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Abstract

We analyze a new framework for expressing finite element methods on arbitrarily many intersecting meshes: multimesh
finite element methods. The multimesh finite element method, first presented in Johansson et al. (2019), enables the use of
separate meshes to discretize parts of a computational domain that are naturally separate; such as the components of an engine,
the domains of a multiphysics problem, or solid bodies interacting under the influence of forces from surrounding fluids or
other physical fields. Furthermore, each of these meshes may have its own mesh parameter.

In the present paper we study the Poisson equation and show that the proposed formulation is stable without assumptions on
the relative sizes of the mesh parameters. In particular, we prove optimal order a priori error estimates as well as optimal order
estimates of the condition number. Throughout the analysis, we trace the dependence of the number of intersecting meshes.
Numerical examples are included to illustrate the stability of the method.

(© 2020 The Author(s). Published by Elsevier B. V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The multimesh finite element method presented in [1] extends the finite element method to arbitrarily many
overlapping and intersecting meshes. This is of great value for problems that are naturally formulated on domains
composed of parts, such as complex domains composed of simpler parts that may be more easily meshed than their
composition. This is of particular importance when the parts are moving, either relative to each other or relative
to a fixed background mesh, as part of a time-dependent simulation or optimization problem [2,3]. Fig. 1 provides
some illustrative examples. Here, as in [1], we consider the Poisson equation with stationary interfaces to simplify
the analysis.

The mathematical basis for the multimesh element method is Nitsche’s method [4], which is here used for weakly
enforcing the interface conditions between the different meshes. Nitsche’s method is also the basis for discontinuous
Galerkin methods [5] which also may be cast in a setting of non-matching meshes [6—10]. In addition, Nitsche’s
method is also the foundation of the finite element method on cut meshes, CutFEM, see for example [11-16]
or [17,18] for overviews.
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Fig. 1. (Top left) The flow around a propeller may be computed by immersing a mesh of the propeller into a fixed background mesh. (Top
right) The geometry of a composite object may be discretized by superimposing meshes of each component. (Bottom) The interaction of a
set of solid bodies may be simulated using individual meshes that move and intersect freely relative to each other and a fixed background
mesh. (These illustrations also appear in [1].)

Several methods for treating the interface problems with non-matching and multiple meshes exist in literature.
There are techniques based on XFEM [19-27]; domain decomposition [28,29] or [30,31] and the references therein;
the finite cell method [32-37]; the immersed interface method [38,39]; the classical immersed boundary methods
and its variants using finite elements [40—45]; the s-version of the finite element method [46,47] and fictitious
domain methods [48-50], to name a few.

Another approach is to use a matching mesh and make use of elements with polytopic shapes. Methods with this
capability include the PolyDG method [51,52], hybrid high order methods [53,54], virtual element methods [55,56],
and mimetic methods [57,58].

The contributions of this paper is first a generalization of the formulation in [1] for the Poisson equation to
allow for meshes of arbitrary mesh sizes. In the formulation, each mesh has its own mesh size and can be placed
in a general position. The properties of the mesh arrangement are encoded in terms of the maximum number of
overlapping meshes at any point in the domain. Naturally, this number may be much lower than the total number
of meshes. The second contribution is a detailed analysis of the method. We carefully trace the dependency of
the number of intersecting meshes in the coercivity of the method, in the error estimates and in the analysis of the
condition number. The analysis holds for two and three dimension as well as for higher order elements, and extends
previous works on cut finite elements for overlapping meshes and interface problems to much more general mesh
arrangements and mesh sizes. We restrict ourselves to two dimensions in the numerical examples. See also [59-61]
where related formulations for the Stokes problem are presented and analyzed.

In the remainder of this paper, we analyze the multimesh finite element method for the Poisson problem for an
arbitrary number of intersecting meshes and arbitrarily mesh sizes, and present numerical examples. We will start
with reviewing the notation from [1] in Section 2, following a presentation of the multimesh finite element method 3.
We then proceed to establish standard results such as consistency and continuity of the method in Section 4. Showing
coercivity, interpolation error estimates, a priori error estimates and a condition number estimate require more work,
which is why we dedicate individual Sections to these in 5, 6, 7, and 8 correspondingly. We end the paper with
numerical results in Section 9, conclusions in Section 10 and acknowledgments in the last section.
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Flg 2. (a) Three polygonal predomains. (b) The predomains are placed on top of each other in an ordering such that Qo is placed lowest,
.Ql is in the middle and Qz is on top. (c) Partition of 2 = 2y U §2; U (2. Note that {2 = .Qz (These illustrations also appear in [1].)

2. Notation

We first review the notation for domains, interfaces, meshes, overlaps, function spaces and norms used to
formulate and analyze the multimesh finite element method. For a more detailed exposition, we refer to [1].

2.1. Notation for domains

e Let 2 =1 CR? d=2,3, be a domain with polygonal boundary (the background domain).

elet O C ,i=1,...,N be the so-called predomains with polygonal boundaries (see Fig. 2). Note that
these are placed in an ordering

e Let 2 = Q \ U, —it192,1=0,..., N be a partition of {2 (see Fig. 2(c)). Note that this means that x € {2
belongs to (2, where i is the largest index j such that x € ﬁ-, ie.,

i =max{j:x € ;). 2.1

Remark 2.1. To simplify the presentation, the domains {2, ..., {2y are not allowed to intersect the boundary of 2.
The method can be extended to include situations where the subdomains may intersect the boundary by using weak
enforcement of boundary conditions. If cut elements appear at the boundary some stabilization of the formulation
is needed, for instance face based least squares control of jumps in derivatives across faces in the vicinity of the
boundary [17] or an extension procedure [62].

2.2. Notation for interfaces

e Let the interface I'; be defined by I = 8() \U, i 82,0 =1, — 1 (see Fig. 3(a)).
o Let Il; =1; N2, i > j, be a partition of I (see Fig. 3(b)).

