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Abstract—In this paper, an enhancement to the well known
Phasor Power Oscillation Damper is proposed, aiming to improve
its performance. Fundamental to the functioning of this controller
is the estimation of a phasor representing oscillations at a partic-
ular frequency in a measured signal. The phasor is transformed
to time domain and applied as a setpoint signal to a controllable
device. The contribution in this paper specifically targets the
estimation algorithm of the controller: It is found that improved
estimation accuracy and thereby enhanced damping performance
can be achieved by introducing a prediction-correction scheme
for the estimator, in the form of a Kalman Filter. The prediction
of the phasor at the next step is performed based on the control
signal that is applied at the current step. This enables more
precise damping of the targeted mode.

The presented results, which are obtained from simulations
on a Single-Machine Infinite Bus system and the IEEE 39-Bus
system, indicate that the proposed enhancement improves the
performance of this type of controller.

Index Terms—Power Oscillation Damping, FACTS, Phasor
Estimation, Kalman Filtering

I. INTRODUCTION

Electromechanical oscillations is still a recurring problem
in power grids around the globe [1]–[4] . Trends like in-
creasing penetration of renewable energy sources, increased
electricity demand and increasing import/export of energy
between countries cause larger and less predictable fluctuations
in both generation and demand. This makes it more difficult
to tune and design stabilizing controllers for power oscillation
damping purposes.

Installing Power System Stabilizers on most large syn-
chronous machines is a very cost-effective way of mitigating
low damped power oscillations [5]. However, in some cases
it has been beneficial to utilize other controllable devices for
efficient power oscillation damping purposes, such as Flexible
AC Transmission Systems (FACTS).

FACTS devices can be installed to perform specific func-
tions, like load flow control, enhancing the usable transfer
capacity, or mitigation of power oscillations [6]. Installing new
FACTS devices for the purpose of power oscillation damping
is a costly investment. The value of the investment depends on
the performance of the algorithms responsible for generating
the damping control signal, so it is of utmost importance that
the algorithms are as effective as possible. This motivates the
research work presented in this paper, where an enhancement

to the well known Phasor Power Oscillation Damper (P-POD)
is proposed.

The P-POD was introduced in [7], where it is used for
mitigating inter-area oscillations by modulating a Thyristor
Controlled Series Capacitor (TCSC). The P-POD functions by
estimating a phasor representing the oscillations in a measured
signal. The estimated phasor is phase shifted and used to
generate a damping control signal, which modulates some
controllable device. In [7], Low Pass Filters (LPF) are used
for the estimation. Numerous variants and enhancements of
the P-POD have been proposed since its introduction: In
[8], a scheme for latency compensation and adaptive phase
compensation is proposed, and Recursive Least Squares (RLS)
is used for the estimation. Latency compensation is also the
focus in [9], where the P-POD is used to control a Doubly
Fed Induction Machine. In [10], a RLS estimator with variable
forgetting factor is introduced, aiming to increase the phasor
estimation accuracy during transient conditions.

In all the mentioned research works, the only source of
information for the phasor estimator is the chosen output
measurement, typically power or frequency. One additional
signal that is definitely always available, which arguably
should be taken into account in the estimation, is the control
signal applied by the controller. In this paper, it is shown that
this can be achieved by introducing a prediction-correction
scheme in the form of a Kalman Filter: In the prediction step,
the amplitude and phase of the oscillations at the next time
step is predicted based on the control signal applied by the
controller. In the correction step, the measured signal is used to
correct the predicted estimate. The expectancy is that this will
facilitate damping of oscillations in a more precise, efficient
and controlled manner.

The proposed estimation scheme is developed by combining
a state space representation of the linearized power system
model with equations describing the P-POD estimator found
in the literature. Not surprisingly, it is found that the prediction
step can be performed if we assume that the transfer function
residue of the targeted low damped mode is known (i.e.
a single complex number), where the transfer function is
from the applied control signal to the output measurement.
Obtaining the required residue is not straight-forward in a large
scale system, but an approximate estimate could be obtained

Author Accepted Manuscript version of the paper by Hallvar Haugdal, Kjetil Uhlen and Hjörtur Jóhannsson 
 in 2023 IEEE Belgrade PowerTech, (2023), DOI: http://dx.doi.org/10.1109/PowerTech55446.2023.10202902 

Distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) 



from model based modal analysis or from a measurement-
based technique.

