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A B S T R A C T

This paper provides a short overview of space–time series clustering, which can be generally grouped into three
main categories such as: hierarchical, partitioning-based, and overlapping clustering. The first hierarchical
category is to identify hierarchies in space–time series data. The second partitioning-based category focuses
on determining disjoint partitions among the space–time series data, whereas the third overlapping category
explores fuzzy logic to determine the different correlations between the space–time series clusters. We also
further describe solutions for each category in this paper. Furthermore, we show the applications of these
solutions in an urban traffic data captured on two urban smart cities (e.g., Odense in Denmark and Beijing
in China). The perspectives on open questions and research challenges are also mentioned and discussed that
allow to obtain a better understanding of the intuition, limitations, and benefits for the various space–time
series clustering methods. This work can thus provide the guidances to practitioners for selecting the most
suitable methods for their used cases, domains, and applications.
. Introduction

Recent advances in geolocation, partly as a result of GPS (Global
ositioning System) support, has resulted in the creation of large vol-
mes of data varied in time and space. Space–time series is one of
he most powerful representations for several domains applications
ncluding transportation (Hu et al., 2018), health-care (Xi et al., 2018),
eismology (Morales-Esteban et al., 2014) and climate science (Liu,
015). The useful way to analyze space–time series is by utilizing
ata mining and machine learning techniques (Izakian et al., 2013;
on Landesberger et al., 2016). Clustering is one of the data mining

echniques where similar data are grouped together into homogeneous
lusters that has been intensively studied in the past decades (Karypis
t al., 1999; Ng and Han, 2002; Vesanto and Alhoniemi, 2000; Karypis,
002; Nanopoulos et al., 2001; Xiong et al., 2009; Ester et al., 1996;
ain et al., 1999; Kriegel et al., 2009). In recent decades, many research
ocused on time series clustering (Keogh and Lin, 2005; Hallac et al.,
017; Dau et al., 2016; Xiong and Yeung, 2002), and several works
onsidered the spatial dimension in time series clustering (Ferstl et al.,
017; Gharavi and Hu, 2017; Izakian et al., 2015, 2013), resulting in
pace–time series clustering.
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This paper presents a comprehensive overview of the existing space–
time series clustering algorithms. We have divided the existing ap-
proaches into three main categories depending on the type of clustering
results. The first category is called hierarchical space–time series clus-
tering that is used to create hierarchical clusters among the space–time
series data. The second category is named pure partitioning space–
time series clustering that is utilized to partition the space–time series
into disjoint and similar clusters. For the third overlapping partitioning
space–time series clustering, it aims at determining clusters where
space–time series data may belong to one or more clusters. In this
paper, we then study and present the solutions for each category. In
addition, we show the applications of existing space–time series clus-
tering on urban traffic data relevant to two smart cities (e.g., Odense in
Denmark and Beijing in China). Furthermore, challenges, open perspec-
tives and research trends for space–time series clustering are discussed
and concluded. Compared to previous survey papers, this paper first
provides a deep analysis of space–time series clustering techniques,
which allows to clearly understand the merits and the limits of the re-
viewed algorithms for each space–time series clustering category. This
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paper also derives mature solutions for space–time series clustering, in
particular for massive data, and for emerging applications.

1.1. Previous studies

This section summarizes the relevant survey papers and clarifies the
differences to show the contributions of this paper. This survey paper is
composed of two main topics, which are spatio-temporal data mining
and time series clustering. In the following section, we review some
existing surveys of these topics. Many data mining approaches have
been proposed for spatio-temporal data.

Zheng (2015) reviewed trajectory data mining techniques including
clustering, classification, and outlier detection. Feng and Zhu (2016)
proposed an overall framework of trajectory data mining including pre-
processing, data management, query processing, trajectory data mining
tasks, and privacy protection. Shekhar et al. (2011) and Gupta et al.
(2014) provided the comprehensive overviews of application-based
scenarios for spatio-temporal data mining such as financial markets,
system diagnosis, biological data, and user–action sequences. Eftelioglu
et al. (2016) studied hot spot detection in several applications such
as environmental criminology, epidemiology, and biology. Keogh and
Kasetty (2003) introduced the need of a fair evaluation of time series
data including time series clustering. According to the authors, such
as evaluation is done to avoid data and implementation bias. Liao
(2005) presented an overview of time series clustering. It categorizes
time series clustering into three categories, which are (i) raw-data-
based approaches either in time or frequency domain; (ii) feature-based
approaches that use feature extraction techniques for handling high di-
mensional time series reduction; and (iii) model-based approaches that
each time series is obtained by applying some mixture of models. Zol-
havarieh et al. (2014) reviewed the existing works of subsequence
time series clustering based on the published periods such as: preproof
(1997–2003), interproof (2003–2010), and postproof (2011–2014).

Fu (2011) discussed time series data mining techniques including
segmentation, indexing, clustering, visualization and pattern discov-
ery. Esling and Agon (2012) reviewed the existing time series data
mining approaches such as classification, clustering, segmentation, out-
lier detection, prediction, and rules and motifs discovery. It classifies
time series clustering into two categories, which are (i) whole series
clustering by considering the complete time series in the clustering
process, and (ii) sub-sequences clustering, in which the clusters are
found by selecting subsequences from multiple time series. In addition,
Aghabozorgi et al. (2015) included another category of time series
clustering, namely time point clustering, which aims at determining
clusters based on a combination of the temporal proximity of time
points and the similarity of the corresponding values. Compared to the
existing surveys, this is the first survey that deals with space–time series
data; all the other works have been limited to only time series data, or
even to spatial or temporal data.

1.2. Taxonomy and paper organization

Table 1 presents a taxonomy of the space–time series clustering
algorithms presented in this paper. They are classified into three cat-
egories. The first category is named hierarchical clustering, which is
utilized to identify hierarchy among the space–time series data. The
second pure partitioning space–time series clustering category is to par-
ition the space–time series into disjoint and similar clusters. Fur-
hermore, the third overlapping partitioning space–time series clustering
ategory aims at determining a space–time series that may belong to
ne or more clusters.

The rest of the paper is organized as follows. Section 2 defines
he background and concepts used in the paper, including clustering
nd space–time series data. Section 3 presents the relevant approaches
or space–time series algorithms. Section 4 shows a case study of the

xisting space–time series clustering algorithms on large and big urban

2

Table 1
Taxonomy of space–time series clustering algorithms.

Class Algorithms Variants

Rodriguez and Laio (2014)
Agglomerative
clustering

Shen and Cheng (2016)

Wang et al. (2019)

Hierarchical Hierarchical self
organizing map

Steiger et al. (2016b)

Wu et al. (2017)

Machine learning Ferstl et al. (2017)
Deng et al. (2018)

Andrienko and Andrienko (2013)
Gharavi and Hu (2017)
Cho et al. (2014)

kmeans Yu et al. (2015)
Jiang et al. (2018b)
Bai et al. (2014)
Krüger et al. (2017)

Pure partitioning Von Landesberger et al. (2016)
PAM Penfold et al. (2016)

Sun et al. (2017)

Jiang et al. (2019)
Peak density Putri et al. (2019)

Heredia and Mor (2019)
Li (2019)

Izakian et al. (2013)
Fuzzy kmeans Izakian et al. (2015)

Overlapping partitioning Disegna et al. (2017)

Paci and Finazzi (2017)
Machine learning Gholami and Pavlovic (2017)

Zhang et al. (2017)

traffic data by exploring two urban smart cities (Odense in Denmark
and Beijing in China). Section 5 discusses the challenges and future
directions in space–time series clustering. Finally, Section 6 states the
conclusion of this paper.

