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We discuss how to introduce local time-step refinements in a sequential implicit method 
for multiphase flow in porous media. Our approach relies heavily on causality-based 
optimal ordering, which implies that cells can be ordered according to total fluxes after the 
pressure field has been computed, leaving the transport problem as a sequence of ordinary 
differential equations, which can be solved cell-by-cell or block-by-block. The method is 
suitable for arbitrary local time steps and grids, is mass-conservative, and reduces to the 
standard implicit upwind finite-volume method in the case of equal time steps in adjacent 
cells. The method is validated by a series of numerical simulations. We discuss various 
strategies for selecting local time steps and demonstrate the efficiency of the method and 
several of these strategies by through a series of numerical examples.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Simulation of multiphase flow in porous media often imparts resolving processes that occur at strongly differing spa-
tial and temporal scales [1,2]. It may therefore be beneficial to adopt inhomogeneous grids, possibly with local adaptive 
coarsening or refinement, to better resolve details of the flow in specific regions and to capture flow regimes with delicate 
balances between different physical forces. Increasing the grid resolution or using a higher-order method reduce the local 
numerical smearing induced by the spatial discretization, whereas temporal refinement must be considered to reduce the 
smearing related to temporal discretization.

Our primary concern herein is simulation of hydrocarbon recovery processes on a reservoir scale, for which variations 
in pore volumes and intercell flow rates can be several orders of magnitude. In explicit schemes, the time step is restricted 
by the famous Courant–Friedrichs–Lewy (CFL) condition to ensure stability [3]. This condition is usually very restrictive in 
reservoir-scale models, and it is therefore more common to use implicit schemes. However, also for these, conventional 
wisdom from numerical analysis says that the estimated CFL numbers should not be larger than 5–10 to avoid introducing 
excessive numerical smearing that will result in large pointwise errors in saturations and fluid compositions. One may argue, 
as we will do later in the paper, that using too large time steps in cells with small pore volumes, so that these fill up too 
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quickly, only affects local errors and contributes with negligible amounts to the global error. Likewise, in many scenarios in 
enhanced oil recovery, the leading displacement fronts contain strong self-sharpening mechanisms that make these waves 
less susceptible to numerical smearing than any trailing discontinuities that are linear or weakly nonlinear waves. But even 
though this provides another argument to increase time-step sizes moderately, the effective time-step sizes in a simulation 
would still be limited by the cells with the smallest pore volumes. Another problem is high flow in the near-well region. 
Rapid transients induced when wells are opened or shut to flow can be particularly challenging for (Newton-type) nonlinear 
solvers, and the standard approach is to reduce the time step for the whole reservoir to ensure convergence of the nonlinear 
solver, even though the rapid changes in flow properties are localized.

To overcome these challenges, various types of local time-stepping strategies have been proposed in the literature, 
primarily in conjunction with local grid refinement and/or domain decomposition methods. Quandalle and Besset [4] in-
troduced a multiple time-step approach on composite grids (rectangular grid with local mesh refinement) that enabled 
use of smaller time steps in the refined cells. Ewing et al. [5] analyzed the stability of local time stepping in the con-
text of domain-decomposition methods, developed error estimates, and proved convergence for parabolic equations; see 
also [6]. Deimbacher and Heinemann [7] developed a windowing technique in which the flow equations are first solved 
on a global grid with a coarse time step and then subsequently updated using smaller time steps on locally refined grids 
in the near-well regions; see [8–10] for later extensions and improvements. The adaptive implicit method [11–16] enables 
larger time steps by combining explicit and implicit time stepping: The method uses a standard implicit pressure, explicit 
saturation (IMPES) scheme in cells with relatively low CFL numbers and a fully implicit scheme in cells with large CFL 
numbers.

Mc Namara et al. [17] suggested a particularly interesting local time-stepping method that essentially utilizes ideas from 
the classical Cascade method [18]. The method iterates over three steps: In the first step, the flow equations are solved 
using a single Newton iteration to obtain a representative pressure field. In the second step, one picks one of the phases 
and uses the corresponding phase potential values to sort the cells topologically in descending order. In the last step, one 
chooses a sequence of local time steps independently in each cell. This is done by a trial-and-error algorithm that halves 
the step size until the nonlinear solver, localized to the cell, converges within a prescribed number of iterations and each 
computed saturation increment is less than a prescribed tolerance.

Pressure and flow velocities are generally coupled to transported quantities (saturation or chemical compositions), but 
in many models and flow regimes, it may still be advantageous to reformulate the model equations as a pressure equation 
and a set of transport equations. This is particularly valid and useful when capillary and gravitational forces are not dom-
inant, and countercurrent flow only occurs in subsets of the domain. The splitting naturally suggests a sequential solution 
algorithm that solves the pressure equation and the transport equations in separate substeps [19–22]. The two subproblems 
usually have strongly different mathematical character [23,24]. Pressure equations tend to exhibit elliptic characteristics, 
in particular for waterflooding problems, whereas transport equations typically have a strong hyperbolic character. Split-
ting then enables us to utilize specialized methods for the two subproblems. Recently, Carciopolo et al. [25] proposed a 
local time-stepping method, based on sequentially implicit integration with so-called multirate time stepping [26] for the 
hyperbolic transport step. (See also [27] for an explicit asynchronous local time-stepping method.)

In this work, we present a new local time-stepping method for sequentially implicit schemes. Our method is simi-
lar to [17] in the sense that it relies on topological ordering to infer causality (i.e., unidirectional flow couplings), but 
whereas [17] rely on (phase) potential ordering of cells [18,28,29], our method assumes that the total velocity field is 
kept fixed during each pressure step so that we can order cells according to the total flux across cell interfaces [30–34]. 
The nonlinear transport problem then simplifies to solving a sequence of nonlinear ordinary differential equations (ODEs) 
localized to each cell (or to blocks representing cycles of mutually dependent cells), starting at the inflow and consec-
utively moving downstream. This procedure not only gives local control over the nonlinear solution process, but also 
scales linearly with the number of degrees of freedom (cells) in the computational domain. It also gives the nonlin-
ear ODE solver freedom to reduce the time step locally in each cell, which often is necessary to accurately resolve 
rapid transients and achieve convergence for strongly nonlinear flux functions. We present various strategies for dividing 
the transport step into local substeps and formulate a framework that guarantees that these local time steps are inte-
grated consistently to ensure mass conservation. The result is a sequentially fully implicit method in which the transport 
equations are integrated cell by cell, or cycle by cycle, in the downstream direction using spatially varying minor time 
steps.