The motivation for the presented research is twofold: First,
the performance of the P-POD is expected to improve, only
requiring an upgrade of the algorithms responsible for gener-
ating the damping control signal, without requiring hardware
investments. Second, the proposed scheme opens up for further
work towards a self-correcting estimator which continually
adjusts the residue estimate in order to improve predictions,
allowing the P-POD to be developed into a self-tuning/adaptive
controller.

The derivation of the enhanced P-POD is presented in Sec-
tion III. In Section IV, results are presented, where the focus
is on comparing the P-POD with and without the proposed
enhancement. Further, the robustness of the enhanced con-
troller against residue parameter error is investigated. Finally,
discussion and conclusions are given in Sections V and VI,
respectively.

II. BACKGROUND

Fundamental to the operating principle of the conventional
P-POD is the separation of the measured signal S(t) into an
average component S̄ and an oscillatory component, where
the oscillatory component is represented by the phasor S⃗ [7]:

S(t) = S̄ +Re{S⃗ejωt} (1)

Here, ω is the assumed frequency of the targeted low damped
mode. The separation is achieved using LPFs [7], or by an
estimation algorithm like RLS [8], [9], [10], or a Kalman filter
[11]. Further, the control signal is generated by applying a
suitable phase shift β and a gain K to the estimated phasor:

u(t) = Re
{
Kejβ

(
S⃗ejωt

)}
(2)

Finally, the control signal is applied by modulating the control
setpoint (reference) of a controllable unit. In [7], the measured
signal is the power flow in a line, and the control signal
modulates the reactance reference of a TCSC installed on the
line. In this case, the compensation angle β is set to 90°.

In general, assuming that a sufficiently accurate model of
the system is available, the ideal phase compensation for any
given measurement and control can be calculated from modal
analysis. Considering a single input-single output system, the
state space representation can be written as follows [12]:

∆ẋ = A∆x+ b∆u (3)

∆y = c∆x (4)

Applying the modal transformation, we get the decoupled
system,

ż = Λz+Ψb∆u (5)

where Λ is a diagonal matrix containing the eigenvalues of the
system, i.e. Λ = diag(λ1, λ2 . . . λn). Electromechanical oscil-
lations are associated with complex eigenvalues λi = αi±jωi,
from which the damping and frequency of oscillations can be
determined. A given eigenvalue λi has associated right and left

Power

System

Damping

Control

yu

ω r

S

S

Estimator

Fig. 1. The figure shows a simplified block diagram of the P-POD. From
the measured signal y, the ”Estimator” block produces the estimate of the
phasor S⃗. The ”Damping Control” block rotates the phasor according to the
desired phase compensation, and generates a time-domain control signal u.
The dashed arrow indicates the additional information taken into account in
the phasor estimation when introducing the proposed enhancement.

eigenvectors ϕi and ψi, respectively. From the eigenvectors,
the transfer function residue associated with the mode can be
calculated (as defined in e.g. [12], [13]):

ri = cϕiψib (6)

Finally, the ideal phase compensation for the P-POD can be
determined from the angle of the residue [14]:

β = 180◦ − arg{r} (7)

It can be shown that a marginal feedback between the output
and input with this phase shift moves the eigenvalue further
into the left half-plane, thus increasing the damping.