2.3. Notation for meshes

o Let I/C\h,i be a quasi-uniform [63] premesh on :(?i with mesh parameter /; = maxg R diam(K),i =0,..., N
(see Fig. 4(a)).

e Let A = max h;.
0<i<N
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Fig. 3. (a) The two interfaces of the domains in Fig. 2: I} = 3@1 \ @2 (dashed line) and I = 8@2 (filled line). Note that I7] is not a
closed curve. (b) Partition of I = I U I;. (These illustrations also appear in [1].)

Fig. 4. (a) The three premeshes. (b) The corresponding active meshes (cf. Figs. 2 and 2(c)). (These illustrations also appear in [1].)
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Fig. 5. (a) Given three ordered triangles Ky, K; and K>, the overlaps are Op; in green, Oy, in red and Oj; in blue. (b) The multimesh
of the domains in Fig. 2(b) consists of the active meshes in Fig. 4(b). (¢) Example with N =3 domains and Np = 2 intersecting meshes.
(The illustrations (a) and (b) also appear in [1].) (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

eletC,; ={K € IE;,J- KN £0@},i=0,..., N be the active meshes (see Fig. 4(b)).
e The multimesh is formed by the active meshes placed in the given ordering (see Fig. 5(b)).
o Let (2, = UKE,C/“_ K,i=0,..., N be the active domains.

2.4. Notation for overlaps

e Let O; denote the overlap defined by O; = §2,;\ {2,i=0,...,N — 1.
o Let O;; =O; N {2, i < j be a partition of O;. See Fig. 5(a) for an example.

4
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e Fori < j, let

1, O; #9,

5, = iy # ! (22)
0, otherwise,

be a function indicating which overlaps are non-empty. For ease of notation, we further let §;; = 1 for

i=0,...,N.

e Let No = max(max; Y ; d;j, max; Zi d;j) be the maximum number of overlaps. Note that No is bounded by
N but is smaller if not all meshes intersect with each other. See Fig. 5(c) for an example.
o Let No, = le;lo dji, i.e., the number of meshes below mesh i with non-empty intersection.

2.5. Notation for function spaces

e Let Wi(w) denote the standard Sobolev spaces on w C {2 with norm denoted by || - ||w;(w) and semi-norm
| - |Wg,(w)- The special case p = 2 is denoted by H*(w) and the space with p = 2 and zero trace is denoted
by Hj(w) (see also e.g. [63,64]). The Euclidean norm on RY is denoted by | - | ~- The corresponding inner
products are labeled accordingly. The same notation is used for the Lebesgue measure and absolute value. It
will be clear from the argument which is used.

e In order to define function spaces on the different meshes in the multimesh configuration we recall the concept
of external direct sums of vector spaces, see for instance [65]. Let the external direct sum X of the vector
spaces X; be denoted by X = @INZO X;, Here X is the vector space with elements x € X which are N + 1

tuples of the form x = (xgp,...,xy), where x; € X; for i = 0,..., N, equipped with component wise
addition
x+y=&o+yo, ..., xy +y8)  x,y€X, (2.3)
and scalar multiplication
tx = (txg,...txy) teR, xeX. 2.4)
If the vector spaces X; are equipped with inner products (-, -)x;, and associated norms || - || x, we let
N N
CoWx =y (i ydx,  Ixlk =) Il 2.5)
i=0 i=0

Note that the direct sum is a purely algebraic construction, which is not dependent on the fact that the
component spaces X; have specific further properties for instance being function spaces, and since we always
have a finite number of component spaces the direct sum is identical to the direct or Cartesian product of
spaces, see [05] for further details.

e Let H'({,;), s > 0, be the standard Sobolev spaces of order s on the domain (2, ;, fori = 0,..., N, and
define the so called multimesh Sobolev space as the external direct sum

N
LA (2.6)
i=0

e Let V,; be a continuous piecewise polynomial finite element space on the partition KCp,; of (2, ;, and let the
multimesh finite element space V,, be the external direct sum

N
Vi =P Vhi 2.7)

i=0
of the finite element spaces V}, ;,i =0, ..., N. To simplify the presentation we assume homogeneous Dirichlet

boundary conditions on 92 with strong implementation of the boundary conditions in the finite element space,
i.e., v =0 on 92 for v € Vj . Other boundary conditions can be enforced using standard techniques.

e To represent a function v € H*({2), s > 0, as a multimesh function let Et: HY (D) — Evazo H?*($2,;) be the
embedding defined by

(ETv) = vlg,, i=0,...,N. (2.8)



A. Johansson, M.G. Larson and A. Logg Computer Methods in Applied Mechanics and Engineering 372 (2020) 113420

e To interpret the multimesh function v € @fvzo L*(£2,,;) as a function in L?(£2) we define an embedding
E: @Y, LX(2,) = LX) as follows

(Evp)lo, = vilg, i=0,...,N. (2.9)
We note that it follows from the definitions of £ and E' that

EEfv=v v e LX), (2.10)
since

(EEW)|o, = (ETv)ilg, = (W, o = vl (2.11)

where we used the fact {2, C (2, in the last step. For implementation purposes the following equivalent
definition is useful

(Ev)(x) = ;max | v; (x), (2.12)

iixely;

which corresponds to picking the top-most mesh in the case when x belongs to several meshes.
e For s > 0 we define the sum of V}, and @,N:o H*({2;) by

N

N
Vi + @ H () = D (Vii + H (D) (2.13)

i=0 i=0
where each of the component spaces Vj,; + H*({2,;) C LZ(Q;,J) consists of functions of the form v 4+ w with
veV,;and w e H* ().