The article is organized as follows. Section 2 presents the underlying multiphase flow model and introduces a one-
dimensional version of our method to convey the basic idea. Section 3 presents the general version of our new method for 
a multidimensional, fully discrete finite-volume scheme. Section 4 reviews and discusses strategies for choosing local time 
steps (adaptively and by other means). In Section 5, we validate the method on conceptual and simplified examples, but 
also on a 3D test case that has many features seen in real-life engineering computations. Finally, in Section 6, we conclude 
and point to future work.

2. Basic concepts

This section introduces the flow equations and describes the basic ideas of our approach to local time stepping in one 
spatial dimension.
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2.1. Basic requirements to a local time-stepping method

The method we seek to formulate is a finite-volume method in which the local time steps will be asynchronously 
updated in adjacent cells. The main challenge in developing a local time-stepping scheme is to formulate the coupling 
between states and fluxes defined in local time intervals. To this end, we may pose some fundamental requirements to the 
method:

• The method should be mass conserving.
• The method should reduce to a standard finite-volume formulation when sampled at uniform time steps.
• The integration schemes should be invariant when time steps are rescaled.

The method we present should be applicable to a range of different systems for which the transport can be integrated 
separately from the flow field, but herein we consider for concreteness a standard Darcy-type model for flow in porous 
media.

2.2. Multiphase flow model

Standard flow models consist of equations for mass conservation and the multiphase extension of Darcy’s law for fluid 
flow in porous media:

φ∂t sα + ∇ · vα = qα, (1)

vα = −λαK(∇pα − ρα g∇z), (2)

for phases α ∈ {1, . . . , n}. Here, φ denotes porosity, sα is saturation of phase α, vα phase velocity, and qα a source term. 
The phase mobility λα is defined by λα = kr,α/μα , where kr,α is the relative permeability and μα the dynamic viscosity 
of phase α. Moreover, K is the permeability tensor, pα phase pressure, ρα phase density, g gravitational acceleration, and 
z the height coordinate. For brevity, we take the flow to be incompressible so that ρα is constant. Closure is obtained by 
requiring that the sum of saturations equals unity, 

∑n
α=1 sα = 1, and introducing saturation-dependent capillary pressure, 

pi − p� = pc,i�(s1, . . . , sn), where pc is the capillary pressure function, and i, � ∈ {1, . . . , n}. For simplicity, we neglect the 
effect of capillary pressures in the current analysis (and thus skip subscripts on p) and leave this, as well as hysteretic 
effects and dependence of kr,α on rock type, for further work.

Summing (1) over the phases, we obtain

∇ · v = q, v = −λK∇p + λgρk, (3)

where v = ∑n
α=1 vα and q = ∑n

α=1 qα . Here, we have defined total mobility λ = ∑n
α=1 λα , the vector k = K∇z, and weighted 

density ρ = ∑n
α=1 fαρα , where fα = λα/λ is the fractional flow of phase α. This enables us to rewrite (2) as

vα = −λαK∇p + λαρα gk = fαv + λα g (ρα − ρ)k

= fαv + λg
n∑

β=1

fα fβ
(
ρα − ρβ

)
k = fαv + δαk,

(4)

and consequently (1) transforms to

φ∂t sα + ∇ · ( fαv + δαk) = qα. (5)

2.3. Simplified flow problem

For two-phase flow without source terms and gravity effects, the problem is reduced to solving

∇ · v = 0, v = −λK∇p (pressure) (6)

φ∂t s + ∇ · ( f (s)v
) = 0 (transport). (7)

Here, we have taken s1 = s and thus s2 = 1 − s, so that one of the transport equations becomes superfluous, and subse-
quently skipped the subscript on f1. The mobility λ in the expression for v in (6) depends on s. When this dependence 
is weak, one can reduce computational complexity by solving these two equations sequentially rather than in a coupled 
manner. Thus, in the forthcoming, we focus on solving (7) with v taken to be constant in time.
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2.4. One-dimensional formulation of the method

For pedagogical purposes, we concentrate first on formulating a one-dimensional (1D) version of the scheme. The ex-
ample system we consider is composed of cells along an axis x, where, for simplicity and without loss of generality, we 
consider a total velocity from left to right (v > 0). The continuous version of (7) in 1D is

φ∂t s + ∂x
(

f (s)v
) = 0. (8)

For a standard finite-volume method with spatially uniform time steps, the discrete counterpart of (8) is given by

φi
sk

i − sk−1
i


tk
= F k

i−1/2 − F k
i+1/2


xi
. (9)

Here, φi is the porosity in a given cell i of size 
xi and sk
i is the cell-averaged saturation in cell i at time step k with length 


tk . The time step may vary in time, but not in space. Finally, the discrete phase flux Fi−1/2 approximates f (s)v across 
the interface between cells i and i − 1, located at xi−1/2. In 1D, and more generally in the absence of gravity and capillary 
forces, the flow is always cocurrent and hence the fluxes are modelled using standard implicit upwind weighting:

Fi−1/2 =
{

f (si−1)vi−1/2, for vi−1/2 > 0,

f (si)vi−1/2, for vi−1/2 ≤ 0.
(10)

Here, we have introduced the average total flux vk
i−1/2 across the interface between cells i − 1 and i during time step k. For 

incompressible flow, vk is constant in space and we can assume that vk
i−1/2 = vk > 0 for all cells i and time steps k. Hence, 

information flows from left to right.
To simplify notation, we henceforth consider a given pressure step (or major step) 
tk , for which the total velocity vk

is computed, as the time interval I of interest and drop superscript k for brevity. Furthermore, we set I = (0, 
t] without 
loss of generality. It is then straightforward to introduce a generalization to a finite-volume method with variable time steps 
in adjacent cells:

φi
s j

i − s j−1
i


t j
i

= F j
i,L − F j

i,R


xi
. (11)

Here, superscript j refers to a substep (or minor step) that represents a subdivision of the pressure step 
t , local to cell i, 
such that 
t = ∑

j=1 
t j
i . That is, in cell i we subdivide the time interval I into Mi sub-intervals I j

i = (t j−1
i , t j

i ] with minor 
indices j ∈ {1, . . . , Mi}; these sub-intervals need not be equally long. Thus, we have the observations (dropping subscript i
for brevity)