2. Preliminaries

This section presents preliminaries regarding clustering techniques
and space–time series data.

2.1. Clustering

Definition 1 (Clustering). Consider 𝑚 data 𝑥1, 𝑥2,… , 𝑥𝑚, and a set of 𝑘
clusters 𝐶 = {𝐶1, 𝐶2,… , 𝐶𝑘}, and a distance measure 𝐷. Each cluster
𝐶𝑖 is represented by its centroid 𝑔𝑖. Any clustering algorithm aims to
partition the data into similar groups such as the optimal clustering
denoted as 𝐶∗:

𝐶∗ = argmin𝐸𝐶

𝑘
∑

𝑖=1

∑

𝑥𝑗∈𝐶
𝐷(𝑔𝑖, 𝑥𝑗 ) (1)

Definition 2 (Hierarchical Clustering). Hierarchical clustering aims to
create a tree-like nested structure partition  = {1,2 …ℎ} of the
data such that: ∀(𝑖, 𝑗) ∈ [1… 𝑘]2,∀(𝑚, 𝑙) ∈ [1…ℎ]2, 𝐶𝑖 ∈ 𝑚, 𝐶𝑗 ∈
𝑙 , 𝑚 ≥ 𝑙 ⇒ 𝐶𝑖 ∈ 𝐶𝑗 ∧ 𝐶𝑖 ∩ 𝐶𝑗 = ∅

A hierarchical algorithm builds the hierarchical relationship among
data. The typical approach is that each data point is first in an indi-
vidual cluster. Based on the most neighboring, the clusters are merged
to new clusters until there is only one cluster left. Algorithms of this
kind of clustering include BIRCH (Balanced Iterative Reducing and
Clustering using Hierarchies) (Zhang et al., 1996), CURE (Clustering
Using REpresentatives) (Guha et al., 1998), ROCK (RObust Clustering
Hierarchical) (Guha et al., 2000), and Chameleon (Karypis et al., 1999).
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Fig. 1. Space–time series example.

efinition 3 (Pure Partitioning Clustering). Pure partitioning clustering
ims to look for k partitions of the data such that: 𝐶𝑖 ∩ 𝐶𝑗 = ∅, and

∀𝑖 ∈ [1… 𝑘], 𝐶𝑖 ≠ ∅

The basic idea of pure partitioning clustering is to consider the
center of data points as the center of the corresponding cluster, and
recursively compute and update the center until convergence criterion
is achieved. Typical algorithms of this kind of clustering include k-
means (MacQueen et al., 1967), PAM (Partition Around Medoids)
(Kaufman and Rousseeuw, 1990), and CLARA (Custering LARge Appli-
cations) (Kaufman and Rousseeuw, 2009).

Definition 4 (Overlapping Partitioning Clustering). Overlapping partition-
ing clustering indicates that each data 𝑥𝑗 to each cluster 𝐶𝑖 is with a
degree of membership 𝜇𝑖𝑗 ∈ [0…1] such that ∑𝑘

𝑖=1 𝜇𝑖𝑗 = 1

The basic idea of overlapping clustering is to assign data point to
each cluster using a membership value between 0 and 1 in order to
describe the relationship between data points and clusters. Typical al-
gorithms of this kind of clustering include fuzzy c-means (Bezdek et al.,
1984), and FCS (Fragment Clustering Schemes) (Dave and Bhaswan,
1992).

2.2. Space–time series

Definition 5 (Space–Time Series). Consider 𝑚 data such that 𝑥1, 𝑥2,… ,
𝑥𝑚, each of data is comprised of a spatial part and a time series part.
For the 𝑙th data 𝑥𝑙, the concatenation 𝑥𝑙 = [𝑥𝑙(𝑠)|𝑥𝑙(𝑡)] is realized, where
𝑥𝑙(𝑠) represents its spatial part and 𝑥𝑙(𝑡) refers to its time series part. By
considering 𝑟 features (usually, 𝑟 = 2) for the spatial part and 𝑞 features
for the time series part, we have the following representation for the
𝑙th data with dimensionality 𝑛 = 𝑟 + 𝑞

𝑥𝑙 = [𝑥𝑙1(𝑠),… , 𝑥𝑙𝑟(𝑠)|𝑥𝑙1(𝑡),… , 𝑥𝑙𝑞(𝑡)] (2)

Fig. 1 illustrates an example of a space–time series. There are a
number of spatial points in x-y coordinates, and for each spatial point,
there is one (or more) time series representing the measurements of a
phenomenon in different time steps.

Definition 6 (Space Time Series Similarity). We define the distance
between two space–time series 𝑥1, and 𝑥2 as:

𝐷(𝑥1, 𝑥2) = 𝑆𝐷(𝑥1, 𝑥2) + 𝑇𝐷(𝑥1, 𝑥2), (3)

where (i) 𝑆𝐷(𝑥1, 𝑥2) defines the spatial distance that computes the sim-
ilarity between the spatial components of the space–time series 𝑥1, and

𝑥2, and (ii) 𝑇𝐷(𝑥1, 𝑥2) defines the temporal distance that determines the

3

Table 2
𝐿𝑝 distances.

Distance p Formula

Manhattan 1 ∑

𝑥𝑖 (𝑡)∈𝑥(𝑡)∨𝑦𝑖 (𝑡)𝑦(𝑡)
|𝑥𝑖(𝑡) − 𝑦𝑖(𝑡)|

Euclidean 2
√

∑

𝑥𝑖 (𝑡)∈𝑥(𝑡)∨𝑦𝑖 (𝑡)𝑦(𝑡)
(𝑥𝑖(𝑡) − 𝑦𝑖(𝑡))2

Minkowski [1…∞] 𝑝
√

∑

𝑥𝑖 (𝑡)∈𝑥(𝑡)∨𝑦𝑖 (𝑡)𝑦(𝑡)
(𝑥𝑖(𝑡) − 𝑦𝑖(𝑡))1∕𝑝

Infinite norm ∞ max𝑥𝑖 (𝑡)∈𝑥(𝑡)∨𝑦𝑖 (𝑡)𝑦(𝑡){|𝑥𝑖(𝑡) − 𝑦𝑖(𝑡)|}

similarity between the time series components of 𝑥1, and 𝑥2. The spatial
distance is usually computed using ordinary Euclidean distance, where
the temporal distance is captured using time series distances (Mori
et al., 2016). In the following, we illustrate some interesting measures
between two time series data (e.g., 𝑥(𝑡) and 𝑦(𝑡)).

