transport of the flexible product along the route isnot modeled. The bending stiffness is to be taken equal to the product’s bending stiffness atfull slip. This is determined as the smallest slope in the moment-curvature diagram (Figure93).
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Figure 93: For the FE analysis, the bending moment is taken as dM/dκ as illustrated

A convergence study should be carried out to verify that the mesh is sufficiently dense: halvingthe length of the beam elements should not influence the results significantly. In addition, themesh must be sufficiently dense in order to provide nodal positions at closely spaced intervals,for the procedure in Section 16.7. As a rule of thumb, the angle between the tangents to theflexible product, at both ends of an element, should be under 2 degrees (a quarter turn shouldthus be meshed with 23 elements or more). Also, all the beam elements in the model should bemeshed with the same length to reduce numerical noise in the finite difference scheme appliedto compute the torque (it is possible to eliminate that requirement, but this would require amore advanced procedure than what is described in Section 16.7).
Surfaces that are in contact with the flexible product, including turntables, seafloor, chutes,roller highways, tensioners and so forth must be modeled with correct geometry. The frictionproperties (dry friction against chutes, rolling of supporting rollers, the grip and tracking oftensioners) can be modeled in any ad-hoc fashion, as long as that the length of flexible productfound to be in each free span (the slack in the span) is realistic for the operation. Regardingexternal friction, the flexible product must be moved a short distance in the longitudinal directionin order to fully activate friction forces in the intended direction.
The finite element analysis must consider a set of load cases that encompass what will beexperienced in the operation. This includes free spans with torsion in the slack and tightdirection, and for turntables or baskets: full and empty, laying by the outer wall and by thenave.
Stringent convergence criteria must be used, to ensure that the positions (coordinates) of thenodes are determined with high precision. It is recommended to apply load-based or energy-based convergence norms. Displacement-based norms are to be avoided if most of the productis supported by rollers, chutes or other rigid geometries.
Once the analysis of a load case is completed, the positions (coordinates) of the nodes ofthe model are exported. Care must be taken to export the numbers with full precision (15
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significant digits). The high precision of nodal coordinates is needed because this data willbe subjected to multiple differentiation, a process which strongly amplifies any noise in thedata. “High precision” here means that the solution to the model, with all its assumptions
and simplification is obtained with high precision, while the effect of these assumptions andsimplification on the solution is acknowledged.
16.4 Flip torque computation procedure

The result of the flip torque analysis is, for each material roll rate, a diagram of the internaltorque along the route. The procedure described here is a slight simplification of what isimplemented in the code Jordan.py. However, the essential steps are identical.
The procedure starts with an array xij where i ∈ {1, 2, 3} is the index for three coordinatesin space and j ∈ {1, 2, . . . ,n} is the node number from the finite element analysis. n is thenumber of nodes in the FE model.
In the following, an index notation like xi: stands for “the i-th coordinate of all nodes”. Sowhile x is a matrix, xi: is a vector with n components. Similarly, the vector x:j contains the 3coordinates of node j. The notation a · b represents the multiplication of two matrices, or oftwo vectors (the usual dot product) or the multiplication of a matrix by a vector.
In the following, we will introduce a family of reference systems with a torsion equal to thematerial roll rate: Each node j along the route has 3 orthogonal and unit length vectors. The3 vectors are numbered k ∈ {1, 2, 3}. The ith coordinate of vector k at point j along the routeis denoted ekij. The collection of 3 coordinates of vector k at point j is denoted ek:j.A finite difference scheme will be used several times in the following. If zj is some quantityknown for each node j, then z is the collection of these quantities for all nodes. Its finitedifference d(z)j (the value at point j of the finite difference d (z) of z) is computed as

d (z)j =
3 (zj−4 − zj+4) − 32 (zj−3 − zj+3) + 168 (zj−2 − zj+2) − 672 (zj−1 − zj+1)

840
(153)

Because zj−4 and zj+4 appear in the scheme, d (z)j can only be computed for nodes j ∈
{5, 6, . . . ,n− 4}. In the procedure below, finite differences will be applied repeatedly tocompute 3rd order derivatives. Hence some results will only be available for nodes j ∈
{13, 14, . . . ,n− 13,n− 12}. This must be accounted for during the finite element analysisby having 12 elements outside of the area of interest.

1. Establish an arc-length coordinate for each node1.1. Set
s1 = 0 (154)1.2. For j ∈ {1, 2, . . . ,n− 1} compute

sj+1 = sj +

√
(x1j+1 − x1j)

2
+ (x2j+1 − x2j)

2
+ (x3j+1 − x3j)

2 (155)
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1.3. For j ∈ {5, 6, . . . ,n− 4}, compute
dsj = d (s)j (156)2. Establish a family of local reference systems along the flexible product, with one referencesystem at every node of the finite element model. The torsion of the family of referencesystem is equal to the material roll rate (the choice of values for the material roll rate isdiscussed in Section 16.5).2.1. For j ∈ {5, 6, . . . ,n− 4}, compute the coordinates i ∈ {1, 2, 3} of the tangent vectorat node j as
tij = d (xi:)j (157)Normalize the tangent vectors t:j

e1:j =
t:j

|t:j|
(158)

2.2. At point j = 5, chose a unit vector e2:5 orthogonal to e1:5. Unless e1:5 is vertical,
e2:5 =

[
−e125 e115 0

]
/
∣∣[ −e125 e115 0

]∣∣ (159)is an adequate choice in the horizontal plane.
2.3. Compute

e3:5 = e1:5 × e2:5 (160)2.4. For j ∈ {5, 6, . . . ,n− 5}2.4.1. Compute the rotation vector
v: = e1:j × e1:j+1 − (x:j+1 − x:j)

DR

Dk
(161)

where DR/Dk is the material roll rate defined in Section 3.10 and k is thepayout defined in Section 3.2. DR/Dk is assumed constant along the route,which is a simplifying assumption.2.4.2. Compute the rotation rate matrix
K:: =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (162)
2.4.3. Compute the rotation matrix

N:: =

 1 0 0
0 1 0
0 0 1

+ K::
sin |v:|

|v:|
+ K:: · K::

1− cos |v:|

|v:|
2 (163)

The functions sin |v| / |v| and (1− cos |v|) / |v| are both fractions where numeratorand denominator tend to zero as |v| becomes small or zero. This will occur forstraight locations along the route and zero material roll rate. Small |v| willthus cause run-time errors depending the programming language. A typicalpresentation is the appearance of “NaN”-valued results. To avoid this, for small
|v|, the functions can be replaced with 1 and 1/2 respectively.
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2.4.4. Compute

e2:j+1 = N:: · e2:j (164)
e3:j+1 = N:: · e3:j (165)

3. At each node j, compute curvature κ:j and express it in the local reference system.3.1. For j ∈ {9, 10, . . . ,n− 8}3.1.1. Compute
κij =

d (e1i:)j
dsj

(166)
3.1.2. Compute

κloc
2j = κ:j · e2:j (167)

κloc
3j = κ:j · e3:j (168)

4. At each node, compute the bending moment in the cross section by Eq. 170, and use Eq.172 to compute the flip torque per unit length.4.1. For i ∈ {2, 3}4.1.1. For j ∈ {13, 14, . . . ,n− 12} compute
hij = d

(
κloc
i:

)
j

(169)
4.2. For i ∈ {2, 3}4.2.1. For j ∈ {13, 14, . . . ,n− 12} compute

Mij = −Mf

hij

|h:j|
(170)

This step fails if |h:j| is zero, or extremely small. This will occur in parts ofthe route that remain in uniform curvature (in direction and intensity), includingstraight part of the route. The simplest way to handle this is only to handle theparts of the route with change of curvature plane (which is where flip torqueis produced). Another way is to chose a value dh which is large compared tovalues of |h:j| obtained in segments of the route where the curvature is uniform inintensity and direction, but small compared to values of |h:j| obtained elsewherealong the route, and compute
Mij = −Mf

hij

max (dh, |h:j|)
(171)

4.3. For j ∈ {13, 14, . . . ,n− 12} compute
dM1j =

(
M2j κ

loc
3j −M3j κ

loc
2j

)
dsj (172)

5. Integrate along the route to obtain the distribution of the internal torque M1.5.1. Set
M1 13 = dM1 13 (173)
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5.2. For j ∈ {14, 15, . . . ,n− 12} compute
M1j = M1j−1 + dM1j (174)

5.3. For j ∈ {n− 11,n− 10, . . .n} compute
M1j = M1n−12 (175)

The above procedure yields a torque curve M1: that is zero upstream M11 = 0. In realityhowever, the distributions of internal torque obtained in this way are defined to an integration
constant, meaning that the whole distribution can be uniformly shifted up or down. The choiceof that shift depends on the boundary conditions at both end. The procedures for specificsituations, presented in Sections 16.5 and 16.6 take care of this issue.
Important results that should be extracted from M1: once the proper integration constant hasbeen added to account for the boundary conditions, are M1n (the total flip torque generatedby the flip area), max (M1:) and min (M1:) the maximum and minimum torque found in M1: .
16.5 Flip torque transient close to downstream storage

We consider a situation where a route has a flip torque-inducing geometry, that is a shortdistance of a downstream storage (turntable or spool), compared to the length of the rest ofthe route upstream.
The present procedure is generally not relevant if the downstream “storage” is the seabed:the distances within the installation vessel are typically small compared to the free span, so asteady state situation (Section 16.6) will be reached without the downstream torque build-upconsidered in the following.
At the start of an operation, a transient will occur when the head of the flexible product reachesthe downstream storage. At the end of the operation, a new transient will occur when the tailof the flexible product leaves the upstream storage. The aim of the assessment is to evaluatethe downstream internal torque at these stages.
In the transient, the upstream torque is small (conservatively, it is set to zero), and thus the fliptorque must be balanced by the downstream internal torque. This is reflected in the assessmentprocedure below.
The red curve in Figure 94 shows an example of a torque-torsion diagram. Importantly, thisdiagram must be established assuming zero tension, hence the slopes in the diagram are noted
K∗

τ, and not Kτ. In the example, positive torsion corresponds to the tight direction, and negativetorsion to the slack direction of the flexible product.
The black curve in Figure 94 is the flip-torque diagram, obtained as specified in Section 16.8 .This black curve is rotated 180 degrees around the origin to obtain the green curve4. In other

4This is because 1) a positive roll causes a negative torsion further upstream, and 2) a positive flip torquecauses a negative flip torque further upstream.



16.6 Steady states 131

Figure 94: Assessment of torque transient for a turntable of spool

words, if the black curve is obtained by plotting M1f against τ, the green curve is obtained byplotting −M1f against −τ. The black curve is an example of flip torque diagram for a flip areawith positive Frenet-Serret torsion.The assessed transient downstream torsion τt and the transient downstream torque M1t arefound at the intersection of the (green) rotated flip torque curve and the (red) torsion-torquecurve (Appendix C). The torque diagram (to be entered in Figure 91) is zero upstream of theflip torque inducing geometry, and torque M1t in, and downstream of, the flip torque inducinggeometry.
16.6 Steady states

In an operation where the flexible product comes from an upstream “storage” that determinesthe upstream material roll rate, and goes to a downstream storage that absorbs torsion, theoperation will generally approach a steady state in which the flip torque produced at variousflip areas is taken up by upstream internal torque. At steady state, the material roll rate inflip areas will approach zero.Flip areas along the route are numbered with a ∈ {1, 2, ...,na}, counting from upstream todownstream. At each flip area along the route, the flip torque is evaluated by following theprocedure described in Section 16.4, for DR/Dk = 0, and Ma
1n, max (Ma

1:) and min (Ma
1:) aredocumented (see Section 16.4 for the convention on the use of the semicolon as a subscript).If it is possible to cover the whole length of the route with one FEM analysis, and carry outthe procedure described in Section 16.4 for the whole length, then there is no need to carryout the following procedure.
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Figure 95: Two torque distributions obtained using the procedure in Section 16.4

The highest torque along the route is assessed as follows:
1. Set

M1 = 0 (176)
Mmax

1 = 0 (177)
Mmin

1 = 0 (178)
2. For a ∈ {1, 2, ...na}2.1. Compute

Mmax
1 = max (max (Ma

1:) +M1,M
max
1 ) (179)

Mmin
1 = min

(
min (Ma

1:) +M1,M
min
1

) (180)
where max (A) is the highest element in vector A, and max (a,b) is the largest of
a and b.2.2. Compute

M1 = M1 +Ma
1n (181)

3. Compute
Mmax

1 = Mmax
1 −M1 (182)

Mmin
1 = Mmin

1 −M1 (183)
Step 3 ensures that the values of Mmax

1 and Mmin
1 are for M1 = 0 at the downstream end.

The values of Mmax
1 and Mmin

1 obtained after step 3 are then kept for comparison with theflexible product’s torque capacity.
Figure 95 shows two torque distribution obtained using the procedure in Section 16.4. Figure96 shows the values Mmin

1 and Mmax
1 as computed using the above procedure.
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Figure 96: Torque distribution along the whole route, with Mmin
1 and Mmax

1 obtained using
the steady-state assessment procedure.

16.7 Iteration

Internal torque affects the geometry of free spans, and this is not captured in the finite elementanalysis described in Section 16.3. If there is any suspicion that this may be significant, theanalyses in Sections 16.3 and 16.4 should be repeated as follows:
The flip torque per unit length dM1/ds, evaluated in Section 16.4, is applied as a distributedexternal torque along the flexible product, when repeating the FE analysis. When doing so,the choice of boundary conditions for roll degrees of freedom becomes critical. This choicedepends on the phase of the operation that is being analyzed (Sections 16.5 and 16.6 ).
The finite element analysis is repeated and the new geometry thus obtained is used to updatethe flip torque analysis (Section 16.4). The sequence of finite element analysis and flip torqueanalysis is iterated until the geometry of the route is stable from one iteration to the next. Ifthe iteration cannot be made to converge towards a stable route, then the operation must bedeemed liable to flip torque geometric instability (Section 8.4).
16.8 Flip torque diagram

The flip torque diagram for a segment of route is obtained by carrying out the analysis describedin Section 16.4, for a range of values of the material roll rate DR/Dk. At least the material rollrates between 0 and the value at which the flip torque becomes zero must be covered. If, infurther analyses, material roll rates are encountered that fall outside the covered range, thenthe range of material rates in the flip torque diagram must be extended by further applyingthe procedure in Section 16.4.
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Figure 97: Relation between the sign of Frenet-Serret torsion and the position of the flip torque
diagram

It is often convenient to make the approximation that the diagram provides the relation betweenthe spatial roll rate and the flip torque. This approximation is reasonable if the torsion in theflexible product within the length of the route covered by the diagram is small (in absolutevalue) compared to the Frenet-Serret torsion of the route. If this is not verified, and torsion islarge, then the flip torque diagram might become a questionable tool, because the torsion, andhence the material roll rate might change significantly along the length of the route covered bythe diagram. If this is the case, then more advanced analysis methods will have to be devised.Coilable flexible product are designed to be very compliant in the slack direction, and theycan, under the right circumstances have very high torsion.
Figure 97 shows examples of flip torque diagrams for a segment of the route dominated bypositive (and negative) Frenet-Serret torsion. This is provided as a check against sign mistakeswhen setting up such a diagram.
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17 Cranking

Cranking assessment accounts for actuators that can force displacements of the flexible productin a direction orthogonal to the route.
Examples of actuators that must be included in the cranking assessment are

– Roller boxes that can be displaced transverse to the route.
– Manipulators to stack the flexible product in a turntable. This can be direct handling bypersonnel in the turntable, or a hydraulic guiding arm.