I =
M⋃

j=1

I j, tk,0 = 0 and tk,Mk = 
t. (12)

Now, the main difference between the local time-stepping formulation (11) and a single time step in the standard 
method (9) is the definition of the local fluxes. In particular, since the minor time steps are not synchronized in two 
adjacent cells, we must differentiate between the fluxes into and out of the face separating them. To this end, the flux into
cell i across its left edge during minor step j is denoted by F j

i,L, and the flux out of cell i on its right edge is denoted by 
F j

i,R. The latter, outward flux, can trivially be written as:

F j
i,R = f (s j

i )v, for t ∈ I j
i . (13)

The challenge now is to determine the local inward flux F j
i,L based on the outward fluxes from the upstream cell, {F m

i−1,R}
for m = 1, . . . , Mi−1. From the fundamental requirement of mass conservation it follows that the inward flux in cell i during 
the minor time interval I j

i should be exactly equal to the outward flux from cell i − 1 during the same time interval. In formal 
terms, this can be expressed as


t j
i F j

i,L =
t j

i∫
t j−1

i

F i−1,R(t̃)dt̃. (14)

For a first-order scheme in time, Fi,L(t) and Fi,R(t) are piecewise constant functions of t , such that
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Fi,R(t) = F j
i,R for t ∈ I j

i . (15)

We define I j,m
i−1/2 as the intersection of the two intervals I j

i and Im
i−1 (defined at the interface between two adjacent cells i

and i − 1). The size of this overlap interval is expressed as


t j,m
i−1/2 = max

[
min(t j

i , tm
i−1) − max(t j−1

i , tm−1
i−1 ), 0

]
. (16)

Then, we can write (14) as:


t j
i F j

i,L =
Mi−1∑
m=1


t j,m
i−1/2 F m

i−1,R. (17)

Note that


t j
i =

Mi−1∑
m=1


t j,m
i−1/2. (18)

Upon inserting (18), (17) becomes a weighted mean

F j
i,L =

Mi−1∑
m=1

ψ
j,m

i−1/2 F m
i−1,R, ψ

j,m
i−1/2 = 
t j,m

i−1/2


t j
i

, (19)

where the weights ψ sum to unity for m = 1 to Mi−1. We observe thus from (19) that the flux into a cell can be regarded 
as a time-weighted mean of the fluxes out of the preceding cell. Accordingly, (19) can be written as a matrix equation:

Fi,L = �i−1/2Fi−1,R, (20)

where

Fi,L = [F 1
i,L, . . . , F Mi

i,L ], Fi−1,R = [F 1
i−1,R, . . . , F

Mi−1
i−1,R] (21)

are vectors of length Mi and Mi−1 representing the flux out of and into the cell interface, and the Mi × Mi−1 matrix 
�i−1/2 = [ψ j,m

i−1/2] jm contains the temporal weights from (19). The form (20) saves some notation, and it might be useful to 
also carry calculations on matrix form to exploit vectorization features in interpreted languages such as Python and MATLAB.

2.4.1. Local nonlinear problem
For completeness, we state the local nonlinear problem that should be solved in each cell, ref. (11). The problem is now, 

in each cell, to solve R j
i (s j

i ) = 0 for s j
i , where

R j
i (s j

i ) = |�i |
[

s j
i − s j−1

i

]
+ 
t j

i

[
f (s j

i )v − F j
i,L

]
. (22)

Here, |�i| = φi
xi is the pore volume of cell i, and is like s j−1
i , 
t j

i , v , and F j
i,L already given. This nonlinear problem can 

be solved with, e.g., a stabilized Newton method, or a more robust bracketed solver such as Brent’s method, depending on 
how complicated the flux function f (s) is.

2.4.2. Boundary conditions
Assigning boundary conditions on the left side of the domain is trivial, as the flux into the first cell can be set to 

F j
1,� = f (s)v , where s is the prescribed boundary saturation at time 
t . The outward flux in the rightmost cell requires no 

further specification, since the fluxes in the transport step are independent of downstream cells in our upwind discretization.

3. General formulation

In this section, we extend our method to general grids in 2D and 3D. As in the previous section, we only present the 
discretization within a single pressure (or major) time step, which we without loss of generality set as t ∈ [0, 
t]. This is 
done to avoid including an extra superscript k in all temporal quantities.
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3.1. Notation

Before we present the formulation of the general method, it is useful to introduce some basic concepts used to represent 
general unstructured polyhedral grids.

Ci : Cell with index i and pore volume |�i |.
F(Ci): The set of indices � such that C� is a neighbor of Ci . Two cells are defined to be neighbors if they share a common 

interface i� .
i�: Interface between cells Ci and C� . Note that i� = �i . The interface area |i�| is only defined for pairs (�, i), for 

which � ∈F(Ci) and correspondingly i ∈F(C�).
n̂i→�: The normal to the interface i� pointing from cell Ci to C� . Note that n̂i→� = −n̂�→i .
I j,m

i,� : The overlap between two temporal intervals I j
i and Im

� , defined between neighboring cells Ci and C� , i.e., I j,m
i,� =

I j
i ∩ Im

� .


t j,m
i,� : Width of the interval I j,m

i,� , i.e., the width of the overlap between substep j in cell Ci and substep m in cell C�:


t j,m
i,� = max

[
min(t j

i , tm
� ) − max(t j−1

i , tm−1
� ), 0

]
. (23)

We note the relation 
t j,m
i,� = 
tm, j

�,i and that 
t j
i = ∑M�

m=1 
t j,m
i,� .

Further, we introduce the following notation to describe the full discretization of multiphase flow of n phases.

V i→�: The total flow rate through the interface i� from cell Ci into cell C� . It represents the approximation:

V i→� ≈
∫
i�

v(x,0) · n̂i→� dA. (24)

In practice, it is given by solving the pressure equation (3) on a discrete grid. Note that V i→� = −V�→i . Further-
more, for incompressible flow, we must have∑

�∈F(Ci)

V i→� = qi ≈
∫
Ci

q(x,0)dV , (25)

where qi is the integrated source term in cell i. There are multiple ways of obtaining these fluxes, the most usual 
is by a two-point flux approximation (see e.g., [24]).

qα,i : The source term of phase α in cell i is defined analogously to qi and is constant during the transport step.

s j
α,i : Cell-averaged saturation of phase α in cell Ci at minor time step j. For a first-order scheme, it approximates s at 

the centroid of Ci .
F j
α,i,�: Flux of phase α into cell Ci from cell C� (i.e., across i�) during minor step j.

