
Function-as-a-Service for the Cloud-to-Thing continuum: a Systematic
Mapping Study

Bárbara da Silva Oliveira1 a, Nicolas Ferry1 b, Hui Song2 c, Rustem Dautov2 d,
Ankica Barisic1 e, and Atslands Rego da Rocha 3 f

1Université Côte d’Azur, I3S/INRIA Kairos, Sophia Antipolis, France
2SINTEF Digital, Oslo, Norway

3Departamento de Engenharia de Teleinformática, Universidade Federal do Ceará, Brasil
{barbara.da-silva-oliveira, nicolas.ferry}@inria.fr, {hui.song, rustem.dautov}@sintef.no, astlands@ufc.br

Keywords: Internet of Things; Cloud Computing; Function-as-a-Service; Systematic Mapping Study

Abstract: Until recently, Internet of Things applications were mainly seen as a means to gather sensor data for further
processing in the Cloud. Nowadays, with the advent of Edge and Fog Computing, digital services are dragged
closer to the physical world, with data processing and storage tasks distributed across the whole Cloud-to-
Thing continuum. Function-as-a-Service (FaaS) is gaining momentum as one of the promising programming
models for such digital services. This work investigates the current research landscape of applying FaaS over
the Cloud-to-Thing Continuum. In particular, we investigate the support offered by existing FaaS platforms
for the deployment, placement, orchestration, and execution of functions across the whole continuum using
the Systematic Mapping Study methodology. We selected 33 primary studies and analyzed their data, bringing
a broad view of the current research landscape in the area.

1 INTRODUCTION

Nowadays, with the advent of Edge and Fog Comput-
ing, digital services are dragged closer to the physical
world, with data processing tasks distributed across
the whole Cloud-to-Thing continuum. Function-as-
a-Service (FaaS) is gaining momentum as one of the
promising programming models for such digital ser-
vices. It allows developers to focus on the software
development while the Cloud provider manages the
underlying infrastructure. Serverless functions are
simple operations expressing parts of the application
logic, which are triggered on the occurrence of spe-
cific events. This event-driven nature is a natural fit
for IoT event and data processing (Cheng et al., 2019).

However, challenges hinder the broader adoption
of FaaS solutions for the whole Cloud-to-Thing con-
tinuum, hereafter called FaaS4C2T for short. For
example, in contrast with classical Cloud infras-

a https://orcid.org/0009-0007-8455-9627
b https://orcid.org/0000-0003-2036-0508
c https://orcid.org/0000-0002-9748-8086
d https://orcid.org/0000-0002-0260-6343
e https://orcid.org/0000-0001-7513-7907
f https://orcid.org/0000-0002-3069-132X

tructures, Edge and Thing infrastructures are typi-
cally largely heterogeneous, including devices such
as gateways, base stations, and tiny microcontrollers,
with a wide geographical distribution. Serverless
functions must be deployed close to the data source
and tailored to their host’s cyber-physical context.
Unfortunately, this cannot be done homogeneously
using standard deployment solutions (e.g., not all de-
vices can support the same virtualization technology).

Recently, several platforms such as PAPS
(Baresi and Quattrocchi, 2021) and AuctionWhisk
(Bermbach et al., 2022) have emerged to enable
Function-as-a-Service on Edge infrastructures. How-
ever, there needs to be more understanding of their
coverage and support of the IoT end (i.e., the Thing
layer). Consequently, there is an urgent need to in-
vestigate the diverse features and properties of current
FaaS4C2T platforms. In view of this context, we con-
ducted a Systematic Mapping Study to provide a clear
view of the FaaS4C2T landscape and their support for
the whole Cloud-to-Thing continuum. Our goal is to
collect a broad amount of information by outlining the
properties, limitations, and research gaps of existing
FaaS4C2T platforms and related mechanisms. The
main contributions of this work are the answers to the

following Research Questions (RQs):

• RQ1: What are the publication trends in pub-
lished research focusing on FaaS platforms for the
Cloud-to-Thing Continuum?

• RQ2: What are the particularities and limits
of FaaS platforms when applying the Cloud-to-
Thing Continuum?

• RQ3: What are the open issues to be further in-
vestigated in this field?

We have systematically processed a large num-
ber of relevant papers from four online publication
databases to finally obtain a set of 33 primary studies
from which we extracted and synthesized data to an-
swer our RQs. The results show gaps in research (e.g.,
lack of customizable function allocation strategies,
managing functions’ concurrent accesses to shared re-
sources) that need to be addressed to enable the proper
application of the FaaS programming model over the
Cloud-to-Thing continuum.

The remainder of the paper is organized as fol-
lows. Section 2 introduces some background defi-
nitions. Section 3 details the methodology adopted.
Section 4 presents the results and the analysis of the
data extraction. Section 5 presents related work and
Section 6 concludes our work, presenting and dis-
cussing our main findings.

2 BACKGROUND

In this section, we provide the definitions and the core
terminology utilized in this work.

2.1 Cloud-to-Thing Continuum

The Cloud-to-Thing continuum refers to the exten-
sion of the Cloud capabilities towards low-end de-
vices: the Things. This work considers the Cloud-
to-Thing continuum composed of four main layers:
Cloud, Intermediary, Edge and Things Layers. The
Intermediary and Edge layers can also be grouped
and referred to as Fog, according to the definition of
the OpenFog consortium (Byers and Swanson, 2017).
There is no proper consensus around the definition of
Edge and Fog computing; in some cases, Edge and
Fog can be used interchangeably.

According to the National Institute of Standards
and Technology (NIST), Cloud computing is a com-
puting model enabling ubiquitous network access to a
shared and virtualized pool of computing capabilities
(e.g., network, storage, processing, and memory) that
can be rapidly provisioned with minimal management

effort (Mell and Grance, 2001). IoT systems typically
exploit the Cloud layer for centralized and resource-
demanding data processing and storage.

The Open Glossary from the Linux Foundation
defines Edge computing as “the delivery of com-
puting capabilities to the logical extremes of a net-
work in order to improve the performance, operat-
ing cost and reliability of applications and services.
By shortening the distance between devices and the
cloud resources that serve them and reducing net-
work hops, edge computing mitigates the latency and
bandwidth constraints of today’s Internet, ushering in
new classes of applications” (Edge, 2019). In gen-
eral, Edge computing does not associate IaaS, PaaS,
SaaS and other Cloud-based services but concentrates
more towards the Thing side (Mahmud et al., 2018).
The Edge layer thereby consists of Edge devices such
as routers, gateways, base stations, etc. This missing
link between Edge and Cloud is often implemented
via an extra layer, which we denote as Intermediary
Layer, following the Fog computing architecture def-
inition by the OpenFog consortium (Byers and Swan-
son, 2017). It is typically composed of servers, some-
times called Fog servers, or lightweight cloud servers
such as Cloudlets (Pang et al., 2015). The Interme-
diary and Edge layers are often grouped as part of a
Fog layer.

The Thing layer embeds the Things, which are
typically the leaf nodes within IoT systems and can be
defined as “physical objects that are capable of sens-
ing or acting on their environment and able to com-
municate with each other”1. Things cannot always
provide virtualization support and are not always di-
rectly connected to the Internet (i.e., access to Internet
can be granted via other devices).