Examples of actuators that must not be included in the cranking assessments are
– roller and chutes: these apply forces in the direction radial to the flexible product but donot give displacement in that direction.
– Tensioners, winches working along the route, spools and turntables: these introducedisplacements, but in the route’s longitudinal direction.

The assessment is made using a FE analysis of the relevant part of the route with an elasto-plastic bending model. An elasto-plastic model for the bending response must be used, asotherwise actuator forces will induce no torque. Further, without an elasto-plastic bendingmodel one will loose the roll resistance associated with change of curvature plane. Transportis not represented. The model must also represent roll-resisting friction of the flexible productagainst rollers, chutes etc. Friction coefficients (including in tensioners, where the increase offriction by clamping forces must be accounted for) are set to conservatively high values alongthe route. Because transport is not modelled, tracking (Section 6.5) is not to be accounted forin this procedure.
For a given actuator force, a diagram of the force along the route is produced. Where severalactuators can induce torque on the same sagment of the route, the analysis must considersimulatenous actuator forces. The analysis produces a torque diagram along the route for eachactuator load case.
The above torque diagram is combined with the torques diagrams from other sources, usingthe procedure outlined in Section 14. If the total torque thus assessed is acceptable, thenthe actuator loads are acceptable. Otherwise, the procedure must be repeated with reducedactuator loads.
The forces thus obtained are then used as an upper limit to allowable actuator forces for thisoperation, and are used also for actuator forces while the flexible product is transported.
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18 Torsional imbalance

18.1 Pull-in operation

Pull-in operation with unbalanced product may induce torsion by unwinding the product whiletransported under tension, then relaxing the tension, without transport (Section 9.6).
For a pull-in operation, or during the transport of a flexible product over long distances andusing significant tension, the maximum tension R1 max (s) that may occur at coordinate s alongthe route must be evaluated. The simplest assessment would be to add the rated strength ofwinch and each tensioner, at all the points upstream of the point of application of the force. Amore advanced assessment could account for the reduction of tension due to friction (externaland internal) - but no guidance is offered for this here.
R1 min (s) should be zero for all route coordinates s unless special precautions are taken toensure a minimum tension, or unless it is known that compression can occur.
For all route coordinates, the “unwinding torsion” τu (s) is the torsion under R1 max (s), and iscomputed according to Appendix B

τu (s) =
R1 max (s)

K∗
ετ

(184)
with

K∗
ετ =

K2
ετ − KεKτ

Kετ

(185)
At R1min (s), the same torsion will induce a “tension-relaxation” torque

M1 (s) =
Kετ

Kε

(R1min (s) − R1 max (s)) (186)
This computation is carried out at many points s along the route, resulting in a “tension-relaxation” torque diagram.
18.2 J-lay installation on the seafloor

The procedure described in the following is the only procedure in the present guideline thatis relevant to the assessment of torque in the catenary between an installation vessel and thesea floor (Section 9.5). This must not be confused with the assessment of torque on board theinstallation vessel, where a variety of sources (e.g. flip torque, cranking) are to be assessed.The present procedure differs from other ones in that instead of producing a diagram of thetorque along the free span, only the torque at the touch down point is to be assessed. This isbecause torque will be approximately uniform along the catenary, and the tension lowest atthe touch-down point, so failures, if any, would occur there.
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The assessment procedure is based on a catenary solution, which does not account for bend-ing stiffness, sea currents and dynamic response. For any given water depth, the assessmentprocedure requires the conservative choice of both a minimum tension (slack) and maximumtension (tight) configuration. The choice of these configurations should strive to account, con-servatively, for the wave response of the vessel. Both configurations are described based onthe bending radius at touch-down point, rmin and rmax respectively. In the following, wherethe symbol “m” appears, computations are to be repeated replacing “m” with “min” and then“max”.
For the purpose of choosing rmin and rmax it is useful to note that the effective tension (cf.Section 4.9) at the hang-off point, is

Re
1m = ω (z+ rm) (187)

where z is the height of the hang-off point over the seabed and where ω is the submergedweight per unit length (in [N ·m−1]) of the flexible product. Also, the horizontal distancebetween hang-off point and touch-down point is
∆xm = rm cosh

(
1+

z

rm

) (188)
where cosh x = ex+e−x

2
is the hyperbolic cosine function. Finally, the length of the free span is

Lm =
√
z2 + 2zrm (189)

The torque-free twist in the free span is (Appendix A):
Tu m = K∗−1

ετ g

[
m

2

(
Lm (rm + z) + r2m log

(
1+

Lm + z

rm

))
− zρwLmAe

] (190)
where g is the acceleration of gravity, m the mass of the flexible product per unit length, ρwis the density of seawater and Ae the outer cross section of the cable.
When the span rapidly goes from a tight to a slack configuration (without forward movementof the installation vessel), the twist in the flexible product laid on the seafloor is conservativelyassessed using the assumption that the torsion at touch down point is equal to the torque-freetorsion:

Tl = K∗−1
ετ

gm

2z

(
1

3
L3
max −

1

3
L3
min

)
− K∗−1

ετ z
(gm

2
+ ρwgAe

)
(Lmax − Lmin) (191)

The torque at the touch down point in the slack configuration is evaluated as
M1 = K∗−1

τ (Tu max − Tu min − Tl) (192)
with

K∗
τ = Kτ − KετK

−1
ε Kετ (193)
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19 Residual curvature

Residual curvature can occur if a flexible product is stored, and either plastic deformation, orcreep in sheaths (typically polymer or lead) occurs so that these sheaths have a curved shapein the absence of load on the sheath (including loads coming from other components in theflexible product). When the flexible product is transported, the residual curvature of the sheathmay not align with the curvature of the route. This may induce roll, and torsion.The residual curvature must be provided as an input, to assess how it may result in torsion. Aconservative approach is to model the beam elements with a moment-free curvature equal tothe curvature in the upstream storage. Less conservative values can be obtained by detailedanalysis, but no guidance is provided here.A simplified method to assess this is to model the flexible product using Euler-Bernoulli beamfinite elements, that models the whole route, from storage to storage. The ends of the route mustbe at the points where the flexible product gets in contact with other coils (or the seabed). Thebending-curvature relation of the flexible product must be represented by the beam elements. Ifthe relation is not available or cannot be accommodated by the software, then a linear bending-curvature relation can be used, with the bending stiffness corresponding to the absence of slip(resulting in a upper bound for the stiffness). The torsional stiffness Kτ∗ is the stiffness assumingfree axial deformation, and torsion in both tight and slack torsional direction must be accountedfor.External friction is set to zero in the transverse direction: friction is assumed not to impederoll.
19.1 Simplified analysis

The global static finite element analysis is based on a standard linear-elastic bending model
M2 = EIω2 (194)
M3 = EIω3 (195)where EI is the bending stiffness and ω2 and ω3 are the curvature components.Two sets of boundary conditions are to be considered:1. The flexible product is restrained from rolling at the upstream end and free to roll atthe downstream end. The roll angle at the upstream end is chosen to align the residualcurvature with the curvature in the upstream storage.2. The flexible product is free to roll at the upstream end and restrained from rolling at thedownstream end. The roll at the upstream end is chosen to align the residual curvaturewith the curvature in the downstream storage.For particularly short routes, two additional sets of boundary conditions need to be considered.Starting from load case 1 above, the roll at the downstream end is set to align the residualcurvature in the downstream storage by
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1. applying a positive 180 degree roll to the downstream end,2. applying a negative 180 degree roll to the downstream end.

The internal torque along the route are retrieved for all load cases studied and further evaluatedas described in Section 14
19.2 Advanced analysis

If the simplified analysis method proves to be overly conservative, a more accurate global staticfinite element analysis may be performed if the software tool includes a linear-elastic bendingmodel that accounts for residual curvature:
M2 = EI

[
ω2 −ω0

2λ2 (k)
] (196)

M3 = EI
[
ω3 −ω0

3λ3 (k)
] (197)

where ω0
2 and ω0

3 are the residual curvature components which are assigned scale factors
λ2 (k) and λ3 (k) as a function of payout k. The other quantities are defined in Section 19.1.The scale factors are typically kept at zero until the gravity load has been applied and thecontact forces from the supporting rollers, chutes and the storage geometries have converged.Thereafter, the load scale factors are increased to 1.0.
The whole route is modelled from the upstream storage to the downstream storage includingall contact geometries that are required to support the flexible product along the route. Themodel should extend a quarter coil into both the downstream and upstream storage so that onecan set appropriate boundary conditions. The translation degrees of freedom at both ends arekept fixed, except in the axial direction at one end where an appropriate tension load is applied.The rotation degrees of freedom at both ends are kept fixed, except for the roll rotation at thedownstream end which is kept free. A shorter part of the route may be modelled provided thatit is possible to set realistic boundary conditions for the reduced model.
The torsional stiffness for both the tight and slack directions shall be considered. If the analysisshows that the flexible product will roll such that only the torsional stiffness for the slackdirection is relevant, the tight direction torsional stiffness can be disregarded: this will resultin smaller torque values.
The residual curvature components ω0

2 and ω0
3 are selected based on the expected residualcurvature at the upstream storage. The beam element should be oriented to get one of theelement coordinate axes aligned with the upstream storage axis. Then, one of the residualcurvature components can be assigned zero value, and the other one can be set equal to theexpected residual curvature at the upstream storage. In the most conservative case, one mayassume that the residual curvature will be equal to the curvature of the innermost coil at theupstream storage.

The scale factors for the residual curvature components λ2 (k) and λ3 (k) may be assigneduniform values along the whole route. If the software tools allows the user to easily applyscale factors for each beam element, it will be possible to simulate that the residual curvature
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spreads with the transport velocity from the upstream storage to the downstream storagesimilar to what happens in the transient phase at start-up of the operation. This effect isonly relevant to simulate if it is likely that it will lead to different equilibrium configurationcompared to the configuration that results when λ2 (k) and λ3 (k) are uniform along the route.The flexible product will in most cases be kept in place along the route by numerous supportsin the vertical and lateral directions. In these cases, the final equilibrium configuration and theresulting torque are not expected to differ with respect to how the load scale factors λ2 (k) and
λ3 (k) are applied along the route. If the final equilibrium configuration shows that the flexibleproduct is not coiled nicely at the downstream storage, the model should be extended at thedownstream end until the beam elements are coiled as intended at the downstream storage.
The main advantage of applying the bending model in Eqs. 196 and 197 is that the torqueinduced along the route from the residual curvature is accounted for. At a point along the route,the induced internal torque per unit length due to residual curvature will be equal to

∂M1

∂z
= EI

[
ω2ω

0
3λ3 (k) −ω3ω

0
2λ2 (k)

] (198)
which follows by inserting Eqs. 196 and 197 into Eq. 55 assuming m1 = 0.
The internal torque along the route are retrieved for all load cases studied and further evaluatedas described in Section 14
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20.1 Stresses in the tensile armor

20.1.1 Stresses due to bending

The contribution from friction between the layers, to the stresses in the tensile armour isdifficult to compute for two reasons:
1. Curvature may change direction (Frenet-Serret torsion, Section 3.11.4) over distancesthat are not large compared to the pitch length of the tensile armor. This invalidates theassumption of uniform curvature (in intensity and direction) used in extent in theories ofbending induces stresses [49, 50, 48].2. The contact pressure and hence the friction between armor layers and surrounding layersis influenced by tension, torque, internal constraints induced by fabrication (shrinkage ofpolymer sheaths, creep, thightness of laying various layers), temperature, and curvature-pressure instability (Section 8.3).

Assuming the flexible product is designed so that the maximum axial stress σ11 in the tensilearmours due to bending reach yield stress at minimum bending radius then a rough approxi-mation for the sum of the friction-induced stresses and the component bending stresses is
σb
11 = ±κ MBR SMYS (199)

where κ = |κ| is the norm of the curvature vector (Section 3.3), MBR is the minimum bendingradius of the flexible product and SMYS is the specified minimum yield strength of the tensilearmor wires.
For simplicity, the bending stresses are considered uniform over the cross section of any givenarmor wire. The stresses are considered tensile on the outside of the curvature and compressiveon the inside of the curvature.
20.1.2 Stresses due to torque and wall tension

Global analysis provides estimated effective tension Re
1 and torque M1. In situations where theflexible product is submerged, Eq. 45 is to be used to compute the wall tension Rw

1 (Section 4.9):outside of water (and in the absence of pressurization of internal components), this simplifiesto Rw
1 = Re

1 .
While some cases can be treated analytically, generally, given Rw

1 and M1, stresses in thetensile armor must be computed using dedicated finite element software capable of handleaxisymmetric loading conditions (such as Caflex, Helica and UFLEX). In such analyses it isimportant that geometry, lay angles and materials are adequately represented. The softwaremust allow for components losing and gaining contact with each other. In terms of boundary
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Figure 98: Assessment of the envelope of allowable force resultants. Each radial line corre-
sponds to a value of r. The envelope joins the points where the stress reaches a critical value
(at any point in the cross section, and for any local failure mechanisms).

conditions, the software must, in effect, consider a slice of the flexible product, which the crosssections at both ends remaining plane, and normal to the axis of the flexible product. One planeis fixed. The other plane can translate along the axis and rotate around it. All componentsmust move with the plane, except that they can have radial displacements.
A procedure for the determination of combinations of Rw

1 and M1 is to model the cross sectionusing a software as mentioned. A variety of ratios r = Rw
1 /M1 is selected. For each ratio r,progressively increase M1 while keeping Rw

1 = r M1, until critical stress is reached in one ofthe component. In a graph (Figure 98), plot the values of Rw
1 and M1 for which critical stresswas reached. The procedure is repeated with negative values of M1, and then all the above isrepeated for each value of r so that “rays” are sent in all directions around the origin.