2.6. Notation for jumps and averages
e To formulate the stabilization form we define a jump operator for functions v € V, on the overlaps
Oix = O; N (Y, with i < k (cf. Section 2.4), by
[v] = vi — v on Oj. (2.14)

e To formulate the Nitsche method we define the jump and average operators on the interface segment [;; =
I §2; for i > j (cf. Section 2.2), as follows

[v] =v; —v;, (2.15)
<l’li . Vv) = Kin; - Vl)i + Kjn; - ij, (216)
where v; € V,,; and v; € V, ;. The weights «; and «; are defined by
fu I=i,j (2.17)
K| = =i, j, .
1 hi +h; J
and we note that
K,‘+Kj=1. (218)

Remark 2.2. By the definitions in Sections 2.2 and 2.4 we have I;; = I' N {2; and O = (£, ;\ 2;)N 1% D I'j;.
Therefore, the two jump operators [-] on I}; and [-] on Oy are compatible on I; in the sense that

[v] = [[vﬂ on Fij C Oj,‘. (2.19)

The indices are swapped since it is most natural to partition I; with respect to domains below i, and O; with
respect to domains above i. We will use this to show coercivity in Proposition 5.4 and in the interpolation estimate
in Proposition 6.1.
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2.7. Notation for norms

e Letc > 0and C > 0 be constants. The inequality x < Cy is denoted by x < y. The equivalence cx <y < Cx
is denoted by x ~ y.
e Let | - [|5, denote the semi-norm defined by

N—-1 N
oy, =2 > IV, (2.20)

i=0 j=i+1

and let | - ||, denote the norm

N
iy =Y vl - Q.21)
i=0

Note that for the norm || - ||, the domain of integration extends to each active domain 2, ;, meaning that each
overlap will be counted (at least) twice.
e The definition of the energy norm, which we will denote by || - ||;, will be defined after the presentation of
the finite element method in (4.2).
3. Finite element method
As a model problem we consider the Poisson problem
—Au=f in {2, (3.1a)
u=20 on 92, (3.1b)
where 2 C R? is a polygonal domain. The multimesh finite element method for (3.1) is to find u;, € V}, such that
Ap(up, v) =1 (v) Vv € Vp, (3.2)
where for v, w € V,,

Ap(v, w) = ap(v, w) + s5(v, w), (3.3)

N
an(v, w) =Y (Vi Vuy)g,

i=0
N -1
=2 (ni - Vo), lwhry; + (1, (ni - Vwhr,
i=1 j=0
N -1
+ )Y Bolhi + k) (] [whry;. (3.4)
i=1 j=0
N-1 N
si.w) =) > AV [Vulo,. (3.5)
i=0 j=i+1
N
W) =) (f.va,. (3.6)
i=0
and we recall that the Dirichlet boundary condition # = 0 on {2 is for simplicity enforced strongly in Vj¢.
Here, By > 0 is the Nitsche (interior) penalty parameter and 8; > 0O is a stabilization parameter. Note the relation
sp(v,v) = B4 ||v||§h between the stabilization term s;, and the norm || - ||, (2.20).

4. Energy norm, consistency, Galerkin orthogonality and continuity

In the forthcoming analysis we will need to compare the exact solution u € H*({2) and the finite element
solution u;, € V). To facilitate the analysis we will see that it is natural to represent the exact solution u € H*({2)

7
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as a multimesh function in @5\/:0 H?*({2.;), using the E f operator (2.8), and define the error by

E'u —uy, € Vi + ETH* (). (4.1)
For clarity, when there is no risk of misunderstanding we use the simplified notation ¥ = Efu and write
u—uy =ETu—uh.
We define the energy norm || - ||, on V, by
N il
vl = Z IV l3, + ||v||2 +ZZ(h IVvillF, + kI Vo I7,)
__, 11 i=1j=0
I 11
N i1
+D ) i+ k)T, - (4.2)
i=1 j=0

v

The numbering of the terms will be used to alleviate the analysis of the method.

In order for A;, and the norm || - ||, to be well defined also on Efu we note that the traces of the normal flux
appearing in the forms are well defined if u € H3/?%¢(£2), € > 0. We then have using I}; C 9 and standard trace
inequalities

IVVllr, < IVollye, S IVVllgie@,) S Ivlg3nie ), (4.3)
noting that Q[ does not depend on A. In view of these observations we define

vV = ETH* () + V. (4.4)

We note that V,, C V, the error u — u;, = Etu —uj, € V, A, is a bilinear form on V, and || - || is a norm on V.
We next establish the consistency, Galerkin orthogonality and continuity of the form Aj.

Proposition 4.1 (Consistency). The form Ay is consistent; that is,
Ap(u,v) =)  YveV, 4.5)

where u € HOI(Q) N H32 () is the solution to (3.1).

Proof. This result follows by for v = (v, ..., vy) € Vj, multiplying (3.1a) by v;, integrating by parts on {2 C (2, ;
and summing the contributions

Z(f v = Z —(Au, v))g, —Z((w,wm — (ni - Vi, 00, (4.6)

i=0

For the boundary term we note the decomposition

00 = (Uj'_:]opij) U (Uil i) 0
to conclude that
N i—-1
Z(nz VM U[)«.)Q - Z Z(”[ VM Vi )Fz/ + Z Z (n’ Vl/t, vi)Fji ' (48)
i—0 j=0 i=0 j=i+1

Using summation by parts and then swapping the indices i and j, the second term takes the form

N N N j—1 N i—1
>3 Vi, = S Vuwn, = 330V, @9
i=0 j=i+1 j=0 i=0 i=0 j=0
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Now on Ij; we obtain using the fact that n; = —n; and the definition of the jump (2.15) and average (2.16) with
weights summing to one (2.18),

(ni . Vuv vi)F,'j +(n_] . Vuv v])F,j

= (l’li . VM, vi)Fi_j - (I’l,' . Vu, Uj)Fi_j (410)
= (I’l,‘ . Vu, v — vj)Fi_/ (411)
= ({n; - Vu). WD), 4.12)

Here all traces of the gradient are well defined in view of (4.3). Now observing that u|,, = (E Tu); |, we obtain
using the notation u; = (Efu);,

N N N j—1
Y (fovdg =Y (Vui, Vg — Y Y (i - Vui), vy, (4.13)
i=0 i=0 i=0 j=0

which combined with the observation that
[l =[E'ul =u; —u; =0  on I}, (4.14)
and similarly

[u] =[ETu] =0, on0O;. O (4.15)
Proposition 4.2 (Galerkin Orthogonality). The form A, satisfies the Galerkin orthogonality; that is,

Ap(u —up,v)=0 Yv eV, 4.16)
where u € HOI(Q) N H3?+<(0) is the solution of (3.1) and u;, € Vy, is a solution of (3.2).