2.2 Serverless and
Function-as-a-Service

As explained in (Baldini et al., 2017), “Serverless de-
scribes a programming model and architecture where
small code snippets are executed in the Cloud with-
out any control over the resources on which the code
runs”. The Serverless programming model stands
closer to the Platform-as-a-Service (PaaS) model,
where developers have access to pre-packaged and
-installed runtime software stack maintained by the
Cloud provider and focus on writing application code,
rather than to the Infrastructure-as-a-Service (IaaS)
model where the developer has full control and is ac-
countable for managing the application and its run-

1As defined by the EU: https://www.europarl.europa.eu/
RegData/etudes/BRIE/2015/557012/EPRS
BRI(2015)557012 EN.pdf

https://www.europarl.europa.eu/RegData/etudes/BRIE/2015/557012/EPRS_BRI(2015)557012_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2015/557012/EPRS_BRI(2015)557012_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2015/557012/EPRS_BRI(2015)557012_EN.pdf

time software stack. However, in contrast with PaaS,
Serverless applications are meant to be scalable by
design, and developers expect the operation of these
applications to be fault-tolerant and quickly auto-
scalable (Xie et al., 2021). Serverless applications are
often wrapped in software containers as a lightweight
virtualization solution that can easily and rapidly be
provisioned. (Baldini et al., 2017) defines the core
capability of a Serverless platform as “an event pro-
cessing system. The service must manage a set of
user-defined functions, take an event sent over HTTP
or received from an event source, determine which
function(s) to dispatch the event, find an existing in-
stance of the function or create a new instance, send
the event to the function instance, wait for a response,
gather execution logs, make the response available to
the user, and stop the function when it is no longer
needed”. This implies that Serverless platforms in-
clude at least an event broker as well as a solution to
dispatch the events and manage the service life-cycle.

Function-as-a-Service is a form of Serverless
computing in which the Cloud provider manages the
resources, life-cycle, and event-driven execution of
user-provided functions (Van Eyk et al., 2018), de-
noted as serverless functions in the rest of the paper.

2.3 Deployment, Placement, and
Orchestration

To deploy an application on a selected target environ-
ment, its application components need to be placed
to hosting resources. More precisely, the implemen-
tation of those components needs to be placed and de-
ployed. The notion of a deployable artifact supports
exactly the reference between logical components and
connectors to their implementations (Bergmayr et al.,
2018). Placement selects the resources on which
the deployable artifacts will be hosted. A place-
ment strategy defines how to drive this selection.
Deployment refers to the action of provisioning (or
de-provisioning) the resources (when possible), in-
stalling, configuring, and starting (or stopping) de-
ployable artefacts. How to enact a deployment is
specified in a deployment model.

The NIST defines an orchestration as the se-
quence and conditions in which one Web service in-
vokes other Web services to realize some useful func-
tion. From the FaaS perspective, an orchestration in-
volves the management and coordination of server-
less functions. An orchestration model provides a
programmatic way to combine simple, well-defined
serverless functions into more complex applications
(Bocci et al., 2021).

3 REVIEW METHODOLOGY

This section describes our review methodology. We
conducted our review by following the guidelines
from (Kitchenham et al., 2011; Kitchenham and Char-
ters, 2007) and (Petersen et al., 2015).

3.1 Research Questions

This study aims to answer the following overall
research question: How do Function-as-a-Service
platforms and associated mechanisms support the
Cloud-to-Thing continuum? Thereby, we classify
the main characteristics and core capabilities of ex-
isting platforms, including the toolset they offer, and
we identify the gaps and future research directions.
The overall objective is defined by the three research
questions listed in Section 1.

As part of RQ1, we intend to understand the cur-
rent status of the research, which includes general
statistics, such as RQ1.1 - the number of studies pub-
lished by year and the venue type; RQ1.2 - the level of
maturity of the research; RQ1.3 - the focus of the re-
search (e.g., Deployment, Placement); RQ1.4 - what
FaaS platforms are frequently used for the Cloud,
Fog, and Thing layers? With RQ2, we want to under-
stand the mechanisms and properties of the FaaS for
the Cloud-to-Thing continuum and how they differen-
tiate from FaaS platforms to the Cloud. This includes
the specific subquestions: RQ2.1 - what are the plat-
forms’ architectural patterns; RQ2.2 - on which lay-
ers of the Cloud-to-Thing continuum serverless func-
tions can be deployed; RQ2.3 - what are the mech-
anisms used to deploy, package and run serverless
functions in isolation; RQ2.4 - what mechanisms are
responsible for the serverless function placement and
scalability? RQ3 also includes two sub-questions.
RQ3.1 - What are the open issues in FaaS4C2T re-
search? RQ3.2 - What research directions can be rec-
ommended for tackling the open issues? These sub-
questions suggest potential future work directions.

3.2 Inclusion and exclusion criteria

The Inclusion and Exclusion Criteria applied in this
systematic mapping are described in Table 1.

3.3 Selection Strategy

Using online inquiry components of popular publica-
tion databases is the most notable approach to scan
for essential primary studies when directing supple-
mental studies (Kitchenham and Charters, 2007). We
used four of the popular publication databases IEEE

Table 1: Inclusion and Exclusion Criteria.

C Criteria Description
IC1 The study presents a FaaS platform or

extends an existing FaaS platform.
IC2 The FaaS platform is applied to the

Cloud-to-Thing continuum. Not only
cover Cloud but also within the area of
Edge, Fog, robotics, IoT, or in one of
their application domains.

IC3 The study provides details about server-
less function deployment, placement, or
scheduling.

EC1 The study is bounded to a specific Fog
and/or IoT environment, which cannot
be applied in more use cases.

EC2 The paper is published before the year
2008. This year, the concepts of server-
less programming and FaaS started to
appear.

EC3 When a single approach is presented in
more than one paper describing differ-
ent parts of the approach (approach it-
self, empirical study, evaluation), we in-
clude all these papers but still, consider
them as a single approach.

EC4 We filtered and excluded papers that
are not written in English, non-peer-
reviewed papers, and papers that are only
accessible as extended abstracts, posters,
or presentations (not full versions).

EC5 The study has a length of fewer than
four pages in double-column format or
six pages in single-column format.

cCriteria: ICx = Inclusion Criteria, ECx = Exclusion
Criteria

ACM

IEE

Science
Direct

Scopus

39 30

149

25

369

89

6

143

Merge 170 59 33

After reviewing
title and abstract

Search
results

After scanning
content

After cross-check
information

After merging of
results

Figure 1: Study selection process.

Xplore2, ACM Digital Library3, ScienceDirect4, and

2https://ieeexplore.ieee.org
3https://dlnext.acm.org
4https://sciencedirect.com/

Scopus5 to search for potential primary studies. Sco-
pus and ACM DL already index SpringerLink6 (Tran
et al., 2017). The four picked databases contain peer-
reviewed articles, which give advanced search capac-
ities. Following the guidelines from (Kitchenham and
Charters, 2007), we have defined our search keywords
based on the research questions and keywords uti-
lized in some related articles. The search query was
adapted to fit each of the search engines of the four
publication databases.