20.2 Lateral buckling of tensile armour

20.2.1 Notations

The wire’s lay angle, cross section area, shear and Young’s moduli are denoted α, A, G, and E.For rectangular wires, the width and thickness are w and t. For circular wires the diameteris d. The mean radius of the layer is R, and the number of wires in the layer is n. Whererelevant, subscripts i and o refer to the inner and tensile armour layer, respectively.
σ1c is the critical axial stress in the wire. For buckling failures, σ1c < 0, and one must ensurethat σ1c < σ1 to prevent failure.
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20.2.2 Moments of inertia

For a rectangular wire, the wire’s moments of inertia for torsion J, bending around the weakaxis I2 and around the strong axis I3 are computed as:
J = wt3

[
1

3
−

64

π5

t

w

] (200)
I2 =

1

12
wt3 (201)

I3 =
1

12
tw3 (202)

For a circular wire, the moments of inertia are
J =

πD4

32
(203)

I2 = I3 =
πD4

64
(204)

20.2.3 Buckling of rectangular wires

This buckling mode is illustrated in Figure 84 and has been extensively studied for flexible pipessubjected to axial compression in previous research efforts, see Section K.1.1. Equation 205has been validated against tests and shown to be in very good agreement for double-armouredflexible pipes subjected to axial compression.
The critial stress in a wire is [26]

σ1c = −
sin2 α

wtR2

[
EI3(1+ cos2 α) + 4EI2 cos

2 α−GJcos2α
] (205)

It is interesting to note that the buckling stress in Equation 205 corresponds to a lateralsinusoidal buckling mode where the buckling length is equal to the wire length along a halfpitch:
l =

πR

sin |α|
(206)

A smaller buckling length than in Equation 206 may occur if the armour wires are very closelypacked so that neighbouring wires restrict lateral displacement. A smaller buckling lengthimplies increased capacity. However, this beneficial effect cannot be accounted for in a simplemanner and therefore the capacity shall be calculated by Equation 205.
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20.2.4 Buckling of circular wires

The critical buckling stress for a circular wire may be calculated as follows [25]
σ1c = −

ED2 sin2 2α

16R2

[
1+

2G cos2 α

E sin2 2α+ 2G

] (207)
The critical buckling stress for a circular wire is 7.5% larger than the one for a rectangular wireas given in Equation 205 with J, I2 and I3 based on Eqs. 203 and 204. The larger bucklingstress does not necessarily imply larger capacity because the steel area fill factor is normallysmaller for armour layers with circular wires.
20.2.5 Torsional-flexural buckling of rectangular wires

This failure mode is shown in Figure 85 and may occur for armour layers subjected to outwardradial motion where a significant gap is formed at the inside of the armour layer. In that case,the gap may allow the wires to rotate about their own axis. The final deformed state consistsof combined lateral deflection and axial rotation of the wire.
The failure mode is however not likely to occur because the wire compressive axial force willstabilize the axial rotation [26]. The stabilizing effect is significant because the compressiveaxial force is always large whenever buckling is relevant. Further, the stabilizing effect will bepresent also if a large gap occurs at the inside interface of the outer armour layer. The axialrotation is therefore unlikely to be initiated even if a significant gap is formed. However, iflarge lateral deflections occur due to e.g. the buckling mode in Section 20.2.3, the wires maystart to rotate due to lateral contact between neighbouring wires. This will only occur whenthe wire state is close to the lateral stability limit or in the post-buckling state.
Based on the above arguments, the lateral buckling mode in Section 20.2.3 will occur prior tothe torsional-flexural failure buckling collapse mode. Hence, the failure mode is not relevantto consider in design. The capacity shall instead be computed by Equation 205.
20.3 Birdcaging

Birdcaging refers to the radial failure mode illustrated in Figure 80. This failure mode mayoccur in two different ways:
1. Failure of outer supporting layer(s)2. Birdcaging of tensile armour

The first mode is addressed in Section 20.3.1 and represents tensile failure of the supportinglayers due to radial expansion of the tensile armour. The second mode is addressed in Section20.3.2 and may occur if the supporting layers do not have sufficient radial stiffness to preventthe tensile armour from buckling radially.
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20.3.1 Failure of outer supporting layers

High-strength tape wound around the tensile armour may be applied to increase the birdcagingcapacity. Failure of the high-strength tape layer is normally not acceptable. Hence, the failurecriterion may be taken as the ultimate tensile capacity of the tape when subjected to radialexpansion of the underlying tensile armour layer. For products with an external sheath, thisfailure criterion yields the following critical wire stress in the tensile armour layer:
σ1c = −

R2

nA

cosα

sin2α

[
σutntAt

R2
t

sin2αt

cosαt

+ 2πEsϵut

ts

Rs

] (208)
where the layer mean radius R, the wire area A, the number of wires n and the lay angle αrefer to the considered tensile armour layer. The tape’s ultimate strength is denoted σut, thenumber of tape plies is nt, the tape’s layer radius is Rt, and the tape’s lay angle is αt. Thesecond term in the square brackets accounts for the radial load-carrying contribution from theexternal sheath at onset of failure. Here, Es denotes Young’s modulus, ϵut is the ultimate strainof the high-strength tape, ts is the sheath thickness and Rs is the sheath layer radius.
For products based on outer yarn layers, the same failure criterion leads to

σ1c = −
R2

nA

cosα

sin2α

σutntAt

R2
t

sin2αt

cosαt

(209)
where the load-carrying capacity of the yarn layers are neglected as they “always” are de-signed to have the same lay angle as the underlying tensile armour [66]. The contribution tothe load-carrying capacity from yarn layers would in any case be insignificant.
Note that the beneficial effect of external over-pressure is conservatively neglected in Eq. 208.
20.3.2 Birdcaging of tensile armour

The birdcaging problem may be studied by using curved beam theory for the tensile armourand by considering the supporting layers as an elastic foundation. The elastic radial bucklingstress can then be derived by assuming a sinusoidal buckling mode.
The plastic sheaths outside the tensile armour restrain it from lifting. This is accounted for bycomputing the radial stiffness of each restraining layer number j

cj = 2πEjtj
cosα

nR
(210)

Each wound layer (antibuckling tape, yarn) contributes with the following radial stiffness
cj = njEjAj

sin4 αj

cosαj

cosα

R2n
(211)

Importantly, in the two expressions above, the mean radius R and the number of wires n refer tothe underlying armour wire layer (which is being checked for buckling), not to the restraining
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sheath or tape layer. The subscript j refers to the restraining layer, where nj is the numberof yarns or the number of tape plies, Ej is the Young’s modulus, Aj is the cross-section area ofthe tape or a single yarn thread, and the lay angle is denoted αj. The stiffness contributionsfrom all restraining layers are added together
c =

∑
j

cj (212)
The wire initial curvature components are given by

κ1 =
cosα sinα

R
(213)

κ2 =
sin2 α

R
(214)

The buckling shape is sinusoidal and is defined in terms of the following parameters
a1 = κ2

2 − 2κ2
1 − 4

I3

I2
κ2
1 (215)

a2 =
c

EI2
+ 2

GJ

EI2
κ2
1κ

2
2 + κ4

1 − κ2
1κ

2
2 (216)

a3 = κ2
2 − κ2

1 (217)
which yields the number of sinusoidal half-waves per length m representing the number ofsinusoidal half-waves per length

m2 =
a3

π2
−

a3

π2

√
1−

a1

a3

+
a2

a2
3

(218)
With this, the elastic buckling stress is calculated as [54]

σ1c = −
π2EI2

A

[
m4 − a1

π2m
2 + a2

π4

m2 − a3

π2

] (219)
20.4 Herniation buckling

See Section 10.4 for a description of the mechanism and Appendix F for the theory behindthis assesment. The failure mode involves an “inner” armor layer herniating outwards througheither a layer of yarn or through another layer of tensile armor. This later layer, wether yarnor actual tensile armor, is in teh following refered to as the “outer tensile armor”. The lay
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angles of the inner and outer armor, αi and αo, must be of opposite signs. σyi is the specifiedminimum yield strength of the material of the inner layer.In the following, wi and wo are the widths of the threads in the inner and outer tensile armors,
ni and no the numbers of threads and Ri and Ro the middle radii. The width of the largestpossible gap in the outer layer (in the direction orthogonal to the threads of the outer layer),is

G = c (2πRo cosαo − no wo) (220)where c = 1.2 if the outer layer is a tensile layer and c = 2 if it is a yarn layer. For yarnlayers, it is important to take wo as a minimum value when the yarns are pressed together.We compute
L =

G

2 sin (|αi − αo|)
(221)

β =
L sinαi

Ri

(222)
B =

L cos2 αi + Ri sinβ sinαi

Ri (cosβ− 1)
(223)

We compute the vectors
∆ = [L cosαi,Ri (cosβ− 1) ,Ri sinβ] (224)

D1 = [0, 1, 0] (225)
D2 = [cosαi, 0, sinαi] (226)and

C =

∣∣(D2 − BD1

)
× ∆

∣∣∣∣∆∣∣ ∣∣∆∣∣ (227)
where × is the cross product.The plastic-hinge moment of a rectanguler wire of the inner layer is calculated as

Mp =
1

4
wit

2
iσyi (228)

and for circular wires as
Mp =

1

6
t3iσyi (229)The critical stress is

σ1c = −
2MpC

A
(230)

20.5 Inward radial buckling

See Section 10.5 for description of this failure mode and Appendix G for the theory behind thisassessment. For a rectangular wire cross section
σ1c = −

π

4
σy (231)
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and for a circular one
σ1c = −

2

3
σyi (232)

20.6 Carcass collapse of flexible pipes

Excessive torsion that results in high inward radial contact pressure may cause collapse of thecarcass. An approach for calculating the critical radial pressure is presented in the following,which mainly is based on the procedure proposed in the Handbook on Design and Operationof Flexible Pipes [17].
As a first step, calculate the equivalent ring bending stiffness per unit length of the flexiblepipe

EIeq =

Np∑
j

njKj

EjI2,j

Lp,j

(233)
where the summation index j is taken over the pressure spiral layer and the carcass layer,provided that there is no gap between them. The quantity nj is the number of helices inlayer j and Ej is the Young’s modulus. The factor Kj is close to 1.0 for massive cross-sectionsand depends generally on the lay angle and the smallest moment of inertia I2,j about thecross-section’s principal axes. The quantity Lp,j is the pitch length defined as

Lp,j =
2πRj

tanαj

(234)
where Rj is the mean layer radius and αj is the helix lay angle of the considered layer.
The sum in Eq. 233 implies that the utilization of the pressure spiral is so low that it willcontribute fully with supporting stiffness to the carcass. Further, if there is a gap, the stiffnesscontribution is lost and consequently only the carcass contribution shall be included in thesum. The carcass collapse capacity will then be significantly reduced. For the case of excessivetorsion where the innermost tensile armour transmits high radial contact pressures onto thepressure spiral, it is very likely that there is contact between the pressure spiral and thecarcass, and then the sum in Eq. 233 should include both layers.
For installation scenarios and during the product operation phase, one should carefully assesswhether or not the pressure spiral will provide supporting stiffness to the carcass. The failurescenario will often be water ingress in the annulus due to a damaged external sheath. Thismay introduce a gap between the carcass and the pressure spiral, and further the externalhydrostatic pressure will be carried by the carcass and the internal plastic sheath. Due toovality and manufacturing imperfections, it is in practice very difficult to determine the truegap values representing loss of radial contact pressure and loss of supporting stiffness. As anexample, Chen et. al. [10] found that the stiffness contribution from the pressure spiral for a 6inch pipe shall be set to zero if the gap is larger than 2.5 mm. Further recommendations onthe limiting gap values are not provided in this document.



20.6 Carcass collapse of flexible pipes 149

Figure 99: Ovalization parameter δ0 and circumferential stress components [17]

Next, the elastic buckling pressure of the carcass is calculated as
pe =

3EIeq
R3
c

(235)
where Rc is the carcass mean radius.
Ovality of the cross-section will reduce the capacity significantly. According to API 17B [1], themaximum initial ovalization around the cross-section may be estimated as (see Figure 99)

δ0 =
Dmax −Dmin

Dmax +Dmin

⩾ 0.002 (236)
In a handling operation, the initial ovalization parameter suggested by API 17B in Eq. 236 maybe too small if the flexible pipe is subjected to high external radial contact forces and/or largebending. In such cases, one should consider to perform a detailed FE analysis or performingtests to verify the δ0-parameter.
A further reduction of the capacity is caused by residual stresses. This may be accountedfor by assuming full plastification during manufacture and thereafter elastic unloading to zeromoment. This corresponds to the following residual stress in the outer fiber of the carcasscross-section

σr = σu

Wp

We

− σu (237)
where Wp is the cross-section plastic section modulus, We is the cross-section elastic sectionmodulus and σu is the ultimate compressive stress of the carcass. This results in the followingeffective compressive yield stress

σfe = σf − σr (238)
Thereafter, the critical collapse pressure of the carcass pc is calculated by solving the followingsecond order equation

p2
c −

[
σfeFft

Rc

+ pe

(
1+

Et2FfRδ0

2EIeq

)]
pc +

peσfeFft

Rc

= 0 (239)
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where the carcass fill factor carcass is defined as,
Ff =

nA

Lpt
(240)

in which n is the number of helices (normally 1 or 2) with cross-section area A, Eq. 234defines Lp and t is the thickness of the carcass corrugated plate profile. The carcass fill factoris typically Ff ≈ 0.55.
Carcass collapse is then avoided by ensuring

p < pc (241)
where p is the pressure acting on the carcass outside. The pressure p due to excessive torsionmust be computed by an axi-symmetric loading software as described in Sec. 20.1.2. Anexpression for p can be derived if there is only one tensile armour layer, however, flexiblepipes “always” have either two or four tensile armour layers.
20.7 Tensile yield failure