3.2. Algorithm

In a general multidimensional framework, the algorithm is a straightforward generalization of that in one dimension. The 
essential difficulty lies in coupling the fluxes across all interfaces. Another complicating factor is the potential presence of 
regions of countercurrent flow or other types of cycles, i.e., mutually dependent cells that must be solved for simultaneously.

To describe the general algorithm, we assume that the pressure solution step has been carried out, so that all total flow 
rates V i→� are given and taken to be constant during the transport step. Then the algorithm reads:

1. Order cells according to the total fluxes V i→� , such that

V i→� > 0 ⇔ i < � for all � ∈ F(Ci), (26)

for all cells Ci . The effect of this ordering is to permute the discrete nonlinear transport equations to lower triangular 
form so that they can be solved cell-by-cell in the same way as we discussed in the 1D case in Section 2.4. Note that 
the requirement (26) will have to be relaxed when dealing with cycles of mutually dependent cells, the treatment of 
which we defer until later.

2. For all i ∈ {1, . . . , N}, j ∈ {1, ..., Mi}, solve sequentially, with respect to s j
i :

s j
α,i − 
t j

i

|�i |
∑

F j
α,i,� = s j−1

α,i + qα,i
t j
i , (27)
�∈F(Ci)
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Fig. 1. Piecewise constant reconstruction of local-in-time half-face fluxes that ensures mass conservation. The three blue rectangles represent flux out of 
Cell i, whereas the four red rectangles represent flux into Cell �.

Fig. 2. Visualization of the overlap matrix corresponding to Fig. 1, which gives the flux vector through Fα,i,� = �i,�Fα,�,i (definition in the text) when 
V k

i→�
> 0. Darker shade of an entry signifies higher value.

for α ∈ {1, . . . , n}, where the upwind-weighted fluxes can be written as

F j
α,i,� =

{− 1

ti

∑M�

m=1 
t j,m
i,� F m

α,�,i, for V i→� < 0,

− fα(s j
α,i)V i→�, for V i→� ≥ 0.

(28)

The construction of these half-face fluxes is schematically shown in Fig. 1. We can also write this on matrix form,

Fα,i,� =
{

−�i,�Fα,�,i, for V i→� < 0,

−fα,i V i→�, for V i→� ≥ 0,
(29)

where

Fα,i,� = [F 1
α,i,�, . . . , F Mi

α,i,�]T , �i,� = 1


ti
Ti,�, Ti,� = [
t j,m

i,� ] jm,

fα,i = [ fα({s1
α,i}n

α=1), . . . , f ({sMi
α,i}n

α=1)].
Here, �i,� is an Mi × M� matrix. For the schematic problem shown in Fig. 1, the overlap matrix �i,� is shown in Fig. 2. 
Note that Ti,� = (T�,i)

T , so the overlap matrix need only be computed once per interface i� .

Compared to a standard finite-volume scheme, the essential new ingredient in our method is the need to compute the 
overlap time steps 
t j

i,� , or equivalently, the overlap matrices Ti,� . If the time step resolution does not change throughout a 
simulation, i.e., Mi is the same for all major steps, these overlaps (or overlap matrices) may be precomputed and reused at 
every major time step. However, local time-stepping schemes can be particularly powerful when adapted to changes in total 
velocity field and transported quantities. In this case, the local time steps cannot be precomputed, but must be computed 
on the fly, as discussed in the next section.

Gravity, cycles, and cross-flow. In general, the flux graph represented by V i→� will contain circular dependencies due to 
cross-flow, e.g., as a result of countercurrent flow caused by gravity, mutual dependencies because of capillary effects, or 
because the pressure equation is discretized by a multipoint (and non-monotone) scheme. Herein, we use the word cycle to 
refer to such sets of mutually dependent cells. One approach for solving cycles would be to iterate around each cycle until 
convergence. A more practical approach is to consider a cycle as a chunk of cells to be solved simultaneously. The time steps 
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within this chunk must then be synchronized and will be solved self-consistently using a standard finite-volume scheme, 
except that the upstream fluxes will be computed according to the varying time discretization in different cells.

The main challenge with including gravity effects is thus not the appearance of cycles, but that gravity may cause 
the flow ordering (i.e., the signs of the local phase fluxes) to change and differ between the phases during the transport 
integration. One way to overcome this potential problem is to split the transport step in two so that the first substep 
accounts for transport according to Darcy fluxes and the second accounts for gravity segregation; this is a standard approach 
in streamline simulation [35] and has also been used to extend reordered methods to flow with strong countercurrent 
effects [32]. One could also imagine using a nonlinear Gauss–Seidel approach in which the transport step is reiterated if 
flow ordering has changed, but more research is needed to determine whether this is viable or not.

4. Local time-step selection

Pressure steps are usually determined from the imposed report steps and a suitable a priori subdivision of these. A second 
approach is to attempt a nominally small pressure step, followed by a standard chopping procedure that selects subsequent 
pressure steps based on observed or estimated changes in saturation and composition. One may also choose the pressure 
step to ensure that the number of nonlinear pressure iterations meets a prescribed target. Local time steps for the transport 
equation, on the other hand, are typically chosen to limit the amount of numerical smearing or to resolve sharp fronts in 
particular regions of the simulation domain. This section outlines various strategies for choosing such local time steps.

4.1. Static region-based selection

A simple and straightforward strategy for local adaption is to impose refined time steps in certain sub-regions of the 
domain. One example would be to use more steps in near-well regions or in high-flow region between two wells by 
explicitly marking all cells that should have a higher number of minor steps than the rest of the domain. Likewise, for grids 
with spatially varying resolution caused by adaptive refinement or coarsening, the local time step could be set to match the 
local grid resolution, e.g., if a local 2 × 2 refinement is applied to a patch of cells, an accompanying refinement could be 
imposed on the time steps in the same cells.