Listing 1: Query string used to perform the database search
TITLE-ABS ("Serverless" OR "FaaS" OR ⤸

"Function as a Service" OR ⤸
"Function -as-a-Service")

AND

TITLE-ABS ("IoT" OR "Internet of Things" OR ⤸
"Things" OR "Edge" OR "Fog" OR "CPS" OR ⤸
"Cyber*Physical System*" OR "Robot*"))

AND

PUBYEAR > 2008

The Study Selection consisted of the process il-
lustrated in Figure 1. First, we realized the database
search using the defined query string. In the following
phase, for every candidate paper, we reviewed the title
and abstract, and selected the first group of studies ac-
cording to the inclusion and exclusion criteria. Since
an article may appear in more than one database, we
merged the outcomes, getting the correct number of
papers without copies. After that, full-text filtering of
the studies was realized, in which we used the inclu-
sion and exclusion criteria once more. The collection
of studies was distributed among the authors. For the
sake of reliability, the authors had to specify which
inclusion or exclusion criteria they considered for ac-
cepting or rejecting papers for our project. After that,
we performed a peer-reviewing in which we checked
the decisions. When there were conflicts in judgments
between the reviewers, we discussed the decisions to
finally reach a joint agreement.

3.4 Comparison Framework

The review framework contemplates the essential as-
pects of the FaaS4C2T presented in the literature.
In particular, we emphasized characteristics regard-
ing the deployment and placement of serverless func-
tions, taking into account the differences between
only involving the Cloud and other layers within the
Cloud-to-Thing continuum. The primary purpose of
the framework is to extract and compare data from

5https://scopus.com
6https://www.springer.com

https://ieeexplore.ieee.org
https://dlnext.acm.org
https://sciencedirect.com/
https://scopus.com
https://www.springer.com

the primary studies so that they can help to answer
the research questions. To develop a comprehensive
review framework, we extensively explored and dis-
cussed the core concepts in the field of Function-as-
a-Service when applied to the Cloud-to-Thing contin-
uum. The resulting framework is documented in two
categories: Architecture and Runtime Capabilities.

3.4.1 Architecture

This category focuses on the architecture of the
Function-as-a-Service platforms. We survey the com-
ponents that form the core of the FaaS platforms and
the typical architectural patterns they adopt when ap-
plied to the Cloud-to-Thing continuum.

• Platform distribution: All the software compo-
nents that form a FaaS platform may be central-
ized or some of them may be distributed. We
specifically investigate if these components can,
or need to, be deployed on Fog and Things layers.

• Multi-Tenancy: When multiple independent ten-
ants operate in the same platform, the same in-
stance or resources are used for distinct users.

• Multi-Application: When two or more different
applications from the same tenant operate in the
same environment.

• Multi-Cloud: When the platform services, func-
tions, and software components can be deployed
across multiple computing and storage services
from different Cloud providers.

• Entities for Functions Life Cycle Management:
We investigate services and components that par-
ticipate to the life cycle management of server-
less functions (Aslanpour et al., 2021). This in-
cludes aspects such as the monitoring, configura-
tion, deployment, termination, etc. of serverless
functions. We also aim to understand whether the
management of functions in the Fog and Thing
layers requires specific support.

3.4.2 Runtime Capabilities

We want here to explore the runtime capabilities
offered by the FaaS platform for the management,
deployment, placement of serverless functions, and
mechanisms for function isolation.

Deployment Capabilities:
• Deployable Artefact Type: What is the type of de-

ployable artefacts accepted by the platform (e.g.,
the project code, the binaries, scripts).

• Bootstrap: Bootstrap refers to all the necessary
software modules on the devices required to the
function deployment. (Arcangeli et al., 2015).

• Target Infrastructure: We survey which layers the
serverless functions can be deployed.

• Long-lived tasks: The serverless functions are nat-
urally suitable for short-lived tasks. For those
tasks, there is a small amount of data to be pro-
cessed, and they are rapidly finished. We inves-
tigate the support for long-lived tasks, which in-
volve substantial amounts of data, and require a
longer period to be processed (Baldini et al., 2017;
Aslanpour et al., 2021).

Placement:
• Placement Strategy: The Placement Strategy may

be to choose a specific node for the placement, for
example, the closest node to the IoT device. It can
also be defined as an optimization problem, con-
sidering various constraints, such as energy con-
sumption or bandwidth.

• Dynamism: We investigate if the placement algo-
rithm is executed dynamically. One possibility is
that the placement can be carried out by the ar-
rival of new inputs in the system. The placement
can also be triggered by changes in the infrastruc-
ture, e.g., when new virtual machines are created
(Mahmud et al., 2020).

• Replication Strategy: We investigate the strategy
adopted for the function replication, which plays
a part in the serverless functions scalability mech-
anism.

Infrastructure Management:
• Resource Monitoring: The deployment of the

serverless functions and the quantity of work-
load that can be employed depends on the avail-
able resources. Thus, the FaaS platform must
bring mechanisms to provide the status of the de-
vice’s capabilities (Costa et al., 2022), determin-
ing whether it is possible or not to execute the in-
coming functions and services in these devices.

• Device Information: The kind of device informa-
tion is being considered, e.g. memory, CPU, or
bandwidth available in the system devices.

• Runtime Information: The kind of runtime in-
formation is being considered for the monitoring
mechanisms. For example, it can be the status of
the running processes in computing Fog nodes.

Scalability: The standard types of scaling in Cloud
modeling include Horizontal and Vertical Scalabil-
ity (Xie et al., 2021). Horizontal scaling is done by
deploying new instances of the serverless function
on existing or newly added machines in the resource
pool. In Vertical scaling, more resources, such as
CPUs and memory, are added to an existing server,
or the function is moved to a more powerful machine.

Isolation: Isolation is a fundamental mechanism
for the secure and effective execution of functions
and services. It aims to separate different tenants
and functions of the same application, which allows
Multi-tenancy and Multi-Application use (Li et al.,
2022). Traditionally, for Cloud applications, possible
solutions are Virtual Machines and Containers, which
can be heavy for devices in constrained scenarios in
the Fog or Thing layers.

4 ANALYSIS OF THE RESULTS

Table 2 details the list of primary FaaS4C2T stud-
ies. Based on the comparison framework, we have
extracted and synthesized the data from the primary
studies to answer our Research Questions.

4.1 Answering RQ1: Publication trends

To answer our first research question, we collected in-
formation about the publication years, venue type, au-
thor’s affiliation, etc.

Publication Years and Venue type. Figure 2 de-
picts the publication years according to the venue
type. We can observe a growth in the interest in
the FaaS4C2T research area. The earliest relevant
study was published in 2017. The years 2020 and
2021 show a rise in the number of publications. This
demonstrates the need for research on FaaS4C2T and
the research area is gaining more attention. In the last
year, we collected fewer publications since we did the
database search of papers on April 2022.

2017 2018 2019 2020 2021 2022
Year

0

2

4

6 Venue Type
Conference
Journal
Workshop

Figure 2: Distribution of publication types per year.

Table 2: Overview of the primary FaaS4C2T studies (sorted
by year of publication).