1. 𝐿𝑝 distances (Yi and Faloutsos, 2000): 𝐿𝑝 distances are the
rigid metrics that can only compare series of the same length.
However, due to their simplicity, they have been widely used
in many tasks related to time series analysis and mining. The
different variations of the 𝐿𝑝 distances and their formulas are
provided in Table 2.

2. DTW (Dynamic Time Warping) (Sakoe and Chiba, 1978): This
distance is able to deal with transformations such as local warp-
ing and shifting. Furthermore, it allows the comparison between
different series length.

3. STS (Short Time Series) (Möller-Levet et al., 2003): This distance
is adapted to the characteristics of irregularly sampled series.

4. Dissim (Frentzos et al., 2007): It is specifically designed for series
collected at different sampling rates that indicates each series is
defined in a finite set of time instants, but these can be different
for each series.

5. PC (Pearson‘s correlation) (Golay et al., 1998): This distance
focuses on extracting a set of features from the time series and
calculating the similarity between these features instead of using
the raw values of the series.

Table 3 presents the description of DTW, STS, Dissim, and PC
formulas. The interested readers may also find the alternative distances
with SAX (Symbolic Aggregate approXimation) (Cole et al., 2005) or
sketches (Shieh and Keogh, 2008) but until now, we do not find those
relevant works in space–time series clustering.

3. Algorithms

Intensive studies have been carried to capture the space–time series
clustering algorithms. Up to now, 112 papers have been analyzed. From
these papers, the following filter process is performed:

1. 28 papers are removed after the first pre-screening of the ab-
stract due to they are out of the scope of space–time series
clustering.

2. From the remaining 84 papers, only 32 papers are finally se-
lected. The selection criteria is based on the quality of the paper,
and the quality of the publisher. Only high quality papers are
elected if the paper is published in top-tier conferences or high
impact factor journals.

In addition, our intensive study reveals that almost solutions for
space–time series clustering can be classified as hierarchical-based,
pure partitioning-based, and overlapping-based approaches. Therefore,
this section presents space–time series clustering algorithms grouped
into three categories.
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Table 3
Time series distances.

Distance Formula

DTW(𝑥(𝑡), 𝑦(𝑡))

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if |𝑥(𝑡)| − 1 = |𝑦(𝑡)| − 1 = 0
∞ if |𝑥(𝑡)| − 1 = 0 ∥ |𝑦(𝑡)| − 1 = 0
𝑥0(𝑡) − 𝑦0(𝑡) + 𝑚𝑖𝑛{𝐷𝑇𝑊 (𝑥(𝑡)∕𝑥0(𝑡),
𝑦(𝑡)∕𝑦0(𝑡)), 𝐷𝑇𝑊 (𝑥(𝑡), 𝑦(𝑡)∕𝑦0(𝑡)), otherwise
𝐷𝑇𝑊 (𝑥(𝑡)∕𝑥0(𝑡), 𝑦(𝑡))}

STS(𝑥(𝑡), 𝑦(𝑡))
√

∑

𝑥𝑖 (𝑡)∈𝑥(𝑡)∨𝑦𝑖 (𝑡)𝑦(𝑡)

(

𝑦𝑖+1 (𝑡)−𝑦𝑖 (𝑡)
𝑡𝑖+1−𝑡𝑖

− 𝑥𝑖+1 (𝑡)−𝑥𝑖 (𝑡)
𝑡𝑖+1−𝑡𝑖

)

Dissim(𝑥(𝑡), 𝑦(𝑡)) ∑

𝑥𝑖 (𝑡)∈𝑥(𝑡)∨𝑦𝑖 (𝑡)𝑦(𝑡)
(𝑥𝑖(𝑡) − 𝑦𝑖(𝑡) + 𝑥𝑖+1(𝑡) − 𝑦𝑖+1(𝑡)) × (𝑡𝑖+1 − 𝑡𝑖)

PC(𝑥(𝑡), 𝑦(𝑡))
∑

𝑥𝑖 (𝑡)∈𝑥(𝑡)∨𝑦𝑖 (𝑡)𝑦(𝑡)
(𝑥𝑖 (𝑡)−𝑥(𝑡))×(𝑦𝑖 (𝑡)−𝑦(𝑡))

√

(𝑥𝑖 (𝑡)−𝑥(𝑡))2×
√

(𝑦𝑖 (𝑡)−𝑦(𝑡))2

Note that 𝑥(𝑡) and 𝑦(𝑡) are the mean values of time series 𝑥(𝑡) and 𝑦(𝑡), respectively.
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3.1. Space–time series hierarchical clustering

Before 2017: Rodrigues et al. (2008) presented ODAC (Online
Divisive Agglomerative Clustering) incrementally updates the tree-like
hierarchy clusters using top-down strategy by computing the dissimi-
larities between time series. The dissimilarities between time series is
defined by the cluster‘s diameter measure, where the splitting criterion
is supported by a confidence level given by the Hoeffding bound (Ho-
effding, 1963) that allows to define the diameter of each cluster. This
algorithm is applied to multiple time series, but it can be easily adopted
on space–time series data. Shen and Cheng (2016) established a new
framework that enables comprehensive analysis of trajectory space–
time series data to group people with similar behavior. The framework
segregates individuals into subgroups upon where (place), when (time)
and how long (duration) the activities are conducted for each individ-
ual. It includes three main steps, (i) extracting ST-ROI, i.e., the region of
interests with not only spatial location information but also interesting
time spans; (ii) defining individual time allocation on the ST ROIs as
their space–time profiles to describe his/her activity routine; and (iii)
group people using hierarchical clustering based on different activity
patterns. For example, Steiger et al. (2016b) develop the geographic
hierarchical self-organizing map (Geo-H-SOM) for discovering spatio-
temporal semantic clusters from tweets of people generated in different
week days and on different regions. It considers the similarities between
tweets across their temporal as well as geographical and semantic
characteristics. Results on real case study in London reveal similar
correlations between tweets of people live in the same region. However,
some clusters are sparse and difficult to be analyzed due to high
correlation between certain tweets.

From 2017: Ferstl et al. (2017) propose a hierarchical ensemble
clustering approach to analyze and visualize temporal uncertainty in
weather forecasting data. Clusters in specified time window are merged
to indicate when and where forecast trajectories diverge. Different
visualizations of time-hierarchical grouping on European center for
medium-range weather forecasting data are shown including space–
time surfaces built by connecting cluster representatives over time, and
stacked contour variability plots. Wu et al. (2017) presented an inter-
active framework named StreamExplorer that visualizes social streams.
It continuously detects important time periods (i.e., sub-events), and
extract topics of tweets made on any sub-events using GPU-assisted
self organizing map. A multi-level visualization method that integrates
Agnes algorithm for showing a space–time series generated from the
extracted tweets in a given time period and for different users located
on different regions. The map allows to summarize important sub-
events at a macroscopic level using a tree of visualizations. It not only
reveals the dynamic changes of a social stream in the context of its
past evolution, but also organizes historical sub-events in a hierarchical
manner for easy review and navigation of sub-events. The proposed
system enables end users to track, explore, and gain insights of social
streams at different levels. Deng et al. (2018) address a spatio-temporal
heterogeneity problem by employing space–time series clustering. This
approach divides space–time series data into meaningful clusters while
4

considering both the spatial proximity and the time series similarity
instead of the previous methods that only deal with time or space
dimensions. The application of auto-correlation time-series clusters in
artificial neural networks reveals good accuracy for space–time series
prediction. Wang et al. (2019) suggested a novel representation formed
by a sequence of 3-tuples for interval-valued time series in high di-
mensional data, and loss information issue. In addition, a hierarchical
clustering algorithm based on improved dynamic time warping distance
measure is designed for interval-valued time series of equal or unequal
length.