4.2. Selection based on local CFL number

A variant of the local approach is to base the minor time step on an estimate of the local CFL number ηi in cell Ci . 
Following [13], we can estimate this, based on the flux function, by

η
j
i = �

j
i η̄i . (30)

Here, η̄i is the local CFL number for passive, linear advection,

η
j
i = 
t j

i

|�i|
∑

�∈F(Ci)

[(V i→�)+ − (qi)−] , (31)

and � j
i is the largest eigenvalue of the Jacobian

J =

⎡⎢⎢⎣
∂ f1
∂s1

· · · ∂ fn−1
∂s1

...
. . .

...
∂ f1

∂sn−1
· · · ∂ fn−1

∂sn−1

⎤⎥⎥⎦ (32)

evaluated at s j
α,i for all α ∈ {1, . . . , n}. For brevity, we write (·)+ = max(·, 0) and (·)− = min(·, 0). Notice also that the sum 

in (31) only includes flux out of the cell. The linear CFL number (31) represents a unit reference frame for local wave 
propagation speeds and can be computed independently of the actual wave structure for a given flux field.

The user should then specify a CFL target ηspec, and use (30) to solve η j
i (
t j

i ) = ηspec with respect to 
t j
i to define 

the minor time step dynamically in each cell. A constraint on explicit schemes would typically be ηspec ≤ 1. For 1D linear 
advection ( fα = sα ) with constant porosity, this coincides with the CFL number that equalizes contributions from spatial and 
temporal discretization to the numerical smearing. For nonlinear displacements, the convexity/concavity of the flux function 
introduces self-sharpening effects that tend to counteract numerical smearing, and experience shows that the estimated 
CFL number can be up to one order of magnitude above unity before numerical smearing starts to significantly affect the 
resolution of fronts.

Selecting time steps based on local CFL numbers has the advantage that temporal resolution is automatically increased 
in high-flow regions, e.g., near wells, and this reduces the need for gradually ramping up the global time step, which is a 
well-known trick of the trade. A problem with (30), however, is that the Jacobian (32) is computed explicitly so that the 
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maximum wave speeds used to estimate the time step lag behind the actual wave speeds experienced during the time step. 
When solving the transport equations cell by cell, we can mitigate this by using information from updated states in the 
upstream cells to gain a better estimate of the maximum wave speed

�̃i = max
�∈F(Ci)
V i→�<0

{
M�

max
m=1

∣∣∣∣∣ fα(sm
α,�) − fα(sm−1

α,� )

sm
α,� − sm−1

α,�

∣∣∣∣∣
}

, (33)

and use this to define an alternative CFL estimate, η̃ j
i = �̃i η

j
i .

4.3. Selection based on representative CFL numbers

To select regional time steps that balance errors caused by the temporal discretization and errors inherent to the spatial 
discretization, we propose to transform the cell-wise CFL numbers for passive linear advection (31) into time-of-flight 
coordinates, so that (31) represents the ratio between the time step and the average incremental travel time 
τi over 
all flow paths that cross the cell,

η
j
i = 
t j

i


τi
, 
τi = |�i |∑

�∈F(Ci)
(V�→i)−

. (34)

Here, the average incremental travel time, also referred to as the residence time of the cell, is defined as the ratio between 
the cells pore volume and the flux into the cell.

To see the relative size of cell Ci in Lagrangian coordinates, we must scale the incremental travel time by the average 
global residence time τi of all flow paths that pass through the cell, which can be computed rapidly for each major step by 
solving a (block) triangular system; see [30,24]. For pure cocurrent flow, the ratio 
τi/τi represents the fraction of the total 
travel time from inlet to outlet that is spent traversing cell Ci .

Our hypothesis is now that we can study the distribution of Lagrangian cell sizes {
iτ/τi} for the whole reservoir or 
for a given subregion, pick the mean of this distribution, and insert the corresponding incremental travel time into (34)
to compute a representative CFL number. This is based on a relatively simple physical argument. For a standard first-order, 
implicit scheme, the amount of numerical smearing we add to a propagating discontinuity increases proportionally to the 
local CFL number, and the main effect of using a large time step in a cell with small pore volume or high throughput is that 
we flood this cell too early (provided that the nonlinear solver is able to converge the time step). However, if premature 
flooding only takes place in cells that are quickly traversed by the displacement front, the overall adverse effect will usually 
be small. In other words, a too large local time step can contribute to a large local error measured in s, but the increase 
of the φs-error is small, and the error in s tends to die out as soon as the displacement front enters cells with larger 
incremental travel times. Thus, a regional time step should be chosen based on a representative CFL target and not on the 
worst-case local CFL number arising in cells with small pore volumes or high throughput. This argument is admittedly quite 
hand-wavy, but a variety of test cases show that it holds true as long as the representative CFL target is chosen to be unity 
or slightly above unity.

All over, this gives us an unbiased method for determining the local (in time) CFL number based on the instantaneous 
flow field, and provides a more physically sound criterion for choosing time steps than, e.g., using criteria based solely on 
numerical considerations, such as the convergence of nonlinear solvers.

4.4. Predictor-corrector approach

Using the residence time 
τ i defined in the previous section, we can rewrite a user-specified CFL restriction per cell as,


t j
i ≤ ηspec
τ i/�

j
i . (35)

Using this nonlinear inequality (remember that � j
i depends upon the unknown solution), we can formulate an iteration 

scheme in which we accept the local time-step size 
t j
i if (35) is satisfied. If not, we reduce the time step and solve the 

local cell (or chunk) again, recheck that the reduced time step and the computed solution satisfy (35), and if necessary, 
repeat this procedure until the inequality is fulfilled, as outlined in more detail in the next subsection. This approach is very 
robust, but requires us to compute maximum/minimum eigenvalues of the numerical flux function, which can be expensive.

4.5. Selection based on local saturation updates

A more direct (and somewhat ad hoc) approach, which does not require computation of eigenvalues, is to control the 
change in saturation locally. In particular, we prescribe an upper limit on the saturation change 
smax allowed during a 
(minor) time step
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s j
i ≤ 
smax, (36)

where 
s j
i = ‖s j

α,i − s j−1
α,i ‖p for a suitable �p norm. Following the argument from Section 4.3, it may in many cases be more 

natural to measure the change in volume fraction, 
(φi s
j
i ). Likewise, for multicomponent flows, one should track changes 

in component concentrations or component fractions. For brevity, we only discuss 
s in this subsection, since the other 
methods are essentially the same, except for the obvious modifications.