Title* Year v
1 Kappa: Serverless IoT Deployment 2017 C
2 Calvin Constrained — A Framework for IoT Applications in

Heterogeneous Environments
2017 W

3 NFaaS: Named function as a service 2017 C
4 Lite-Service: A Framework to Build and Schedule Telecom

Applications in Device, Edge and Cloud
2018 C

5 Dynamic Allocation of Serverless Functions in IoT Environ-
ments

2018 C

6 Towards a Serverless Platform for Edge Computing 2019 C
7 Towards a serverless platform for edge AI 2019 C
8 Fog Function: Serverless Fog Computing for Data Intensive

IoT Services
2019 C

9 An Execution Model for Serverless Functions at the Edge 2019 C
10 A unified model for the mobile-edge-cloud continuum 2019 J
11 tinyFaaS: A Lightweight FaaS Platform for Edge Environ-

ments
2020 C

12 Device-driven On-demand Deployment of Serverless Com-
puting Functions

2020 W

13 Allocation priority policies for serverless function-execution
scheduling optimisation

2020 C

14 A NodeRED-based dashboard to deploy pipelines on top of
IoT infrastructure

2020 C

15 NanoLambda: Implementing Functions as a Service at All Re-
source Scales for the Internet of Things

2020 C

16 Sledge: A Serverless-First, Light-Weight Wasm Runtime for
the Edge

2020 C

17 µ actor: Stateful Serverless at the Edge 2021 C
18 Self-balancing architectures based on liquid functions across

computing continuums
2021 C

19 Optimized container scheduling for data-intensive serverless
edge computing

2021 J

20 Operating Latency Sensitive Applications on Public Server-
less Edge Cloud Platforms

2021 J

21 Mu actor: Stateful Serverless at the Edge 2021 C
22 PAPS: A Serverless Platform for Edge Computing Infrastruc-

tures
2021 J

23 Colony: Parallel Functions as a Service on the Cloud-Edge
Continuum

2021 C

24 Latency-Sensitive Edge/Cloud Serverless Dynamic Deploy-
ment over Telemetry-Based Packet-Optical Network

2021 J

25 In the Fog: Application Deployment for the Cloud Continuum 2021 C
26 Function delivery network: Extending serverless computing

for heterogeneous platforms
2021 J

27 LaSS: Running Latency Sensitive Serverless Computations at
the Edge

2021 C

28 Dyninka: A FaaS Framework for Distributed Dataflow Appli-
cations

2021 W

29 A Decentralized Framework for Serverless Edge Computing
in the Internet of Things

2021 J

30 Real-Time FaaS: Towards a Latency Bounded Serverless
Cloud

2022 J

31 Light weight serverless computing at fog nodes for internet of
things systems

2022 J

32 AuctionWhisk: Using an auction-inspired approach for func-
tion placement in serverless fog platforms

2022 J

33 Towards Efficient Processing of Latency-Sensitive Serverless
DAGs at the Edge

2022 W

vVenue type: J = Journal (19), C = Conference (37), W = Workshop (13).
* The titles are clickable to link to the corresponding publications

From Figure 2, we also observe that conference
paper is the most popular publication type. The jour-
nal articles have a lower percentage and started ap-
pearing in 2019. It is worth noting that the high num-
ber of journal articles in 2021 might be partly due to
the COVID-19 pandemic. Overall, this reflects the
paper’s maturity level in the field, which is still in its
early stages.

Author’s Affiliation: Figure 3 depicts the author’s
affiliation. Most authors are from academia, followed
by a collaboration of academia and industry. There
are few studies conducted by the industry, probably
due to the novelty of this research area.

https://dl.acm.org/doi/pdf/10.1145/3154847.3154853
https://ieeexplore.ieee.org/iel7/7976702/7979941/07980047.pdf
https://ieeexplore.ieee.org/iel7/7976702/7979941/07980047.pdf
https://dl.acm.org/doi/pdf/10.1145/3125719.3125727
https://ieeexplore.ieee.org/abstract/document/8622861
https://ieeexplore.ieee.org/abstract/document/8622861
https://arxiv.org/pdf/1807.03755.pdf
https://arxiv.org/pdf/1807.03755.pdf
https://ieeexplore.ieee.org/abstract/document/8821843
https://www.usenix.org/system/files/hotedge19-paper-rausch.pdf
https://ieeexplore.ieee.org/document/8814084
https://ieeexplore.ieee.org/document/8814084
https://dl.acm.org/doi/pdf/10.1145/3302505.3310084
https://dl.acm.org/doi/pdf/10.1145/3226644
https://ieeexplore.ieee.org/abstract/document/9103476
https://ieeexplore.ieee.org/abstract/document/9103476
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156140
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156140
https://link.springer.com/chapter/10.1007/978-3-030-65310-1_29
https://link.springer.com/chapter/10.1007/978-3-030-65310-1_29
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9239699
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9239699
https://ieeexplore.ieee.org/document/9355717
https://ieeexplore.ieee.org/document/9355717
https://doi.org/10.1145/3423211.3425680
https://doi.org/10.1145/3423211.3425680
https://dl.acm.org/doi/pdf/10.1145/3469263.3470828
https://dl.acm.org/doi/pdf/10.1145/3492323.3495589
https://dl.acm.org/doi/pdf/10.1145/3492323.3495589
https://www.sciencedirect.com/science/article/pii/S0167739X2030399X
https://www.sciencedirect.com/science/article/pii/S0167739X2030399X
https://ieeexplore.ieee.org/document/9279315
https://ieeexplore.ieee.org/document/9279315
https://dl.acm.org/doi/10.1145/3472883.3487014
https://www.frontiersin.org/articles/10.3389/frsc.2021.690660/full
https://www.frontiersin.org/articles/10.3389/frsc.2021.690660/full
https://link.springer.com/chapter/10.1007/978-3-030-85665-6_17
https://link.springer.com/chapter/10.1007/978-3-030-85665-6_17
https://doi.org/10.1109/JSAC.2021.3064655
https://doi.org/10.1109/JSAC.2021.3064655
https://doi.org/10.1109/IISA52424.2021.9555532
https://doi.org/10.1002/spe.2966
https://doi.org/10.1002/spe.2966
https://dl.acm.org/doi/abs/10.1145/3431379.3460646
https://dl.acm.org/doi/abs/10.1145/3431379.3460646
https://dl.acm.org/doi/abs/10.1145/3486605.3486789
https://dl.acm.org/doi/abs/10.1145/3486605.3486789
https://ieeexplore.ieee.org/abstract/document/9193994
https://ieeexplore.ieee.org/abstract/document/9193994
https://ieeexplore.ieee.org/abstract/document/9714028
https://ieeexplore.ieee.org/abstract/document/9714028
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/26328
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/26328
https://www.scopus.com/record/display.uri?eid=2-s2.0-85120540762&origin=resultslist&sort=plf-f&src=s&st1=AuctionWhisk%3a+Using+an+auction-inspired+approach+for+function+placement+in+serverless+fog+platforms&sid=f229cc3223f5889426b202114795f7df&sot=b&sdt=b&sl=114&s=TITLE-ABS-KEY%28AuctionWhisk%3a+Using+an+auction-inspired+approach+for+function+placement+in+serverless+fog+platforms%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85120540762&origin=resultslist&sort=plf-f&src=s&st1=AuctionWhisk%3a+Using+an+auction-inspired+approach+for+function+placement+in+serverless+fog+platforms&sid=f229cc3223f5889426b202114795f7df&sot=b&sdt=b&sl=114&s=TITLE-ABS-KEY%28AuctionWhisk%3a+Using+an+auction-inspired+approach+for+function+placement+in+serverless+fog+platforms%29&relpos=0&citeCnt=0&searchTerm=
https://doi.org/10.1145/3517206.3526274
https://doi.org/10.1145/3517206.3526274

76%

18%
6%

Academic
Industry
Both

Figure 3: Author’s affiliation.