Tensile yielding is in principle relevant for all product types. When double-armoured productsare subjected to torque, one of the tensile armour layers will be subjected to compressivestresses. In that case, one of the compressive local failure modes described under Section 20is more likely to occur, at least for high tensile strength materials. Tensile yield failure is mostrelevant for single-armoured products provided that the supporting layers/components havesufficient strength to withstand the radial pressure load from the tensile armour.
Tensile yielding is prevented by ensuring

σ1 < σ1c (242)
σ1c = σy (243)

where σy is the yield strength of the wire.
20.8 Skew kinking

This failure mode is relevant only for flexible pipes which can flatten and create a hinge, assketched in Figure 100.
In the absence of external pressure, the critical torque at which skew-kinking would occur isroughly

Tc ≈ 2WmR (244)
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Figure 100: Skew kinking

Figure 101: Flexible pipe crushing test

where R is the mean radius of the innermost metallic component (carcass or pressure armor),and Wm is the work needed to squash a pipe segment of unit length (Figure 101), to the pointwhere the inner component comes in contact with itself. This value is obtained experimentalyby taking a length of pipe a applying compressive loads along opposite longitudinal lines alongthe pipe.
See Appendix H for theory.
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21 Global failures

21.1 Helical buckling

21.1.1 Foreword

If helical buckling is initiated, the pitch length P of the helical bucling mode depends chiefly onthe value of the torque and the tension. However, the post-buckling evolution of the shape of theflexible product after buckling is also influenced by the stiffnesses related to these forces, thatis, how the tension and torsion at the boundaries of the buckling area evolve, as the bucklingprogresses. Self-contacting loops requires lengths of flexible product to be pulled in. Hencea tension at the boundaries, that does not increase as the buckling segment pulls in lengthwill promote the formation of self contacting loops. Similarly, a torsion that only decreasesslowly as buckling progresses will cause a large writhe to be concentrated in the bucklingarea, resulting in a large helix diameter. In a handling operation, where the flexible product isbeing transported along a route, correctly modelling of these boundary conditions, and thus thepost buckling behavior will generally be challenging. Furthermore, whether a self contactingloop, will, subjected to increasing tension, open up or result in a localization of deformations (ahockle) depends on the torque, on stiffnesses, and on the dissipation of energy by friction andplastic deformation. Hence the strategy offered here for handling helical buckling is to ensurethat helical buckling is not initiated.
However this strategy is not unproblematic so caution will have to be exerted: consider thebuckling of columns in compression (Euler’s buckling criteria). If a column is bent before beingsubjected to compression, it will collapse at lower loads than predicted by Euler’s theory. Thesame applies to helical buckling: The theory behind Eq. 245 considers a straight rod forwhich a bifurcation (singular stiffness matrix) will occur under certain loads. In contract, in thehandling of flexible products, helical buckling is most likely to occur in free spans, which canbe far from straight. An attempt is made to account for this in Eq. 245, which is Greenhill’sequation, modified to account for a final state (a self-contacting loop) with lower energy thanthe energy of the system at bifurcation.
21.1.2 Greenhill’s formula

To prevent helical buckling of a flexible product in a span between two supports separated bya distance L, one must ensure that everywhere between the supports
m2

1 − β2r1 <

(
α2π

l

)2 (245)
with

m1 ≜
M1

EI
, r1 ≜

R1

EI
(246)
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where R1 is the effective tension in the flexible and M1 is the torque. The formula is adaptedfrom [20] (see also [2]), with the introduction of a factor α on the length L and a factor β onthe tension r1. Where the supports prevent transverse displacement in both directions, α = 1.Where the supports allow some transverse displacement in one direction (typically: eitherhorizontal or vertical), α = 0.5. Where the supports allows some transverse displacement intwo directions, including because the support does no prevent the flexible to lift, the supportsare ineffective for helical buckling prevention. One must then use α = 0, or re-categorize thefree span by ignoring such ineffective supports. The factor β = 1 must always be used, exceptif the flexible cable is absolutely straight (high tension and no sag), in which case β = 2 isallowable.
In particular, for large spans L → +∞, this simplifies to

m2
1 < 4r1 (247)

This can be used as a requirement for the minimum tension to be maintained at the touch-downpoint during installation on the sea floor: the distance to the next support (the vessel) is verylarge. The minimum tension must be evaluated by including the influence of sea current andwave loads.
The following Sections provide further guidance on the use of Eq. 245.
An alternative capacity assessment approach based on Greenhill’s equation is available in workby Gay Neto and Martins [33].
21.1.3 Selecting tension for assessment

At any point along the route, the most negative value of R1 that may possibly occur at a givenlocation is to be used. For typical handling routes, R1 = 0 is generally an adequate valuebecause the flexible product can sag between supports, thus avoiding compression. In thatcase Eq. 245 shows that the maximum allowable length L between supports is
L <

α2π

|m1|
(248)

Special cases may arise for the selection of the value of R1, including:
1. If at a given point along a span, tension is guaranteed to be maintained above R1 at alltimes, then the value R1 can be used.2. If at any point along the route, compressive forces may occur, then the most negative valueof R1 must be used in Eq. 245. Such a situation can arise for example if two tensionersare used with an inadequate control system, and are close to each other or are separatedby close-spaced roller boxes that prevent lateral displacements in all directions.
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21.1.4 Pitch length

If buckling occurs, the pitch length P of the helix that is formed depends on the torque neededto trigger buckling (Figure 58)
P =

4π

|m1|
(249)

This applies both for short spans and long spans.
For long spans only:

P =
2π
√
r1

(250)
21.1.5 Bending stiffness

In the above, the bending stiffness EI is to be taken equal to the sum of the bending stiffnessesof the individual components. Where components are themselves divided into sub-components(as the conductor of an electric phase, itself made of metal strands wound together), the sum ofthe bending stiffnesses of the sub-components are to be taken. Where plastic deformations areexpected to occur in some components during handling, the tangential stiffness under plasticdeformation of these components is to be used.
21.1.6 Roller alleys

If along a straight segment of the route, rollers are regularly spaced with a distance L betweenthem, and the rollers do not prevent the flexible product from lifting, then the flexible maybuckle with a pitch length P = L/α with α = 0.5 if
m1 ⩾

α2π

L
(251)

r1 ⩽
(απ

L

)2 (252)
See Appendix I for theory.
21.1.7 Catenary between two supports

If two supports at the same height are separated by a distance L, and the maximum deflectionbetween the supports is d (Figure 102), then compute
z/x =

2d

L
(253)
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Figure 102: Geometry of a free span (catenary)

Read the corresponding value of r/x (the ratio of curvature radius at the bottom of the catenaryto width) from Figure 103 (The plotted curve has equation z/x = r/x
(
cosh

(
1

r/x

)
− 1
)) andcompute r (the radius of curvature at the middle of the span, not to be confused with r1 = R1/EI)

r = r/x · L
2

(254)
The lowest tension, to be used for helical buckling assessment is then

R1 = gmr (255)
where m is the mass per unit length of the flexible product and g = 9.81 m · s−2 is theacceleration of gravity. Figure 103 is established assuming that the shape of the flexible in thespan is not significantly affected by the stiffness of the flexible product (a catenary solution).For short spans the results will be unconservative: for spans with L smaller than 40 diameters,use a finite element analysis instead.
21.1.8 Catenary during installation

As a screening analysis, one can use a catenary solution to assess the tension at the touchdown point when laying a flexible product on the seabed. If x and z are respectively thehorizontal and vertical distance from the installations vessel’s chute to the touchdown point(Figure 104), then Figure 103 can be used to evaluate r/x. The tension at the touch downpoint is then
R1 = ws r (256)

= ws (r/x) x (257)
where ws is the submerged weight of the flexible product.
Such an analysis can easily over estimate R1 and thus be unconservative: current, and waveinduced motions of the installation vessel, as well as the uncertainty over the length of cablepaid out will all affect R1.
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Figure 103: Relation between deflection and curvature radius in a catenary.

Figure 104: Geometry of a free span (catenary)
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22 Case study

22.1 Objective

This section provides a worked example of torsion assessment. While this section does notprovide an example for every procedure outlined in this guideline, it should give a better ideaof the typical sequence of actions to be taken in an assessement, and of the inputs required.
This section covers phases 7, 8 and 9 of a cable’s lifetime, as discussed in Section 14: theseare the initial and final transient, as well as the steady state in a load-out operation. Thissection adresses the mechanisms “coiling writhe” and “flip torque”. For the sake of brevity, onlya single route geometry is considered. In reality, multiple geometries need to be considered, inparticular to account for the various possible positions of the touch-down points in the storagesat both ends of the route.
22.2 Cross section

We consider a cable with 149.2mm outer diameter (Figure 105, Table 2). The cable has twotensile armours wound in opposite directions. An anti-buckling tape is wound around the outerarmour, and a layer of PP yarns is wound outermost. Key results from a finite element analysisof the cross section are presented in Table 3.
22.3 Critical stresses

All relevant buckling mechanisms are evaluated. When no unit is specified after a value (forintermediate results), base SI units are used:
Lateral buckling of the inner armour

Assuming E = 2.1e5MPa and ν = 0.3, calculations yield G = 0.81e11 and σ1c = −11.3MPa.
Inner armour Outer armour Tape YarnSection [mm] �5 �5 �4Pitch length [mm] −2800 2800 84 60Mean radius [mm] 81 88 90.3 92.5Number 92 92 140Material steel steel UHMWPE PP

E [GPa] 211 211
ν [·] 0.3 0.3

Table 2: Outer layers of example cable
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Figure 105: Cross section of example cable

+ torsion(tight) - torsion(slack)
Mf 0.96 [kN ·m]

K∗
ετ 241.12 239.93 [kN ·m2 · rad−1]

K∗
τ 266.50 [kN ·m2 · rad−1]

EI (slip) 35.54 [kN ·m2]

∂σ1/∂M1(inner) −14.35 −14.19 [MPa · kN−1 ·m−1]

∂σ1/∂M1(outer) 12.63 12.09 [MPa · kN−1 ·m−1]

Table 3: Results from FE analysis of the cross section: bending moment of friction, torsional
stiffness at constant tension, bending stiffness at full slip, stress from torque
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Herniation buckling of the inner armour through the outer armour

Calculations yield G = 0.0989, L = 0.1351 (the outer layer is well packed), β = −0.298, B =
−37.74, ∆ =

[
0.133 −0.00358 −0.0238

] , D1 =
[
0 1 0

], D2 =
[
0.984 0 −0.179

],
C = 279.0 and σ1c = −355.8MPa.
The outer armour layer is well packed, leaving only a short gap, so that this is not a criticalfailure mode.
Lateral buckling of the outer armour

Calculations yield σ1c = −11.1MPa.
Herniation buckling of the outer armour through yarn

Yarn can compress in the radial direction, permitting the formation of a larger gap than what itsnominal diameter would indicate. Here the gap width is computed assuming a yarn diameterof 3.5mm.
Calculations yield G = 0.0219, L = 0.0197 (the outer layer is well packed), β = 0.0434,
B = −238., ∆ =

[
0.0193 −8.27 −0.00382

] , D1 =
[
0 1 0

], D2 =
[
0.981 0 0.194

],
C = 12087. and σ1c = −15389MPa.
The failure mode thus seems very unlikely. The actual gap width should be tested, using forcesto create a gap. Also, the assessment methods ignores the antibuckling tape. We have noexperience of the effect of such a tape on herniation buckling, but it could be quite beneficial.
Birdcaging of the outer armour

Calculations yield a = 1.96e − 5, G = 0.8077e11, c1 = 1.83e7, c2 = 4.59e6, c = 1.88e7 ,
κ1 = 2.16, κ2 = 0.426, a1 = −27.8, a2 = 2.918, a3 = −4.48, m = 13.14. σ1c = −1127MPa. Thisis a high value, thanks in particular to the antibuckling tape.
Summary

The critical failure mode is lateral buckling, for both tensile armours. The inner tensile armour(wound in the negative direction) has a critical stress σ1c = −11.3MPa, which corresponds toa critical torque
M1c = σ1c · ∂σ1/∂M1 = −11.3 · −14.35 = 162 [kNm] (258)
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The outer tensile armour (wound in the positive direction) has a critical stress σ1c = −11.1MPa,which corresponds to a critical torque
M1c = σ1c · ∂σ1/∂M1 = −11.1 · −12.09 = −134 [kNm] (259)

In other words, the cable is safe from local buckling if the torque remains within the interval
−134 [kNm] < M1 < 162 [kNm] (260)

22.4 Global buckling

Assuming that the product will never experience compressive forces, we assume R1 = 0, Green-hill’s cirteria simplifies to
|M1| <

α2πEI

L
(261)

We assume that the supports only prevent displacement in the vertical direction, so α = 0.5.The bending stiffness is conservatively taken as the stiffness under full slip, EI = 35.54 [kN·m2].If for example, supports are placed 5m apart, then this results in
|M1| < 22.33 [kNm] (262)

This suggests that global buckling would become a concern before local buckling.
22.5 Route

The cable is to be transported from a negative on-shore turntable, in which it is stored torsionfree, to a positive turntable on board an installation vessel. The coordinates of points alongthe route are detailed in Appendix L, and the geometry of the route is shown in Figure 106.The shore is on the left, the vessel on the right. The reference systems are of the torsion-freefamily. The red crest show the intensity and direction of curvature. The radius of the cable isnot to scale. The route is delibrately shortened for this example, making it easier to providevisualisations of the route as a whole that also show what is going on at critical sections alongthe route.
22.6 Steady-state flip torque evaluation

The code Jordan for flip torque assessment is used. The inputs are:
1. The geometry of the whole route (cf. Appendix L).2. A material roll rate of 0 [deg/m].3. The friction bending moment Mf = 0.96 [kN ·m].
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Figure 106: Example loadout route: plan, elevation and isometric view
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Figure 107: Route curvature

The analysis produces the following outputs.
Figure 107 show the intensity of the curvature along the route, as well as its direction withina torsion-free family of reference systems.
Figure 108 shows the evolution over time of the curvature experienced by a cross section (whichis directly relevant for the computation of click torque). This is computed for the material rollrate of 0 [deg/m] specified as input to the analysis.
Figure 109 shows the effect of the material roll rate on the accumulated flip torque along thewhole route. This output is not relevant because a non-zero uniform material roll rate is notlikely to occur along the whole route. This type of output is relevant when studying single freespans.
Figure 110 shows the distribution along the route of the internal torque (top) and flip torque(bottom).
Figure 111 shows the writhe angle along the route. This result only serves to show that atorsion-free longitudinal marking will change roll angle along the route.
To conclude, at steady state, internal friction induces negative torque along the route. Thetorque is strongest far upstream along the route. This suggests that in addition to localbuckling, a flip torque-geometry instability could develop in the free span of the upstreamturntable. Treating this requires iterations as described in Section 16.7.
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Figure 108: Curvature experienced by a cross section