Proof. The result follows directly from Proposition 4.1 and (3.2). O

Proposition 4.3 (Continuity). The form A, is continuous, that is,
Ay, w) S llvllallwll, - Yo, w eV, (4.17)
where V is defined in (4.4).

Proof. The result follows by repeated use of the Cauchy—Schwarz inequality. [J

5. Coercivity

To prove that the form A, is coercive, we will make use of the following lemma.

Lemma 5.1. For all v € V), we have
N

IVl < No Y IIVuillg, + [Ivll3,- (5.1)
i=0

Proof. Take an element K € K;; and observe that K = Uj-\’:iK N {2;. It follows that

N
IVvillz = IVvillkng + D IVuilkng, (5.2)
j=itl
N
< IVuilkng +2 D (V@ = v)lkng, + 1V0)llkng,) (5.3)
j=i+1
N N
<2 IVilikng, +2 Y IV = v)lkng,- (54)
j=i j=itl

9
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Here we have made use of the inequality a®> < 2(a — b)? 4+ 2b?%, which follows by Young’s inequality 2ab < a”+ b?
applied to a®> = (a — b + b)*> = (a — b)*> + b* + 2(a — b)b.
Summing over all elements K € K, ; we have

N N
IVvillS,, <2 IVuilg,ne, +2 D IV = v)lg, ne; (5.5)

j=i j=it1
N N

=23 8illVV;liG, ne, +2 Y IV — vl (5.6)
j=i j=i+l1
N N

<2 8lVyliG, +2 ) IV = vy, (5.7)
j=i j=i+l1

where we have used 2, ; N {2; = O;; € {2; for i < j. Note that the second sum is empty for i = N.
Summing over all domains, we obtain by (2.2)

N N N—-1 N
Vol <2 8illVolis, +2) 0 Y IV — vy, (5.8)
i=0 j=i i=0 j=i+1 '
N
<2No ) IVy;lig, + 2101, (5.9)
j=0

which proves the estimate. [

Remark 5.2. There is a dependence on the maximum number of overlaps Np in Lemma 5.1. In practice, No
is of moderate size and this dependence is not an issue. The interpolation error estimates and condition number
estimates (shown below) have a different kind of dependence.

Remark 5.3. Using an inverse bound of the form (see e.g. [63])
||v||HI(K) <h |U|Hm([() m,l €Z+, m Sl, (510)

one can show that the stabilization term s;(v, w) may alternatively be formulated as

N-1 N
si,w) =" )" Bi(hi + hp) (] [who,- (5.11)
i=0 j=i+1

Using Lemma 5.1, we may now proceed to prove the coercivity of the bilinear form.

Proposition 5.4 (Coercivity). The form Ay, is coercive. More precisely, for By and By large enough, we have

lvll; < Ap(v,v) Yo € Vi (5.12)

Proof. We first note that

N i—1
Ap(v, v) > an,ng + 3> Bothi + h) T I, + Bisa(v, v)
i=0 i=1 j=0
N i-1 '
= > 20 - Vo) [y, |- (5.13)
i=1 j=0
*

Now, forl =i or ]l = j, let

Kni(lij) ={K € K : KN Ii; # 0} (5.14)
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denote the set of elements in K, ; which intersect ;. Using an inverse estimate (see [12]), we have

2 2
mllVulligar, S IVullk,

where the constant is independent of the position of I7;;. It follows that

i—1 i—1
Y lVuly, =Y ikl Vuli,
Jj=0 j=0
i—1
S 8ilVullk, iy
j=0
i—1

2
<Y 5illVul,,.

j=0

(5.15)

(5.16)

(5.17)

(5.18)

where we have noted that I; (the part of I; bordering to {2; for j < i) is empty if the overlap Oj; (the part of

{2, ; intersected by I for j < i) is empty, as indicated by §;;. See also Remark 2.2.

For [ =i, we thus obtain the estimate

N i-1 N i-1

YD kil S D0 8ilVuily,,

i=1 j=0 i=1 j=0
N

<D s | 1V,

i=1 j=0

N
N

2
Z No, IV vill%,,

2
< No Z Vil
i=0

= Nol Vol

while for / = j, we obtain the similar estimate

N i-1 N i—1
2 2
DD hillVesln, S 303 85l Vusl,
i=1 j=0 i=1 j=0
N N
2
<> (Z a,,-) IVv;ll,
j=0 \i=0
N
2
= No Y IIVy;ly,
j=0
= No||Vvl;.

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

Proceeding with % using the Cauchy—Schwarz inequality with weight e(h; + &), where € is a positive number,

and Young’s inequality 2ab < a® + b?> we obtain

N i—1

* =) > 2l((ni - Vo), [vDry|

i=1 j=0
N i—1

< > D2 2 + 1) Pl - V) €Ay + )T

i=1 j=0
11

(5.28)

(5.29)
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N i—1 N i-1
<D D ehi+hplin - Vo, + Y > € i+ hp) ]I, (5.30)
i=1 j=0 i=1 j=0
N i—1 i—1
SO Y e(millVuillg, +hilIVulT,) + )Y e i+ hp) T I, (5.31)
i=1 j=0 i=1 j=0
N i-1
SeNollVully + ) e i+~ I, (5.32)
i=1 j=0

In (5.31) we used that

(hi +hpll(n; - V)T, (5.33)
< 2(h; +h K}V ||2r,«j + 2(hi + )7 | Vv, ||2r,-,- (5.34)
< 2hilIVillT, +2h; 1V V5117, (5.35)
where we used the definition (2.17) of the weights «; to obtain
2 hlz hl .o
(hi +hj)k; = = hy <h l=1i,j. (5.36)

hi+h;  hi+h; —
In (5.32) we made use of (5.23) and (5.27).