3.2. Space–time series pure partitioning clustering

Before 2016: Andrienko and Andrienko (2013) proposed an in-
eractive framework to analyze and visualize large amount of spatio-
emporal data represented by a set of time series. Multiple and hetero-
eneous space–time series are first created from the spatio temporal
ata. The set of space–time series is then grouped based on the sim-
larity of the temporal variation of the timestamp value. During this
tep, an interactive tool is used to refine the clustering results. This
s done by showing both time graph and map displays to the data
nalysts. The time-graph display let the analysts view the homogeneity
egree of each group. For the map display, the locations are charac-
erized by the space–time series and each group is painted in the same
olor. Cho et al. (2014) develop the Stroscope visualization tool that
elp neurologists analyze space–time series coming from blood pressure
ata. It provides two kinds of clustering techniques such as: data-space
lustering and image-space clustering. For the data-space clustering,
ecords that have similar measurement values are grouped together,
hich result in the same clusters for the same dataset. However, an

mage-space clustering aims at solving the visual inconsistency problem
f the data-space clustering. In the image space clustering, records with
similar color pattern are clustered together, where the clustering

esults could vary according to the color table defined by the users, but
he results are more reasonable to users who expresses his/her intention
n his/her color mapping choice. Bai et al. (2014) proposed a Gtem
lgorithm to cluster events from geographical temperature sequence
ata. It can detect high temperature events in irregular shape, size
nd evolution model. Furthermore, Gtem can automatically select the
ptimal parameters based on the MDL (Minimum Length Description)
rinciple (Barron et al., 1998) to automatically group events of an
rea into space–time series data. Moreover, Gtem can successfully find
igh-temperature events with exact start-end timestamps on the daily
eather of the Hunan province in China from 2004–2008. Yu et al.

2015) applied the clustering process to distinguish the space–time
atterns of local precipitations in the summer and autumn synoptic
onditions from 24 gauges during 1996–2008 in Taiwan. It groups the
ynoptic and local conditions for the space–time rainfall patterns by
ntegrating k-means with the empirical orthogonal function analysis.
he results identified three mainly extreme patterns and two normal
atterns in both seasons. Li et al. (2015) investigated trend modeling
or space–time series clustering in the context of urban traffic data.
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Based on daily similarity of traffic time series on different urban
locations, the simple average trend with PCA (Principle Component
Analysis) approach is developed to analyze the daily traffic space–time
series obtained in consecutive days and define their global varying
similarity while DWT (Discrete wavelet transform) mostly defines the
local varying tendency.

2016: Von Landesberger et al. (2016) presented a visual analysis for
people flow between places in London. The people flow is aggregated
into regions to reduce the mass mobility patterns using k-means algo-
rithm. Despite of visualization of people flow, only aggregated regions
are shown to the users for better understanding the distribution of flow
between places. Moreover, a new measure named Strength Flow is devel-
oped to filter the regions having low density flow. Wang et al. (2016b)
developed a clustering method called separation degree algorithm that
is able to construct self-adaptive interval based on the separation degree
model to detect anomaly in network space data. The advantage of
this approach is to automatically determine the self-adaptive interval,
which can be used to improve the accuracy of anomaly detection.
Extensive experimental results showed that the proposed method can
effectively detect anomaly data from heterogeneous spaces in the given
network. Penfold et al. (2016) suggested a clustering model to iden-
tify clusters of early adoption for a new clinical practice. The results
indicated that the revealed patterns provide insights to identify organi-
zational context and prescribe level factors involved in diffusion and
implementation within a learning health care system. The proposed
approach can be used for real-time prospective surveillance context
such as urgent clinical events with public health importance. Steiger
et al. (2016a) used a geographic self-organizing map to group human
mobility patterns by analyzing similar space–time series generated from
live traffic feeds. A standard self-organizing map is first applied in order
to observe and analyze the general topological relationships of the
reference database. A geographic self-organizing map is then computed
for the identification of similar overlapping traffic disruption patterns.
The results of traffic disruption clusters are finally correlated with
the computed geo-referenced weight vectors from all retrieved geo-
referenced traffic data. A case study in London traffic data showed that
particularly special events, such as concerts, demonstrations, and sports
events, etc., are well reflected within space–time series input data.

2017: Sun et al. (2017) proposed matching and pruning strategies
to efficiently compute the center of space–time series using dynamic
time warping distance. Experimental results revealed that the proposed
centroid formula improves the performance compared to the existing
space–time series clustering in terms of computational time and clus-
tering quality. Gharavi and Hu (2017) presented a clustering algorithm
to detect disturbances and degradation area in the grid. The k-means
algorithm is extended to group measurement units into different clus-
ters based on power quality. A multi-objective criterion is defined by
considering both time and space in the clustering process. According to
the experiments on IEEE 39-bus transmission system, it revealed that
the proposed clustering space–time synchrophasor scheme is capable to
detect and isolate areas in the grid suffering from multiple disturbances,
such as faults. Krüger et al. (2017) proposed a segmentation approach
that allows distinct activities within human motion space–time series
data. Segmentation human motion data is first considered as graph
problem, and a neighborhood graph-based and PCA (Principle Compo-
nents Analysis) approaches are then applied for dimension reduction.
A clustering method that allows to detect motion segments is based on
self-similarities which needs no assumption on the number of clusters.
The experiments on a wide variety of motion datasets show that the
approach can identify usual non-repetitive human activities such as one
step, jump, and, turn. However, the approach could not identify some
substantial changes between the individual repetitions in the muscle
activation patterns such as fatigue effects in longer motion trials.

2018: Jiang et al. (2018b) focused on mining of multimedia time
series data using a mixed composition of graphic arts and pictures,
hyper text, text data, video or audio. It adopted a k-means algorithm to
5

handle high dimensional data as the input set for a multimedia database
and at the same time, the algorithms obtains optimal similarity measure
by utilizing a Minkowski distance which is a generalized form of the
Euclidean distance. Mikalsen et al. (2018) proposed a robust time series
cluster kernel by taking the missing time series data into account using
the properties of Gaussian mixture models augmented with informative
prior distributions. An ensemble learning approach is exploited to
ensure robustness of parameters by combining the clustering results of
many Gaussian mixture models to form the final kernel.