Case study for evaluation: Regarding the type of
case study used for evaluating the FaaS4C2T ap-
proaches, to the best of our understanding, all case
studies were defined by academics and not by indus-
trial such as motivational examples, prototypes, or
simulations developed by researchers for discussing
or evaluating. Finally, it is nice to see that only two
primary studies do not provide any evaluation details.
In the future, we expect to see more industry-driven
case studies as the maturity of the research increase.

Technology Readiness Levels: The Technology
Readiness Levels (TRL) is a concept used to deter-
mine a given technology’s maturity level. We used
the TRL scale defined by the EC7 to determine the
maturity of the FaaS4C2T platforms. Figure 4a de-
picts the TRL of our primary studies. We did not
find any work at TRL 1 and only a few at TRL 2,
as such work is more difficult to be accepted by con-
ferences and journals. Most of the FaaS4C2T plat-
forms are in the early stages of TRL 3, and 4 whilst
only a few reach TRL 5. The works at TRL 2 present
technology concepts without connecting components
or performing many experiments. At TRL 3, we typ-
ically find experimental studies with at most proto-
types and some evaluation metrics. At TRL 4, results
are validated in labs typically with small use case en-
vironments. The works at stage 5 are more advanced,
implementing the FaaS platforms in large-scale envi-
ronments and applications in more advanced projects.
This represents that we are still distant from the ac-
tual implementation of the platform in an operational
environment. Figure 4b represents the distribution of
the works according to year and scale. We note that
more works in stages 3-5 started to appear in the last
three years, which corroborates our presumption that
this application area is essential and with growing in-
terest and development.

Main Focus of the Primary Studies: Figure 5 de-
picts the main focus of the selected studies. Given that
all studies are about FaaS platforms for the Cloud-

7https://ec.europa.eu/research/participants/data/ref/
h2020/wp/2014 2015/annexes/h2020-wp1415-annex-g-
trl en.pdf

TRL 3: 48%

TRL 4: 39%
TRL 5: 6%TRL 2: 6%

(a) Percentage of pa-
pers per TRL

2017 2018 2019 2020 2021 2022
Year

0

2

4

6
TRL Scale

TRL 2
TRL 3
TRL 4
TRL 5

(b) TRL per year
Figure 4: Analysis of the TRLs.

to-Thing continuum (see inclusion and exclusion cri-
teria), we evaluated whether their contribution was
primarily on serverless functions deployment, place-
ment, or orchestration. Indeed, serverless functions
placement and deployment are critical for the proper
execution of an orchestration. Placement is the main
topic for most primary studies as classical serverless
function placement strategies in Cloud infrastructures
are, in most cases, impractical in the Cloud-to-Thing
continuum. Indeed, in the later cases, the placement
strategies must consider (i) the high heterogeneity of
the infrastructure - i.e., resources have largely differ-
ent capabilities and functions must be placed accord-
ingly, as well as (ii) the geographical location and dis-
tribution of the devices at the Edge and Thing layers
- i.e., functions must be placed and replicated in the
vicinity of all sensors of a certain type.

5 7
7

0

5
3

6

Deployment Placement

Orchestration

Figure 5: Main focus of the primary studies.

Original or extension of existing FaaS Platforms:
As depicted in Figure 6, there is a good balance be-
tween the studies that developed their original FaaS
platform and studies extending existing ones. In the
later cases, the studies proposed modifications, rules,
and mechanisms for improving widely used plat-
forms. OpenWhisk is the most preferred among the
open-source platforms, since OpenWhisk was one of
the first comprehensive open-source FaaS platforms.
For example, Bermbach et al. developed Auction-
Whisk, (Bermbach et al., 2022), and propose a place-
ment mechanism on top of OpenWhisk. For AWS
Lambda, (Pelle et al., 2021b) propose including a ser-
vice that provides real-time evaluations of the sys-

https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

tem and dynamic modification of placement decisions
based on current performance. There are studies ex-
tending OpenFaaS and one based on OpenStack. It
is also worth mentioning that not all platforms offer
the same features. In particular, some studies lever-
age Kubernetes and KNative, which are not pure FaaS
platforms but rather advanced container management
systems on top of which solutions such as OpenWhisk
and OpenFaaS can be built.

0 2 4 6 8 10 12 14 16

Original

OpenWhisk

OpenFaaS

AWS

OpenStack

Figure 6: FaaS platforms used.

4.2 Answering RQ2: Cloud-to-Thing
continuum support

To investigate the peculiarities and limits of existing
FaaS platforms when applied to the Cloud-to-Thing
continuum we analyzed the primary studies using the
comparison framework defined in Section 3.4.

How are the FaaS platforms and the application
using the platforms architectured? Figure 7 indi-
cates on which layers of the Cloud-to-Thing contin-
uum the FaaS4C2T platforms components are typi-
cally distributed. In most primary studies, the plat-
form’s components are located at the Fog and Cloud
layers. (Pelle et al., 2021b) implemented a system
with FaaS platform components responsible for De-
ployment and Data Storage running both on the Edge
and Cloud Layers. In (Elkholy and Marzok, 2022),
some Manager and Working nodes at the Fog layer
are responsible for the serverless function life-cycle
management and execution, whilst at the Cloud layer,
a Working node offers support for executing offloaded
tasks from the Fog. In general, Cloud resources are
privileged for resource demanding tasks and Fog re-
sources when low latency is required. We found stud-
ies (24%) that only considered the Fog layer. In (Mit-
tal et al., 2021), an extension of the KNative Platform,
all the components (i.e., Load Balancer, Auto-scaler,
Placement Engine, and other standards modules from
KNative) are located in the Fog Layer. Lastly, we
identified studies that also included the Things layer
(15%), adding to this layer component related to the
execution of functions. Overall, it is natural that

the FaaS platform, besides supporting the deployment
of applications across the Cloud-to-Thing continuum,
also exploits the benefit of the Fog layer. Among oth-
ers, the main benefits exhibited in the primary studies
are reliability, reduced latency, and the ability to pro-
cess data close to the source.

61%

24%
12%

3%

Cloud and Fog
Fog
Cloud, Fog and Things
Cloud and Things

Figure 7: FaaS platform distribution.

Serverless Function Deployment Location: As
depicted in Figure 8, most primary studies (66%) sup-
port deployment of serverless functions over Cloud
and Fog infrastructures whilst 19% support deploy-
ment on Fog infrastructures only. A total of 15% of
the FaaS4C2T approaches offer support for deploy-
ment on the Thing layer, in combination with Cloud
and Fog layers or not. The deployment of function on
Things is only motivated by a few use cases, typically
to prepare and preprocess the data in the Thing before
sending it to the other layers. An example is when a
sensor must detect changes in an environment (e.g.,
humidity in a greenhouse) for management decisions
(e.g., irrigating the plantation). It is inefficient that
the sensor sends all the data it detects (e.g., insignif-
icant changes in the humidity indicator) for the Fog
or Cloud Layer to be processed. A solution would
be to execute a function on the IoT device or close to
it, which classifies if the data is relevant. This strat-
egy could reduce bandwidth in the network and en-
ergy consumption. Furthermore, in some cases, when
the Internet connection is unstable, deploying func-
tions on IoT devices would prevent the interruption
of tasks. (Persson and Angelsmark, 2017) add that
the use of sensors is a continuous process, implying
the necessity of a continuous execution of functions,
the so called long-lived functions.

