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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Grid-connected EV cabin preheating is 
used to extend driving ranges in cold 
climate. 

• Experimental study with 51 preheating 
sessions of five typical EV models. 

• Multiple linear regression models for 
energy use for EV cabin preheating. 

• EV preheating energy loads are analysed 
with apartments loads during the 
winter. 

• EV cabin preheating data are available 
for load simulations and forecasting.  
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A B S T R A C T   

The number of EVs is increasing globally. In cold climates, it is generally recommended to use electricity from the 
grid to preheat the EV cabin before using the car, to extend driving ranges, to ensure comfort, and for safety. A 
majority of such preheating sessions are happening in the morning hours during the winter, when there is also a 
high demand for other energy use. It is thus important to understand the power loads for grid-connected pre
heating of EV cabins. This work presents an experimental study, with 51 preheating sessions of five typical EV 
models during different outdoor temperatures. The results of the study showed that during the preheating ses
sions, most of the EVs had a power use of between 3 and 8 kW initially, which was reduced to about 2 to 4 kW 
after a 10 to 20 min initial period. For most of the sessions, the preheating lasted between 15 and 45 min. The 
preheating energy use was found to be up to 2 kWh for most EVs, with a maximum of 5 kWh. Multiple linear 
regression models were developed, to investigate the relationship between various variables and the energy use 
for preheating. Finally, hourly energy loads for EV cabin preheating were compared to other energy loads in 
apartment buildings. The power and energy loads for preheating EV cabins are affected by a number of pa
rameters, such as the specific EV, charge point, preheating duration, temperature levels, and user habits.   

1. Introduction 

1.1. Background and context 

Greenhouse gas (GHG) emissions from the transportation sector 

contributed to 23 % of the energy-related GHG emissions worldwide in 
2019, of which 70 % came from road vehicles [1]. Electric vehicles (EV) 
are part of the solution to reduce GHG emissions from land-based 
transport. The number of EVs is increasing globally, and reached 1 % 
stock share in 2020 [2]. As the density of EVs is increasing, it is 
important to understand the electricity use of the EVs. EV charging loads 
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have an impact on the power grid, and [3] found that in 28 European 
countries, uncontrolled EV charging would increase peak demand in the 
range of 35–51 %. The situation can be improved using smart charging 
solutions and smart grid technology [4,5], e.g. by shifting EV charging 
loads to hours with capacity in the grid. However, not all of the EV 
charging loads are flexible in time. The flexibility potential of EV 
charging is related both to charging habits of the users, and to charac
teristics of the EV and the charge point (CP) [6]. 

The driving ranges of EVs are significantly reduced when the 
ambient temperature decreases, as documented in laboratory and field 
tests by [7–11]. The reduction is largely related to the energy use of the 
heating, ventilation, and air conditioning (HVAC) systems of EVs. The 
HVAC or climate systems in the cars aim to ensure comfort for the driver 
and passengers, and provide safety functions such as defogging of win
dows [12]. Conventional Internal Combustion Engines (ICE) use waste 
heat (>5 kW) from their gasoline engines for cabin heating and window 
de-icing [13]. However, there is little waste heat available in EVs due to 
their high efficiency, and the EVs therefore use energy from the battery 
for heating. The heating equipment can be driven by a positive tem
perature coefficient resistance heater (PTC heater), from an air source 
heat pump (HP), or from a combination of the two solutions [14]. PTC 
materials have a self-regulating characteristics, since PTC materials 
change their resistivity with the material temperature [15]. With higher 
temperatures, the resistivity rise, and the heat power decreases. 
Maximum capacity of PTC heaters studied in literature is usually in the 
range of 5 to 6 kW [16]. It has been found that the use of PTC heating 
equipment may decrease the driving range of EVs>50 % in cold climates 
[17]. Systems with HPs are more efficient than PTC heaters, and can 
provide both cooling and heating [13]. Several researchers found that 
the efficiency of a HP is reduced during cold weather conditions 
[13,14,17,18]. PTC heaters therefore often supplement HPs when the 
temperature is low, as for example in the VW eGolf, where the HP is not 
operated below − 10 ◦C [19]. The thermal management system in the EV 
determines the preheating method. 

Norway is a frontrunner market for EVs, with 16 % battery EVs 
(BEVs) and 6 % plug-in hybrid EVs (PHEVs) of the total car stock in 2021 
[20]. Most EV owners charge their EVs at home (88 %) or at work (6 %) 
[21], usually connected to a 230 V IT distribution grid. About 70 % of 
home-CPs [21,22] are of the type “level 2′′ [23], with typically 3.6 to 7.4 
kW charging power (16–32 A) [24]. The climate in Norway is cold 
during winter, with average temperatures of − 5 to − 7 ◦C from 
December to February [25], and with local differences e.g. between 
coastal and inland areas. To extend the driving range of EVs during cold 
winter days, EV owners are generally recommended to use electricity 
from the grid to preheat the EV cabin and battery before using the car, by 
e.g. drivers’ associations [26,27], and car manufacturers [28,29]. 

Preconditioning includes both precooling and preheating of the EV 

cabin, but this work focuses on preheating. Cabin preheating is 
becoming common practice for BEV and PHEV owners in cold climate 
[12]. This share of the EV energy demand is typically not flexible in 
time, since the energy is often delivered from the grid directly, and not 
taken from the battery. Normally during cabin preconditioning, AC 
electricity from the grid is converted to DC electricity in the EV, using 
the onboard charger of the car [30]. The HVAC system is then powered 
by DC in the EV, to cool or heat the EV cabin. 

In addition to cabin preheating, many EVs can also preheat the 
battery of the car, either before charging or during the preheating 
period. Li-ion batteries have a poor performance during sub-zero tem
peratures, which reduces the driving range of the EVs and even creates 
potential safety hazards [31,32]. The batteries can therefore be pre
heated, typically by either applying an external heat source, or by 
generating internal heat in the battery. Air preheating is often adopted 
in EVs due to simple structures and low costs, and has a rate of tem
perature rise (RTR) of about 0.5–3 ◦C/min [32]. Liquid preheating 
systems are more efficient but are more complex, with RTR of about 0.67 
℃/min, which is e.g. used by Tesla [32]. PTC preheating has been used 
in early model EVs, such as the Nissan Leaf, and requires a longer pre
heating period [32]. 

Preheating of EVs usually occurs shortly before departure, during 
days with low outdoor temperature. Charging habits of residential EV 
users are described in [33], showing how a majority of the cabin pre
heating sessions during workdays will happen in the morning hours, 
corresponding to the start of a typical workday. During such hours there 
is also a high demand for other energy use in the building sector, and 
some locations experience grid capacity challenges. In Norway, morning 
hours during cold winter days are the time of the year with the highest 
peak loads [34]. The cost of electricity is therefore usually higher in the 
early morning hours [35]. 

1.2. Literature review: Power loads for EV preheating and their impact on 
the grid 

A number of articles presents possible solutions for more efficient EV 
HVAC systems in cold climates [13,14,17,18,36–40]. [41] studied how 
HVAC loads during driving increases the frequency of EV charging, and 
concluded that regional electric utilities must include also the HVAC 
loads of EVs in their load growth scenarios. The improvement in EV 
driving range due to cabin preconditioning has been studied by e.g. 
[30,42–45]. Our literature review has identified only a few studies that 
describes the power and energy demand of EV preheating, and how this 
may impact the grid. The main findings of the literature review are 
summarized in the following, and listed in Table 1. 