2019: Some algorithms based on density peaks principle (Rodriguez
nd Laio, 2014) and its variants gravitation-based density peaks clus-
ering (Jiang et al., 2018a), and density peaks clustering based on
ogistic distribution and gravitation (Jiang et al., 2019) have been
uggested for space–time series clustering. The main idea behind these
lgorithms is that the centers of the different clusters are more dense
han the remaining data. This allows to automatically identify outliers.
n addition, the clusters are recognized regardless of their shape and
f the dimensionality of the space in which they are embedded. Wang
t al. (2016a) implements a time-based Markov model to formulate
he dynamics of electricity consumption for customer behaviors by
onsidering the state-dependent characteristics. It also indicates that
uture consumption behaviors would be related to the current states.
urthermore, it mentions that the density peak clustering has good
obustness to identify outliers without further processing. Putri et al.
2019) developed a new density-based clustering approach for grouping
set of time series. This approach generates arbitrarily shaped clus-

ers, and explicitly tracks their temporal evolution. Heredia and Mor
2019) proposed a hybrid approach which combines the density-peak
lustering with the spatial density of space–time series data. The whole
ata is first partitioned using the smoothed density function, and the
esulted groups are further divided using the density-peak clustering
pproach. Li (2019) developed a hybrid approach based on principal
omponent analysis and density-peak clustering. A high dimensional
ulti-variate space–time series data is first reduced using the principal

omponent analysis, and the selected features are then grouped using
he density-peak clustering.

.3. Space–time series overlapping partitioning clustering

Before 2017: Izakian et al. (2013) proposed a fuzzy approach for
patio-temporal data clustering. Fuzzy c-means and adaptive Euclidean
istance function are adopted to cluster different nature of spatio-
emporal data. The suggested augmented distance allows to control
he effect of each data in the determination of the overall Euclidean
istance and gives a sound balance between the impact of the spatial
nd temporal components of the data. Izakian and Pedrycz (2014b)
uggested a cluster-center approach for anomaly detection problem in
pace–time series data. A Fuzzy C-Means (FCM) algorithm is employed
o group the time series. A Euclidean distance is used for similarity
omputation in both spatial and temporal components, where the 𝜆
arameter is defined to balance the impact of the spatial and temporal
omponents of the data in the clustering process. In addition, Anomaly
core is assigned to each cluster for quantifying the unexpected changes
n the structure of data. At the end, the relations between clusters pre-
ented in successive time windows are visualized to quantify anomaly
ropagation over time. Izakian and Pedrycz (2014a) introduced a gen-
ralized version of fuzzy c-means clustering to cluster data with blocks
f features coming from distinct sources. A new distance function is
eveloped to take the multi-sources aspect into account. The distance
ombines the features of different sources by using aggregate variables,
hat allows to increase/decrease the impact of the given data source
gainst other data sources. Izakian et al. (2015) further presented three
lternative approaches for fuzzy clustering of space–time series data.
he first approach takes the averaging dynamic time warping distance
echnique into account and applies the fuzzy c-means technique for
lustering space–time series data. For the second approach, a fuzzy c-
edoids technique that ignores the average distance calculation was
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Table 4
Characteristics of space–time series clustering algorithms.

Category Merits Limits

Hierarchical clustering Free-parameters High time and memory consuming
Different level of granularities

Pure clustering Fast time and memory consuming Difficult to fix the number of clusters

Overlapping clustering Finding overlapping clusters High time consuming
Need parameters adjustments
Table 5
Odense data description.

Address ID Type #(Cars or Bikes)

Falen 𝐿1 Cars 16.932
Anderupvej 𝐿2 Cars 25.310
Aløkke Alle 𝐿3 Cars 238.775
Thomas B Thriges Gade 𝐿4 Bikes 46.978
Niels Bohrs Alle 𝐿5 Bikes 445.883
Rødegårdsvej Østgående 𝐿6 Bikes 575.089
Rugårdsvej 𝐿7 Cars 2.318.852
Nyborgvej 𝐿8 Cars 2.352.930
Grønlandsgade 𝐿9 Cars 2.955.464
Odins Bro 𝐿10 Cars 3.921.746

explored and finally, a combination between the c-medoids and the
c-medoids was examined and discussed.

From 2017: Paci and Finazzi (2017) developed a Bayesian dynamic
approach that integrates a finite weighted mixture model for clustering
space–time series data. Thus, a state-space model has been employed
to describe the temporal evolution of different locations belonging to
each cluster. Also, a new strategy for selecting the number of clusters
has presented. By using a weighted mixture model, this approach
allows easy and fast prediction of the membership probability at any
location and at any window time. Disegna et al. (2017) proposed
COFUST (COpula-based FUzzy clustering algorithm for Spatial Time
series). A combination of Fuzzy Partitioning Around Medoids (FPAM)
algorithm (Kaufman and Rousseeuw, 1990) with a copula-based ap-
proach (Di Lascio et al., 2017) is performed to interpret co-movements
of large-scale time series. First, both spatial and temporal dependen-
cies between the time series are identified through a copula-based
approach. Then, the FPAM algorithm has been adopted in order to de-
termine non-fictitious patterns in the space–time series and producing
the final clusters. This approach is computationally more efficient and
tend to be less affected by both local optima and convergence problems
compared to the existing space–time series overlapping clustering. Gho-
lami and Pavlovic (2017) considered the temporal dependency between
space–time series of complex human motion data. The temporal depen-
dencies are modeled using Gaussian process whose covariance function
controls the desired dependence. The Bernoulli process is also incorpo-
rated into the overall process to concurrently learn the dimensionality
of the subspaces from the data. Zhang et al. (2017) introduced a
density-contour based spatio-temporal clustering approach (ST-DPOLY)
and compare it with the spatio-temporal shared nearest neighbors (ST-
SNN). First, a spatial density function is determined for the spatial point
data collected in batches, where a density threshold is used for each
batch of time to identify spatial clusters. Spatio-temporal clusters are
then determined as continuing clusters. Continuing clusters are defined
as the clusters highly correlated in consecutive batches of time. The
proposed approach has applied to 1.1 billion taxi trips recorded over
seven consecutive years from 2009 to 2016, and presented advantages
in terms of clustering results, time and space complexity, while ST-SNN
is more interesting in terms of temporal flexibility.

3.4. Discussions

From the above literature review, we provide our insights of the
reviewed papers.
6

1. Clustering of space–time series data requires a lot of efforts, espe-
cially in terms of a suitable treatment of the spatial and temporal
components of the data. Existing space–time series clustering
algorithms have been developed in this direction. Still, much
further work is needed to achieve mature solutions. For instance,
current algorithms consider temporal and spatial dimensions in
the same processing level. However, in some cases, temporal
dimension is more suitable than the spatial one, and vice versa.
One way to tackle this issue is to transform the space–time
series clustering as multi-objective optimization problem, where
some aggregation functions may be used between the different
dimensions (spatial and temporal dimensions in this case).

2. Space time series data are usually gathered from sensors, and
should be processed continually in a data streams environment.
The major concern with the existing clustering time series is
that they do not provide mechanism to deal with data streams.
Incremental clustering algorithms may be an alternative so-
lution. The main merit of these algorithms is that it is not
necessary to store the whole data in the memory. Thus, the
space requirement of incremental algorithms is relevant small.
Typically, they are non-iterative; their time requirement is also
small. Adopting incremental clustering algorithms in a space–
time series is beneficial to practitioners for dealing with more
real-world applications relevant to manufacturing and smart
city, among others.