Figure 109: Effect of the material roll rate on flip torque
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Figure 110: Flip torque distribution at zero material roll rate

Figure 111: Writhe along the route
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Figure 112: Effect of roll rate on flip torque

22.7 Flip torque in transients

The analysis presented in Section 22.6 is repeated with the change that the first 319 points ofthe route are cut out: the analysis only considers the free span in the onboard turntable. Figure112 shows that the flip torque in the free span is zero for a material roll rate of −9.6 [deg/m].
The roll rate and hence the local torsion are found as described in Section 22.6, and the resultis show in Figure 113.
At the start of the operation, upstream torsion and torque are low, and the flip torque is takenup by downstream internal torque. Downstream, friction in the turntable causes material rollrate to be zero. High stiffness implies that the flip torque cause a small torsion downstream, sothe spatial roll rate is small: 0.38 [deg/m]. For the flip torque to be taken up upstream (steadystate), upstream torsion must be about 0.24 [deg/m]. So steady state will be approached whenroughly an amount of cable equal to the length of the route has been paid out after the cablehead is secured in the downstream turntable.
22.8 Assessment

The torques found in Figure 110 are well within the safe range for local buckling (Eq. 260) andglobal buckling (Eq. 262). The same is true of the torques expected in a transient (−1 [kNm],Figure 113) just downstream of the on-board turntable free span).
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Figure 113: Transient assessment

This suggest that the operation would be safe with a good margin. One should however keepin mind the limitations of our ability to date to prove before hand that an operation will besafe. Several moments should be pointed out:
– Mf was estimated as a single value, using finite element computation. Assessment of
Mf at low torque and tension is difficult, because it depends on details of the fabricationprocess and material behaviour which are difficult to capture. Further, in reality, Mf is afunction of torque (and tension) opening the possibility for curvature-pressure instability(Section 8.3).

– Figures 110 and 113 are established for a given route geometry. This geometry changesduring the operation as the turntable is filled, but also because the torques that appearchange the shape of the free spans. Ultimately, this includes the flip torque-geometryinstability (Section 8.4).
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A J-lay installation on the seafloor

We call x the horizontal distance from the touch-down point, ζ the vertical distance from thetouch down point, z > 0 the depth of the touch-down point, r the bending radius at the touch-down point, ρw the density of sea water, g the acceleration of gravity, m the mass per unitlength of the flexible, and Ae the outer area of the product. The torque-free twist in a freespan is assessed as follows.
Assuming the product follows a catenary shape

ζ = r
(
cosh

x

r
− 1
) (263)

The arc-length from touch-down point is
ξ =

√
ζ2 + 2ζr (264)

and we note that √
r2 + ξ2 =

√
r2 + ζ2 + 2ζr (265)

= ζ+ r (266)
and

r =
ξ2 − ζ2

2ζ
(267)

The submerged weight of the product is
ω = g (m−Aeρw) (268)

The effective tension at a point at arc-length ξ from the touch-down point, or at a height ζabove it is
Re
1 = ω

√
r2 + ξ2 (269)

= ω (ζ+ r) (270)
The wall tension at the same point is (see Equation 45)

Rw
1 = Re

1 − PeAe (271)
= g (m−Aeρw) (ζ+ r) − ρwg (z− ζ)Ae (272)
= gm (ζ+ r) − ρwgzAe (273)
= gm

√
r2 + ξ2 − ρwgzAe (274)

Torque-free torsion is (see Section B)
τu =

Rw
1

K∗
ετ

(275)
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with
1

K∗
ετ

=
Kετ

K2
ετ − KεKτ

(276)
hence

τu =
1

K∗
ετ

(
gm
√

r2 + ξ2 − ρwgzAe

) (277)
The torque-free twist over the free span is thus

Tu =

∫L

0

τudξ (278)
=

1

K∗
ετ

(
gm

∫L

0

√
r2 + ξ2 dξ− LρwgzAe

) (279)
=

gm

2K∗
ετ

[
ξ
√

r2 + ξ2 + r2 log
(
ξ+

√
r2 + ξ2

)]ξ=L

ξ=0
− K∗−1

ετ LρwgzAe (280)
=

gm

2K∗
ετ

[
ξ (r+ ζ) + r2 log (ξ+ r+ ζ)

]ξ=L

ξ=0
− K∗−1

ετ LρwgzAe (281)
=

gm

2K∗
ετ

(
L (r+ z) + r2 log

(
1+

L+ z

r

))
− K∗−1

ετ LρwgzAe (282)
Tu =

g

K∗
ετ

[
m

2

(
L (r+ z) + r2 log

(
1+

L+ z

r

))
− zρwLAe

] (283)
The following is an assessment of the twist laid on the seabed when suddenly going from atight (L = Lmin) to a slack (L = Lmax) configuration. It is done assuming that the torsionlaid on the seabed is equal to the torque-free torsion. This is conservative, because in reality,torque will increase in the free span during release, limiting the laid torsion.

τ =
Rw
1 td

K∗
ετ

(284)
=

1

K∗
ετ

(gmr− ρwgzAe) (285)
=

1

K∗
ετ

(
gm

L2 − z2

2z
− ρwgzAe

) (286)

Tl =

∫ Lmax

Lmin

τdL (287)
=

gm

2zK∗
ετ

∫ Lmax

Lmin

L2 − z2 dL−
Lmax − Lmin

K∗
ετ

ρwgzAe (288)
=

gm

2zK∗
ετ

(
1

3
L3
max −

1

3
L3
min − z2Lmax + z2Lmin

)
−

Lmax − Lmin

K∗
ετ

ρwgzAe (289)
=

gm

2zK∗
ετ

(
1

3
L3
max −

1

3
L3
min

)
− z

(gm
2

+ ρwgAe

) Lmax − Lmin

K∗
ετ

(290)
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B Pull in operation

A linear coupled elongation-torsion system, can be described with[
Kε Kετ

Kετ Kτ

]
·
[
ε

τ

]
=

[
R1

M1

] (291)
If M1 = 0 and R1 ̸= 0 then

ε =
R1

Kε

−
Kετ

Kε

τ (292)
and

ε = −
Kτ

Kετ

τ (293)
so that

Kετ

R1

Kε

−
KετKετ

Kε

τ+ Kττ = 0 (294)
Kετ

Kε

R1 +

(
Kτ −

KετKετ

Kε

)
τ = 0 (295)

Kετ

Kε

KετKετ

Kε
− Kτ

R1 = τ (296)
Kτε

K2
ετ − KτKε

R1 = τ (297)
and so one introduces

1

K∗
ετ

=
Kτε

K2
ετ − KτKε

(298)
At zero torque, a force R1max will thus induce a torsion

τu =
R1max

K∗
ετ

(299)
If, maintaining this torsion, the axial force is set to R1min, and the change in axial strain is

∆ε =
R1min − R1max

Kε

(300)
inducing a change in torque

M1 = Kετ∆ε (301)
= Kετ

R1min − R1max

Kε

(302)
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C Flip torque transient close to downstream storage

Assuming a short distance between the flip area and the downstream storage (compared tothe longer distance between upstream storage and flip area). The subscript f and d refer tothe flip area and the downstream storage. The transient in the route as a whole is a steadystate in the fd part of the route.
The rate of change of twist T in the part of the route between the flip area and the downstreamstorage is

∂T

∂k
=

∂Rd

∂k
−

∂Rf

∂k
(303)

�
�
�∂T

∂k
=

�
�
�DRd

Dk
−

DRf

Dk
− τd +��τu (304)

DRf

Dk
= −τd (305)

where τu is the “upstream” torsion of the flexible product entering the flip area. ∂T/∂k is zeroassuming local steady state between the flip area and the downstream storage. DRd/Dk iszero because of friction in the downstream storage. τu is zero because torsion has not had thetime to build up so soon after the onset of flip.
Torque equilibrium is (M1f standing for the flip torque)

M1f

(
DRf

Dk

)
=�����M1 (τu) −M1 (τd) (306)

−M1f (−τd) = M1 (τd) (307)
which justifies Figure 94. M1 (τu) is zero early after the onset of flip.
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D Flip torque transient close to downstream basket

We can write
∂T

∂k
=

∂Rd

∂k
−

∂Rf

∂k
− b

2π

2πr
(308)

�
�
�∂T

∂k
=

�
�
�DRd

Dk
−

DRf

Dk
− τd +��τf −

b

r
(309)

DRf

Dk
= −τd −

b

r
(310)

where b = +1 for a positive basket and b = −1 for a negative basket.
Torque equilibrium is (M1f standing for the flip torque)

M1f

(
DRf

Dk

)
=�����M1 (τu) −M1 (τd) (311)

−M1f

(
−τd −

b

r

)
= M1 (τd) (312)
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E Stresses in the tensile armour

Single armor, tight direction

σij = λδijεkk + 2µεij (313)
εij =

1

2µ
σij −

λ

2µ (3λ+ 2µ)
δijσkk (314)

E =
1

2
εijσij (315)

=
1

4µ
σijσij −

λ

4µ (3λ+ 2µ)
σkkσkk (316)

=
1

4µ
(σijσij − ξσkkσkk) (317)

with
ξ =

λ

3λ+ 2µ
(318)

=
λ

3K
(319)

=
ν

1+ ν
(320)

≈ 0.2308 (321)
For a lay angle α and mean radius r, the tensile armor takes loads

Mt
1 = xr sinα (322)

Rt
1 = x cosα (323)

where x is the total tensile force in the direction of laying, carried by the layer. The remainingload to be taken up is thus
Mr

1 = M1 − xr sinα (324)
Rr
1 = Rw

1 − x cosα (325)
If we assume this load is taken up by a sheath of same radius r, then it induces stresses in thesheath

σ12 =
1

A

(
M1

r
− x sinα

) (326)
σ11 =

1

A
(Rw

1 − x cosα) (327)
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so that the elastic energy in the sheath is proportional to

E ∝
(
M1

r
− x sinα

)2

+ (1− ξ) (Rw
1 − x cosα)2 (328)

= x2
(
sin2 α+ (1− ξ) cos2 α

)
− 2x

(
M1

r
sinα+ (1− ξ)Rw

1 cosα

)
+ . . . (329)

= x2
(
1− ξ cos2 α

)
− 2x

(
M1

r
sinα+ (1− ξ)Rw

1 cosα

)
+ . . . (330)

so that the energy in the sheath is minimum for
x =

r−1M1 sinα+ (1− ξ)Rw
1 cosα

1− ξ cos2 α
(331)

Here we minimize the energy in the sheath instead of the energy for the whole system. This isan approximation that is valid if most of the elastic energy is stored in the sheath, that is if thesheath is more complient than the tensile armor. The advantage of this approximation is thatit is not necessary to establish the stiffness of the rest of the components in the cross section.
The tension force in each tendon of the tensile armor is

Rt =
x

nt

(332)
where nt is the tension in each tendon. Correspondingly, the axial stress in the tendons is

σax =
x

atnt

(333)
where at is the cross section area of each tendon.
Double armor, contact between armors This case includes the situations where the innerarmor is tight against, or lifts from, the inside of the flexible product.
In this case, the inner armor gets in compression, and contacts the outer armor, which is intension. As simple analysis can be obtained by considering the stiffness to be dominated bythe contributions from both armors.
The inner and outer layer have mean radius, lay angle, tendon cross section and numberof tendons ri, αi, ai, ni and ro, αo, ao, no. If the axial stress in each layer is σi and σorespectively, then the axial force and moment for the flexible product are

M1 = A σi + B σo (334)
R1 = C σi +D σo (335)



174 E STRESSES IN THE TENSILE ARMOUR

with
A = riniai sinαi (336)
B = ronoao sinαo (337)
C = niai cosαi (338)
D = noao cosαo (339)

We compute
∆ = AD− BC (340)and get

σi =
D

∆
M1 −

B

∆
R1 (341)

σo = −
C

∆
M1 +

A

∆
R1 (342)
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F Herniation buckling

The failure mode involves an armor layer herniating outwards through either a layer of yarnor through another layer of tensile armor. The two layers involved will be referred to as theinner and outer layers, respectively.
The width of the largest possible gap in the outer layer (in the direction orthogonal to thethreads of the outer layer), is

G = c (2πRo cosαo − no wo) (343)where Ro is the mean radius of the outer layer, no is the number of threads in the outer layer,
wo is the width of each thread in the outer layer and αo the lay angle in the outer layer.
c = 1.2 if the outer layer is a tensile layer and c = 2 if it is a yarn layer.
The half length of thread of the inner layer, exposed under the gap is

L =
G

2 sin (|αi − αo|)
(344)

where αi and αo are the lay angle of the inner and outer layers. If the layers are laid inopposite directions, then αi and αo must be of opposite signs. This length corresponds to anangle around the helix
β =

L sinαi

Ri

(345)
We consider a reference system centered on the axis of the flexible, with e1 parallel to this axis,and e2 pointing towards the middle of the gap. The point on the inner thread at the middle ofthe gap has coordinates

P1 = [0,Ri, 0] (346)A point on the same thread at the border of the gap has coordinates
P2 = [L cosαi,Ri cosβ,Ri sinβ] (347)We define

∆ = P2 − P1 (348)
= [L cosαi,Ri (cosβ− 1) ,Ri sinβ] (349)

As the thread herniates, these points move in the directions
D1 = [0, 1, 0] (350)
D2 = [cosαi, 0, sinαi] (351)by amounts d1 and d2 respectively. After displacement, the distance between the points is

d2 =
∑
i

(
∆i +Di

2d2 −Di
1d1

)2 (352)
≈

∑
i

(
∆i2 + 2∆i

(
Di

2d2 −Di
1d1

)) (353)
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So for the displacements to preserve the distance to the first order, we thus require
∆ ·D1d1 = ∆ ·D2d2 (354)