Experimental studies with power data for EV HVAC loads are pre
sented by [37,39,40,46,47]. [37] did lab tests in an environmental 

Nomenclature 

AC Alternating current 
AMS Advanced metering system, smart meters 
BEV Battery electric vehicle 
COP Coefficient of performance 
CP Charge point 
CPO Charge point operator 
DC Direct current 
DHW Domestic hot water 
EV Electric vehicle 
GHG Greenhouse gas 
HP Heat pump 
HVAC Heating, ventilation, and air conditioning 
ICE Internal Combustion Engine 

Li-ion Lithium-ion 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
MLR Multiple linear regression 
MSE Mean square error 
MY Model year 
NA Not available 
PHEV Plug-in hybrid electric vehicle 
PTC Positive temperature coefficient resistance 
RH Relative humidity 
RTR Rate of temperature rise 
SoC State of charge of the EV battery 
V2G Vehicle-to-grid 
RMSE Root mean square deviation  

L. Sørensen et al.                                                                                                                                                                                                                                



Applied Energy 341 (2023) 121054

3

chamber on a PTC heater and a HP system for a compact EV. The 
nominal power of the PTC heater was 1.5 kW, while the actual power 
reached a maximum of 2.3 kW initially, before stabilizing on about 1.7 
kW. For the HP systems, the power was in the range of 1 kW to 1.3 kW, 
affected by ambient temperatures (-10 ◦C and − 15 ◦C) and system so
lutions. [39] tested a 4 kW PTC heater, a HP and a fuel-operated heater 
in a model year (MY) 2013 Nissan Leaf. They found that the PTC heater 
consumed 1.41 kWh electricity over 30 min, while the HP consumed 65 
% of this. During the tests, the outside temperature was 3 to 4 ◦C, the 
initial cabin temperature was approx. 6 ◦C and the requested cabin 
temperature was 26 ◦C. [40] analysed the performance of a MY2017 
Nissan Leaf with HP, and proposed a heating system which reduced the 
amount of needed incoming fresh air. They simulated interior-air and 
fresh-air modes for HP operation with different fresh-air ratios, and 
found that the cabin heat load varied from 1.2 kW with interior-air mode 
to 4.0 kW with fresh air mode. [46] tested a BEV with PTC heater in a 
climatic wind tunnel in a laboratory. Their results show how the PTC 
heater has a high input power initially, to quickly achieve the required 
thermal comfort level in the EV cabin. After a couple of minutes, the 
heating loads were found to stabilize on a lower power load. Comparing 
the heating load for air supplies of 100 % fresh air, 20 % recirculation 
air, and 30 % recirculation air, the stable heating loads were 4.32 kW, 
3.63 kW and 3.29 kW, respectively, for a start-up cabin temperature of 
− 10 ◦C. The energy used by the PTC was 2.52 kWh, 1.80 kWh and 1.60 
kWh for the three air modes. With 100 % fresh air, it took 25 min to rise 
the temperature to 24 ◦C. The heating load was temperature dependent, 
and with 100 % fresh air the heating load varied from 2.96 W with 0 ◦C 
ambient temperature to 5.77 kW with − 20 ◦C. [47] did experimental 
studies on the heating performance of a 5 kW PTC and a HP. The re
searchers demonstrated how the PTC heater was required to supplement 
the HP, to provide sufficient cabin heat during a cold start. This was 
found to be due to slow warm up speeds of the HP. While it took 13 min 
for the PTC alone to reach a target temperature of 25 ◦C from 0 ◦C, it 

took the HP 40 min, and a combined system reached the target value in 
8 min. The heating power for the solutions were 4.5 kW for the PTC, 1.1 
kW for the HP and 5.3 kW for the combined system. 

Only a few works in literature investigate EV preheating loads and 
their grid impact. In [48,49], the impact of large-scale EV preheating on 
the residential distribution grid has been simulated. In the model pre
sented in these articles, each preheating session was assigned a certain 
hour in the morning (from 05:00 to 10:00), a time duration (normal 
distribution, on average 20 to 30 min), and a power rate. The assigned 
power rates in the study match the level 2 charger rates (7.2 kW in [49]), 
and the power was assumed to be constant during the duration. The 
studies conclude that EV preheating can have a negative impact on the 
voltage level and power losses in the residential grids, and that the 
added load can be handled by combining network reconfigurations with 
vehicle-to-grid (V2G) energy transmissions. 

Another relevant work is [50], which simulated how outdoor tem
peratures affect battery charging and performance of EVs. Their model 
included 212 EVs with maximum 3.6 kW charging power, maximum 4.0 
kW cabin heater power (COP 2.5), and 0.3 kW battery heater power 
(COP 1). The vehicle data and the thermal model used in the simulation 
were based on [43] (Nissan Leaf, 4 kW PTC, modelled HP). EV driving 
behaviour was based on travel diaries available from the Finnish na
tional travel survey. Preheating of the EV cabins started 10 min prior to 
the trip, while battery heating was constant during parking. The study 
found that at − 10 ◦C, preheating and battery heating during parking 
introduced a constant grid load of around 30 kW over the whole day, or 
140 W per EV. The authors state that most of this energy is used for 
constant battery heating, not for preheating the cabin. They also 
conclude that cabin preheating seems more helpful than standby battery 
heating in lowering the energy consumption during driving. 

1.3. Research gap and our contribution 

As the number of EVs are increasing, it is important to understand 
how cabin preheating of EVs may impact the power loads and energy use 
in buildings, and how the aggregated loads will have an impact on the 
electricity grid. Our literature review identified a need for more exper
imental knowledge within this topic. There exist some experimental 
studies with power data for EV heating sessions [37,39,40,46,47], but 
these studies focused on improving the HVAC systems in EVs and were 
not seen in relation with energy loads in buildings or the grid. The few 
studies analysing how EV preheating loads may impact the distribution 
grid [48–50], were based on simulations. To validate and improve 
models and simulations, access to real-world data is a significant factor 
[51]. This article presents data from an experimental study with 51 
preheating sessions of five typical EV models, during different outdoor 
temperatures conditions. Multiple linear regression models are devel
oped, to investigate the relationship between the cabin preheating en
ergy use and various variables, such as outdoor air temperature, cabin 
temperature difference, preheating duration, EV size, and heating sys
tem. The performance of the models was evaluated, using a dataset for 
validation with 17 additional preheating sessions. Further, the pre
heating loads are compared with typical electricity and heating loads in 
Norwegian apartment buildings during winter. Finally, aggregated grid 
loads for preheating EVs are assessed, by combining the trial results with 
datasets describing residential EV charging behaviour. Our main 
research questions are: What are the power load and energy consump
tion for grid-connected preheating of EV cabins in cold climates? And 
how will the preheating loads impact the daily energy loads for apart
ment buildings during the winter, for individual apartments and on an 
aggregated level? The new insight will be useful when e.g. simulating 
and forecasting EV energy loads on the grid in cold climates. It can also 
prepare the ground for development of new cabin preheating solutions, 
where the grid burdens are reduced while still maintaining the demand 
for extended driving ranges, comfort, and safety. 

The paper is organized as follows: Section 2 describes the methods 

Table 1 
Literature review: Comparison between related research and own study.  

Topic Authors Reviews Experiments Simulations 

HVAC loads 
during driving 

Qi et al. [13], 
Zhang et al. [14], 
Zhang et al. [36] 

✓   

Zhang et al. [17], 
Seo et al. [18], 
Wang et al. [37], 
Meyer et al. [38], 
Mimuro et al.  
[39], 
Yu et al. [46], 
Kim et al. [47]  

✓  

Zhang et al. [40], 
Kambly et al.  
[41]   

✓ 

Increased EV 
driving range 
due to 
preheating 

Kambly et al.  
[30], 
Barnitt et al.  
[42], 
Neubauer et al.  
[43], 
Nerling et al.  
[44], 
Ramsey et al.  
[45]   

✓ 

Preheating 
power/energy. 
Grid impact 

Antoun et al.  
[48], 
Antoun et al.  
[49], 
Lindgren et al.  
[50]   

✓ 

Own study  ✓   
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used in the work. Section 3 presents the results and a discussion of the 
findings. In section 4, the conclusions from the work are drawn. 

2. Methods 

Sections 2.1 and 2.2 describe the CPs and logging equipment used in 
the experimental study, and section 2.3 describes the EVs which are 
tested. Section 2.4 describes the linear regression analysis which was 
applied on the trial data. Section 2.5 and 2.6 describe the methods used 
when comparing the preheating loads with other energy loads in 
apartment buildings, and when assessing the aggregated grid loads for 
preheating EVs. 