In addition, we present the merits and limitations of the existing
space–time series algorithms (See Table 4 for more details). We can
classify the space–time series algorithms into three groups, according
to various clustering models:

1. Algorithms in the first group aim at finding hierarchical clusters.
They do not need any parameter as the input (i.e., the number
of clusters). In addition, it is possible to examine partitions at
different granularity levels. However, with large scale data, they
require higher computation and a huge memory usage. However,
space–time series data is normally large scale, thus this model is
not suitable for real-world situations.

2. The purpose of the algorithms in second group is to find the
disjoint partitions. These algorithms are fast compared to the
algorithms in the first category. They are thus more suitable
for large scale space–time series data. Nevertheless, those algo-
rithms require parameter setting (i.e., the number of clusters),
which is normally hard to decide, in particular while considering
more dimensions in space–time series data.

3. Algorithms in the third group are overlapping partitioning al-
gorithms, which are used to find the overlapping partitions by
using a membership degree as input. These algorithms are slow
compared to pure partitioning algorithms due to the complexity
of the space–time series data. Moreover, they are very sensi-
tive to the membership rate and the number of clusters. In
addition, to determine the overlapping clusters, they do not
distinguish the spatial and temporal dimensions, which degrades
the accuracy performance. In many real-world cases, some data
may overlap in one dimension but are disjoint in the other.
In such cases, overlapping partitioning algorithms would fail to
determine the optimal clustering.
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Fig. 2. Urban traffic Odense and Beijing locations.
4. Evaluation

In this section, a performance evaluation of space–time series clus-
tering is provided. Both standard time series databases1 and a real case
study on urban traffic intelligent transportation are analyzed as follows.

4.1. Case study: Urban traffic intelligent transportation

With the popularization of GPS and IT devices, urban traffic flow
analysis has attracted growing attention in the last decades. Zheng
(2015) and Feng and Zhu (2016) reviewed spatio-temporal urban data
mining techniques. The surveys included segmentation and clustering,
detecting outliers and anomaly flows, classification sub-trajectories,
and finding frequent and periodical sequential patterns from clusters
of trajectories. The traffic flow is computed by counting the number of
objects (i.e., cars, passengers, taxis, buses, etc.) across a given location
during a time interval. This generates a high number of time series
captured in different locations of the urban city. A trivial way to
represent these time series captured in different locations is space–
time series data. Space time series data mining is largely used in many
number of domains related to intelligent transportation (Jensen et al.,
2016; Feng and Zhu, 2016). They are used to adapt classical data
mining techniques and propose new methods for discovering useful
knowledge from urban traffic space–time series data. Recent research
works of space time series data mining techniques for urban traffic
data including clustering, pattern mining, and outlier detection can
be foundin Shekhar et al. (2011), Zhou et al. (2014), Koperski et al.
(1996), Gupta et al. (2014), Shekhar et al. (2015), Djenouri et al.
(2019b,a) and Djenouri and Zimek (2018). One application of space–
time series data mining for urban data is clustering. The goal is to find
out the similar clusters of urban traffic flows represented in different

1 https://archive.ics.uci.edu/ml/index.php.
7

locations. This section shows a case study of an application of space–
time series clustering algorithms for dealing with urban traffic data.
In the experiments, we consider various clustering algorithms with
different similarity measures on two urban traffic data (large dataset
for Odense city in Denmark and big dataset for Beijing city in China).

4.2. Datasets

Two real Odense and Beijing traffic flow data have been used
for evaluation. These datasets are varied in terms of the number of
flow values, The Odense traffic data is considered as a large dataset,
where the Beijing traffic data is considered as big dataset. The detailed
explanation of these two datasets is given as follows:

Odense traffic data: The first data is captured from several test
locations throughout the Odense city. Each data entry contains informa-
tion related to the vehicle or bike detected at specific locations such as:
gap, length, date, time, speed, and class (i.e., type of vehicle or bike).
The location is represented by latitude and longitude dimensions. The
speed is calculated by km/h, and the datetime represents the year, the
month, the day, the hour, the minute and the second that the vehicle or
bike is passed by the given location. The most important information
of each vehicle or bike is given as follows:

• datetime: It represents the time that the vehicle or bike passed on
the location, and the format is: YYYY-MM-DD hh:mm:ss.

• speed: It defines the actual speed of the vehicle or bike where it
is across the location.

• class: It defines the type of vehicle or bike. For example, if the
class is set as 2, it represents a passenger car.

For ten locations, sensor infrastructure has been installed in a pilot
experiment. The ten locations have different characteristics (i.e., traffic
density, counters for cars/bikes) as described in Table 5. The traffic
data were obtained between January 1st, 2017 and 30th April 2018.

https://archive.ics.uci.edu/ml/index.php
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It consists of more than 12 million vehicles and bikes. The data is
made by Odense Kommune,2 and may be retrieved at http://dss.sdu.
dk/projects/its/fpd-lof.html.

Beijing traffic data: The second one is a real urban traffic data
obtained from Beijing traffic flow, and retrieved from.3 It consists of
more than 3 billion traffic flow values during a two-months time period
on more than one hundred locations. The most important information
of each car is given as follows:

• datetime: It represents the time that the car passed on the loca-
tion, and format is: YYYY-MM-DD hh:mm:ss.

• Class: It defines the type of vehicle or bus.

Fig. 2 presents the distribution of urban traffic data among Odense
and Beijing cities.

4.3. Tool

In this work, we used the algorithms that implemented in SPMF
library4 to perform the space–time series clustering. The k-means,

BSCAN, fuzzy c-means, CHA, and Density-Peak are the well-known
lustering algorithms, and cover all the categories of space–time series
lustering. Therefore, these algorithms are chosen for performance
valuation. This library is first proposed for pattern mining discov-
ry (Fournier-Viger et al., 2014) that has been extended to different
ata mining applications. It also provides algorithms for analyzing time
eries data such as SAX (Lin et al., 2007) and PAA (Lin et al., 2003),
mong others. SPMF is an open-source library implemented in Java.
he current version of this tool is v2.42b and was released on 11th,
arch, 2020. It currently contains 196 data mining algorithms. We then

sed SPMF for space–time series clustering algorithms by implementing
he distances related to space–time series data, adding class to space
ime series representation, and adapting the existing clustering algo-
ithms provided in SPMF library for space–time series representation.
e evaluate algorithms regarding three different dimensions as follows:

1. Runtime performance: We perform the runtime of each space–
time series clustering algorithm including preprocessing step,
computing similarity, and determining clusters.