66%

19%
9%

3%3%

Cloud and Fog
Fog
Cloud, Fog and Things
Cloud and Things
Fog and Things

Figure 8: Function deployment location.

What are the mechanisms offered for functions
virtualization, deployment and isolation? As de-
picted in Figure 9, most of the FaaS4C2T approaches
leverage virtualization techniques such as Docker
containers, WebAssembly, and other lightweight vir-
tualization techniques to wrap and deploy serverless
functions. The isolation offered by these techniques is
essential in multi-tenancy and multi-application sce-
narios. Only (4/33) studies rely on original solu-
tions. (Persson and Angelsmark, 2017) developed the
Kappa platform, in which they leverage the concept
of actors, deployment units of a single operation or
data processing. For supporting the deployment in
IoT devices, (George et al., 2020) propose isolating
different serverless functions by running them in sep-
arate instances of Python Virtual Machines, a solution
similar to traditional Linux containers. In (Hall and
Ramachandran, 2019), the authors use WebAssembly,
which has an inherent strong, yet lightweight, sand-
boxed environment for function execution.

Sometimes functions are designed to interact with
other software and hardware resources (in some cases
directly as part of the function code - e.g., a function
retrieving data from a sensor; or indirectly - e.g., mes-
sages being sent to a broker before reaching a soft-
ware service). At the Fog and Thing layers, this in-
cludes hardware such as sensors and actuators, which
cannot be embedded as part of the virtualized envi-
ronment. The management of such shared resources
is of tremendous importance, ranging from business
to safety critical in the case of actuators. (Hall and
Ramachandran, 2019), partly consider this issue by
defining different access to function patterns, includ-
ing a case of multiple clients accessing one serverless
function. As an example, they consider the case of
multiple smart cameras (sensors), each belonging to
a different client requesting image processing to the
same serverless function. We did not find any primary
study tackling the opposite case where several func-
tions need to concurrently access a shared resource
such as an actuator.

0 5 10 15 20

Container

Other

WebAssembly

Unikernel

Virtual Machine

Figure 9: Isolation techniques.

How serverless functions are placed and scaled?
We observed that placement strategy is a key research

topic in the field as the extension of the FaaS to the
Cloud-to-Thing continuum calls for novel strategies
better exploiting the specificities of the Fog and Thing
infrastructures – i.e., heterogeneity, limited comput-
ing resources, and geographical distribution of de-
vices. In particular, we identified that most of the
proposed placement strategies consider the availabil-
ity of resources and device capacity (e.g., CPU, mem-
ory, bandwidth) as key parameters to decide whether
a serverless function can be deployed on a device.

(Pelle et al., 2021b) propose considering the data
from the system monitoring for modifying placement
decisions. A monitoring module computes network
statistics, infrastructure status, and function deploy-
ment information (e.g. execution time and invocation
rates). According to this data, there is a reconfigura-
tion of the function placement after each deployment.
Another study that considers function information is
(Elkholy and Marzok, 2022). The functions related to
real-time processing are placed first and executed in
nodes of greater capacity than others.

Only a few primary studies allow developers to
customize the placement strategy parameters. In
(Bermbach et al., 2022), the authors propose us-
ing bids, attached with the functions to be executed.
Those bids are composed of two parameters, the price
for the function’s execution and a customized pa-
rameter, in which the developers determine the price
they are willing to pay for storing the function’s ex-
ecutable. In (Pelle et al., 2021a), there is support for
developers to send as input data constraints for the
placement, such as latency and critical (graph) paths,
among other conditions. (Mittal et al., 2021) focus
on placing functions to avoid container fragmentation
and provide fairness among multiple tenants, whereas
(Cicconetti et al., 2021) implement flexible place-
ment, which can incorporate different algorithms to
fit specific use cases based on the developer’s choice.

Regarding scalability, we found that (21/33) of
the FaaS4C2T platforms mention support for scal-
ability. More specific to the Cloud-to-Thing con-
tinuum, we noted large support for offloading tech-
niques (16/21) amongst the (21/33) FaaS4C2T plat-
forms that mention scaling mechanisms. Offloading
either refers to forwarding the function from a local
layer to other devices in the same layer (e.g., between
Fog devices), commonly referred to as horizontal of-
floading, or to devices in different layers (e.g., from
the Fog Layer to the Cloud), designated as vertical
offloading. Figure 10 depicts the types of offloading
techniques considered by the primary studies. (Baresi
et al., 2019) claims that this is an efficient way of im-
proving users’ Quality of Experience when facing a
computation-intensive and latency-sensitive applica-

tion. Computing devices at the Fog and Thing lay-
ers may experience some degradation. Hence, of-
floading tasks to another Fog device or server in the
Cloud can prevent service interruptions. This conclu-
sion is also supported by (Lordan et al., 2021), which
adds that it is also beneficial for workload balanc-
ing, resulting in less power consumption and time re-
sponse of applications. (George et al., 2020) is an
example of FaaS4C2T platform supporting vertical
offloading, which proposes an algorithm for estimat-
ing when better latency can be achieved by leverag-
ing execution from the Things Layer to the Edge or
Cloud Layer. (Hetzel et al., 2021) is an example of
FaaS4C2T platform supporting horizontal offloading,
distributing the workload on the Edge devices to over-
come resource limitations.

44%

38% 19%

Both
Vertical
Horizontal

Figure 10: Offloading technique.

4.3 Answering RQ3: Open Issues

In the following, we discuss open issues we believe
should be further investigated. We try to illustrate
some of these issues and suggest research directions.

Regarding the support offered by existing FaaS
platforms for the deployment of serverless functions
over the whole Cloud-to-Thing continuum, we iden-
tified that only a few primary studies provide means
to deploy serverless functions on devices at the Thing
layer. These approaches are still far from offering the
same features are Cloud FaaS platforms (e.g., in terms
of isolation and replication). We also observe the lack
of proper use cases, and in particular industrial use
cases, that motivate and clearly describe the benefits
this would bring compared to more deployment on
solely Cloud and Fog layers, where the Fog layer is
typically used as a means to integrate Things.

Serverless functions often need to be deployed to-
gether with other services and software components
such as message brokers and data stores. Software
systems, including Edge and IoT systems, are rarely
built entirely from serverless components, but rather
follow a hybrid approach where functions are com-
bined with other types of software components (Ferry
et al., 2022). When dealing with systems deployed
over the whole Cloud-to-Thing continuum, these sup-
porting services typically need to be deployed in the

vicinity of the function, close to the data source (e.g.,
on the same edge device). To the best of our knowl-
edge, there is little support and freedom offered to de-
velopers for deploying and customizing such services
as they deploy serverless functions (i.e., existing plat-
forms come with a fixed and limited set of services
and do not support the deployment of supporting ser-
vices together with the functions).