The preheating of the EVs happened during two trials, both located 
outside. At site 1 in Oslo (lat 59.94455, long 10.71369) the tests were 
performed during the winter 2021/2022. The EVs in the test included 
the models BMW i3, Jaguar I-PACE, Nissan Leaf, Tesla Model 3, and VW 
eGolf, with logging of power (second/minute resolution) and cabin 
temperatures. The five EV models tested are typical in the Norwegian 
market, and the models cover 38 % of the EVs in the national EV stock 
(ref. Table 3 [52]). At site 2 in Bærum (lat 59.94292, long 10.61269) the 
tests happened during winter periods in 2020–2022. At this site, three 
different Nissan Leaf cars were tested, including one of the cars tested at 
site 1. At site 2, the power was logged through the CP monitoring system 
(15-minute resolution), and there were no logging of the cabin 
temperatures. 

2.1. Preheating of EVs at site 1 

2.1.1. CP specifications 
The EVs were connected to a level 2 CP with 7.4 kW power available 

(EVlink [53], AC 230 V power supply, 32 A, Type 2 charging cable). The 
CP monitoring system provided information about plug-in and plug-out 
times, and energy use for each session [54]. 

2.1.2. Energy metering and energy losses 
Power consumption was logged every second with a power and en

ergy analyser (ELIT PQ5 [55]). For the analyses, the power data was 
averaged per minute. The primary power meter was installed inside the 
electricity distribution board located in the nearest building (about 45 m 
from the CP). The measurement data included the energy losses from the 
primary power meter to the EV. To analyse the energy losses, the pri
mary power meter data was compared with two other data sources: 1) A 
second power meter installed on the EV-side of the CP, 2) Energy use for 
each session, available from the CP monitoring system. The average 
difference between the primary power meter and the two meters by the 
CP was in the range of 7 %, as described in Table 2. This difference is due 
to both energy losses (such as in the 45 m cable, where power losses are 
calculated to be 1.4%) and measurement uncertainty (the power meter 
accuracy was IEC62053-22 class 0.5, with > 1% error in current and 
0.2% error in voltage measurements). The results presented in section 3 
are based on the primary power meter (not adjusted), since the building 
distribution board was considered to be the most natural boundary for 
the building and grid analysis. Fig. 2 illustrates one example session (ID 
73) with EV charging and preheating of Nissan Leaf (MY2018) at site 1, 
metered at two locations. For the example session, the EV is fully 
charged (100%) at about 12:40 and the cabin preheating starts at 13:00. 
The three pulses in the charging power (~1 kW) towards the end of the 
charging, are part of the battery control system for the Nissan Leaf 
MY2018. 

2.1.3. Temperature logging 
A trial temperature logger was placed in the EVs during charging 

sessions, measuring the cabin temperature every minute with a 0.5 ◦C 
resolution (EasyLog RH/temp data logger [56], accuracy 0.55 ◦C). The 
temperature logger was typically placed in the cup holder between the 
seats in the cabin. Hourly outdoor air temperatures were downloaded 

for the weather station Blindern (SN18700) located nearby (500 m) 
[57]. 

2.2. Preheating of EVs at site 2 

2.2.1. CP specifications 
The EVs were connected to a level 2 CP, with 7.4 kW power available 

(Zaptec pro [58], AC 230 V power supply, outdoor parking solution 
where 10 CPs share 63 A, Type 2 charging cable). For the trial sessions, 
the power available for the trial EVs was not limited by other ongoing EV 
sessions in the CP infrastructure. 

2.2.2. Energy metering and energy losses 
Power consumption was logged every 15 min by the CP monitoring 

system [59]. The electricity distribution board with AMS meter was 
located beside the CP (1 m). The energy losses between the CP moni
toring and AMS meter are minimal (up to 1 %, as described in Table 2). 
The energy losses are not included in the results. 

2.2.3. Temperature logging 
Hourly outdoor air temperatures were downloaded for the weather 

station Blindern (SN18700) located about 6 km away [57]. 

2.3. EVs tested in the trials 

EV owners were invited to take part in the trials, charging and pre
heating their private EVs on the CPs. Seven EVs were selected from the 

Table 2 
Calculated differences between the power meters.  

Site Meter 1 Meter 2 Description Differences 

Site 
1 

Primary 
power 
meter 

Secondary 
power meter 

For 6 charging sessions, a 
second power meter was 
installed on the EV-side of 
the CP. The difference 
between the primary and 
secondary power meter was 
calculated for all minute- 
values. 
When calculating average 
energy differences, periods 
were chosen where both 
meters measure steady 
power rates (in total 13 h 
selected among the 24 
measured hours). This was 
done to avoid periods with 
measurement errors or time 
differences between the 
meters. 
Fig. 2 shows one example 
session (ID 73) with power 
data from the two power 
meters. For the example 
session, the period from 
09:18 to 10:33 was included 
in the power loss 
calculation. 

7.3 % 

Site 
1 

Primary 
power 
meter 

CP 
monitoring 

The energy differences were 
calculated as the difference 
between the session energy 
use metered in the CP 
monitoring system and the 
session energy use metered 
by the primary meter. 38 
sessions were included in 
the calculation. 

6.7 % 

Site 
2 

AMS- 
meter 

CP 
monitoring 

The differences between the 
AMS-meter and CP 
monitoring system were 
calculated for 8 preheating 
sessions (hourly values). 

<1 %  
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volunteers, representing five EV models, as listed in Table 3. The EV 
owners at site 1 filled in a form for every charging session, noting the 
timing of the preheating, requested preheating temperature, and battery 
state of charge (SoC)-values. The EV owners decided themselves to 
either start the preheating from the dashboard in the EV, or externally 
from an EV app. For the users starting the preheating from the dash
board (Nissan Leaf), a time for the finished preheating was set. The 
starting time is then calculated by the EV, based on expected duration 

necessary for reaching the requested temperature. For the users starting 
the preheating externally from an EV app (BMW i3, Jaguar I-PACE, Tesla 
Model 3, VW eGolf), a time for the starting point of the preheating was 
set. For some sessions, preheating started close to the plug-out time, 
being interrupted by the EV departure. This was accepted, since it was 
assumed that this is how the preheating function is often used in real life. 
The requested preheating temperatures varied in the EVs, and were 
either preselected by the EV or set by the users. At site 1, 46 sessions 
were metered. 24 of the sessions were selected for further analysis, since 
their preheating time was clearly separated from their charging time. At 
site 2, 27 preheating sessions were analysed. All the EVs were preheated 
from the CP, not from their battery. For some EV models, the users can 
choose to use the energy from the battery to preheat the EV, but this 
function was not activated during the trials. 

2.4. Multiple linear regression models for cabin preheating energy use 

A linear regression analysis was applied on the trial data, to inves
tigate the relationships between the cabin preheating energy use, and 
multiple well-known and independent variables. The analysis was per
formed using the statistical computing environment R [66]. The equa
tion for a multiple linear regression (MLR) model is described with Eq. 
(1), where yiis the outcome for unit no. i, α is the constant intercept term, 
x1i, x2i,⋯, xmi are the explanatory variables for unit no. i, β1,β2,⋯,βmare 
the fixed regression coefficients, and εi are the random errors. The 
variables can be numerical or categorical, where the categorical vari
ables are used to compare groups. 

yi = α+ β1x1i + β2x2i +⋯+ βmxmi + εi (1) 

If the effect of x1 depends on the level of x2 there is an interaction 

Table 3 
EV characteristics for EVs in the trial.  

Location EV-model Share 
EV 
stock a 

Model 
year 

Onboard 
charger 
capacity (kW) b 

Net battery 
capacity (kWh) 
b 

Heating system 

Site 1 BMW i3 5.8 % 2016 7.4 27.2 5.5 kW PTC and 3 kW HP [60]. The HP operates between − 10 ◦C and 22 ◦C [60].  

Jaguar I- 
PACE 

1.4 % 2019 7.4 84.7 7.0 kW PTC and HP d. 

Nissan Leaf c 14.1 % 2018 6.6 36 PTC and HP. 5.35 kW heating power, according to [61]. 
Seat heater and steering heater also activates under preheating [62]. 

Tesla Model 
3 

7.2 % 2019 11 e 72.5 8 kW heating power [63], whereof 6 kW PTC (no HP for MY2019, but this is standard 
from 2020). 