III. ENHANCING THE ESTIMATION
ALGORITHM OF THE PHASOR POD

In previous research on variants of the P-POD, the only
information taken into account in the estimation of the phasor
is the measured signal (based on (1)). The fundamental idea
of the proposed enhancement is to also take the control signal
applied by the P-POD into account in the phasor estimation.
Specifically, the amplitude and angle of the phasor at the next
time step is predicted based on the applied control signal at
the current step. A prediction-correction estimator in the form
of a Kalman Filter (KF) is suitable for this purpose. Fig. 1
shows a conceptual block diagram of the P-POD, where the
proposed enhancement corresponds to adding the dashed arrow
(i.e. feeding the control signal u into the estimator block).

A. Phasor Estimation: Prediction-Correction

A standard Kalman Filter [15] can be given as follows,

Xk+1 = FkXk +Gkuk +wk (8)

Yk = HkXk + vk (9)

where Xk is the Kalman Filter states, Fk is the State Tran-
sition Matrix, Gk is the Control-Input Model, Yk is the
measurement, Hk is the Observation Model, wk is the process
noise with covariance matrix Q, and vk the measurement noise
with covariance matrix R.
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The Observation Model Hk relates the measurement to the
states of the filter. The measurement is given by (1), which
can be written as follows:

Sk = S̄k +Re{S⃗ke
jωt}

= S̄k +Dk cosωt−Qk sinωt

=
[
1 cosωt − sinωt

]︸ ︷︷ ︸
Hk

 S̄k

Dk

Qk

 (10)

This determines the observation model Hk for the Kalman
filter, as indicated, where the states are given by Xk =[
S̄k, Dk, Qk

]⊺
, and the measurement by Yk = Sk.

To determine the State Transition Matrix Fk and the
Control-Input Matrix Gk, we start by investigating how
the phasor relates to the State Space representation of the
linearized power system model given by (3), (4) and (5).
Assuming that mode m is the dominant oscillatory mode, the
phasor we are attempting to estimate can be written as

S⃗ejωmt = Czm (11)

where C is a complex number determining the amplitude and
phase of the oscillation in the measurement, relative to the
modal response zm. To determine C we relate the measured
signal S in (1) to the linearized system in (4):

S(t) = y(t) = y0 +∆y

S̄ +Re{S⃗ejωt} = y0 + c∆x

= y0 + c ·Φz

= y0 + c ·
∑
j∈A
ϕjzj

(12)

Here, we have used that y(t) = y0 + ∆y, and ∆x = Φz,
where Φ is the matrix of right eigenvectors. ϕj is the right
eigenvector (of dimension n× 1, where n is the order of the
system) corresponding to mode j. A is the set of indices of all
modes (i.e. A = {1 . . . n}). Introducing the sets M = {m, m̄}
(where m̄ is the index of the complex conjugate of mode m)
and A′ = A−M allows us to separate out the terms associated
with the targeted oscillations from the sum:

S̄+Re{S⃗ejωt} = y0+c ·
[( ∑

j∈A′

ϕjzj

)
+ϕmzm+ϕm̄zm̄

]
(13)

We would like to capture oscillations associated with mode m
with the phasor, so we assemble terms as follows:

Re{S⃗ejωt} = 2c · Re{ϕmzm} (14)

S̄ = y0 + c ·
∑
j∈A′

ϕjzj (15)

As shown in the second equation, the remaining terms not
associated with the targeted oscillations are collected in the
average S̄. Combining (11) and (14), we see that

S⃗ejωt = 2cϕmzm (16)

We now have an expression relating the phasor S⃗ to the modal
response zm, which can be combined with the solution of
the decoupled state space system. The decoupled, discretized
system can be written as follows:

zk+1 = eΛ∆tzk +Λ−1
(
eΛ∆t − I

)
(Ψb)∆uk (17)

Here, the subscript k denotes the time step, and Ψ is the matrix
of left eigenvectors. In the decoupled system, we can consider
mode m independently:

zm,k+1 = eλm∆tzm,k +
ψmb

λm

(
eλm∆t − 1

)
∆uk (18)

Here, ψm is the the left eigenvector (of dimension 1 × n)
corresponding to the low damped mode. Since the damping is
low it can be assumed that the real part of the eigenvalue is
zero, i.e. λm = jωm. In the following, since we are focusing
on a single mode only, we skip the index m (i.e z = zm,ϕ =
ϕm,ψ = ψm, ω = ωm). We introduce discrete notation also
in (16):