We found that there can be limits to isolation
and virtualization as sometimes resources cannot be
virtualized and must be shared between tenants and
functions. This is particularly the case at the Fog
and Things layers where the function might want
to concurrently access hardware such as actuators
(e.g., GPIO on a Raspberry Pi) or accelerators (e.g.,
Coral.ai USB accelerator), which eventually cannot
be virtualized. Since actuators can impact the physi-
cal environment, managing access to these shared re-
sources is essential to guarantee the trustworthiness
of the system, including safety, security, and perfor-
mance aspects. To the best of our knowledge, there
are currently no proper solutions to this issue. A few
studies proposed mechanisms tackling this aspect for
shared access to software components. (Jang et al.,
2021) developed an architecture with a sharing de-
ployment module in the same edge device, in which
two or more functions are deployed in the same con-
tainer. For this scenario, the authors considered in the
platform design a control plane, with customized op-
tions for the platform users, and a data plane, guaran-
teeing the deployment of functions in the module by
controlled queue requests.

Regarding the placement of serverless functions,
while our study shows that this topic is gaining in-
terest in the research community, we believe there are
still several areas for improvement. In particular, most
of the work focuses on allocation strategies based on
resource (e.g., CPU, Memory, network) usage opti-
mization. While a few studies also consider aspects
such as the geographical location of Fog and Things,
there is still room for greater consideration of devices’
context. We also found that most strategies are static
and cannot be easily customized or even specified by
end-users. We believe such a feature would be highly
beneficial and work in this direction is required (in-
cluding the definition of a tool supported domain spe-
cific languages for end-user to specify their allocation
strategies).

5 RELATED WORK

In recent years, several surveys were conducted to
investigate different aspects of Function-as-a-Service

platforms for the Cloud. For instance, (Taibi et al.,
2020) focuses on patterns for serverless functions.
There have also been some recent surveys focusing on
some aspects of serverless and infrastructures within
the Cloud-to-Thing continuum. Some provide an
overview whilst others focus on specific topics; how-
ever, to our knowledge, no comprehensive review an-
swers our research questions.

Closest to our work, (Cassel et al., 2022) presents
a systematic literature review about Serverless com-
puting for the Internet of Things. In particular, this
study investigates on which layer (Cloud, Fog, Edge)
serverless functions are usually placed and provides
an overview of the landscape of runtime used to ex-
ecute these functions. We distinguish from this work
by extending this investigation to the whole Cloud-
to-Thing continuum, thereby considering the place-
ment of serverless functions on Things. In addition,
we also investigate how the placement, and the ac-
tual deployment of the serverless functions are per-
formed. (Bocci et al., 2021) explores the secure or-
chestration of serverless functions in Fog computing
environments. This work complements our investiga-
tion to understand how developers can specify how to
deploy serverless functions. However, by contrast, we
consider the whole Cloud-to-Thing continuum and
cover other aspects such as allocation mechanisms,
and scalability.

In (Yussupov et al., 2019), the authors conduct
a systematic mapping study to identify and discuss
challenges related to engineering FaaS platforms. In
contrast to our work, FaaS platforms are considered
independent of their application domain. The re-
view does not focus on identifying specific aspects
of their application to the Cloud-to-Thing continuum.
By contrast, (Kjorveziroski et al., 2021) focuses on
applying FaaS to the IoT domain. This work inves-
tigates aspects complementary to our study such as
support for security, and performance. In contrast to
our study, there is no focus on the deployment and
allocation aspects, and the ‘Edge’, ‘Fog’, and ‘CPS’
keywords are not part of the study query string, reduc-
ing their scope.

(Leitner et al., 2019) presents a multivocal system-
atic literature review intending to characterize the use
of FaaS. The study does not focus on the design of
FaaS platforms for the Cloud-to-Thing. However, it
provides valuable insight into the typical architectures
and patterns for building FaaS-based applications.

As noted, the previous works only partially cover
our research questions, typically with a different per-
spective – i.e., not focusing on the allocation and de-
ployment of serverless functions over the Cloud-to-
Things continuum.

6 CONCLUSION

In this work, we have examined the research land-
scape of Function-as-a-Service platforms for the
Cloud-to-Thing continuum. After systematically
identifying and reviewing 33 primary studies out of
hundreds of relevant papers in this field, we have
found out that there has been a growth in interest
and maturity level of the FaaS4C2T platforms over
the years, yet maturity still remains low. There are
still gaps in the research and several challenges re-
main to be tackled with still a very limited coverage
of the Cloud-to-Thing continuum for the deployment
and placement of serverless functions. In particular,
we identified that there is little coverage of the Things
layer, and there is no clear study exhibiting all the
possible benefits of applying serverless functions to
the Things layer. We believe this is due to its diverse
technical challenges, in particular regarding the sup-
port for virtualization and dynamic deployment.

ACKNOWLEDGEMENTS

This work was partially funded by the uropean Union
under the Horizon Europe grant 101070455 (DYN-
ABIC). Bárbara da Silva Oliveira is supported by the
BRAFITEC program at Université Côte d’Azur, fi-
nanced by CAPES within the Ministry of Education
of Brazil, and by the scholarship PIBIC, financed by
Universidade Federal do Ceará.

REFERENCES

Arcangeli, J.-P., Boujbel, R., and Leriche, S. (2015). Au-
tomatic deployment of distributed software systems:
Definitions and state of the art. Journal of Systems
and Software, 103:198–218.

Aslanpour, M. S., Toosi, A. N., Cicconetti, C., Javadi, B.,
Sbarski, P., Taibi, D., Assuncao, M., Gill, S. S., Gaire,
R., and Dustdar, S. (2021). Serverless edge com-
puting: vision and challenges. In 2021 Australasian
Computer Science Week Multiconference, pages 1–10.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah,
R., Slominski, A., et al. (2017). Serverless comput-
ing: Current trends and open problems. In Research
advances in cloud computing, pages 1–20. Springer.

Baresi, L., Mendonça, D., Garriga, M., Guinea, S., and
Quattrocchi, G. (2019). A unified model for the
mobile-edge-cloud continuum. 19(2). Number: 2
Publisher: Association for Computing Machinery.

Baresi, L. and Quattrocchi, G. (2021). PAPS: A serverless
platform for edge computing infrastructures. 3. Pub-
lisher: Frontiers Media S.A.

Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A.,
Solberg, A., Wimmer, M., Kappel, G., and Leymann,
F. (2018). A systematic review of cloud modeling lan-
guages. ACM Comput. Surv., 51(1).

Bermbach, D., Bader, J., Hasenburg, J., Pfandzelter, T.,
and Thamsen, L. (2022). AuctionWhisk: Using an
auction-inspired approach for function placement in
serverless fog platforms. 52(5):1143–1169. Number:
5 Publisher: John Wiley and Sons Ltd.

Bocci, A., Forti, S., Ferrari, G.-L., and Brogi, A. (2021).
Secure faas orchestration in the fog: how far are we?
Computing, 103(5):1025–1056.

Byers, C. and Swanson, R. (2017). OpenFog Reference Ar-
chitecture for Fog Computing. Special publication,
OpenFog Consortium.