VW eGolf 9.3 % 2017 7.2f 31.5 5 kW PTC g (no HP). 
Site 2 Nissan Leaf 14.1 % 2013 6.6 21.6 PTC (no HP). 

Nissan Leaf 14.1 % 2015 3.3 27.2 PTC and HP. 
Nissan Leaf c 14.1 % 2018 6.6 36 PTC and HP. 

a. Share of the national EV stock in Norway per March 2022 [52]. 
b. EV manufacturer data from [64] and [65]. 
c. Nissan Leaf MY2018 is the same for both locations. 
d. Customer service Jaguar Land Rover Limited, personal communication May 2022. 
e. Maximum charger capacity is limited by CP (7.4 kW). 
f. Actual measured charger capacity for the EV is approximately 5 kW. 
g. Customer service Harald A. Møller AS, personal communication May 2022. 

Fig. 1. System overview of test site 1 (left) and test site 2 (right), with metering locations.  

Fig. 2. Example session (ID 73) with EV charging and preheating of Nissan Leaf 
(MY2018) at site 1, metered at two locations. 
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[67]. When there is an interaction between x1 and x2, the model is 
described with Eq. (2). 

yi = α+ β1x1i + β2x2i + β3x1ix2i + εi (2) 

When selecting the explanatory variables for the regression model, 
the aim was to create a simple model with good empirical fit, and with 
generally available input data. A forward selection approach was used 
for selecting variables; Single linear regression models were first ana
lysed, with one variable only, and the most significant variables (lowest 
P-values) were selected. A number of MLR models were created, adding 
one extra variable for each step, before comparing the adjusted R2 values 
for the models. The adjusted R2 is a modified version of R2, which is 
adjusted for the number of variables. Variables and interactions were 
tested and added to the selected model until there was no improvement 
in the adjusted R2 value. Before including variables in the models, also 
practical aspects were taken into account, for expected data availability 
and other practical considerations. The dependency between the vari
ables was analysed by calculating the Pearson correlation (r12) between 
the variables, to prevent that dependent variables were used in the same 
model. Pearson correlation has values − 1 < r12 < 1, and the correlation 
increases with higher negative or positive values. Two models were 
finally selected and presented along with related statistical parameters 
for R2, adjusted R2, mean absolute error (MAE), mean square error 
(MSE), root mean square deviation (RMSE), and mean absolute per
centage error (MAPE) [68]. The high value for the adjusted R2 and the 
low values for MAE and RMSE are considered to be favourable, and 
show that the models can be used for describing the cabin preheating 
energy use. 

The regression models were created with data from the 51 preheat
ing sessions in the trial. To validate the models, an additional inde
pendent dataset was used to assess how the models performed. The 
dataset used for validation consisted of 17 preheating sessions, which 
were not earlier included when training the models. Compared to the 
trial dataset that was originally used for creating the models, the addi
tional dataset used for validation included some differences in the EVs 
and CPs used. The aim of introducing these differences was to evaluate if 
the developed models were well generalized, or if they fitted too closely 
to the trial dataset. Three EVs were used in the preheating sessions in the 
dataset for validation: Nissan Leaf MY2018 (same EV as used in the trial, 
10 sessions), Kia Soul MY2015 (not used in the trial, 1 session), and 
Tesla Model S MY2019 (not used in the trial, 6 sessions). Three 7.4 kW 
CPs were used for the validation: One in site 1 (new CP, not used in the 
trial), and 2 in site 2 (1 used in the trial, one new). To evaluate the 
performance of the models, statistical parameters for R2, MAE and RMSE 
were presented, and compared with the parameters for the trial dataset. 

2.5. Comparing energy loads for EV cabin preheating with other energy 
loads in an apartment 

Based on the cabin preheating trials and modelling results, two levels 
of cabin preheating were selected for comparison with other residential 
energy loads. Hourly resolution was used in the comparison, since this is 
the current resolution for AMS metering of electricity use in Norway 
[69]. It was assumed that the preheating happened within one clock 
hour during the morning, between 07:00 to 08:00. Hourly energy use 
was recorded and presented for an apartment during an example day, 
with real energy measurements for electricity use, space heating and 
domestic hot water (DHW). The electricity use for a range of Norwegian 
apartments were obtained from measurements of hourly data, available 
from 505 apartments located at Risvollan in the city of Trondheim [70]. 
The example apartment was randomly selected (apartment ID 10), and 
its daily electricity use during the example day corresponds to the 
average electricity use for all the apartments during the same date. The 
electricity use did not include space heating and domestic hot water, 
since this was provided by district heating. Thus, the data for space 
heating and DHW were obtained from another apartment building 

located in Bærum close to Oslo, including 24 apartments heated by an 
electric boiler and with electric DHW tanks. The hourly energy profiles 
shown for the example day is the total heat load divided on the 24 
apartments. The average heated apartment area for the case in Bærum/ 
Oslo (86 m2) is similar to the average area in Trondheim (88 m2). The 
example date was selected due to its low outdoor temperature in both 
locations (January 9th 2018, with in average − 9 ◦C in Risvollan and 
− 7 ◦C in Oslo [57]). For the EV charging load, two alternative load 
profiles are shown (3.6 kW or 7.4 kW charging power), both started 
charging at midnight, and with a session energy use of 15 kWh, which is 
typical for home charging [33]. 

2.6. Aggregated grid loads for EV cabin preheating 

To assess expected aggregated power demand for cabin preheating, 
four preheating scenarios were combined with an EV charging dataset 
from a range of apartment buildings. The EV charging dataset is 
described in [6], and contains information on plug-out times for 34,499 
charging sessions from 261 EV users in apartment buildings in 12 lo
cations in Norway. To preheat the EV cabin with electricity from the 
grid, the EV must be connected to a CP. It is assumed that the EV user 
habits for preheating the EVs are in line with the user habits for EV 
charging, which is normally the main reason for CP connections. [33] 
found a correlation between plug-out times and local hourly traffic data, 
which indicates that most residential EV users travel after disconnecting 
their EVs. In the preheating scenarios it was assumed that all the EVs are 
preheated before plug-out times. The results are therefore relevant for 
cold days only. Estimated energy use for preheating was 2 kWh in sce
nario 1 and 2, or 4 kWh in scenario 3 and 4, as shown in Table 4. Sce
narios 1 and 3 were based on plug-out distribution data from all the 261 
EV users, with in average 0.5 CP connected sessions per day (named CP 
sessions). Scenarios 2 and 4 were based on plug-out distribution data 
from the 25 % EV users with most frequent charging, with in average 1 
CP session per day. Hourly data is illustrated in a daily profile. If the 
plug-out time for a certain CP session was in the beginning of the hour 
(first 30 min), then the preheating time was set to the preceding hour. If 
the plug-out time was in the end of the hour (last 30 min), then the 
preheating time was set to the same hour as the plug-out time. The 
average daily profiles are presented per EV user. 

Finally, the aggregated daily profiles for EV cabin preheating were 
compared to daily load profiles for other energy loads in the apartment 
buildings. For this analysis, it was assumed that every apartment has 0.7 
EVs and that 50 % of the EVs use cabin preheating. The current density 
of personal cars in Norway was 1.4 car per households in 2020 [71] 
(including cars using fossil fuels), but apartments typically have lower 
access to parking spaces than freestanding houses. Parking requirements 
vary with the location /municipality, and is e.g. min. 0.4 to 1.2 car per 
apartment [72]. The chosen EV density of 0.7 car per apartment corre
sponds to the available parking spaces for the apartments located at 
Risvollan. Scenario 1 was used as a basis for the aggregated profiles, 
with 2 kWh preheating 0.5 times per day. Preheating was added to the 
daily profile of other residential energy loads during the winter 
(December, January, February): apartment electricity use, apartment 
space heating and DHW, and residential EV charging. The average daily 
profiles for apartment energy use were based on the same data sources as 
described in section 2.4. The profiles for residential EV charging were 

Table 4 
Cabin preheating scenarios for aggregated loads.  