A straightforward predictor-corrector approach can be used to achieve this (see [36, pp. 54] and [37]). For each cell Ci , 
we use an iteration of the following form:

1. Let r = 0. (If we are in the very first major step, let 
t0,0
i = 
t .)

2. Solve the local problem (27) with the estimated time step 
t j,r
i to obtain s j,r

α,i , which represents a cell-wise saturation 
change 
s j,r

α,i = ‖s j,r
α,i(
t j,r

i ) − s j−1
α,i ‖p .

3. Compute a suggestion for a new time step:


t j,∗
i = (1 + ω)
smax


s j,r
i + ω
smax


t j,r
i , (37)

where ω ∈ [0, 1] is a tunable parameter [36].
4. If 
s j,r−1

i < 
smax, decline the local time step. That is, set 
t j,r+1
i to the minimum of 
t j,∗

i and the time remaining 
part of the major time step, increase r by 1, and go to Step 2. Otherwise, accept the local time step, i.e., assign


t j
i = 
t j,r

i ,

s j
α,i = s j,r

α,i, for α ∈ {1, . . . ,n}. (38)

If 
t j
i is long enough to bring us to the end of the major time step number k, set 
t0,0

i = min(
t j,∗
i , 
tk) and go to 

next cell. Otherwise, set 
t j+1,0
i to the minimum of 
t j,r

i and the remaining part of the major step, increase j by 1, 
and go to Step 1.

Note that the most important part of this iteration procedure is the regulator (37), which is commonly used to select global 
time steps in reservoir simulation. The rest is mainly a procedure to ensure that the local time steps synchronize with the 
pressure updates.

4.6. Combined approach for cache efficiency

Computational efficiency on a modern computer is usually memory bound, i.e., limited by how fast we can feed the 
computational cores with sufficient data. Using a cell-by-cell solution procedure, in which we can specify the time step 
and control the nonlinear iteration process locally in each cell, is computationally optimal in the sense that it minimizes 
the number of floating-point operators, but will in practice represent an efficiency barrier. To utilize cache more efficiently 
and decrease latency, we therefore process chunks of cells at a time; preferably these cells should also be represented as 
contiguously in memory as possible to minimize access costs. Doing so inevitably gives larger local systems, more local 
time steps, and more nonlinear iterations, but reduces the average start-up cost per cell, utilizes cache better, and leaves 
computational resources less idle. Hence, adapting the time step to n cells simultaneously will typically be significantly 
faster than adapting the time step individually in n cells.

5. Numerical simulations

In this section, we investigate the effectiveness on a series of representative numerical test cases. We have provided a 
minimal Python implementation in 1D as Supplementary Material to demonstrate the basic principles. However, the general 
method for multidimensional polyhedral grids is implemented in the MATLAB Reservoir Simulation Toolbox (MRST) [24], 
which is an open-source code for MATLAB/GNU Octave, aimed at rapid development of numerical methods for reservoir 
simulation. Our implementation is built on top of a reordered, cell-by-cell solver presented by Klemetsdal et al. [34], which 
relies on processing of chunks for efficiency, and uses automatic differentiation to linearize and solve the nonlinear equa-
tions. Although our framework is general and is applicable to a wide class of multiphase and multicomponent models under 
the assumption of cocurrent flow, we herein only present test cases with incompressible two-phase flow in the absence of 
gravity and capillary effects.

5.1. Validation: 1D Buckley–Leverett displacement

The Buckley–Leverett displacement is a standard benchmark problem for two-phase Darcy flow. In 1D and in the absence 
of gravity and capillary effects, the formulation (8) holds with constant v ≥ 0. This problem is exactly solvable, and thus 
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Fig. 3. Buckley–Leverett displacement. Comparison of the exact solution for M = 1, a standard implicit upwind scheme with 10 time steps, and the local 
time-stepping scheme with two different time-step selections. The region-based criterion refines the time step by a factor 5 in the region x ∈ [500, 750]
(light blue), whereas the predictor-corrector scheme with saturation-based criterion imposes a maximum saturation change 
smax = 0.1 everywhere.

provides a direct way to assess the accuracy of the method. We consider an imbibition scenario, with s(0, t) = 1 (pure water) 
injected on the left hand side and initial condition s(x, 0) = 0 (pure oil). Further, we consider a fractional flow function with 
quadratic relative permeabilities,

f (s) = s2

s2 + M(1 − s)2
, (39)

where M = μ1/μ2 is the viscosity ratio between phase 1 (water) and phase 2 (oil). The exact solution is given by [24]

s(x, t) =
{

g−1 (x/t) , for x/t ≤ g(0),

0, for x/t ≥ g(0),
(40)

where g is the derivative of the convex envelope of f on the interval [0, 1]

g(s) =
{

f ′(s∗), for 0 ≤ s ≤ s∗,
f ′(s), for s∗ ≤ s ≤ 1,

(41)

and s∗ = √
M/(1 + M) is the saturation at the leading edge of the shock.

Fig. 3 compares the exact solution with approximate solutions computed using a standard upwind finite-volume scheme 
and our new scheme with region-based or saturation-based refinement of time steps on a uniform grid with 100 cells. 
The region-based scheme uses 10 time steps in all cells, except for x ∈ [500, 750], where the time step is refined by a 
factor 5. Altogether, this amounts to a total of 75 · 10 + 25 · 50 = 2000 local time steps and gives a similar profile as the 
standard method in the unrefined part of the domain, but a sharper front in the region of temporal refinement, which 
leads to more correct prediction of time to water breakthrough. The distinct kink at the intersection between the unrefined 
and the refined parts of the domain is consistent with the jump in the numerical diffusion coefficient for the modified 
equation of the scheme. In particular, the numerical smearing goes from being dominated by 
t in the unrefined region, 
to being dominated by 
x in the refined region. Qualitative artifacts like this are obviously undesirable in practice, and 
we emphasize that this particular example is a contrived setup that was carefully designed to exaggerate the effect for 
illustration purposes.

Our second approach relies on the predictor-corrector scheme described in Section 4.5 to limit the local saturation 
updates to less than 
smax = 0.1, and uses a total of 2057 local time steps. This gives a much better approximation to the 
exact solution using approximately the same total number of local time steps as the region-based approach. Fig. 4 shows 
a space-time diagram of the displacement profile up to dimensionless time 0.8 PVI, as computed on a grid with 64 cells. 
Here, we clearly see how the minor steps cluster around the evolving displacement front so that most of the computational 
effort is spent on adaptive refinement in the parts of the domain where the solution changes most from one time step to 
the next.