Cassel, G. A. S., Rodrigues, V. F., da Rosa Righi, R.,
Bez, M. R., Nepomuceno, A. C., and da Costa, C. A.
(2022). Serverless computing for internet of things: A
systematic literature review. Future Generation Com-
puter Systems, 128:299–316.

Cheng, B., Fuerst, J., Solmaz, G., and Sanada, T. (2019).
Fog function: Serverless fog computing for data in-
tensive IoT services. In 2019 IEEE International Con-
ference on Services Computing, pages 28–35. IEEE.

Cicconetti, C., Conti, M., and Passarella, A. (2021). A de-
centralized framework for serverless edge computing
in the internet of things. 18(2):2166–2180. Number:
2 Publisher: Institute of Electrical and Electronics En-
gineers Inc.

Costa, B., Bachiega Jr, J., de Carvalho, L. R., and Araujo,
A. P. (2022). Orchestration in fog computing: A com-
prehensive survey. ACM Computing Surveys (CSUR),
55(2):1–34.

Edge, L. (2019). Open glossary of edge computing v2. Spe-
cial publication, Linux Foundation.

Elkholy, M. and Marzok, M. (2022). Light weight server-
less computing at fog nodes for internet of things sys-
tems. 26(1):394–403. Number: 1 Publisher: Institute
of Advanced Engineering and Science.

Ferry, N., Dautov, R., and Song, H. (2022). Towards a
model-based serverless platform for the cloud-edge-
iot continuum. In 2022 22nd IEEE International Sym-
posium on Cluster, Cloud and Internet Computing
(CCGrid), pages 851–858. IEEE.

George, G., Bakir, F., Wolski, R., and Krintz, C. (2020).
NanoLambda: Implementing functions as a service at
all resource scales for the internet of things. In 2020
IEEE/ACM Symposium on Edge Computing (SEC),
pages 220–231.

Hall, A. and Ramachandran, U. (2019). An execution model
for serverless functions at the edge. In Proceedings
of the International Conference on Internet of Things
Design and Implementation, IoTDI ’19, pages 225–
236. Association for Computing Machinery. event-
place: Montreal, Quebec, Canada.

Hetzel, R., Kärkkäinen, T., and Ott, J. (2021). actor: State-
ful serverless at the edge. In MobileServerless 2021
- Proceedings of the 2021 1st Workshop on Serverless
Mobile Networking for 6G Communications, pages 1–
6. Association for Computing Machinery, Inc.

Jang, S. Y., Kostadinov, B., and Lee, D. (2021).
Microservice-based edge device architecture for video
analytics. In 2021 IEEE/ACM Symposium on Edge
Computing (SEC), pages 165–177.

Kitchenham, B. A., Budgen, D., and Brereton, O. P. (2011).
Using mapping studies as the basis for further research
- a participant-observer case study. Information and
Software Technology, 53(6):638 – 651. Special Sec-
tion: Best papers from the APSEC.

Kitchenham, B. A. and Charters, S. (2007). Guidelines for
performing systematic literature reviews in software
engineering. Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report.

Kjorveziroski, V., Filiposka, S., and Trajkovik, V. (2021).
Iot serverless computing at the edge: A systematic
mapping review. Computers, 10(10):130.

Leitner, P., Wittern, E., Spillner, J., and Hummer, W. (2019).
A mixed-method empirical study of Function-as-a-
Service software development in industrial practice.
Journal of Systems and Software, 149:340–359.

Li, Y., Lin, Y., Wang, Y., Ye, K., and Xu, C.-Z. (2022).
Serverless computing: State-of-the-art, challenges
and opportunities. IEEE Transactions on Services
Computing, pages 1–1.

Lordan, F., Lezzi, D., and Badia, R. (2021). Colony: Par-
allel functions as a service on the cloud-edge contin-
uum. 12820 LNCS:269–284. ISBN: 9783030856649
Publisher: Springer Science and Business Media
Deutschland GmbH.

Mahmud, R., Kotagiri, R., and Buyya, R. (2018). Fog com-
puting: A taxonomy, survey and future directions. In
Internet of everything, pages 103–130. Springer.

Mahmud, R., Ramamohanarao, K., and Buyya, R. (2020).
Application management in fog computing environ-
ments: A taxonomy, review and future directions.
ACM Computing Surveys (CSUR), 53(4):1–43.

Mell, P. and Grance, T. (2001). The NIST Definition of
Cloud Computing. Special Publication 800-145, Na-
tional Institute of Standards and Technology.

Mittal, V., Qi, S., Bhattacharya, R., Lyu, X., Li, J., Kulkarni,
S., Li, D., Hwang, J., Ramakrishnan, K., and Wood, T.
(2021). Mu: An efficient, fair and responsive server-
less framework for resource-constrained edge clouds.
In SoCC 2021 - Proceedings of the 2021 ACM Sym-
posium on Cloud Computing, pages 168–181. Associ-
ation for Computing Machinery, Inc.

Pang, Z., Sun, L., Wang, Z., Tian, E., and Yang, S. (2015).
A survey of cloudlet based mobile computing. In
2015 International Conference on Cloud Computing
and Big Data (CCBD), pages 268–275. IEEE.

Pelle, I., Czentye, J., Dóka, J., Kern, A., Gerő, B. P., and
Sonkoly, B. (2021a). Operating latency sensitive ap-
plications on public serverless edge cloud platforms.
8(10):7954–7972. Number: 10 Conference Name:
IEEE Internet of Things Journal.

Pelle, I., Paolucci, F., Sonkoly, B., and Cugini, F. (2021b).
Latency-sensitive edge/cloud serverless dynamic de-
ployment over telemetry-based packet-optical net-
work. 39(9):2849–2863. Number: 9 Publisher: In-
stitute of Electrical and Electronics Engineers Inc.

Persson, P. and Angelsmark, O. (2017). Kappa: Serverless
IoT deployment. In Proceedings of the 2nd Interna-
tional Workshop on Serverless Computing, WoSC ’17,
pages 16–21. Association for Computing Machinery.
event-place: Las Vegas, Nevada.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015).
Guidelines for conducting systematic mapping stud-
ies in software engineering: An update. Information
and Software Technology, 64:1–18.

Taibi, D., El Ioini, N., Pahl, C., and Niederkofler, J. R. S.
(2020). Patterns for serverless functions (function-as-
a-service): A multivocal literature review.

Tran, N. K., Sheng, Q. Z., Babar, M. A., and Yao, L.
(2017). Searching the web of things: state of the art,
challenges, and solutions. ACM Computing Surveys
(CSUR), 50(4):55.

Van Eyk, E., Toader, L., Talluri, S., Versluis, L., Ut, ă, A.,
and Iosup, A. (2018). Serverless is more: From paas to
present cloud computing. IEEE Internet Computing,
22(5):8–17.

Xie, R., Tang, Q., Qiao, S., Zhu, H., Yu, F. R., and Huang,
T. (2021). When serverless computing meets edge
computing: architecture, challenges, and open issues.
IEEE Wireless Communications, 28(5):126–133.

Yussupov, V., Breitenbücher, U., Leymann, F., and Wurster,
M. (2019). A systematic mapping study on engineer-
ing function-as-a-service platforms and tools. In Pro-
ceedings of the 12th IEEE/ACM International Confer-
ence on Utility and Cloud Computing, pages 229–240.