Scenario Preheating energy 
(kWh/preheating session) 

Average connection frequency 
(CP sessions/day) 

1 2  0.5 
2 2  1.0 
3 4  0.5 
4 4  1.0  
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based on the EV charging dataset in [6], assuming immediate charging 
after plug-in. 

3. Results and discussion 

3.1. Power and energy for cabin preheating 

In this section, the experimental results for EV cabin preheating are 
presented and discussed. In total 51 preheating sessions are analysed, 
whereof 24 sessions at site 1 (5 EVs, BMW i3, Jaguar I-PACE, Nissan 
Leaf, Tesla Model 3, and VW eGolf), and 27 sessions at site 2 (3 EVs, all 
Nissan Leaf). Sessions where the charging and the preheating happened 
simultaneously were not included, since in these sessions the preheating 
power and energy could not be separated from the charging. 

3.1.1. Experimental data and analysis for each EV model 
Table 5 lists details for the preheating sessions at site 1, such as initial 

temperature in the EV cabin before preheating, outdoor temperature, 
preheating duration, preheating energy, and SoC-values. Before starting 
the preheating of the EV cabins, the EV batteries were charged to about 
100 % SoC (for Tesla 80–95 % SoC). This was done to prevent simul
taneous charging and preheating. After the preheating session it was 
controlled that the SoC was still 100%, to make sure that the preheating 
energy was not supplied by the battery. Fig. 3 shows the relationship 
between preheating energy and outdoor temperatures for the sessions at 
site 1, marking if the sessions were ended by the EV thermal manage
ment system or stopped by disconnecting the EV from the CP. Fig. 4 
shows the relationship between preheating energy and cabin tempera
tures for the sessions. Fig. 5 shows a charging and preheating example 
for each of the five EV models at site 1, while Fig. 6 shows all the pre
heating sessions for the EV models at the same site. 

For BMW i3, the charging power was close to the onboard charger 
capacity of 7.4 kW. The cabin preheating power was initially on the 
same level as the onboard charger capacity, being reduced to between 2 
and 5 kW after approx. 10 min. The preheating duration and power were 
found to be related to the outdoor temperature, where the coldest ses
sion (ID 4, − 6.6 ◦C) used 2.1 kWh energy during a 30-minute preheating 
period, before being automatically stopped by the EV thermal 

Table 5 
Preheating energy and temperatures for sessions at site 1.  

ID EV model Management 
system used 

Preheating 
request 
(◦C) 

Temp 
outdoor 
(◦C) 

EV temp, 
initial 
(◦C) 

EV temp, 
end 
(◦C) 

Duration 
(min) 

Ended 
by 

Energy 
(kWh) 

SoC 
initial 
(%) 

SoC 
end 
(%) 

4 BMW i3 App NA  − 6.6 NA NA 31 EV  2.1 100 100 
70 * BMW i3 App NA  2.0 4.5 9.0 9 Plug-out  0.7 100 100 
76 BMW i3 App NA  10.0 22.0 24.0 14 EV  0.5 100 100 
29 * Jaguar I-PACE App 21  0.8 0.5 12.5 23 Plug-out  1.8 100 100 
71 Jaguar I-PACE App 21  10.4 18.0 19.0 18 Plug-out  0.8 100 100 
3 Nissan Leaf EV dashboard 26  − 4.4 NA NA 46 EV  1.8 98 96 
1 Nissan Leaf EV dashboard 26  1.4 NA NA 36 EV  1.6 100 100 
7 Nissan Leaf EV dashboard 26  − 4.4 − 1.5 14.5 46 EV  1.5 100 100 
27 Nissan Leaf EV dashboard 26  2.7 5.0 13.5 36 EV  1.5 100 100 
50 * Nissan Leaf EV dashboard 22  0.2 6.5 18.5 36 EV  1.4 100 100 
28 Nissan Leaf EV dashboard 26  4.8 9.5 15.5 31 EV  1.4 100 100 
73 Nissan Leaf App 22  7.5 15.5 21.0 46 Stopped  1.1 100 100 
74 Nissan Leaf EV dashboard 22  8.7 19.5 21.5 30 EV  0.7 100 100 
15 Tesla Model 3 App 21–22  − 2.5 2.5 17.5 67 Plug-out  5.0 NA NA 
16 * Tesla Model 3 App 21.5  − 1.6 1.5 8.5 16 Plug-out  1.9 95 94 
24 Tesla Model 3 App 21  2.2 3.0 9.0 20 Plug-out  1.9 80 79 
62 VW eGolf App 24  2.2 NA NA 20 Plug-out  1.3 100 100 
30A * VW eGolf App 22  1.4 5.0 9.5 16 EV  1.1 100 100 
30B VW eGolf App 22  1.7 8.5 11.5 16 EV  1.1 100 100 
61 VW eGolf App 22  2.7 NA NA 15 EV  0.9 100 100 
25A VW eGolf App 24  4.2 5.5 7.5 16 EV  0.6 100 100 
25B VW eGolf App 24  3.8 8.0 10.0 16 EV  0.5 100 100 
26 VW eGolf App 24  − 1.9 6.5 7.5 6 Plug-out  0.3 100 100 
77 VW eGolf App 22  3.2 13.0 14.0 15 EV  0.2 100 100 

* Example session IDs in Fig. 5. 

Fig. 3. Energy-Temperature diagram for preheating sessions at site 1. The 
circled sessions are ended by the EV thermal management system, while det 
remaining sessions were stopped by disconnecting the EV from the CP. 

Fig. 4. Energy-Temperature diagram for preheating sessions with difference in 
cabin temperatures (site 1). 
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management system. 
For Jaguar I-PACE, the charging power was close to the onboard 

charger capacity of 7.4 kW. Also for this EV, the initial cabin preheating 
power was close to the onboard charger capacity, but the power was 
reduced after approx. 5 min. The initial power demand was most likely 

Fig. 5. Site 1 example trial sessions for each EV model, showing charging and 
preheating power for the EVs. 

Fig. 6. Site 1 sessions for each EV model, showing preheating power. Example 
sessions from Fig. 5 are emphasized in black. Dotted lines: onboard charger 
capacity for the EVs. 
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related to initial PTC-use, which is often necessary before the HP can 
start (Customer service Jaguar Land Rover Limited, personal commu
nication May 2022). For the coldest session (ID 29, 0.8 ◦C), the energy 
use was 1.8 kWh during a 25-minute session, increasing the cabin 
temperature by about 12 ◦C (from 0.5 to 12.5 ◦C). The preheating power 
during this session decreased from about 7.5 to 4 kW, and the session 
ended when the EV was plugged out from the CP. 

For Nissan Leaf, three cars were tested with different model years: 
MY2018 was tested at site 1 and site 2, while MY2013 and MY2015 were 
tested at site 2 only. The charging power of MY2018 was close to the 
onboard charger capacity of 6.6 kW, as shown in Fig. 5 and Fig. 6. The 
cabin preheating power was lower, between 2 and 3 kW, and was found 
to be fairly stable during the preheating session. Fig. 7 describes pre
heating power for all the three cars. MY2013 has the highest preheating 
power, of about 4 to 5 kW, and is also the only Nissan Leaf EV in the trial 
without HP. The preheating duration and resulting energy use is related 
to the outdoor temperature, as shown in Fig. 8. For the Nissan Leaf- 
sessions, preheating was requested for a certain departure time. Ac
cording to [62], the necessary operation time for preheating is calcu
lated two hours before the set preheating time, dependent on the 
ambient temperature. When the ambient temperature is low, the pre
heating duration is longer, with a maximum of 2 h. The longest pre
heating session at site 2 lasted for nearly 2 h, with an outdoor 
temperature of − 10 ◦C. The needed preheating energy during this ses
sion was about 3 kWh. At site 1, the two coldest sessions (ID 3 and 7, 
− 4.4 ◦C) used about 1.5–1.8 kWh energy and lasted for 45 min. For one 
of these sessions (ID 7), the cabin temperature increased about 16 ◦C 
during the preheating (from − 1.5 to 14.5 ◦C). 