S⃗(t)ejωt = 2cϕz(t) ⇔ S⃗ke
jωt = 2cϕzk (19)

Here, and in the following, t = tk. Combining (18) and (19)
gives:

S⃗k+1e
jω(t+∆t) = ejω∆tS⃗ke

jωt +
2cϕψb

λ

(
eω∆t − 1

)
∆uk

(20)
This expression can be written on the form

S⃗k+1 = S⃗k + r (g(t)− jh(t))∆uk (21)

where we have introduced the residue r = cϕψb and defined
the functions

g(t) =
2

ω

[
− sin (ωt) + sin (ω(t+∆t))

]
(22)

h(t) =
2

ω

[
cos (ωt)− cos (ω(t+∆t))

]
(23)

Further, we define the real and imaginary components of the
residue:

r = U + jV (24)

Finally, we arrive at the prediction equations for the real and
imaginary components of the phasor:

Dk+1 = Dk + (Ug(t) + V h(t))∆uk (25)

Qk+1 = Qk + (−Uh(t) + V g(t))∆uk (26)

The two equations (25) and (26) are used to predict the states
of the filter at the next time step. For the average S̄k we have
no model (which does not require us to know the complete
system model), so the best prediction is that the average
remains unchanged, i.e. S̄k+1 = S̄k. The prediction model
on the form given by (8) becomes as follows: S̄k+1

Dk+1

Qk+1

 =

1 1
1


︸ ︷︷ ︸

Fk

 S̄k

Dk

Qk

+

 0
Ug(t) + V h(t)
−Uh(t) + V g(t)


︸ ︷︷ ︸

Gk

uk

(27)
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This determines the State Transition Model Fk and the
Control-Input Model Gk. Gk is a function of time, and needs
to be recalculated for each time step.

To summarize: The Kalman filter as the P-POD estimator
is given by the Observation Model in (10) and the State
Transition- and Control-Input Model in (27). The required
parameters for the filter are the frequency of the targeted mode
ω (in rad/s) and the residue r = U+jV . The frequency of the
mode is easy to obtain, while the residue can be obtained either
from modal analysis or from a measurement-based technique.

B. Kalman Filter-based estimator vs Low Pass Filter- or
Recursive Least Squares-based estimator

In [7], where the P-POD was first presented, the phasor
estimation is carried out using LPFs. For estimating a 0.2 Hz
phasor, a cut-off frequency of 0.06 Hz is used for the filters,
and in general a cut-off frequency of 0.2 to 0.5 times the
targeted frequency is advised. A higher cut-off permits faster
fluctuations in the estimated average and phasor components,
while a lower cut-off gives a slower response.

The principal difference between the proposed phasor esti-
mator given by (27) and previous LPF- or RLS-based variants
is the control-input model Gk. If no control action is applied,
or if the residue estimate is zero, the Kalman Filter-based
estimator is expected to behave similarly as the LPF- or
RLS-based estimator. However, this requires that the Kalman
Filter covariances are tuned properly. A starting point for the
tuning of the Kalman filter can be obtained by comparing
the response of the Kalman filter-based estimator with the
LPF-based estimator. To achieve similar performance, the
comparison is carried out without applying damping control
(thus eliminating the effect of the Control-Input Model Gk).
By trial and error it is found that very similar performance
is achieved with the two estimators when using the following
covariance matrices:

R = 1, Q = (2πf ·∆t · kc)2 · I3 (28)

Here, ∆t is the time step, f is the mode frequency and kc is
the ratio of the LPF cut-off frequency to the mode frequency
(typically in the range 0.2 to 0.5, as mentioned). This similarity
is present also when varying the targeted mode frequency f ,
the time step ∆t or the cut-off frequency to mode frequency
ratio kc. Multiplying both covariance matrices R and Q by
the same factor does not affect the performanc.