Fig. 5 illustrates that the user-prescribed value of 
s should be related to the strength of the wave one seeks to resolve, 
meaning that 
s generally should be chosen larger for a favorable displacement with M > 1 than for an unfavorable dis-
placement with M < 1. In our experience, choosing 
s = δ · s∗ for δ ∈ [0.05, 0.15] seems to strike a reasonable compromise 
between accuracy and computational cost. For larger values of 
s, the computed solution is not only much more smeared, 
but will in many cases contain kinks or buckles that are qualitatively incorrect. With smaller values of 
s, one ends up 
introducing many local steps without improving the resolution of the displacement front significantly. For multicomponent 
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Fig. 4. Space-time diagram of the Buckley–Leverett displacement problem computed using saturation-based selection of local time steps with 
smax = 0.1
on a grid with 64 uniform cells. The (x, t) diagram to the left shows how the eight major steps are subdivided adaptively along the displacement front, 
with colors representing the saturation in each cell at the end of each minor/major time step. The three saturation profiles in the right column are sampled 
at times indicated by the red horizontal lines in the left-hand plot.

Fig. 5. Buckley–Leverett displacement profile computed with the saturation-based selection of local time steps with three different tolerances, 
s = 0.05, 
0.1, 0.2. The basic setup has 64 uniform cells and 6 major time steps, giving a total of 6 · 64 = 384 local steps.

or compositional flows, it is important to use a refinement criterion that detects local changes induced by all the waves one 
wants to resolve accurately.

5.2. Quarter-five spot

A second standard test is the quarter-five spot case, in which we consider a two-dimensional domain � = [0, L] × [0, L]
with constant injection at (0, 0) and production at (L, L) and no-flow conditions across the whole boundary. Fig. 6 shows a 
direct comparison between the solutions at 40% injected pore volume computed with the saturation-based scheme (
smax =
0.1) and by a standard scheme with no temporal refinement. We clearly see that the local time-stepping scheme captures 
the sharp injection front more accurately. Fig. 6c reports the local number of substeps Mi required by the adaptive scheme, 
which clearly shows that most of the effort is spent in the region around the front, as in the 1D Buckley–Leverett case. 
Fig. 6d reports the ratio between declined (guessed) and accepted substeps. Interestingly, this ratio is highest at the trailing 
edge of the refinement region, which coincides with the cells having the steepest saturation gradient at the end of the 
previous major step. This indicates that additional work should be invested in ensuring a better prediction of acceptable 
steps.

Excessive numerical smearing can exaggerate fingering effects in heterogeneous displacements, as illustrated in Fig. 7. 
Here, we have sampled petrophysical properties from the top layer of Model 2 from the 10th SPE Comparative Solution 
Project (SPE 10) [38]. Introducing local time steps clearly reduces the smearing and delays the predicted water break-
through.
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Fig. 6. Homogeneous quarter-five spot test case. (a) Saturation field at time 0.4 PVI computed with the adaptive, saturation-based method. (b) Saturation 
field computed with the standard upwind method. (c) The number of minor time steps used during the major time step leading up to the field shown in 
(a). (d) Ratio between declined and accepted time steps associated with (a) and (c).

Fig. 7. Heterogeneous quarter-five spot test case. (a) Saturation field at time 0.5 PVI computed with the adaptive, saturation-based method. (b) Saturation 
field computed with the standard upwind method. (c) The number of minor time steps used during the major time step leading up to the field shown in 
(a). (d) Ratio between declined and accepted time steps associated with (a) and (c).

5.3. Asymmetry test

To better illustrate the effect of local time steps, we consider a test case with a symmetric flow pattern between one 
injector and two producers. That is, in a rectangular domain � = [0, 1000] × [0, 500], we place an injector at (500, 0), 
one producer at (0, 500) and one at (1000, 500). We select time steps based on the local CFL number, but introduce an 
asymmetry by setting a CFL target of 1 in the left half of the domain (x < 500) and a CFL target of 10 in the other half 
(x > 500). The top panel of Fig. 8 shows a snapshot from the simulation after 50% of the pore volume has been injected. 
Using more time steps retards the tip of the displacing water and gives an evident lack of symmetry, but with a unit 
mobility ratio and no gravity effects, the asymmetry does not cause significant movement of water from one half domain 
to the other.

The associated production curves presented in the bottom panel of Fig. 8 confirm that using more time steps delays the 
water breakthrough but also predicts a significantly higher overall water production in the left half of the domain. Fig. 9
reports the number of local time steps used in each cell during the first pressure step. This spatial distribution of local time 
steps only exhibits minor changes throughout the next nine pressure steps.

In the east half-domain, time steps are hardly reduced at all since most cells stay below the CFL target of 10. Hence, the 
predicted well response for the northeast producer is largely similar to that of both producers in the reference case with 
ten major steps and no local refinement. The time step is only refined in two semi-circular regions near the injector and 
producer, respectively, where the flow is almost radial and significantly faster than in the rest of the domain (where most 
of the residence time of any flow path is accumulated). The plot of cell-wise CFL numbers shows that the effective CFL 
numbers vary from slightly less than ten along the main diagonal to less than one in the stagnant regions in the northwest 
and southeast corners.

The situation in the west half-domain is similar: in the high-flow zone along the diagonal, and away from the near-well 
regions, the pressure step is subdivided into five minor steps to meet a CFL target of 1.0. The required number of extra minor 
steps gradually decays to zero as we move away from the main diagonal and toward the stagnant zones in the southwest 
and northeast corners of the half-domain. Likewise, the number of minor steps increases rapidly up to 20 as we approach 
the wells.
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Fig. 8. Asymmetry test with a homogeneous domain with a symmetric well pattern (injector at the midpoint on the south perimeter and producers in the 
northeast and northwest corners), but with different CFL targets in the east and west half domains. Top: saturation field after 50% injected pore volume. 
Bottom: Water production curves. The reference solutions are from a standard sequential-implicit solver with ten major steps and either no temporal 
refinement of the transport steps or a uniform subdivision into 3 minor steps in all cells.

Fig. 9. Number of local time steps and effective CFL numbers in each cell during the first pressure step for the asymmetry test case.