For Tesla Model 3, the charging power was limited by the CP ca
pacity of 7.4 kW. The cabin preheating power was initially on the same 
level as this maximum, before being reduced to about 3 kW after approx. 
20 min. Preheating during the coldest trial session (ID 15, − 2.5 ◦C) 
lasted for 67 min, before being ended by plugging out the EV from the 
CP. The cabin temperature increased about 15 ◦C during the preheating 
session (from − 1.5 to 14.5 ◦C), with an energy use of about 5 kWh. For 
comparison, [73] found that the preheating energy consumption for 
Tesla Model S was in the range of 7.5 kWh at –22 ◦C. The energy use for 
the other two Tesla sessions was about 1.9 kWh, and both of these ses
sions were ended by plug-out of the EV after about 20 min. Tesla rec
ommends activating preheating at least 30–45 min before departure 
[28]. Tesla owner’s manual [74] states that the preheating automati
cally turns off after four hours, or if the charge level drops to 20 %, if 
using the mobile app to turn on the climate control system. 

For the VW eGolf used in the trial, the charging power was about 4 
kW, which is lower than the listed onboard charger capacity of 7.2 kW. 
For most sessions, the preheating power was initially on the same level 
as the charging power. The reason for the higher initial power level is 
that also the battery is preheated in the beginning (Customer service 
Harald A. Møller AS, personal communication May 2022), and it takes a 

few (>5) minutes before the cabin temperature starts to increase. After 
about 10 min battery preheating the power was reduced, with pre
heating of the cabin only. The preheating sessions lasted for about 20 
min in total, before being ended by the EV thermal management system. 
Both the energy use (0.2–1.3kWh) and the cabin temperature differences 
(1–4.5 ◦C) were quite small for the VW eGolf used in the trial. There 
seemed to be a temperature dependence between the energy use and 
outdoor temperature, as shown in Fig. 3 (session 26 at − 1.9 ◦C can be 
excluded, since it is plugged out during preheating). 

3.1.2. Summary of the cabin preheating trial: Power, cabin temperatures, 
and duration 

In summary, the EV cabin preheating power and energy loads were 
found to be affected by a number of parameters, such as the specific EV 
(EV model, HVAC system, fresh air rates), CP (available charging 
power), user (preheating duration, EV settings), initial cabin and battery 
temperatures, and weather conditions (ambient temperature, solar ra
diation). In this trial, preheating sessions for five EV models were 
explored, with 24 sessions at site 1 and 27 sessions at site 2. Most of the 
EVs had a power use between 3 and 8 kW initially. After a 10 to 20 min 
initial period, the cabin preheating power was reduced to about 2 to 4 
kW. The explanation for the higher power use initially is dependent on 
the characteristics of the cars. A main reason is that the PTC power use is 
higher in the beginning, to quickly achieve a thermal comfort level 
[46,47], and that the PTC provides start-up heat before a HP takes over 
(Customer service Jaguar Land Rover Limited, personal communication 
May 2022). In addition, the PTC-elements themselves have a higher 
power requirement in the beginning, due to their characteristic with a 
higher heat power when the material temperature is lower [15]. [47] 
shows how a 5 kW PTC has a heating capacity of approx. 4.8 kW at 0 ◦C, 
decreasing to 4.2 kW with 25 ◦C. Another explanation for the higher 
initial power use is that, for some EV models such as VW eGolf 
(Customer service Harald A. Møller AS, personal communication May 
2022) and Tesla [75], also the battery is preheated in the start of the 
preheating session. 

The increase in cabin temperatures ranged from 1 to 16 ◦C, as shown 
in Fig. 4. Some sessions had a high start temperature in the EV cabin. 
There is an uncertainty in the recorded cabin temperatures, since the 
temperatures were logged in only one location in the cabin (normally in 
the cup holder between the seats). Still, there seems to be a difference 
between the EV models in how fast the cabins are heated, and if the 
temperature levels requested for the preheating sessions can be reached. 
The small temperature differences for the tested VW eGolf may indicate 
that the energy was mainly used for preheating of the battery, and not 
the EV cabin. New experimental studies on this topic should consider 
measuring temperatures both in the EV cabin (preferable at a number of 
places), and by the battery. Since only one EV is tested for most of the 
models, the results may not be general for the EV models but depend on 
the specific EV and its settings. An extended number of EV models need 

Fig. 7. Preheating power for Nissan Leaf models in the trial.  

Fig. 8. Energy-Temperature diagram for Nissan Leaf models in the trial.  
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to be investigated in future experimental work, with more vehicles of the 
same brands. 

In the trial, most of the preheating sessions lasted for 20 to 40 min, 
before they were either stopped by the user /plug-out of EV, or auto
matically stopped by the EV thermal management system. During the 
trial, the outdoor temperatures varied between − 10 ◦C and + 10 ◦C. The 
presented results have an emphasis on the lower ambient temperatures, 
since the winters in Norway are cold, especially during the morning 
hours. For the lower temperatures, the preheating energy use was 
around 2 kWh for the EVs in the trial, with the exception of Tesla Model 
3, where about 5 kWh of energy use were observed. The maximum 
preheating duration was found to be dependent on the type of EV model, 
and can last for up to two hours for Nissan Leaf (temperature dependent) 
[62] or up to 4 h for Tesla Model S (user dependent) [74]. For some of 
the EV models, a longer preheating duration would more than double 
the cabin preheating energy observed in this trial. 

3.1.3. Cabin preheating using energy from the battery 
The focus of this work has been on energy use for preheating, using 

energy from the grid. However, it should be noted that several EV 
models alternatively can preheat the EV using energy from the battery. 
This could fulfil comfort and safety goals of the driver, but to a less 
degree the goal of extending the driving range of the EV, since the 
battery SoC will be reduced. For EVs with large battery capacities, a 
limited reduction in SoC may be acceptable in many cases, since it is 
found that a high share of EV sessions has a start SoC above 50% [6,76]. 
When preheating the EV cabin, the energy use may differ when using 
energy from the battery, compared to using energy from the grid. The 
reason for this is that some EV models reduce the maximum preheating 
duration or the preheating power when the EV is not connected to a CP. 
This means that the comfort goals are not necessarily achieved. When 
comparing energy use, it should be noted that energy measurements of 
grid-connected preheating include energy losses in the charging process, 
when AC electricity from the grid is converted to DC electricity in the 
battery. Such energy losses are not necessarily included when analysing 
SoC reductions related to cabin preheating using energy from the 
battery. 

In this work, cabin preheating using energy from the battery was 
tested in a limited “battery trial”. The battery trial consisted of 11 pre
heating sessions, using the Nissan Leaf MY2018. The EV was not con
nected to the CP during the battery trial, and the option “Battery 
Operation OK” was turned on. The outdoor temperatures during the 
sessions varied from 2 to − 11 ◦C. During the battery trial, the battery 
SoC was reduced by about 3 % in the sessions with outdoor temperatures 
from − 8 to − 11 ◦C (3 sessions 3 %, 1 session 4 %). For the sessions with 
outdoor temperatures from 2 to 9 ◦C, the battery SoC was reduced by 
about 2 % (2 sessions 1 %, 4 sessions 2 %, 1 session 3 %). A reduction of 
3 % corresponds to about 1 kWh energy, given a net battery capacity of 
36 kWh, not including energy losses in the charging process. The tem
perature difference in the EV cabin was in average about 4 ◦C, and the 
requested cabin temperature (22 ◦C) was not reached. This can be 
explained by the preheating duration, which is maximum 15 min for 
Nissan Leaf when using energy from the battery [77]. For the grid- 
connected preheating sessions for the same EV, the preheating dura
tions were longer and the EV cabin temperature differences larger (ref. 
Table 5). 

When preheating the EV using energy from the battery, the grid 
energy use for preheating may become flexible in time, similar to other 
EV charging loads. Preheating of EVs using energy from the battery 
should be investigated further, to increase the knowledge of advantages 
and disadvantages with this solution. This includes for example exper
imental analyses of different EVs, achievement of comfort, safety, and 
driving range goals, SoC and energy analysis, and analyses of user habits 
related to preheating and charging. 