This is a good starting point for tuning of the Kalman
filter. Similarly as with the LPF-based P-POD estimator, as
discussed above, the Kalman filter-based estimator can be
tuned by specifying the time step, the frequency of the targeted
mode and selecting a value for kc in the range 0.2 to 0.5.
Again, higher values allow faster fluctuations, while lower
values result in a slower response.

For the initial conditions for the Estimate Covariance Ma-
trix, commonly denoted by P0, higher values causes quicker
convergence, but could lead to erratic control actions imme-

diately after starting the estimator. Here, we have initialized
this matrix as follows:

P0 = 104 · 2πf ·∆t · kc · I3 (29)

Experience indicates that this choice does not affect results to
a great deal, except at the first few hundreds of milliseconds
of the simulation.

IV. RESULTS

In this section, the focus is comparing the performance
of the P-POD with and without the proposed enhancement.
To emphasize the performance advantage of introducing the
proposed enhancement, the P-POD in its simplest form is
considered. Frequency correction or other enhancements found
in the literature, like adaptive forgetting factor, adaptive phase
compensation, latency compensation etc. are not considered.
It should be mentioned, however, that most, if not all of these
enhancements are compatible with the proposed enhancement.

In the following, the conventional LPF- or RLS-based P-
POD, without a Control-Input Model, is considered as the
reference case, and is referred to as P-POD-0. The enhanced
P-POD, with the proposed Control-Input Model (CIM), is
referred to as P-POD-CIM.

As mentioned in [7], the main motivation for installing
FACTS devices is the mitigation of severe oscillations follow-
ing major disturbances. Therefore, controllers are tested on
standing oscillations or low damped ringdowns, rather than
e.g. using random load variations for exciting the system.

All simulations are carried out in Python using a simulation
package described in [16], which was developed specifically
for research work towards enhancing the P-POD. Generators
are represented by 6th order generator model given in [5],
and all currents and voltages are represented by phasors.
The TCSC is modelled as described in [17]. Integration of
differential equations is performed with a constant time step
size of 5 ms using the Modified Euler method with one
correction iteration. The Kalman Filters are updated every 20
ms.

A. Single-Machine Infinite Bus

The synchronous machine parameters are based on the
case described in [12, p. 752], but leakage reactance, ar-
mature resistance and saturation are neglected. The machine
is equipped with a simple excitation system (AVR model
SEXS). The P-POD measures the generator speed deviation,
and modulates the reactance reference of a TCSC installed on
the line connecting the synchronous machine and the infinite
bus. Following the example established in [18], the TCSC
has a steady state compensation of 10%, and minimum and
maximum compensation limits of 1% and 50%, respectively.
The simulated event is a short circuit with a clearing time of
50 ms applied on the terminals of the synchronous machine.

Through modal analysis on the linearized model, it is
found that this system has an unstable electromechanical
eigenvalue with a frequency of 1.01 Hz and damping of
−2.09%. The residue corresponding to the measurement,
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Fig. 2. The figure shows the results from testing the P-POD-0 (upper plot)
and the P-POD-CIM (lower plot) on the Single-Machine Infinite Bus-system.
The measured signal is shown along the estimated oscillations, revealing that
the accuracy is higher with the P-POD-CIM.

control actuator and mode is r = 0.036∠158°, from which
the phase compensation is determined (according to (7)), i.e.
β = 180° − 158° = 22°. The residue also determines the
coefficients U and V in (27).

1) Comparison - Equal gain: Fig. 2 shows the results from
two simulations performed on the above described system,
where the P-POD-0 (upper) and the P-POD-CIM (lower) are
used to generate the damping signal. The gain used in both
cases is 15. The fitted signals are shown along the measured
signals, and comparing the two plots shows that a more
accurate fit is achieved with the P-POD-CIM. The two cases
can be compared in terms of control cost C and performance
P , which can be defined as follows:

C =

√√√√N−1∑
k=0

u2
k, P =


√√√√N−1∑

k=0

∆x2
k

−1

(30)

where N is the number of time steps, uk is the control action,
∆xk is the generator speed deviation and k is the time step.
Both the cost (≈ 22%) and the performance (≈ 7%) are higher
with the P-POD-0 than with the P-POD-CIM. However, for a
fair comparison, the gain should be adjusted such that the
control cost is the same in the two cases.