By Lemma 5.1, we may now estimate the || - ||, norm in terms of the || - || norm and the || - ||, norm to obtain
N N i1
* S NG D IVullG, +eNollvlly, +e YD hi+h) ]I, (5.37)
i=0 i=1 j=0
Combining (5.13) and (5.37), we find that
N
An(,v) = Y (1 = eCNOIIVilly, + (B1 — eCNo)|vlI},
i=0
N -1
-1 ) -1 2
+ le Za‘wo — 'O+ h) MG, (5.38)
i=1 j=

and thus, by choosing € small enough and then By and B; large enough,

N i—-1
An(v, v) 2 an,ng oI, + Y0 Y i+ )TN (5.39)
i=0 i=1 j=0

The coercivity now follows by noting that term /77 in (4.2) may be controlled by terms / and /] as above in
the estimate of . [J

Remark 5.5. By continuity (4.17), coercivity (5.12) and a continuous [, (v), there exists a unique solution to (3.2)
by the Lax—Milgram theorem (see e.g. [63]).

Remark 5.6. In view of (5.38) we note that for large By we may take € ~ B ' and thus we can choose
Bi~e~ By
6. Interpolation error estimate
To construct an interpolation operator into Vj,, we pick a standard interpolation operator into Vj, ;,
mhit H' Q) — Vi, i=0,1,...,N, (6.1)
where ), ; satisfies the standard interpolation error estimate (see e.g. [63])

kb 1—
v = mhivllamey S BT 0] gre o, ko) - (6.2)
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Fig. 6. Balls B;s(x) centered at x € I

Here, NV, (K) denotes the set of elements that share a vertex with K. We then define the interpolation operator

N
11, - @HI(Q/L,‘) SV > @{V:()Tfh’,‘v,‘ eV, (6.3)
i=0

which by composition with ET, see (2.8), provides the interpolation operator
my s HY(2) 3 v — ILENw = @) ym(vle,,) € Vi (6.4)

To prove an interpolation error estimate for 77, recall Remark 2.1 regarding the non-intersecting boundaries and
let Us(I;) denote the tubular neighborhood of I; defined by

Us(ly) = | Bstx), 6.5)
XGF,'J'
where Bs(x) is the ball of radius & centered at x; see Fig. 6. In addition, let
Us( = | J Us(Iy). (6.6)

ij

Proposition 6.1 (Interpolation Error Estimate). The interpolation operator m; satisfies the interpolation error
estimate

N
. 2 < 2%, 12
llv = mavlli; S Chn Xojh Vi k1, oot ey (6.7)
iz
where
Cpn = 1+ max h{Ne, + max h;|I}], (6.8)
0<i<N 0<i<N

and the norm is defined by

2

T 2
HAL W oy T |U|Hk+1(_(2) + |U|W§o“(Uh(F>)' 6.9)

vl

Proof. We first let n = v—mj, v denote the interpolation error and recall the numbering of the terms in the definition

of the energy norm || - ||, (4.2). Starting with term /, we have
N N
I =Y IVnilly, < DIVl - (6.10)
i=0 i=0
For term 11, we have, since U?’:iﬂ(’)ij C 2 and O;; C Us(L'j;) N §2; (see Remark 2.2) with § ~ h;,
N-1 N
2 2
Ho S Y Y AVilly, + 1015, 6.11)
i=0 j=i+l
N-1 N-1 N
= D Vil + >0 2 8l Vit ne, (6.12)
i=0 i=0 j=i+1

13
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For term I11, recall the inverse estimate (5.16) and note that ICh,j(p,,_/) C Us(Ii;) with § ~ h;. Thus,

N i-1
I =) il VillT, + kI VnslT,) (6.13)
i=1 j—O
N i—1
< Noan,th + 0 8l Valiz, - (6.14)
i=1 j=0

For term IV, we first handle the jump term as in /7 and then proceed as for 711,

N i—1
V) <)Y i+ 0 Al + sl 7)) (6.15)
i=1 j=0
N i—1
<Nth InilG,, + D> 85h3 iy - (6.16)
i=1 j=0
Now, note that since {2, ; C Uj _i+1 Us(I7)), we have
N i—1
valngh < va,ng + 0 Sl (6.17)
i=1 j=0

Therefore, there are only two terms in I — IV that need to be estimated. First

2(m—1
Wil oy S B il g, m=0,1, (6.18)

which follows immediately by (6.2). Second, we make use of the disjoint partition of I; and noting that

\Us(Iij)| S by max(h{~", | T;]), (6.19)
we obtain
N i—1
2(m—1)
D2 m " iy,
i=1 j=0
N i—1
2k 2
S D Wil sy (6.20)
i=1 j=0
N i—1
< h*h; max(h9=", | Ty D | (6.21)
~ P i Ry ) '
i—1 j=0 !
N i—1
< R Y max(h? 15D | R, (6.22)
~ 1 a i ) ij i V; WéO+I(U5(Fi)) .
i=1 j=0
N
d 2k
S 2Ny + il TR il (6.23)

Due to the maximum norm, this estimate also holds with n; replaced by 7;, and the desired estimate holds. []

Remark 6.2. Note that the stronger control v; € Wfo“(Uh(F )) enables us to establish the estimate (6.7) with
the constant given by (6.8) which only have weak dependence on the configuration of the overlapping mesh
configuration encoded in terms of Np, and |I}].

7. A priori error estimates

We may now prove the following optimal order a priori error estimates. The estimates are supported by the
numerical results presented in Fig. 7. For details on these results, we refer to the accompanying paper [1].