Ri (cosβ− 1)d1 =
(
L cos2 αi + Ri sinβ sinαi

)
d2 (355)

d1 = Bd2 (356)with
B =

L cos2 αi + Ri sinβ sinαi

Ri (cosβ− 1)
(357)The new vector between the points is

∆
∗
= ∆+D2d2 −D1d1 (358)
= ∆+

(
D2 − BD1

)
d2 (359)The angle between these vectors is, to the first order

γ =

∣∣∣∆∗ × ∆
∣∣∣∣∣∣∆∗

∣∣∣ ∣∣∣∆∣∣∣ (360)
≈ Cd2 (361)with

C =

∣∣(D2 − BD1

)
× ∆

∣∣∣∣∆∣∣ ∣∣∆∣∣ (362)
C is the angle of bending at the joint near the edge of the gap, per unit of sliding at the edgeof the gap.If the threads of the inner layer have rectangular cross section, the plastic-hinge moment of athread is calculated as

Mp =
1

4
wit

2
iσyi (363)where σyi is the specified minimum yield strength of the inner layer, and ti the thickness ofthe inner layer. If the threads are circular,

Mp =
1

6
t3iσyi (364)

The energy dissipated by the hinges is Mp4Cd2 while the work on the part of the thread inthe gap is 2Fd2 where F is the axial force in the thread. Hence instability arises when
Fi > 2MpC (365)

For a flexible product subjected to torsion only (no axial compression or bending), and withforces borne exclusively by the inner and outer layer:
Fono cosαo + Fini cosαi = 0 (366)so that

Fo = −
Fini cosαi

no cosαo

(367)The torque born by the two layers together is
T = RoFono sinαo + RiFini sinαi (368)
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G Inward radial buckling

The work needed to displace a 90o hinge (which implies bending thread reached by the hingeand straightening thread left by the hinge) by a distance δ is
W = πMp

δ

t
= −δaσ1 (369)

where t is used as a characteristic of the longitudinal extent of the plastic hinge. In reality,the longitudinal extent will depend on the wire cross section and the work hardening of thematerial.
This leads to

σ1c = −π
Mp

t a
(370)

For a rectangular cross section this gives
σ1c = −

π

4
σy (371)

and for a circular one
σ1c = −

2

3
σyi (372)

The details of the constant in front of σy depend on the (arbitrary) choice of the distance (heretaken as t) over which plastic work is equal to πMp, hence the actual uncertainties are quitelarge, and testing or FEM analysis would be required. For circular threads, lateral bucklingwould always occur first.
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H Skew kinking

H.1 Assessing Mp

Let Mp be the plastic moment, per unit length, of a longitudinal plastic joint in the pipe wall.The work needed to squash a unit length of the pipe (with four plastic joints) is
Wm = 4

π

2
Mp = 2πMp (373)

which allows to assess Mp based on a squash test.
H.2 Energy dissipation

We assume that under skew kinking, each originally circular cross section will develop fourhinges. Two will be the skew hinges, and two will be longitudinal hinges. The hinges will havedeformed with the following angles
1. Two skew hinges with angles α1 = π

2
+ γ and α2 = π

2
− γ (Figure 114), where γ is theangle of relative rotation of the segments on both sides of the skew hinge. Each hinge isof length L, and at an angle β with the axis of the pipe.2. Two longitudinal hinges with angles α3 and α3 with α3+α4 = π. Each hinge is of length

L |cosβ|.
The hinge length L is related to the pipe diameter (conservatively) by

L |sinβ| = πR (374)
Neglecting membrane energy and the energy stored in elastic deformation, assuming Mp isnot affected by β, and noting c and s for cosβ and sinβ, the energy absorbed in the hinges is

Wr = MpL (α1 + α2 + α3 |c|+ α4 |c|) (375)
= MpLπ (1+ |c|) (376)
= Mpπ

2R
1+ |c|

|s|
(377)

H.3 Available energy and critical β (pure torsion)

Assuming that this deformation is driven by torque T , the work is
Wd = Tγ cosβ (378)

For B = 0, the critical value of β is that which maximizes Wd/Wr, or equivalently, maximizes
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Figure 114: Skew-kinking hinges

f (β) ≜
|s| c

1+ |c|
(379)

For β ∈ [0,π/2], s = |s| and c = |c|. Over that interval:
(380)

∂f

∂β
= 0 =

(c2 − s2) (1+ c) + s2c

(1+ c)
2 (381)

0 =
(
2c2 − 1

)
(1+ c) +

(
1− c2

)
c (382)

0 = c3 + 2c2 − 1 (383)
0 = (c+ 1)

(
c−

−1+
√
5

2

)(
c−

−1−
√
5

2

) (384)
c =

√
5− 1

2
(385)

β = arccos c ≈ 52o (386)
For this critical angle, and choosing γ = π/2 (a large value leads to lower critical load)

Tc =
π2MpR

γ

1+ c√
1− c2 c

(387)
= WmR

1+ c√
1− c2 c

(388)
≈ WmR 3.843... (389)
> 2WmR (390)
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I Helical buckling

I.1 Stability condition

See [20, 2].
The equilibrium of a straight beam (following axis e1) under constant tension can be written

∂M

∂s
+

∂x

∂s
× R = 0 (391)

M+ x× R = 0 (392)
EIκf3 +M1f1 + x× R = 0 (393)

where fi form an orthonormal base where f1 is tangent and f3 points inside the curvature. Thisleads to
EI

∂2x2

∂s2
+M1

∂x3

∂s
− x2R1 = 0 (394)

EI
∂2x3

∂s2
−M1

∂x2

∂s
− x3R1 = 0 (395)

which, by introducing x = x2 + ix3 can be written
EI

∂2x

∂s2
− iM1

∂x

∂s
− xR1 = 0 (396)

We are looking for solutions of the form x = X exp ibs where b is an angular wave number.Replacing in the above and dividing by exp ibs leads to(
EIb2 −M1b+ R1

)
X = 0 (397)

which has non-trivial solutions iff
EIb2 −M1b+ R1 = 0 (398)

which is achieved for
b1,2 =

M1 ±
√

M2
1 − 4R1EI

2EI
(399)

allowing general solutions of the form
x = X1 exp ib1s+ X2 exp ib2s (400)
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I.2 Hinged boundaries

If the boundary conditions are hinged at s = 0 and s = L then
X1 + X2 = 0 (401)

X1 exp ib1L+ X2 exp ib2L = 0 (402)This system of equation has non-zero roots iff
exp ib1L = exp ib2L (403)
b1 − b2 = n

2π

L
(404)√

M2
1 − 4R1EI

EI
= n

2π

L
(405)(

M1

M0
1

)2

−
R1

R0
1

= n2 (406)
with

M0
1 =

2πEI

L
(407)

R0
1 =

π2EI

L2
(408)

We arbitrarily chose b1 ⩾ b2. For n = 0 it is not possible to satisfy the boundary conditions.The lowest critical loads are for n = 1.The buckling shape is thus of the form
x =

X

2i
(exp ib1s+ exp ib2s) (409)

= X exp

(
i
b1 + b2

2
s

)
sin

(
b1 − b2

2
s

) (410)
= X exp

(
i
M1

2EI
s

)
sin

(
n
2π

L
s

) (411)
Hence, for a given torque M1, the pitch length of helical buckling is

Lp =
4πEI

M1

(412)
and the critical tension is

R1 = R0
1

((
M1

M0
1

)2

− 1

) (413)
Considering Eq. 406, for a given torque M1, the required tension becomes zero when thespacing be between support verifies

M1 < M0
1 (414)

L < 2π
EI

M1

(415)
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I.3 Infinite domain

Roots b1 and b2 are real iff the determinant M2
1 − 4R1EI ⩾ 0. As loads evolve from a stablesituation, an unstable situation will first be encountered for a zero determinant, so that

M2
1 = 4R1EI (416)

b1 = b2 =
M1

2EI
(417)

=

√
R1

EI
(418)

so that
x = X exp

(
i
M1

2EI
s

) (419)
The corresponding pitch length is still

Lp =
4πEI

M1

(420)
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J Multilingual glossary

Table 4 provides translation of key technical terms in selected languages.
English Norwegian FrenchRoll Rull RouliSpatial roll rate Romlig rull rate Taux de rouli spatialMaterial roll rate Materiell rull hastighet Taux de rouli matérielLink Lenke LiageTwist Tvist TorsadeWrithe Vridning VrilleTorsion Torsjon TorsionTorque, torsional moment Torsjonsmoment, dreiemoment Moment de torsion

Table 4: Translation of some technical terms
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K Literature review of failure modes

K.1 Local failure modes

K.1.1 Lateral buckling of tensile armor

Numerous research efforts have addressed tensile armor lateral buckling of flexible pipes sub-jected to dynamic bending during operation. This is because flexible pipes may be exposed tosignificant negative wall tension in empty condition in deep waters. The lateral buckling modewas first described in 1997 [38]. Since then, experimental work included laboratory mechanicaltests without radial pressure, as well as costly full-scale deep immersion performance tests,and laboratory pressure chamber tests [6, 3, 58, 63]. The tests results showed that the drivingmechanism is cyclic bending that reduces the friction and gives accumulation of wire transverseslip, which at a certain stage results in lateral buckling. Novitsky and Sertã [34] pointed outthat the buckling process differs for dry and wet annulus conditions. The buckling processseems to be primarily elastic if the tensile armor is exposed to sea water, whereas severeplastic deformations typically occur for the dry annulus condition since friction then plays amore important role.
Vaz and Rizzo [65] created a computationally light finite element model by utilizing a single wireapproach for each tensile armor layer in a flexible pipe. A pure external pressure load conditionwas applied for varying interlayer friction for the tensile armor. They identified two lateral andtwo birdcaging buckling modes dependent on the amount of friction and the strength of theanti-buckling tape. Yang et al. [69] created a similar model with an improved interlayer contactmodelling and curved beam elements for the tensile armor wires. Their results confirmed thefindings of Vaz and Rizzo.
Østergaard et al. [38, 40, 41, 42] conducted mechanical tests for the wet annulus condition offlexible pipes, and developed a numerical frictionless single wire model. As expected, the modelpredicted lower bound buckling loads due to frictionless assumption. The numerical modelwas extended to account for friction [39], but due to unresolved issues it was not possible toconclude that wire friction imposed a significant influence on the mode of deformation and theload carrying ability [38].
Sævik and Thorsen [53] proposed an analytical model for the lateral buckling mode accountingfor wire friction. They simulated the buckling response by means of tailor-made finite elementsand found that their analytical model over-predicted the capacity both for static and cycliccurvature. Sævik and Ji [51] developed a new frictionless analytical model. The model wasshown to agree well with the frictionless numerical model developed by Østergaard [38], andhad as expected an inherent safety margin in the range of 2 when compared against theØstergaard tests. They also performed numerical simulations using the BFLEX software andpredicted the same failure and no failure cases as the Østergaard tests. The frictionlessanalytical model and the test comparison are also presented in work by Sævik and Thorsen[54] which in addition deals with the birdcaging failure mode. The frictionless analytical modelis strongly related to the periodic buckling mode that was considered in later work by Li et
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al. [26]. In fact, these models are identical if the buckling length is set equal to half the wirelength in a pitch, instead of conservatively assuming infinite buckling length as proposed bySævik and Ji [51].
Zhou et al. [70] studied the effect of the anti-buckling tape on the lateral buckling behavior.They found that the tape lay angle direction should be the same as applied for the outer tensilearmor layer, and that a smaller lay angle will perform better than a larger lay angle.
Paiva and Vaz [43] formulated a frictionless numerical model based on the Østergaard model[38]. They validated the model against experiments and applied symbolic regression to derivean empirical equation for the compressive failure load.
Li et al. [23] developed a frictionless analytical model similar to the model presented by Sævikand Thorsen [54]. They extended the work by distinguishing between a global and a periodicbuckling mode in Ref. [26], where the global mode was identical to the one in Ref. [23]. Theperiodic buckling mode was shown to be in good agreement with the Østergaard tests [38]and to reduce the conservatism compared to the global mode. The effect of cyclic bendingwas considered in later work [24] and was shown to result in the same critical load as for thefrictionless periodic buckling mode in Ref. [23]. Li et al. [25] extended the analytical work byconsidering the effect of wire axial rotation constraint and presented an analytical equation forthe compressive failure load of circular tensile armor wires.
It is important to note that for the torsion-induced failures studied in this handbook, the loading,lateral friction behavior and triggering mechanisms can differ from what has been addressed inprevious research. Further, the loading in previous research has consisted of axial compressionand external radial pressure. For such loads, the inner tensile armor layer is more susceptibleto buckling since it has less radius, a lower number of wires and may have less transversefriction resistance. For torque loading, the lateral buckling mode may equally well occur forthe outer tensile armor layer.
In handling operations, the product is typically exposed to only a few bending cycles, whilemany hundred or thousands of cycles were needed to trigger the buckling process in previousresearch. Application of the models formulated in previous research may thus yield overlyconservative predictions. The tensile armor of power cables and umbilicals are often smearedwith corrosion coating with a highly temperature-dependent viscosity, which increases thefriction resistance at low temperatures and may function as a lubricant at high temperatures.These aspects motivate development of a new analytical model applicable for a limited numberof bending cycles that accounts for interlayer friction. This will require validation againstexperiments with dry annulus condition, possible at varying temperature. However, most of theavailable tests for flexible pipes have been performed for wet annulus condition.
The previous research has focused on flexible pipes with anti-buckling tape and rectangulartensile armor wires. As of today, there are no experimental tests for circular tensile armor wiresthat can be used for validation [25]. Umbilicals and power cables do not have anti-bucklingtape, and may thus display a more pronounced interaction with the external polymer layer.
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K.1.2 Birdcaging