Let us also see how this translates to the representative CFL number introduced in Section 4.3. Fig. 10 shows the distribu-
tion of Lagrangian cell sizes 
τ/τ , spanning values from 8 · 10−4 to 0.14 with a mean value of 0.026. Mapping this into the 
distribution of linear CFL numbers gives a value of 5.0, which for a flux function with quadratic relative permeabilities and 
unit viscosity ratio corresponds to a nonlinear CFL number of 10 (since � = 2). The second reference solution reported in 
Fig. 8 uses three minor steps uniformly in all cells, which would correspond to setting targets of 5/3 and 10/3 on the linear
and nonlinear CFL numbers. With this subdivision, we predict the same time to water breakthrough, but a somewhat lower 
water production. Interestingly, increasing the uniform subdivision to 5 or 10 steps has very small effect on the production 
curve. This behavior is representative of other test cases we have run. We interpret this to indicate that whereas the concept 
of representative CFL numbers can be used to identify reasonable compromises between computational cost and numerical 
smearing in a standard method, using locally adapted time steps has a much more pronounced effect on the overall accuracy 
of the simulation.

5.4. Conceptual 3D model with nonuniform grid coarsening

In the last example, we consider a conceptual 3D model of an oil-filled anticline that overlies a slightly bent aquifer. 
Petrophysical data are sampled from the shallow-marine Tarbert formation from the SPE 10 benchmark. Oil is produced 
from two wells placed at the top of the anticline, each operated at a fixed bottom-hole pressure of 100 bar. Additional 
pressure support is provided by four wells placed around the peripheral of the anticline structure, each operating at a 
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Fig. 10. Distributions used to determine a representative CFL number for the asymmetric test case. The distribution of linear CFL numbers has a long tail, 
with minimum value 0.22 and maximum value 132.6.

Fig. 11. Conceptual model of an anticline. The left plot shows the reservoir geometry and the well pattern, with cells colored by the lateral permeability on 
a logarithmic scale. The right shows the coarsened grid, with colors indicating the classification used to determine the local cell resolution. The histogram 
reports N(i), where N(i) is the number of coarse blocks that contain i fine cells.

fixed bottom-hole pressure of 125 bar. To accelerate simulation of the 60 × 60 × 15 corner-point model, we introduce a 
nonuniform coarsening [39] that reduces the number of cells by approximately 60% (see the right plot in Fig. 11):

• In all cell neighbors of the perforated well cells, we keep the original fine resolution.
• We also retain the fine resolution in all cells that are likely to be flooded by the water injectors or that lie in a high-flow 

region of the reservoir. To determine these cells, we first compute time-of-flight τ from injectors and total residence 
times for all cells. Assuming a two-phase fluid model with quadratic Corey exponents and equal viscosities, the flooded 
cells are set to be all cells in which τ is less than 1.5 times the total time horizon T for the simulation, τ < 1.5T . 
Likewise, the high-flow region is set to be those cells in which the total residence time between injector and producer 
is less than twice the median residence time of all cells perforated by wells.

• All other cells above the initial oil-water contact are coarsened by a factor 2 × 2 × 1, whereas the remaining aquifer 
cells are coarsened by a factor 3 × 3 × 1.

The right plot in Fig. 12 reports production curves predicted by five different simulations:

ref: The fine grid with 60 uniform pressure steps of length 18.25 days, but with a 4-level geometric ramp-up during 
the first 18.25 days.

base: The fine grid with 15 uniform pressure steps of length 73 days, except for the first 110 days, which follow the 
same ramp-up as ref.

LTS: Same setup as base, except that we use the predictor-corrector method with 
s = 0.1 for temporally-adaptive, 
local time stepping.

cbase: The coarse grid with the same time stepping as for base.
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Fig. 12. The left plot shows water saturation in all cells that contain some oil at the end of simulation as computed with the ref simulation. The right plot 
reports cumulative production of oil from producer P1 for all the five simulations.

cLTS: Same setup as cbase, except that we statically refine the time step by a factor 5 above the oil–water contact and 
by a factor 10 in the near-well, flooded, and high-flow coarse blocks.

For efficiency, the local time steps are introduced on chunks of 100 cells at a time. The base simulation overestimates the 
cumulative oil production compared with ref. Introducing temporally-adaptive, local time stepping in the transport solve 
reduces the discrepancy significantly: for producer P2, the cumulative oil production is virtually identical for ref and LTS. 
This indicates that the numerical smearing introduced in the transport step is the main error source for the base simulation. 
Coarsening the grid leads to further overestimation in the cbase simulation, but introducing static, local time stepping brings 
the discrepancy for producer P1 closer to that of the base simulation on the fine grid. For producer P2, the cumulative oil 
production from cLTS and base are virtually identical.

6. Concluding remarks

We have introduced a new approach to adaptive, local time stepping that combines sequential splitting of pressure and 
transport, flow-based ordering to ensure that the transport equations can be solved cell-by-cell for cocurrent flow, and 
temporal refinement of the transport step localized to individual cells. We have described a variety of strategies that can 
be used to select local time steps. Among these, we emphasize the concept of a representative CFL number, based on the 
mean cell volume in Lagrangian coordinates, which seems to give a good compromise between computational efficiency 
and numerical smearing. The main advantage of this representative CFL number is that it also can be applied to standard 
transport solvers without local time-stepping capabilities. However, one can observe significantly better efficiency in terms 
of accuracy versus computational costs by adapting the time step locally in each cell, but this currently assumes that the 
flow is fully cocurrent, so that cells (and cycles of mutually dependent cells) can be solved one by one, or grouped into 
chunks to improve cache efficiency. Local adaption is particularly important to accurately resolve fast flow in near-well 
regions.

All test cases presented herein are restricted to two-phase flow for simplicity, but our local time-stepping framework 
is straightforward to extend to other flows for which reordering methods can be utilized to infer causality (unidirectional 
flow). We believe that our method also can be extended to cases with countercurrent flow induced by gravity, but more 
research remains to verify this. The method is by design applicable to general unstructured grids, which particularly includes 
composite grids and most types of local grid refinements. In particular, the framework is readily applicable in the adaptive, 
multilevel coarsening method introduced recently by Klemetsdal et al. [40,41], which also includes the use of higher-order 
discontinuous Galerkin spatial discretizations that contribute to further reduce numerical smearing.
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Appendix A. Supplementary material
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