3.2. Multiple linear regression models for cabin preheating energy use 

To investigate the relationship between the cabin preheating energy 
use (E) and various variables, a MLR analysis was applied. As a first step 
towards the MLR models, the relationship between E and each of the 
identified explanatory variables were analysed. The explanatory vari
ables are listed in Table 6, showing their p-values, description of data 
availability, and an evaluation of practical considerations. The variables 
used in a MLR model should be independent to each other. To evaluate 
this independence, Table 7 shows the correlation between the numerical 
variables. The table shows that some variables are dependent on each 
other, for example cabin temperature difference and preheating dura
tion, and should not be used in the same model. 

The variables with the lowest p-values are considered to be the most 
significant. Still, this is not the only evaluation criterion to be consid
ered, since also some practical considerations need to be taken into 
account. The practical considerations were: 

Numerical variables:  

• T, Tc and D are the numerical variables with the lowest p-values. 
Among these, T is easily available from public weather stations. Tc 
and D are generally not available, but model input assumptions can 
be made. D is a valuable variable, since it can be used to calculate the 
average preheating power P (P = E / D ⋅ 60). D was therefore 
included in further testing together with T, even though there was a 
correlation between T and D (r12 = -0.42). 

• Sun was evaluated to be a non-reliable variable, since solar condi
tions are depending on the local context such as shading from 
surroundings.  

• Cc and Cb are not necessarily related to the preheating system in the 
EV, and were excluded due to their medium/high p-values. 

Categorical variables:  

• It is an advantage that the models are dependent on EV specifications 
such as S and H instead of the specific M, since this makes the models 
more general.  

• For B, there was a small dataset, with only two EVs, and limited data 
for drawing general conclusions. The parameter was excluded due to 
the high p-value.  

• End and L are related to local conditions such as user habits and EV 
fleet, and were not evaluated to be relevant for the model. 

Combinations of the variables were tested in the MLR models, and 
Table 9 shows the MLR models with the highest adjusted R2 values. The 
model formula first:second specifies the interaction between the two 
variables [78]. mod_TDSH* and mod_CSH* were selected for further 
analysis, as they are general models (not dependent on M), and with 
high values for adjusted R2 (0.83–0.84). Coefficients and model error 
statistics for the two selected models are shown in Table 10. 

The models were evaluated using an additional dataset for valida
tion, consisting of 17 preheating sessions, as listed in Table 8. Three 
different EVs and three different CPs are represented in the dataset. It 
can be noted that both for the trial dataset (Table 5) and validation 
dataset (Table 8), there are uncertainties related to the measured cabin 
temperatures, as described in section 3.1.2. All the 17 sessions were used 
for validating mod_TDSH*, with EV info, outdoor temperatures, pre
heating durations, and energy charged. Ten of the sessions included 
cabin temperatures, and were used to validate mod_CSH*, with EV info, 
cabin temperature differences, and energy charged. Model error statis
tics for the validation data is shown in Table 10. The mod_TDSH* and 
mod_CSH* predict energy charged from the validation data with R2 

0.895 and R2 0.752, respectively. The MAE and RMSE error values for 
the validation data are slightly higher than for the trial data, which in
dicates that the models have a high generalization performance. 

To evaluate how the location and the CP affect the results, all the 
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preheating sessions for Nissan Leaf MY2018 are presented in Fig. 9. The 
charging power is 7.4 kW for all the three CPs used, and the CP is 
therefore not a limiting factor for the EV (onboard charger capacity is 
6.6 kW). Thus, the differences in CPs does not affect the results for the 

sessions. In further studies, we would recommend to investigate how the 
charging power of CPs affect the results for EVs with different onboard 
charger capacities. 

The two selected models can be used in parallel, since they have 
different input values, and therefore different advantages when applying 
them in analysis. Model TDSH* uses outdoor temperature data as input, 
combined with assumptions for duration and the EV fleet (Small/me
dium or large EVs heated by HP og PTC only). Fig. 10 and Fig. 11 show 
how predictions for E changes with T and D for four different EV fleets. 
The figures are based on predictions for the T-values [-10, 0, 10 ◦C] and 
the D-values [15, 30, 45, 60, 75, 90 min]. Calculated values for average 
preheating power P were 2.3 kW for SSMHHP (2.3 kW in trial), increasing 
to 3.7 kW for SSMHPTC (3.3 kW in trial), 3.9 kW for SLHHP (3.7 kW in 
trial), and 4.8 kW for SLHPTC (5.7 kW in trial). The second model, 

Table 6 
Explanatory variables tested for MLR models for cabin preheating energy use (kWh).   

Variables Abb. Unit p-value Description data availability Practical 
evaluation 

Numerical Outdoor air 
temperature 

T ◦C 0.00283 Public weather station. +++

Cabin temperature 
diff. 

Tc ◦C 1.43e- 
05 

Site 1: Measured (19 of 24 sessions). 
Site 2: Difference between T and 18 ◦C. 

++

Preheating 
duration 

D min 2.84e- 
07 

Preheating duration. Site 1: 1 min time resolution. Site 2: 15 min time resolution. For site 
2, duration time for the initial 15 min (Di) was estimated for sessions when average power 
during the first 15 min (Pi) is below the average power during the next 15 min (Pi+1), using 
the following equation: 
Di = Pi/Pi+1 × 15. Di was rounded up to next integer. 

+++

Sunminutes Sun min 0.667 Public weather station. –  
Onboard charger 
capacity 

Cc kW 0.0692 
(* 
0.825) 

EV characteristics, ref. Table 3. 
* Max. 7.4 kW as available in CP. 

–  

Net battery 
capacity 

Cb kWh 0.924 EV characteristics, ref. Table 3. – 

Categorical EV model MBMW- 

MY16 

[…] 
MLeaf- 

MY18  

8.02e- 
05 

EV characteristics, ref. Table 3. +

EV size SSM 

SL  

0.125 Classification related to Cc and Cb. 
Small/Medium: Nissan Leaf eGolf, BMW i3. Large: Jaguar I-PACE, Tesla model 3. 

+++

Heat pump or PTC 
only 

HHP 

HPTC  

0.00475 EV characteristics, ref. Table 3. +++

Battery preheating BTRUE 

BFALSE  

0.792 TRUE for eGolf and Tesla. –  

Ended by EndUser 

EndEV  

0.768 Classification of sessions ended by users. –  

Location LSite1 

LSite2  

0.0394 Trial location. –  

Table 7 
Correlation between the numerical variables (Pearson method).   

T Tc D Sun Cc Cb 

T 1.00 -0.59 -0.42 0.55 -0.26 -0.30 
Tc -0.59 1.00 0.78 -0.23 -0.22 -0.16 
D -0.42 0.78 1.00 -0.03 -0.13 -0.13 
Sun 0.55 -0.23 -0.03 1.00 -0.23 -0.28 
Cc -0.26 -0.22 -0.13 -0.23 1.00 0.68 
Cb -0.30 -0.16 -0.13 -0.28 0.68 1.00  

Table 8 
Dataset with preheating sessions used for validation.   

Site EV model EV info Temp outdoor 
T (◦C) 

EV temp, 
Initial (◦C) 

EV temp, 
end (◦C) 

Temp diff 
Tc (◦C) 

Duration, 
D (min) 

Energy 
(kWh) 

1 Site 1 CP* Nissan Leaf (2018) SSM HHP  − 1.5 10.0 20.0 10.0 38  1.3 
2 Site 1 CP* Nissan Leaf (2018) SSM HHP  − 0.9 8.0 19.5 11.5 40  1.4 
3 Site 1 CP* Nissan Leaf (2018) SSM HHP  − 1.8 2.5 17.0 14.5 41  1.6 
4 Site 2 Nissan Leaf (2018) SSM HHP  − 0.4 4.0 11.5 7.5 35  1.3 
5 Site 2 Nissan Leaf (2018) SSM HHP  3.3 3.0 11.5 8.5 35  1.3 
6 Site 2 Nissan Leaf (2018) SSM HHP  8.2 3.0 11.5 8.5 35  1.3 
7 Site 2 Nissan Leaf (2018) SSM HHP  0.2 2.0 16.5 14.5 35  1.4 
8 Site 2 Nissan Leaf (2018) SSM HHP  − 2.5 − 1.5 9.0 10.5 50  1.5 
9 Site 2 Nissan Leaf (2018) SSM HHP  0.4 2.0 11.5 9.5 40  1.5 
10 Site 2 Nissan Leaf (2018) SSM HHP  − 10.0 − 10.5 11.0 21.5 75  2.6 
11 Site 2 Kia Soul (2015) SSM HHP  2.1 NA NA NA 30  1.8 
12 Site 2 CP* Tesla Model S (2019) SL HPTC  0.8 NA NA NA 18  1.8 
13 Site 2 CP* Tesla Model S (2019) SL HPTC  − 0.3 NA NA NA 30  2.3 
14 Site 2 CP* Tesla Model S (2019) SL HPTC  − 1.0 NA NA NA 24  2.5 
15 Site 2 CP* Tesla Model S (2019) SL HPTC  − 5.7 NA NA NA 29  2.8 
16 Site 2 CP* Tesla Model S (2019) SL HPTC  − 1.0 NA NA NA 25  3.0 
17 Site 2 CP* Tesla Model S (2019) SL HPTC  3.7 NA NA NA 69  5.7 

CP*: Other CPs at the sites were used during the validation. 