The first known incident of birdcaging failure occurred in 1977 for a flexible pipe operatingat 1700m water depth [6]. In 1989, the failure mode was recognized as a potential failure fordamaged external sheaths at large water depth [3]. The failure is well known by flexible pipeproducers and is described in design codes [1]. Birdcaging failures for flexible pipes may beavoided by ensuring that the anti-buckling tape layer has sufficient strength.
Vaz and Rizzo [65] performed finite element simulations with pure external pressure loading.They found that birdcaging failure could take place as anti-buckling tape failure and radialbuckling on an elastic foundation.
A detailed finite element model of a 2.5m flexible pipe with almost 400 000 degrees of freedomwas created by de Sousa et. al [12]. They performed full-scale laboratory tests focusing onfailure of the anti-buckling tape in axial compression without radial pressure. The numericalmodel was shown to predict birdcaging failure with good accuracy compared to the laboratorytests.
Rabelo et al. [44] investigated whether birdcaging failure could be triggered by instabilities ofthe external sheath. They studied previous birdcaging experimental observations and concludedthat strong evidences of validity were obtained for their hypothesis.
Sævik and Thorsen [53] developed an analytical model for birdcaging of flexible pipes based onseparate treatment of anti-buckling tape failure and radial buckling of a straight beam on anelastic foundation. The analytical model was shown to agree fairly well with simulations basedon tailor-made finite elements. In more recent work [54], they improved the analytical modelby using curved beam theory and proposed a capacity interaction formula considering anti-buckling tape failure, radial elastic buckling and wire yielding. They reported that the curvedbeam approach gave the best fit when compared against the de Sousa tests [12], whereas thestraight beam assumption was on the conservative side.
Regarding use in this handbook, the analytical model proposed by Sævik and Thorsen [54] isapplicable for flexible pipes with anti-buckling tape and an external sheath. Although theyconsidered only pure axial compression, their analytical model should be valid also for flexiblepipes subjected to torque loading which compresses the outer tensile armor layer. The mainconcern regarding validity is the radial stiffness contribution from the supporting layers. Forinstance, a power cable or an umbilical with an outer layer consisting of wound polypropyleneyarns provides far less support against radial outward displacements. Using the analyticalmodel in a different application without sufficient experimental validation may be questionable,as also indicated by Sævik and Thorsen [54] in view of the limited available test data forbirdcaging failure.
K.1.3 Other local failure modes

Wu et al. [67] recently addressed tensile armor failure of flexible pipes subjected to largetorsion. Based on knowledge of existing failure modes they identified wire yielding, birdcaging
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and core collapse as potential failures. Regarding the critical collapse pressure of flexiblepipes, an extensive literature review is available in recent work by Li et al. [22].
As of 2022, there exist presently no research in the open literature addressing the herniationbuckling mode in Section 20.4 and the skew kinking failure in Section 10.2. The reason may bethat these failures modes are specific to torsional loads, and thus not encountered in normaloperating conditions. The failure modes may also be wrongly attributed to excessive bendingor birdcaging. Nevertheless, it is clear that new criteria must be developed to cover the skewkinking and herniation buckling failure modes.
K.2 Global failure modes

K.2.1 Loop formation and kinking

A criterion for loop formation was first presented by Greenhill in 1883 [20] who studied themechanics of ship propeller shafts. Loop formation problems of cables for oceanic applicationshave since then been studied by numerous authors. Liu [27] performed kinking tests of elec-tromechanical cables with tensile armor that was compared against Greenhill’s equation forinfinite cable lengths. These and other test results were reviewed by Rosenthal [45, 46] whoconcluded that long straight cables subjected to tension and torque will become unstable ac-cording to Greenhill’s equation modified by an appropriate safety factor. Ross [47] used energyconsiderations and found that loop formation could occur for twice the critical tension predictedby Greenhill’s equation.
Yabuta [68] addressed loop formation and subsequent kinking by considering the potentialenergy of an assumed helical deformation pattern. He derived a criterion for maximum allowableslack for avoiding loop formation and a criterion for re-opening the loop when the cable is re-tensioned, Yabuta validated the theoretical results against experiments and concluded that thecable kinking phenomenon is governed by initial slack, initial torsion, cable diameter and theratio of bending stiffness to torsional stiffness.
Coyne [11] used equilibrium equations to find an expression for the axial end-shortening inthe loop formation problem. The end-shortening was applied to derive a criterion for themaximum allowable slack before loop formation occurs and an expression for re-opening theloop. Expressions for the required tension and the maximum curvature at re-opening waspresented. Coyne concluded that the prediction of loop formation was in agreement with Ross’work [47] and existing experiments, but the loop re-opening criterion deviated when comparedagainst a single experimental data set.
Thompson and Champneys [64] conducted experiments and mathematical analysis of the en-ergetically preferred post-buckling mode, to gain insight about the localized loop formationin Coyne‘s work [11]. Champney and Thompson later applied an analytical approach basedon Cosserat beam theory to show that the critical torque and tension predicted by Greenhill’sequation is reasonable for small initial curvature, but becomes non-conservative for large initialcurvature.
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Ermolaeva et al. [16] performed loop formation experiments of wire ropes at zero tension andlow tension. Their work showed that Yabuta’s criterion for slack was non-conservative, and thatthe slack criteria proposed by Ross [47] and Coyne [11] were conservative. For low tension,they found that Greenhill’s equation with a safety factor of 2 was reasonable.
Gay Neto and Martins [33] conducted parametric studies of loop formation for catenary risersusing a geometrically-exact beam model including seabed frictional contact. They developed anempirical correction factor for Greenhill’s equation dependent on the tension at the touchdownpoint before loop formation, the bending stiffness and the submerged weight. For very lowvalues of tension, the empirical correction factor may give overly conservative predictions dueto the large relative increase of tension during the loop formation process.
Sævik and Koloshkin [52] re-constructed the riser model of Gay Neto and Martins [33], andincorporated the effect of tension-torsion coupling and applied a non-linear bending momentmodel to account for internal friction of the tensile armor layers. In dynamic applications, theyfound that it was more conservative to apply the linear-elastic bending model for low utilizationwith respect to loop formation, and that non-linear bending models gave the most conservativepredictions for high utilization. They also proposed to apply the maximum curvature predictedin quasi-static analysis at the onset of instability as a curvature criterion for avoiding kinkingdeformation in dynamic applications. Later, Opgård [35] reported that the maximum curvaturecriterion could fail to detect formation of loops with smaller curvature than those expectedfrom the quasi-static analysis. This underlines that prediction of loop formation in dynamicapplications is a complex task.
Regarding relevance to the present work, the analytical formulae proposed by Gay Neto andMartins [33] for loop formation is applicable when the tension is not too low. For low tension, itmay be necessary to apply numerical simulation to avoid too conservative capacity predictions.Further, it will be challenging to account for dynamic motions, and internal friction which mayresult in both conservative and non-conservative predictions in time-domain simulations [52, 35].
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L Example route geometry

The following provides the X, Y and Z coordinates (3 columns) of points along a loadout route(406 rows). The table starts upstream (on-shore turntable) and ends downstream (on-boardbasket).
-2.2213485025 -21.4683521540 0.0000000000

-2.2686090947 -21.6135858499 0.0000000000

-2.3203197209 -21.7572912550 0.0000000418

-2.3764200575 -21.8993304808 0.0000003832

-2.4368401969 -22.0395675212 0.0000019699

-2.5015016638 -22.1778689876 0.0000070528

-2.5703182333 -22.3141050374 0.0000196902

-2.6431972684 -22.4481501662 0.0000461149

-2.7200411214 -22.5798836439 0.0000949026

-2.8007488565 -22.7091899057 0.0001769108

-2.8852183576 -22.8359590511 0.0003049600

-2.9733483380 -22.9600868915 0.0004932440

-3.0650404386 -23.0814748503 0.0007564779

-3.1602013937 -23.2000298294 0.0011088314

-3.2587447715 -23.3156635922 0.0015626568

-3.3605925212 -23.4282919798 0.0021270463

-3.4656762803 -23.5378340571 0.0028063222

-3.5739379460 -23.6442108382 0.0035985536

-3.6853297418 -23.7473439009 0.0044942158

-3.7998137870 -23.8471539960 0.0054750942

-3.9173607866 -23.9435594219 0.0065135084

-4.0379481959 -24.0364744702 0.0075719634

-4.1615578893 -24.1258080392 0.0086033286

-4.2881730053 -24.2114622567 0.0095516240

-4.4177744297 -24.2933313970 0.0103534623

-4.5503370472 -24.3713011732 0.0109401399

-4.6858255654 -24.4452482928 0.0112403739

-4.8241904318 -24.5150405016 0.0111836476

-4.9653639272 -24.5805371431 0.0107040925

-5.1092562735 -24.6415901349 0.0097448058

-5.2557523534 -24.6980455048 0.0082624509

-5.4047090972 -24.7497454471 0.0062319710

-5.5559533858 -24.7965307891 0.0036512373

-5.7092809780 -24.8382438993 0.0005454565

-5.8644563560 -24.8747319358 -0.0030288525

-6.0212133577 -24.9058504628 -0.0069807448

-6.1792567864 -24.9314665812 -0.0111815619

-6.3382651244 -24.9514624567 -0.0154630737

-6.4978944457 -24.9657395726 -0.0196179318
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-6.6577833947 -24.9742222292 -0.0234005979

-6.8175587632 -24.9768605629 -0.0265293938

-6.9768413763 -24.9736330270 -0.0286897712

-7.1352524556 -24.9645482356 -0.0295387516

-7.2924198782 -24.9496461307 -0.0287104320

-7.4479840374 -24.9289984097 -0.0258224176

-7.6016034533 -24.9027081576 -0.0204829911

-7.7529595327 -24.8709087584 -0.0122988173

-7.9017602984 -24.8337621108 -0.0008829471

-8.0477433202 -24.7914561474 0.0141371301

-8.1906773220 -24.7442018578 0.0331116189

-8.3303624851 -24.6922299112 0.0563609753

-8.4666298216 -24.6357869133 0.0841691124

-8.5993392312 -24.5751316249 0.1167774198

-8.7283764633 -24.5105312961 0.1543798048

-8.8536495010 -24.4422582824 0.1971188837

-8.9750840437 -24.3705871643 0.2450835518

-9.0926184042 -24.2957941395 0.2983082368

-9.2061982885 -24.2181556629 0.3567741312

-9.3157711851 -24.1379456032 0.4204124856

-9.4212809468 -24.0554337648 0.4891094014

-9.5226631757 -23.9708848521 0.5627118446

-9.6198411459 -23.8845584000 0.6410348679

-9.7127227203 -23.7967088048 0.7238694627

-9.8011987356 -23.7075851557 0.8109907639

-9.8851424611 -23.6174312816 0.9021663248

-9.9644104621 -23.5264856226 0.9971639093

-10.0388451456 -23.4349804999 1.0957585632

-10.1082784164 -23.3431412642 1.1977384890

-10.1725366015 -23.2511848965 1.3029094981

-10.2314467039 -23.1593177590 1.4110977824

-10.2848432726 -23.0677331034 1.5221508060

-10.3325758876 -22.9766079738 1.6359363060

-10.3745171455 -22.8860993690 1.7523393320

-10.4105704123 -22.7963403719 1.8712574832

-10.4406772476 -22.7074360396 1.9925944904

-10.4648243191 -22.6194590042 2.1162524437

-10.4830491700 -22.5324456103 2.2421229966

-10.4954447784 -22.4463924171 2.3700779456

-10.5021627970 -22.3612531002 2.4999596619

-10.5034150768 -22.2769365752 2.6315718064

-10.4994734602 -22.1933060904 2.7646708245

-10.4906677891 -22.1101792892 2.8989586544

-10.4773818629 -22.0273299089 3.0340770692

-10.4600478463 -21.9444908315 3.1696040036

-10.4391397140 -21.8613585002 3.3050521389
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-10.4151657538 -21.7775990414 3.4398699464

-10.3886596368 -21.6928554396 3.5734452695

-10.3601701948 -21.6067554887 3.7051114399

-10.3302466411 -21.5189208013 3.8341558119

-10.2994260797 -21.4289766206 3.9598304855

-10.2682279793 -21.3365622554 4.0813649305

-10.2371471150 -21.2413415498 4.1979800902

-10.2066447854 -21.1430126179 4.3089035498

-10.1771410847 -21.0413166676 4.4133852178

-10.1490082817 -20.9360456014 4.5107130503

-10.1225653889 -20.8270481971 4.6002282607

-10.0980758375 -20.7142341937 4.6813394125

-10.0757452598 -20.5975771117 4.7535349338

-10.0557186860 -20.4771161199 4.8163934065

-10.0380809654 -20.3529556128 4.8695916077

-10.0228592742 -20.2252627220 4.9129101734

-10.0100268325 -20.0942630721 4.9462366957

-9.9995079034 -19.9602349102 4.9695662591

-9.9911838135 -19.8235019012 4.9829992788

-9.9848997517 -19.6844244214 4.9867368487

-9.9804720911 -19.5433899735 4.9810737031

-9.9776959710 -19.4008041437 4.9663892016

-9.9763529041 -19.2570812731 4.9431364465

-9.9762181294 -19.1126338750 4.9118299217

-9.9770674661 -18.9678623481 4.8730321773

-9.9786835064 -18.8231456172 4.8273399499

-9.9808609913 -18.6788325945 4.7753703423

-9.9834112810 -18.5352349848 4.7177473251

-9.9861658323 -18.3926215712 4.6550891502

-9.9889786189 -18.2512139205 4.5879969604

-9.9917275179 -18.1111835597 4.5170450423

-9.9943147281 -17.9726506841 4.4427729074

-9.9966663263 -17.8356843686 4.3656792879

-9.9987310654 -17.7003041885 4.2862182798

-10.0004785049 -17.5664830790 4.2047975249

-10.0018966269 -17.4341512922 4.1217784787

-10.0029891095 -17.3032012264 4.0374784911

-10.0037724137 -17.1734929393 3.9521745721

-10.0042728560 -17.0448601064 3.8661085324

-10.0045237505 -16.9171161813 3.7794931208

-10.0045627095 -16.7900605815 3.6925189343

-10.0044292319 -16.6634846657 3.6053616363

-10.0041626433 -16.5371773756 3.5181891979

-10.0038004375 -16.4109303807 3.4311687671

-10.0033770072 -16.2845424716 3.3444731052

-10.0029229716 -16.1578239247 3.2582851636
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-10.0024646517 -16.0305996120 3.1728022104