2) Comparison - Varying gain: To compare the P-POD-0
and the P-POD-CIM on equal terms, the same two simulations
are performed for a range of gains between 0 and 100. The
cost and performance are calculated using (30), and plotted
in Fig. 3. This result clearly shows that for the same control
cost, the P-POD-CIM performs better than the P-POD-0.
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the P-POD-0 and the P-POD-CIM. The gain is indicated along the curves.
The result indicates that the P-POD-CIM has a higher performance than the
P-POD-0 for the same control cost.
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Fig. 4. A comparison of three cases on the Single-Machine Infinite Bus system
shown: No control, P-POD-0 and P-POD-CIM. The gains are adjusted so the
control cost is about the same in the two cases with control (28 and 100
respectively). In both cases with control the oscillations are stabilized, but the
case with P-POD-CIM is clearly preferable.

3) Comparison - Equal cost: From Fig. 3, it is observed
that the control cost is approximately the same when the P-
POD-0 is applied with a gain slightly above 25, and the P-
POD-CIM is applied with a gain of 100. Fig. 4 shows a
comparison of the two controls under these circumstances (the
actual gain used for the P-POD-0 is 28, resulting in a 1%
higher control cost for the P-POD-0 than for the P-POD-CIM).
For reference, the unregulated system is also shown, which
exhibits standing oscillations. The performance is 15% better
for the P-POD-CIM in this case. Also, looking at the curves,
it is clear that the P-POD-CIM is preferable to the P-POD-0.

B. Effect of Residue Parameter Error

The above results indicates that the P-POD-CIM provides
a more effective damping control signal than the P-POD-0,
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Fig. 5. The figure shows a performance comparison of the P-POD-0 and the
P-POD-CIM, operating with non-optimal phase compensation and inaccurate
Control-Input Model. The performance of the P-POD-0 is shown to the upper
left, and the P-POD-CIM to the upper right. The control cost required to
achieve the given performance is equal in all cases. The percentage-wise
performance advantage is shown in the lower plot.

provided accurate knowledge of the required residue. However,
an accurate residue value might not be straightforward to
obtain in practice. Furthermore, the residue will likely change
with changing operating conditions. An important next step
in the analysis is therefore to investigate how an inaccurate
residue affects the performance of the P-POD-CIM.

Assuming that some inaccurate residue estimate is pro-
vided, either from model based modal analysis or from a
measurement-based method, the goal is to assess whether the
P-POD-0 or the P-POD-CIM will perform better. Again, to
make a comparison on equal terms, the performance of the
controllers should be compared at the same cost. However,
instead of looking at the full curve, as in Fig. 3, one specific
control cost is chosen where the performance is evaluated.

The same system and scenario is analysed for various test
residues. The test residues are generated by scaling and/or
rotating the exact residue. Scaling values are chosen between
0.5 and 2, and rotation angles between −60◦ and +60◦. This
results in a 2D-grid of test residues.

For each test residue, a number of simulations with varying
gains are simulated, both with the P-POD-0 and the P-POD-
CIM (similarly as in Fig. 3). For the P-POD-0, the phase
compensation β is determined from the residue, and for the
P-POD-CIM, the residue determines both the phase compensa-
tion β and the parameters U and V . Further, the performance
achieved at a specific control cost is found by interpolation (for
example, considering Fig. 2, which corresponds to zero residue
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Fig. 6. The IEEE 39 bus system is shown. The P-POD measures the power
flow in the line between buses 26 and 27, and modualtes the reactance
reference for the TCSC installed on the line between buses 26 and 29.

error, the performance achieved at control cost 1.0 is about
13.7 for P-POD-CIM, and about 13.1 for P-POD-0). Finally,
the percentage improvement of the P-POD-CIM relative to the
P-POD-0 can be found by (PCIM − P0)/PCIM · 100%.