2. Quality of clusters: We evaluate the quality of the clusters by
two ways. The first way aims to compute the Error Sum of
Squares (ESS). It is the sum of the squared differences between
each space–time series data and the mean of its group. It can
be used as a measure for variation within a cluster. If all cases
within a cluster are identical, the ESS is equal to 0. A better
clustering result obtains lower ESS value. The ESS formula is
given as:

𝐸𝑆𝑆 =
𝑘
∑

𝑖=1

∑

𝑥𝑗∈𝐶𝑖

(𝑥𝑗 − 𝐶𝑖)2, (4)

where 𝐶𝑖 is the mean value of the space–time series data belong-
ing to the cluster 𝐶𝑖.
The second way aims to evaluate the quality of clusters for the
classification of traffic flow (Sumit and Akhter, 2019; Rezaei
and Liu, 2019; Qu et al., 2019). The data labels are created for
each time series data based on the daily observed traffic. We
have obtained three different labels (WD: data for weekday, ST:
data for Saturday, and SN: data for Sunday). We have created
two files; the first file contains the data without labels, and
the second file contains data with labels. We apply space–time
series clustering techniques on the first file and set the number
of clusters as 3 (for DBSCAN and CHA algorithms). We have

2 https://www.odense.dk/.
3 https://www.beijingcitylab.com/.
4 http://www.philippe-fournier-viger.com/spmf/.
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Table 6
Comparison of the space–time series clustering in terms of runtime (seconds), the
quality of returned clusters (ESS), and the memory usage (MB) using standard time
series databases.

Algorithm Dataset CPU ESS Memory

Air quality 25 1.80 29
Appliances energy prediction 29 2.21 31

kmeans EEG eye state 31 2.25 35
Real-time election 35 2.51 38
Beijing multi-site air-quality 38 2.59 40
Beijing PM2.5 42 2.71 45

Air quality 27 1.71 30
Appliances energy prediction 31 2.25 33

DBSCAN EEG eye state 32 2.28 37
Real-time election 37 2.35 41
Beijing multi-site air-quality 39 2.57 43
Beijing PM2.5 41 2.95 47

Air quality 25 1.80 29
Appliances energy prediction 33 2.57 39

Fuzzy cmeans EEG eye state 41 2.59 45
Real-time election 45 2.99 49
Beijing multi-site air-quality 49 3.11 59
Beijing PM2.5 55 3.05 52

Air quality 42 0.99 40
Appliances energy prediction 43 1.05 51

CHA EEG eye state 49 1.12 56
Real-time election 56 1.19 62
Beijing multi-site air-quality 63 1.68 66
Beijing PM2.5 67 1.81 71

Air quality 22 1.52 31
Appliances energy prediction 31 1.71 30

Density peak EEG eye state 32 1.75 40
Real-time election 35 1.74 51
Beijing multi-site air-quality 39 1.77 53
Beijing PM2.5 45 1.92 54

adjusted their parameters to find 3 clusters in order to make
a fair comparison with k-means, and fuzzy c-means algorithms.
After construction of clusters, we compare each cluster for the
data with the same label, and we compute the number of cor-
rected classified data for each cluster as the maximum number of
common data between this cluster and each label. We then com-
puted the classification ratio of each algorithm to see evaluate
the performance.
For both ways, we used the k-fold cross-validation technique,
which is largely used in the machine learning community (Anand
et al., 2013). This approach involves randomly dividing the set
of observations into k groups or folds of approximately equal
size. The first fold is treated as a validation set and the model
is fit to the remaining folds. The procedure is then repeated k
times, where a different group is treated as the validation set.

3. Memory usage: We compute the memory consumption of the
space–time series clustering algorithms by using the MemoryLog-
ger provided in SPMF tool.

4.4. Results on standard time series data

In this experiment, the evaluation of the space–time series clustering
is carried out on standard time series databases https://archive.ics.uci.
edu/ml/index.php. Table 6 lists the runtime, the ESS value, and the
memory usage for different used time series databases. From this table,
we can observe that the k-means and DBSCAN are the most powerful
methods compared to the other space–time series clustering algorithms.
Fuzzy c-means and Density Peak are less competitive than k-means and
DBSCAN. However, they have obtained reasonable results compared to
CHA. This latter is the less competitive algorithm, which requires high
computational and memory resources, and it provides less quality of
clusters.

http://dss.sdu.dk/projects/its/fpd-lof.html
http://dss.sdu.dk/projects/its/fpd-lof.html
http://dss.sdu.dk/projects/its/fpd-lof.html
https://www.odense.dk/
https://www.beijingcitylab.com/
http://www.philippe-fournier-viger.com/spmf/
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
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Fig. 3. Quality of returned clusters on urban Odense traffic data: ESS.
m
h

Fig. 4. Quality of returned clusters on urban Odense traffic data: Classification ratio.

4.5. Results on urban Odense traffic data

The first experiments aim at comparing the space–time series clus-
tering using the large urban Odense traffic data. We have collected
several time series in different locations. Each time series constitutes
the set of the number of flow values in one hour, where each flow is
the number of cars or bikes during a time period. We set the time period
9

to 1 min, 2 min, 3 min, 4 min, and 5 min, respectively. This allows to
create different time series with different sizes (60, 30, 20, 15, 12). We
have captured more than 1 million of time series for the experiments
and constructed 20 datasets. Each dataset named 𝑛𝑋𝑚𝑌 indicates that it
contains n time series with m different flow values. In the experiments,
n belongs to the set {1000, 10,000, 100,000, 1,000,000}, and m belongs
to the set {12, 15, 20, 30, 60}. Figs. 3 and 4 showed the quality
of the space–time series clustering using ESS and classification ratio.
Fig. 3 showed the ESS value of the different space–time series clustering
algorithms on dataset 1,000,000𝑋60𝑌 , along with different similarity

easures (Euclidean, Manhattan, DTW, STS, Dissim, and PC). We
ave also observed that by varying the number of clusters in k-means

and fuzzy c-means, respectively, from 1 to 10, epsilon and maximum
distance in DBSCAN and hierarchical clustering, respectively from 0.1
to 1.0, DTW provides better results whatever the case used. This is
explained by the fact that the DTW measure is well adopted for space–
time series data by considering both temporal and spatial dimensions
of the space–time series data. This is why the DTW measure is used
for the remaining experiments. Fig. 4 presents the classification ratio
of different clustering algorithms, and with different Odense locations.
The results revealed that the classification ratio of the space–time
series clustering algorithms is decreased while increasing the number
of traffic flow values. Thus, for low density locations, the classification
ratio of all algorithms exceeds 80% (k-means and fuzzy c-means reach
90%). However, for high density locations, the classification ratio goes
under 70% for some algorithms such as DBSCAN and CHA. Figs. 5, and
6 present the runtime in seconds and the memory usage in mega bytes
for the space–time series clustering using the 20 datasets of the urban

Odense traffic data. By varying the number of space–time series data
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Fig. 5. Runtime of clustering on urban Odense traffic data.
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rom 1000 to 1,000,000, and the number of flow values from 12 to 60,
e remark that CHA and c-means are slow. Actually, they require high

omputational resources to handle the large urban Odense traffic data.
his confirms the discussion given in Section 3.4. In general, the space–
ime series clustering algorithms need reasonable memory usage (less
han 250 mb), but they require high computational resources (more
han 3 h) for handling 1,000,000 flow values. We can state that the
xisting space–time series clustering algorithms could handle the large
ata as the case of urban Odense traffic data.