14
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5 g 10
= g
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h h

Fig. 7. Rate of convergence in the L2(£2) (left) and HOI(!?) (right) norms for p =1 (blue), p =2 (red), p = 3 (yellow) and p = 4 (purple),
where p is the polynomial degree of the finite element approximation. For each p, the convergence rate is shown for N =1, 2,4, 6, 16, 32
meshes (six lines) and the errors for N = 0 (the standard single mesh discretization) are marked with x and dashed lines. (These illustrations
also appear in [1].) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Theorem 7.1 (A priori Error Estimates). The finite element solution u;, of (3.2) satisfies the following a priori error
estimates:

N
_ 2 < 2k,12
e = wnlly S Conw Ym0, ity (7.1)
i=0
N
_ 2 < 1/2 2k,012
lu — unllfy S (No + D2Chnh Y R Wl g i,y (7.2)

i=0
Proof. The proof of (7.1) follows the standard procedure of splitting the error and using the energy norm
interpolation error estimate from Proposition 6.1,

N —wnlly < Nlu = whulln + Nlwnu — wplln. (7.3)

To estimate the second term on the right-hand side of (7.3), we use the coercivity (Proposition 5.4), Galerkin
orthogonality (Proposition 4.2) and continuity (Proposition 4.3) of A; to obtain

Nrwnu — unlly < Ap(au — up, whu — up) (7.4)
= Ah(m,u — U, U —uh) (75)
S lwnu — ullyllnu — wplly. (7.6)

It follows that
N — unlln S N — mpulls. (7.7)

Combining (7.3) and (7.7) with the interpolation error estimate of Proposition 6.1 now yields (7.1).
To prove (7.2), we use a standard duality argument (see e.g. [63]). Let ¢ be the solution to the dual problem

—Ap=vy  in {2, (7.82)
¢ — O on Q’ (7.8b)

with ¥ € L?(£2). Using elliptic regularity we then have
ol 20y S 1Y 11y (7.9)

from which it follows that ¢ € V. Using the fact that A;, is symmetric it follows from consistency (Proposition 4.1)
that

Ay, @) =@, ¥)o  YveV. (7.10)
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We now take v = e = u —u;, and use the Galerkin orthogonality (Proposition 4.2), continuity (Proposition 4.3) and
a standard interpolation inequality on each set {2, (note that we cannot use stronger regularity than ¢ € H>({2)
since ¥ € L%(§2) and thus the interpolation bound 6.1 is not applicable for ¢) to obtain

(e, V) = Anle, ¢) (7.11)

= Ayle, ¢ — mpe) (7.12)

< llellsll¢ — wagll (7.13)
N 1/2

< llell (Z h?|¢|§,zmh,i)) (7.14)
I;O . "

< llells (Z 100, o+ Zh?|¢|§,z(9,_)> (7.15)
i=0 ]/i2=0

< lells (Vo + D912 ) (7.16)

S llelln(No + DRIy 1l e, (7.17)

where we used the fact that the maximum number of overlapping meshes is Ny and in the last step we have used
the standard elliptic regularity estimate (see e.g. [63]). Note that we have continuity (7.13) also for functions in
H32*€(D), € > 0, as noted in Proposition 4.3. The desired estimate (7.2) now follows from (7.17) by (7.1) and
taking Y =e. O

8. Condition number estimate

To prove a bound on the condition number, we first introduce some notation and definitions. Let {¢;, j}ﬁl be the
finite element basis of V}, ;. We then have the expansion

M;
v = Z@,ﬂpi,]‘, ®.1)
j=1
for each part Vi of a multimesh function v = (v, ..., vy). Collecting all expansion coefficients for the 1+ N parts
into a vector ¥ of dimension M = " | M;, the total stiffness matrix A for the multimesh system is defined by
(Av, W)y = Ap(v, w) Yv,w € Vp, (8.2)

with condition number
K(A) = [Aly|A . (8.3)

To derive an estimate of K(Z) we make use of the following lemmas.

Lemma 8.1 (Inverse Inequality). It holds that
lolly < (1 + No) Jnax h; ||v||% Yv € V. (8.4)

Proof. Recall the definition of the energy norm (4.2). We first note that

N N
=Y "1Vuly, < D IVl (8.5)
i=0 i=0

For term /1, we have by recalling (6.12)

115 Z IVuillg,, + Z Z 8 IV Iy e, - (8.6)
i=0 j=i+1
N
S No Y IVullG, - (8.7)
i=0
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Term /11 may be estimated similarly to obtain
N
1T S No Y IVulG,,. (8.8)
i=1
For term IV, we have by recalling (6.16)

N i—1

IV < No Zh loilly, , + > > 85ih 2105, (8.9)
i=1 j=0

< No Zhﬁllvilléh,,.. (8.10)

i=0
The desired estimate now follows using the standard inverse inequality (5.10). [

Lemma 8.2 (Poincaré Inequality). It holds that

Ivll; < Cellvll; Yo € V. (8.11)
where
Cp=1 + max h N@ + max h No,. (8.12)

Proof. First note that by a Taylor expansion argument and Lemma 5.1, we have

N
iy S Y (Iill, + A1Vl ) (8.13)
i=0
N
S va,ng +NOZ W IVl + b Z IV = vy, |- (8.14)
i= j=i+1

To control the first term on the right-hand side in (8.14), let ¢ € H 2(£2) be the solution to the dual problem
—Ap =1y in (2, (8.15a)
=0 on 042, (8.15b)

where ¥ € L2(f2). Multiplying the dual problem with v € V, and integrating by parts, we obtain using the
Cauchy—Schwarz inequality

N N
Y i Yo = Z(vi, —Ad)q, (8.16)
i=0 i

N i-1

= Z(vU,, Vo), — Y Y (vl.ni - Ve)r, (8.17)

i=1 j=0

< Z IVvill e, 1 Vol o

i=0
N i—1
+ YD i+ k) Pl B+ )PV, (8.18)
i=1 j=0
N i—1
(Z IVl + D i+~ v]up,,)
i=1 j=0
N i-1 172
2 2
><<IIV¢IIQ+_X1:Z;(M+hj)IIV¢|Ip,.j) . (8.19)
1= J=

17
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Now we continue with the second factor in (8.19). Using the trace inequality