-10.0020234713 -15.9027107159 3.0882397320

-10.0016157066 -15.7740163629 3.0048331149

-10.0012525570 -15.6443947602 2.9228378295

-10.0009404774 -15.5137437988 2.8425282531

-10.0006817191 -15.3819811555 2.7641952039

-10.0004750207 -15.2490439835 2.6881423735

-10.0003163947 -15.1148882558 2.6146818146

-10.0001999504 -14.9794878323 2.5441287227

-10.0001186968 -14.8428333365 2.4767957569

-10.0000652802 -14.7049308990 2.4129871390

-10.0000326153 -14.5658008264 2.3529927960

-10.0000143781 -14.4254762571 2.2970827862

-10.0000053418 -14.2840018297 2.2455022281

-10.0000015464 -14.1414323860 2.1984669284

-10.0000002988 -13.9978317139 2.1561598676

-10.0000000260 -13.8532712888 2.1187286197

-10.0000000000 -13.7078288877 2.0862837844

-10.0000000000 -13.5615872543 2.0588983001

-10.0000000000 -13.4146311987 2.0366074644

-10.0000000000 -13.2670463610 2.0194093733

-10.0000000000 -13.1189198590 2.0072657601

-10.0000000000 -12.9703399252 2.0001036693

-10.0000000000 -12.8213952506 1.9978179002

-10.0000000000 -12.6721739788 2.0002739390

-10.0000000000 -12.5227629038 2.0073114831

-10.0000000000 -12.3732468075 2.0187483695

-10.0000000000 -12.2237078200 2.0343846666

-10.0000000000 -12.0742248102 2.0540069487

-10.0000000000 -11.9248728717 2.0773925415

-10.0000000000 -11.7757228115 2.1043136592

-10.0000000000 -11.6268407088 2.1345413153

-10.0000000000 -11.4782874910 2.1678488448

-10.0000000000 -11.3301185437 2.2040150468

-10.0000000000 -11.1823833765 2.2428267972

-10.0000000000 -11.0351253002 2.2840811391

-10.0000000000 -10.8883811689 2.3275868610

-10.0000000000 -10.7421811364 2.3731654913

-10.0000000000 -10.5965484970 2.4206518170

-10.0000000000 -10.4514996116 2.4698938543

-10.0000000000 -10.3070438978 2.5207524225

-10.0000000000 -10.1631837670 2.5731003559

-10.0000000000 -10.0199145858 2.6268213949

-10.0000000000 -9.8772250457 2.6818089052

-10.0000000000 -9.7350978522 2.7379643826

-9.9999999954 -9.5935103051 2.7951960404
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-9.9999993318 -9.4524345558 2.8534176056

-9.9999960091 -9.3118378543 2.9125472035

-9.9999863516 -9.1716830978 2.9725063835

-9.9999639668 -9.0319296601 3.0332195185

-9.9999191194 -8.8925341403 3.0946132223

-9.9998387515 -8.7534511129 3.1566157385

-9.9997064358 -8.6146340873 3.2191565019

-9.9995030555 -8.4760360992 3.2821655255

-9.9992079281 -8.3376101601 3.3455727484

-9.9988000495 -8.1993097791 3.4093073704

-9.9982599218 -8.0610890211 3.4732969600

-9.9975717047 -7.9229023525 3.5374663720

-9.9967253097 -7.7847045474 3.6017366761

-9.9957186251 -7.6464502665 3.6660239262

-9.9945597726 -7.5080933352 3.7302377137

-9.9932688989 -7.3695862218 3.7942799725

-9.9918795204 -7.2308795212 3.8580437812

-9.9904394407 -7.0919211937 3.9214121652

-9.9890108482 -6.9526561433 3.9842573185

-9.9876695091 -6.8130260657 4.0464402194

-9.9865030863 -6.6729693113 4.1078106020

-9.9856084916 -6.5324213895 4.1682074002

-9.9850882148 -6.3913159706 4.2274600461

-9.9850457118 -6.2495852598 4.2853902418

-9.9855799754 -6.1071609693 4.3418142867

-9.9867794413 -5.9639772238 4.3965463854

-9.9887154002 -5.8199738065 4.4494026492

-9.9914351084 -5.6750992276 4.5002053327

-9.9949549588 -5.5293141320 4.5487874750

-9.9992540111 -5.3825947206 4.5949980318

-10.0042680339 -5.2349359453 4.6387067877

-10.0098844523 -5.0863546154 4.6798091641

-10.0159386374 -4.9368924490 4.7182309190

-10.0222114825 -4.7866186695 4.7539322012

-10.0284285741 -4.6356320283 4.7869108909

-10.0342613933 -4.4840623316 4.8172053724

-10.0393301205 -4.3320711466 4.8448961896

-10.0432085487 -4.1798517371 4.8701064152

-10.0454310812 -4.0276282584 4.8930010320

-10.0455006632 -3.8756537874 4.9137849021

-10.0428986327 -3.7242075963 4.9327003992

-10.0370957652 -3.5735915991 4.9500242083

-10.0275631255 -3.4241257684 4.9660619992

-10.0137831763 -3.2761429061 4.9811419695

-9.9952602827 -3.1299827029 4.9956076078

-9.9715302431 -2.9859852778 5.0098099964
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-9.9421693399 -2.8444844745 5.0241002053

-9.9068023417 -2.7058011325 5.0388220120

-9.8651095949 -2.5702365810 5.0543052424

-9.8168330226 -2.4380665544 5.0708597297

-9.7617808518 -2.3095357713 5.0887703163

-9.6998313792 -2.1848533539 5.1082932215

-9.6309353632 -2.0641892671 5.1296536888

-9.5551174662 -1.9476719177 5.1530452671

-9.4724765234 -1.8353869886 5.1786303909

-9.3831849115 -1.7273775646 5.2065425232

-9.2874869182 -1.6236455354 5.2368895523

-9.1856962346 -1.5241542216 5.2697582655

-9.0781932539 -1.4288321246 5.3052195628

-8.9654218158 -1.3375776444 5.3433340414

-8.8478843587 -1.2502645824 5.3841582568

-8.7261350560 -1.1667482117 5.4277508584

-8.6007739882 -1.0868716694 5.4741779455

-8.4724433146 -1.0104724287 5.5235180323

-8.3418219872 -0.9373885916 5.5758667765

-8.2096186915 -0.8674647556 5.6313406084

-8.0765641874 -0.8005572431 5.6900789566

-7.9434026702 -0.7365384819 5.7522448258

-7.8108821726 -0.6753004040 5.8180236296

-7.6797439990 -0.6167567310 5.8876201634

-7.5507112435 -0.5608440847 5.9612537322

-7.4244765233 -0.5075219191 6.0391515400

-7.3016890384 -0.4567712907 6.1215404661

-7.1829414626 -0.4085925800 6.2086375358

-7.0687560484 -0.3630022640 6.3006393170

-6.9595713326 -0.3200289304 6.3977103712

-6.8557307189 -0.2797087195 6.4999709794

-6.7574718819 -0.2420803953 6.6074849056

-6.6649177540 -0.2071803030 6.7202480221

-6.5780696445 -0.1750374098 6.8381782341

-6.4968028510 -0.1456686788 6.9611073224

-6.4208650993 -0.1190749506 7.0887750158

-6.3498780482 -0.0952375136 7.2208257062

-6.2833419900 -0.0741155076 7.3568081082

-6.2206438314 -0.0556442441 7.4961778896

-6.1610682573 -0.0397345259 7.6383034581

-6.1038118955 -0.0262729358 7.7824746889

-6.0480001982 -0.0151230632 7.9279145112

-5.9927065850 -0.0061276323 8.0737929263

-5.9369733897 0.0008884565 8.2192430434

-5.8798339914 0.0061144328 8.3633786588

-5.8203354721 0.0097497982 8.5053127410
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-5.7575611234 0.0120003122 8.6441762284

-5.6906521287 0.0130735881 8.7791362819

-5.6188283901 0.0131743606 8.9094148454

-5.5414065824 0.0124999736 9.0343061557

-5.4578143209 0.0112364984 9.1531896652

-5.3676013867 0.0095555907 9.2655393804

-5.2704465072 0.0076117445 9.3709306849

-5.1661599024 0.0055402548 9.4690439456

-5.0546824334 0.0034561194 9.5596650675

-4.9360808040 0.0014533426 9.6426827535

-4.8105396020 -0.0003950300 9.7180822735

-4.6783508539 -0.0020360549 9.7859361055

-4.5399013506 -0.0034356906 9.8463921071

-4.3956584743 -0.0045771166 9.8996595798

-4.2461555743 -0.0054583748 9.9459936518

-4.0919770939 -0.0060899132 9.9856788844

-3.9337441088 -0.0064920993 10.0190127532

-3.7721012135 -0.0066923189 10.0462893706

-3.6077048382 -0.0067222003 10.0677843834

-3.4412132930 -0.0066152194 10.0837417514

-3.2732788787 -0.0064043653 10.0943625859

-3.1045420829 -0.0061200597 10.0997965727

-2.9356277445 -0.0057886090 10.1001364844

-2.7671429389 -0.0054311336 10.0954157991

-2.5996763956 -0.0050627448 10.0856092368

-2.4337990104 -0.0046922577 10.0706364087

-2.2700649784 -0.0043225331 10.0503684607

-2.1090131391 -0.0039509938 10.0246368694

-1.9511680673 -0.0035705218 9.9932442122

-1.7970405458 -0.0031708226 9.9559766813

-1.6471270007 -0.0027398931 9.9126173235

-1.5019076087 -0.0022655780 9.8629594083

-1.3618430757 -0.0017372667 9.8068197077

-1.2273699148 -0.0011475939 9.7440509024

-1.0988941636 -0.0004939214 9.6745523154

-0.9767840326 0.0002203038 9.5982790053

-0.8613616336 0.0009843430 9.5152487258

-0.7528939075 0.0017793929 9.4255461523

-0.6515837303 0.0025780118 9.3293247963

-0.5575611360 0.0033439256 9.2268064418

-0.4708752343 0.0040322953 9.1182779874

-0.3914882641 0.0045900221 9.0040861511

-0.3192709015 0.0049565525 8.8846293804

-0.2539998826 0.0050649319 8.7603481586

-0.1953590282 0.0048428844 8.6317151933

-0.1429429096 0.0042141686 8.4992250223
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-0.0962636781 0.0030999319 8.3633832158

-0.0547607732 0.0014200986 8.2246956144

-0.0178125352 -0.0009051987 8.0836577355

0.0152502420 -0.0039541632 7.9407448707

0.0451295801 -0.0078019101 7.7964032683

0.0725446724 -0.0125191365 7.6510429093

0.0982158650 -0.0181708845 7.5050318911

0.1228488853 -0.0248155109 7.3586924600

0.1471195626 -0.0325038183 7.2122989469

0.1716598034 -0.0412784016 7.0660773734

0.1970448298 -0.0511732544 6.9202069954

0.2237826250 -0.0622134837 6.7748231904

0.2523054431 -0.0744151961 6.6300217824

0.2829637045 -0.0877854847 6.4858645614

0.3160233564 -0.1023224156 6.3423855411

0.3516663220 -0.1180150613 6.1995974130

0.3899925430 -0.1348437293 6.0574974998

0.4310237846 -0.1527803656 5.9160730254

0.4747124474 -0.1717887722 5.7753058284

0.5209544446 -0.1918252274 5.6351753719

0.5696010869 -0.2128398851 5.4956595460

0.6204704440 -0.2347785559 5.3567342605

0.6733594016 -0.2575846976 5.2183717976

0.7280548628 -0.2812015021 5.0805383737

0.7843440558 -0.3055744558 4.9431912009

0.8420234372 -0.3306538295 4.8062753841

0.9009056710 -0.3563973343 4.6697210085

0.9608244372 -0.3827731494 4.5334407763

1.0216367298 -0.4097627164 4.3973285315

1.0832229272 -0.4373637211 4.2612589684

1.1454837345 -0.4655926167 4.1250887732

1.2083353407 -0.4944868330 3.9886596385

1.2717035892 -0.5241067605 3.8518032762

1.3355160153 -0.5545369241 3.7143480094

1.3996925130 -0.5858867409 3.5761265778

1.4641353702 -0.6182902389 3.4369849548

1.5287190730 -0.6519049223 3.2967918843

1.5932804402 -0.6869098859 3.1554488308

1.6576096878 -0.7235027482 3.0128999503

1.7214427384 -0.7618958779 2.8691416249

1.7844555008 -0.8023114706 2.7242311797

1.8462602883 -0.8449758103 2.5782943017

1.9064046666 -0.8901129340 2.4315307533

1.9643730734 -0.9379375257 2.2842180263

2.0195909634 -0.9886476221 2.1367125922

2.0714318384 -1.0424169213 1.9894485611
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2.1192267144 -1.0993871456 1.8429335905

2.1622757766 -1.1596607505 1.6977420068

2.1998620397 -1.2232939862 1.5545052964

2.2312662423 -1.2902908596 1.4139001299

2.2557829565 -1.3605978981 1.2766328414

2.2727365390 -1.4341000622 1.1434220944

2.2814962917 -1.5106179992 1.0149827607

2.2814909464 -1.5899066444 0.8920094172

2.2722215996 -1.6716554084 0.7751590972

2.2532735036 -1.7554898708 0.6650343252

2.2243259819 -1.8409750597 0.5621666791

2.1851602386 -1.9276202729 0.4670020679

2.1356649526 -2.0148852171 0.3798883777

2.0758390385 -2.1021874003 0.3010657690

2.0057921696 -2.1889105435 0.2306599638

1.9257425226 -2.2744137251 0.1686787725

1.8360121413 -2.3580411070 0.1150120285

1.7370200980 -2.4391318585 0.0694348957

1.6292733629 -2.5170300426 0.0316144419

1.5133563039 -2.5910942744 0.0011192382

1.3899186651 -2.6607067529 -0.0225684014

1.2596627490 -2.7252816066 -0.0400379623

1.1233301970 -2.7842722547 -0.0519346151

0.9816884469 -2.8371775740 -0.0589420104

0.8355178566 -2.8835469889 -0.0617645773

0.6855993656 -2.9229841389 -0.0611099700

0.5327033224 -2.9551493469 -0.0576722319

0.3775797595 -2.9797608413 -0.0521162300

0.2209499600 -2.9965946089 -0.0450638432

0.0634999640 -3.0054833532 -0.0370822818

-0.0941243326 -3.0063142964 -0.0286748535

-0.2513202490 -2.9990263023 -0.0202743546

-0.4075296182 -2.9836064492 -0.0122391587

-0.5622387619 -2.9600859030 -0.0048519831

-0.7149769359 -2.9285357650 0.0016788100

-0.8653137521 -2.8890626031 0.0072156043

-1.0128556583 -2.8418041996 0.0116859169

-1.1572417534 -2.7869255932 0.0150751525

-1.2981393975 -2.7246151302 0.0174181375

-1.4352396319 -2.6550811851 0.0187898618

-1.5682528103 -2.5785491028 0.0192958669

-1.6969045444 -2.4952588196 0.0190626973

-1.8209321568 -2.4054630682 0.0182287910

-1.9400818370 -2.3094257181 0.0169361503

-2.0541064991 -2.2074208478 0.0153230533
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