The result from the above procedure is presented in Fig.
5. The plot to the upper left shows the performance achieved
with the P-POD-0. Since the phase compensation for the P-
POD-0 is chosen based on the residue angle, the performance
varies with residue angle error. As expected, the performance
is maximised when β is chosen according to (7). The residue
magnitude does not affect the performance of the P-POD-0.

For the P-POD-CIM, shown in the upper right plot, the
performance varies both with angle error and magnitude error.
Interestingly, the performance increases when the magnitude
of the test residue is larger than the exact residue.

The lower plot indicates that the performance achieved with
the P-POD-CIM is higher than that achieved with the P-POD-
0 for test residues within a deviation of −24◦ and +60◦ from
the exact residue.

C. Application to the IEEE 39-Bus System

A final comparison of the P-POD with and without Control-
Input Model is made based on simulations on the IEEE 39 Bus
System [19], which is a significantly larger and more complex
system than the Single-Machine Infinite Bus system. This
system consists of 39 buses and 10 generators. All generators
except the large machine (generator 1) representing the rest of
USA and Canada are equipped with AVR, turbine-governor
and PSS controls. A TCSC is installed on the line between
buses 26 and 29, which is modulated by the P-POD. The
input measurement for the P-POD is the active power flow
in the line between buses 26 and 27, and the gain is 20. An
unstable operating condition is provoked by disconnecting the
line between buses 2 and 25 and deactivating the stabilizers
on generators 8 and 9. By modal analysis it is found that the
system is unstable with a 0.44 Hz mode with zero damping.

The simulated event is a short-circuit on bus 2, with a
clearing time of 50 ms. The result in Fig. 7 shows that
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Fig. 7. The performance of the P-POD-0 is compared with the P-POD-CIM
on the IEEE 39 bus system. The performance of the P-POD-CIM is superior
in this case.

only the P-POD-CIM performs satisfactorily. The P-POD-0
applies unwanted control action after the targeted oscillations
have died out. It should be mentioned that for lower gains
both controllers perform similarly, but this result indicates
that a higher gain is permitted with the P-POD-CIM without
producing unwanted effects.

V. DISCUSSION

Three important conclusions can be drawn based on the
presented results: First, the results indicate that the proposed
enhancement to the P-POD increases the damping perfor-
mance of the controller. This is as expected, given that more
information is taken into account in the phasor estimation, and
that more knowledge of the system is required (in the form
of the transfer function residue). Second, with the proposed
enhancement, higher gains are permitted before the controller
produces unwanted effects. Third, the enhanced estimator is
robust against residue parameter error. This is important, since
acquiring an accurate estimate of the required transfer function
residue might not be straightforward.

An interesting possibility that opens up with the introduction
of the proposed prediction-correction estimator scheme, is to
develop the P-POD into an adaptive P-POD: Multiple Kalman
filter-based P-POD estimators could be running in parallel,
each making predictions based on a specific, assigned residue.
Estimators with a high prediction accuracy would indicate that
the corresponding residue was close to the actual residue, and
vice versa for estimators with a low prediction accuracy. The
phase compensation could then be adjusted according to the
most accurate estimators, resulting in an adaptive/self-tuning
P-POD responding to changing operating conditions. This is
the topic of further research.

Finally, it should be mentioned that there are no expected
challenges with running the enhanced P-POD in real-time.
This is also verified by testing the controller in a real-time
simulation environment.

VI. CONCLUSION

An enhancement to the Phasor Power Oscillation Damper
has been presented. The results indicate that the performance
of this type of controllers can be improved with the proposed
solution, based on analysis both for a Single-Machine Infinite
Bus system and for the IEEE 39-Bus System. It is also found
that the controller is robust against residue parameter error. Fi-
nally, the presented theory lays the foundation for developing
the P-POD into an adaptive controller for mitigating power
oscillations under changing operating conditions.
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