.6. Results on urban Beijing traffic data

The next experiments aim to show the ability of the space–time
eries clustering algorithms for handling big dataset, as the case of the
rban traffic data captured in the second largest city in the world. Fig. 7
resents the performance of the space–time series clustering algorithms
n Beijing locations. When varying the number of flow values from 1
illion to 30 million, we have observed that the k-means and c-means
rovide good results in terms of quality of returned clusters for both
SS and classification ratio values. They also are very competitive in
erms of runtime and memory usage compared to the other space–time
eries clustering. However, all space–time series clustering algorithms
re high time consuming for dealing with big dataset; they need several
ays to group Beijing data having 30 million of flow values. More
dvanced clustering techniques (Schubert et al., 2017; Pourkamali-
naraki and Becker, 2017; Zhang et al., 2018; Chen et al., 2018) are

eeded to be adopted for handling big space–time series datasets. r

10
. Challenges and future directions

This section presents some challenges and future applications in
pace–time series clustering.

.1. Challenges

In this section, we present four challenges in the future work on
pace–time series clustering.

Challenge I: Improving runtime performance of space–time
eries clustering. Space Time series clustering approaches are very
ime consuming in particular while dealing with many spatial points
nd huge time series. To handle the big space–time series, technologies
rom different domains could be adapted such as: (i) High performance
omputing (HPC) aims at using parallel frameworks to speed up the
equential solutions (Shi et al., 2018; Djenouri et al., 2019c, 2014a).
ome of the most well-known architectures apply the multi-core CPU or
PU and perform on MapReduce or Spark platforms; (ii) Computational

ntelligence (CI) is a collection of intelligent methods aiming at opti-
izing complex problems with strategies like meta-heuristics (Queiroga

t al., 2018; Djenouri et al., 2014b,c; Djenouri and Comuzzi, 2017); and
iii) Database systems provide techniques to efficiently store, update,
nd search space–time series data, such as query optimization and
ndex optimization. Adapting, combining, and optimizing technologies
n space–time series also provide many open research questions and
uture directions.

Challenge II: Improving quality performance of space–time se-

ies clustering. The quality of the existing space–time series clustering
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Fig. 6. Memory of clustering on urban Odense traffic data.
pproaches became poor for the complex and big time series data. To
olve this limitation, the deep network (Ni et al., 2018) model can
e utilized and applied for handling this situation. In this context,
suitable distribution of the data in the deep network should be

onsidered and performed.
Challenge III: Correlation between space–time series data. The

xisting algorithms for space–time series clustering consider individual
pace time series data and ignore the correlation between the time
eries data. Studying the correlation between space–time series using
attern mining algorithms (Yagoubi et al., 2017; Campisano et al.,
018; Djenouri et al., 2019d; Djenouri and Comuzzi, 2017; Djenouri
t al., 2019c) could be helpful for space–time series. Such complex or
xtended systems could be interesting for some excited applications
uch as urban traffic data (Gonzalez et al., 2007).

Challenge IV: Adaptation of advanced and specialized clus-
ering methods Several variants of clustering models could also be
dapted to handle the space–time series data. Many adaptations to
pecific scenarios such as spatial data (Ng and Han, 2002; Birant and
ut, 2007; Lin et al., 2019b), high dimensional data (McCallum et al.,
000; Rathore et al., 2018; Djenouri et al., 2015; Lin et al., 2019a),
ime series data (Keogh and Lin, 2005), or streaming data (Euán et al.,
018; McDowell et al., 2018) remain potential possibilities. All these
pecial scenarios are somehow related to possible scenarios in tackling
pace–time series data and thus studied methods in literature review
or these scenarios could also be relevant for adaptations to space–time

eries data and for tackling these different aspects simultaneously.
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5.2. Future directions

Myriad volumes of space–time series data are collected in several
applications and domains such as social media, urban traffic, and
climate change. In this section, we briefly describe future directions
and motivation for applying space–time series clustering in different
applications and domains.

5.2.1. Social media analysis
Social media analysis has received a great attention in World Wide

Web. Finding structural properties in a social network such as Twitter
is a challenge issue (Kwon et al., 2013) in recent decades. Consider the
example shown in Fig. 8(a) that the tweets mentioned the crude oil
prices profile.5 At each location, we can observe that different number
of users have accessed this page across several days for evaluation. Ap-
plying space–time series clustering on these data can discover relevant
information, for instance, the number of people located in red countries
are approximately the same when the oil petrol changes a lot (highly
increased or highly decreased). These could be explained by the fact
that the economy of these countries are highly dependent of the oil
prices, where people care for a high changes in the price of such natural
resources. In general, applying space–time series clustering in social
media data allows creating user profiling in both spatial and temporal
dimensions.

5 https://twitter.com/CrudeOilPrices.

https://twitter.com/CrudeOilPrices
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.2.2. Urban traffic flows
Urban traffic data consists of observations like number and speed of

ars or other vehicles at certain locations as measured by the deployed
ensors. These numbers can be interpreted as traffic flow which in
urn relates to the capacity of streets and the demand of the traffic
ystem (Belhadi et al., 2019; Djenouri and Zimek, 2018; Djenouri
t al., 2018). City planners are interested in studying the impact of
12
various conditions on the traffic flow, leading to finding the correlation
between the traffic flows. Consider the example shown in Fig. 8(b), it
illustrates urban traffic flow of different locations in a given city. For
each location, we have observed different flow values represented by a
time series. Applying space–time series clustering on these data allows
to group locations having similar traffic behaviors. For instance, traffic
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Fig. 8. Future directions in space–time series clustering. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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in red locations are quite similar. If the traffic flow increases in A, it
increases in B as well.

5.2.3. Climate change
Climate change directly effects on the precipitation all over the

world. Several research (Singh et al., 2017; Karpatne et al., 2013) focus
on the changes in intensity and frequency of precipitation represented
by a time series. Studying propagation of climate changes around closer
locations is a challenge issue. One idea to solve this issue is to exploit
space–time series clustering. Consider the example shown in Fig. 8(c),
it presents the temperatures at different locations. At each location,
we have observed different temperature values represented by a time
series. Applying the space–time series clustering on these data can
allow us to group locations having similar climate change behaviors.
For instance, temperature in red locations are quite similar and if the
climate changes in A, it is also changed in B. In this case, we can say
that there is a propagation in climate change between A and B.

6. Conclusion

This paper presented an overview on space–time series clustering
approaches. First, we have discussed three categories of existing clus-
tering approaches, including hierarchical, partitioning, and overlapping
space–time series clustering. We have also elaborated on how lim-
itations in one case could be beneficial in another case depending
on the scenario and available knowledge. Second, we have explained
four challenges of space–time series clustering and discussed how they
might affect the clustering process. Third, we have also provided a case
study of existing space–time series clustering algorithms on intelligent
transportation, targeting to two smart cities (Odense in Denmark with
large dataset and Beijing in China with big dataset). We have finally
13
presented a summary of the most relevant directions that could be con-
cluded from the applications of space–time series clustering. Overall,
whereas solutions to time series clustering has gained high maturity
in domains such as image/speech processing, transportation, and bio-
medical data; the use of space–time series clustering in these domains
has become an emerging issue. Our main conclusion from this study
is that much exploration and deep progress are still required in all
directions to obtain more mature solutions for end-user satisfaction.
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