I3k S A~ vk + A1Vl (8.20)
with constant independent of the position of an interface y (see [12]), we have
N i-1
YD Vel
i=1 j=0
N -1
SO 8 (IVBIIK, sy T HIVBIR, ) =100 (8.21)

I}
=

i=1j

By the construction of Us(15;), see (6.5), we have K, ;(I3;) € Us([};) with § ~ h;. Furthermore, by the Holder
inequality [64] with coefficients r, s such that 1/r + 1/s = 1 we have

VO, ;) S IVOllTyr,) (8.22)
=|1- |V¢|2||L‘(U5(Fi_,-)) (8.23)
< IMzswsrp IV Pl wscry) (8.24)
= |U8(Fij)|1/s|||V¢|2||L’(U5(F,-j)) (8.25)
S 1D NV sy (8.26)
S IV vy (8.27)
Sh N (8.28)

with p=2rand 1/s=1—-1/r=1-2/p.

To determine p in (8.28), we use the Sobolev embedding Wé(()) - W;(Q) [64] with k =1,/ =2 and ¢ = 2.
This is motivated by the fact that due to elliptic regularity and ¥ € L?({2), we have ¢ € H?({2). Since the embedding
holds for 1/p —k/d = 1/q —1/d [64], we obtain p = 2d/(d — 2), where p = oo for d = 2. Thus

l —2/p < 2/d
19010, S 1 ||¢||W2d/(d it (8.29)
2 d

Cf. [64] regarding the last inequality for d = 2, 3. Returning to the second factor in (8.19) we thus have, using (8.21),
(8.28) and (8.30) together with a standard duality argument (see e.g. [63]), elliptic regularity, a stability estimate,
the Poincaré equality and ignoring higher order terms that

N i-1
VIS + Y Y (i +hpIVSIT, (8.31)
i=1 j=0
N i—1
SIVIL + D03 5t (K10, + 02 + BDIVGIR, 1) (8.32)
i=1 j=0
N i—1
SIIn+>.) s ( VN Gy + 7 + h§>||x/f||%<h,,.(p,.j>) (8.33)
i=1 j=0
N
SII% + 2 (Noh 191, + Nohi2lvI%,) (8.34)
i=1
N
S Y A +h"No, + hiNop IV I3, (8.35)
i=0
< Crllvll,. (8.36)
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The bound on ), (v;, ¥)gq; in the left-hand side in (8.16) with ¥ = v now reads

N -l 12
va,ng < CP<Z IVuilll, + D> i +hj)” 1||[v]||2pl.j> (8.37)

i=1 j=0
since ||v|¢, is bounded.
To conclude, recall (8.14) and insert (8.37) to obtain the desired estimate
N i—1

lllz < Cp (Z IVuills, + Y i+ h )~ ]I, )
i=1 j=0
N N
2 2 2 2
+No Y | BVl +5F 3 IV —vpl, (838)
i=0 j=i+l
S Celivll. O (8.39)

Theorem 8.3 (Condition Number Estimate). It holds that

©(A) S Cp(1+ NoYh™>. (8.40)
Proof. Since K ; is conforming and quasi-uniform we have the equivalence

loillgy,, ~ B0, Vi € Vi (8.41)
see e.g. [63]. It follows that

N N
ol = D Hvillgy,, ~ Y kil ~ ARl (8.42)
i=0 i=0
Recall the deﬁnition of the matrix norm
~ ATl
1Ay, = sup 5 Ol (8.43)
40 M

To estimate |A\| u» we use the definition of the stiffness matrix (8.2), the inverse inequality (8.4) and the
equivalence (8.42) to obtain

_ ok
|AB],, = sup AL M (8.44)
@40 W]y
Anv,
g 00 w45
£0 Wy
< qup I 546

a0 Wy
(L+ No)h 2wl llwll

S — (8.47)
D0 [w]
< (4 No)h" [0l (8.48)
Dividing by [v] and using the definition of the matrix norm (8.43) yields
1Aly < (14 No)h=2. (8.49)

To estimate |Z’1| u» we proceed similarly, and additionally use the Poincaré inequality Lemma 8.2 and the
coercivity of the bilinear form (5.12) to obtain

h 15, ~ vl (8.50)
< Crlivll; (8.51)
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Fig. 8. Condition number as a function of the mesh size & [1].

< CpAp(v,v) (8.52)
= Cp(AD, D)y (8.53)
< Cp|AV] (V] y. (8.54)

The inequality thus reads

W [Oly < CplADly. (8.55)
Setting 7= A~'% yields

WA Dy < Cplidly. (8.56)
Dividing by |w|,, and using the definition of the matrix norm (8.43) now gives

A", < Cp(1 + No)h ™. (8.57)
By using (8.49) and (8.57) in the definition of the condition number (8.3), we obtain the desired estimate (8.40). [

The estimate for the condition number is supported by the numerical results presented in Fig. 8. The slope is
found to be —1.76. The details on this example is found in [1].

9. Numerical results

To demonstrate the applicability and robustness of the multimesh finite element formulation, we present here a
couple of numerical examples. For additional examples, we refer to the companion paper [1].

9.1. Convergence under variable mesh size

For the first example, we construct two multimesh configurations I/ and I/, each consisting of three parts
(overlapping meshes) as show in Fig. 9. We consider a simple Poisson problem with analytical solution

u(x, y) = sin(wx) sin(wy). 9.1)

The goal is to study the convergence under refinement of the three meshes for each of the two test cases. Starting
from initial coarse meshes with equal mesh sizes, we refine each part separately, using 8 different mesh sizes, and
compute the L2(£2) and Hol(()) error norms. A piecewise linear finite element basis is used for both configurations.

The refinement procedure is as follows. First we will refine part O in 8 steps, then part 1 in 8 steps, and finally
part 2 in 8 steps. Then we swap the order and refine part 1 first, followed by parts O and 2. We do this for all
permutations of the order of the parts; in total there are 3! combinations. This procedure is performed for both
I and I1.

20
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Fig. 9. Configuration I (left) and and configuration 77 (right) exemplified by refined part 2 for / and refined part 1 for /7. The coarse and
fine meshes have mesh sizes 273 and 279 respectively.

Configuration [ is a nested configuration (but not hierarchical). Configuration 7/ is generated by placing the
second and third parts in a “random* position on top of the background mesh of 2, = [0, 1]?. Specifically, we have

2! =10.2,0.81%, 9.2)
25 =10.4,0.6]%, (9.3)
2" =10.2,0.8] x [0.3,0.75], rotated 23°, 9.4)
27" =10.3,0.5] x [0.05, 0.8], rotated 44°, 9.5)
as illustrated in Fig. 9. The meshes are refined with mesh sizes 27k k=3,...,10, ie., 8 steps. Thus, the mesh

size ratio between two parts are in this example at most 27 = 128.

In Fig. 10 we show the L?(£2) and HOI(Q) errors for the two configurations. As expected, the different curves
start and end in the same point. Moreover, we see that during refinement of the first part, errors decrease but flatten.
This is due to the fact that the errors from the other two, unrefined, parts dominate. When the second part starts
being refined, the errors drop but will again flatten since the errors are dominated by the third and last unrefined
part. Refining this part results in a sharp decrease in the error. Due to the effect of dominating errors from different
parts, we observe two L-shaped drops for each refinement permutation, for both configurations and for both error
quantities.

There is no significant L-shape decrease for the first refined part, but it would be possible to construct a multimesh
configuration such that this would be the case. For the example with this analytical solution, the first part would
have a dominating error if the area of the part would be dominating.

It is worth noting is that the errors decrease smoothly and the method is stable despite the large differences in
mesh size.

9.2. Boundary layer resolution

To demonstrate the potential of the multimesh formulation for local adaptation, we consider the boundary value
problem

—Au+elu=f in {2, (9.6a)
u=>0 on Iy, (9.6b)
u=1 on I7. (9.6¢)

For ¢ — 0, the PDE reduces to u = 0 which is compatible with the boundary condition on . As a consequence,
the solution for small € is u & 0 away from the boundary I} and then an exponential transition to u = 1 close to
I'1. The width of the boundary layer is ~ €. The multimesh finite element formulation is identical to (3.2) with the

21
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Fig. 10. Errors during refinement of multimesh configurations 7 (left column) and 77 (right column). Colors and markers indicate which
part is being refined. The refinement procedure starts with all parts having a mesh size of 273 resulting in approximately 10> degrees of
freedom. Each part is then refined individually and sequentially as described in the text, until all parts have a mesh size of 271, resulting
in a total of approximately 10° degrees of freedom.

additional term
N
€72 (v wi)g- ©.7)
i=0

We consider a model problem where the domain {2 is defined by [0, 1]?\ w, where ® is the shape of the standard
NACA 6409 standard. We let Iy be the boundary of the unit square and let I} be the boundary of the airfoil. The
solution exhibits a boundary layer of width € on the airfoil boundary.

To discretize the problem, we let I/C\h,o be a uniform mesh of the unit square with mesh size H = 2-6+% and
let I/C\M be a boundary-fitted mesh of width w = 0.1 - 27k for k = 0,1,2,3,4. The boundary layer parameter is
chosen as € = w/2. The mesh size h < H is chosen to well resolve the boundary layer. Note that we intentionally
take w small relative to the boundary layer width so as not to get the entire boundary layer transition on the finer
mesh, in order to illustrate better the robustness of the method and the coupling of the solution represented on the
background mesh and the boundary-fitted mesh on the interface I'. If instead we take ¢ = w/10, the solution would
transition quickly to # =~ 0 on the interface I.

Fig. 11 shows the solution for k = 1,2, 3,4, clearly demonstrating the decreasing width of the boundary
layer with increasing k. Note the smooth transition of the solution going from the representation on the coarse
background mesh to the fine boundary-fitted mesh. In Fig. 12, a 3D view is plotted for both solution components
for k =0, 1, 2, 3, 4. Finally, Fig. 13 shows detailed plots of the solution close to the boundary layer for k = 0 and
k=4

10. Conclusions

We have analyzed a general framework for discretization of the Poisson equation posed on a domain defined by
an arbitrary number of intersecting meshes with arbitrary mesh sizes. The analysis show that for sufficiently large
Nitsche and stabilization parameters, the method is optimal and stable. As expected, there is a dependency on the
maximum number of intersecting meshes in the coercivity, error analysis and in the condition number estimate. This
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Fig. 11. Solution of the boundary layer problem (9.6) for k = 1,2, 3, 4.

Fig. 12. Solution of the boundary layer problem (9.6) for k =0, 1, 2, 3, 4. The left column shows the solution represented on the background
mesh, the middle column shows the solution on the overlapping boundary-fitted mesh and the right column shows the composite multimesh
solution.
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Fig. 13. (Top) A 3D view of the matching solutions to the boundary layer problem (9.6) on the background mesh and the overlapping
boundary-fitted mesh for k = 0. (Middle) The corresponding 2D view for k = 0. (Bottom) A detailed zoom close to the tip of the airfoil
for the finest mesh (k = 4).

was seen numerically in the accompanying paper [1], and here we are able to quantify this dependence. In addition,
the numerical results presented in this paper show that the method is indeed stable when the meshes involved have
vastly different mesh sizes.
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As mentioned in the introduction, the multimesh method may be advantageous in the case of dynamic domains,
since remeshing may be avoided. This is due to the fact that the computational geometry routines automatically
identify the elements constituting the active meshes, and this can easily be done every time the domains move.
Although so far only studied for two-dimensional problems [2] reports a speed up. The same approach is also
applied in [3].

Future work involves extending the implementation to include three-dimensional meshes, which is a challenge
due to requirements of efficient and accurate computational geometry routines in the case of arbitrary many
intersecting meshes. That the multimesh formulation is valid in the case of two meshes in three dimensions is
explored in [60] for the Stokes problem.
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