L. Sørensen et al.                                                                                                                                                                                                                                



Applied Energy 341 (2023) 121054

12

mod_CSH*, used assumptions for TC and the EV fleet as an input. Fig. 12 
shows how the energy use for the four EV fleets increases with an 
increasing TC. For the same temperature difference, the predicted E for 
EVs with PTC is 2 times higher than for EVs with HP. Comparing pre
dicted E for EVs with different sizes, E for SL is 1.9 times higher than for 
SSM. A larger dataset would improve the models, since there are few 
sessions especially for SLHHP and SLHPTC. Still, the models show inter
esting relations between the parameters, as described above. 

3.3. Comparing energy loads for EV cabin preheating with other energy 
loads in an apartment 

Cabin preheating of EVs typically happens during cold winter days, 
for example during morning hours. During such periods, the Norwegian 
electricity grid is already experiencing high peak loads [34]. It is 
therefore relevant to compare the energy loads for EV cabin preheating 
with other energy loads in buildings, and to analyse scenarios for 
aggregated power loads for cabin preheating of residential EVs. Apart
ment buildings have been chosen as the focus of this work, since this is a 
building type with an expected high density of EV charging and cabin 
preheating use. 

For the comparison with other residential energy loads, two levels of 
cabin preheating were selected: 2 kWh or 4 kWh. The selected levels 
represent typical values, based on the cabin preheating trials and 
modelling results. Fig. 13 illustrates the cabin preheating together with 
other residential energy loads during an example day with low outdoor 
temperature (in average − 9 ◦C for Fig. 13 a, and − 7 ◦C for Fig. 13 b). The 
figures have an hourly resolution, and it is assumed that all the pre
heating happens between 07:00 to 08:00 in the morning. Apartment 
electricity use, space heating and DHW, and EV charging are shown in 
the figures. For the example day, energy for EV cabin heating increases 
the hourly energy peak in the morning from 4.2 kWh/h to 6.2 kWh (48 
%), or from 4.2 kWh/h to 8.2 kWh (95 %), including all the energy loads 
(Fig. 13 d). Two alternative charging power levels are shown in Fig. 13 
c) and 9 d), where the energy distribution depends on the EV charging 
strategy. The EV charging happens during the night, with a constant 
charging load. The daily peak load of the apartment is caused by either 
the EV charging or the EV cabin preheating. While the EV charging is 
often recognized as flexible, this is normally not the case for the cabin 
preheating. For apartment buildings with flexible EV charging, the en
ergy loads from EV cabin heating can become the largest daily energy 

peak. 

3.4. Aggregated grid loads for EV cabin preheating 

The aggregated power demand for EV cabin preheating depends on 
the habits of the EV owners. Not all EV owners are connected to an EV 
charger at the same time, nor are they plugging out their cars simulta
neously. To assess expected aggregated power demand for preheating, 
the trial results are therefore combined with an EV charging dataset 
from a series of residential buildings in Norway. It is assumed that the 
preheating habits during cold days are in accordance with the average 
charging habits of today, without adding any extra CP connections for 
preheating of the EVs. Fig. 14 illustrates average daily profiles for the 
four EV cabin preheating scenarios described in Section 2.6. During 
workdays there is a morning peak in the preheating loads, closely before 
the morning peak in CP plug-outs, corresponding to the start of a typical 
workday. For the four scenarios, the workday morning peak varies be
tween 0.15 kW and 0.67 kW per user. During the rest of the day, and 
during the weekends, the preheating load is more evenly distributed, 
and the average daily load varies from 0.04 kW in Scenario 1 to 0.2 kW 
per user in Scenario 4. There is a difference in user habits in scenarios 1 
and 3 (with all users) compared with 2 and 4 (with most frequent users). 
The reason for this is most likely that the most frequent users have 
smaller battery capacities than the average users, and that they therefore 
more frequently charge their EVs during the day, before disconnecting 
from the CP in the afternoon. 

The average daily profiles in Fig. 14 show the preheating load per EV 
user. When comparing the profiles with energy use in buildings, the 
share of EVs per apartment is relevant, as well as the share of EV owners 
actually using cabin preheating. Cabin preheating is probably most 
relevant for EV owners parking outside or in cold garages. In Fig. 15, the 
aggregated cabin preheating loads are compared to other residential 
energy loads, assuming that every apartment has 0.7 EVs and that 50 % 

Table 9 
MLR models and respectively adjusted R2 values.  

MLR model adjusted R2 

mod_TM E = α + β1⋅T + β2⋅M  0.6553 
mod_TDM* E = α + β1⋅T + β2⋅(D : M) 0.838 
mod_CM* E = α + β1⋅(C : M) 0.8423 
mod_DSH* E = α + β1⋅(D : S : M) 0.7755 
mod_TDSH* E = α + β1⋅T + β2⋅(D : S : H) 0.8303 
mod_CSH* E = α + β1⋅(C : S : H) 0.8453  

Table 10 
MLR correlations in selected models and model error statistics for trial data and validation data.    

Trial data used for training the model Validation data  

Coefficient R2 adjusted R2 MAE MSE RMSE MAPE R2 MAE RMSE 

mod_TDSH* E = 0.550588–0.045338 ⋅ T 
+ 0.049860 ⋅ (D: SL: HHP) 
+ 0.023514 ⋅ (D: SSM: HHP) 
+ 0.065395 ⋅ (D: SL: HPTC) 
+ 0.046261 ⋅ (D: SSM: HPTC)  

0.848  0.830  0.25  0.11  0.33 28%  0.895  0.29  0.37 

mod_CSH* E = 0.41914 
+ 0.11391 ⋅ (C: SL: HHP) 
+ 0.06961 ⋅ (C: SSM: HHP) 
+ 0.28108 ⋅ (C: SL: HPTC) 
+ 0.12975 ⋅ (C: SSM: HPTC)  

0.860  0.845  0.27  0.11  0.33 23%  0.752  0.30  0.35  

Fig. 9. Energy-Temperature diagram for preheating sessions with Nissan Leaf 
MY2018, using three different CPs. The figure includes trial sessions used for 
model training (black circles) and validation sessions. 
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of the EVs uses cabin preheating according to scenario 1, with 2 kWh 
preheating 0.5 times per day. The daily profiles illustrate the seasonal 
difference between aggregated hourly loads during summer (June, July, 
August) and winter (December, January, February). For this study, 

winter loads during workdays are most relevant, since this is the 
dimensioning period for the grid. The average apartment electricity load 
during winter is between 0.5 and 0.8 kW/apartment, with the highest 
energy loads in the afternoons/evenings. For space heating and DHW, 
the apartments have an average daily heat load between 1.5 and 2.5 
kW/apartment during the winter, with a morning and evening peak. The 
EV charging load during winter is in the range of 0.1 kWh per EV user 
during morning/daytime, and 0.5 kW per EV user during evenings/early 
night hours. 

Fig. 15 illustrates that EV cabin preheating has a rather small effect 
on an aggregated level, given the assumptions in this study. During 
workdays, the preheating scenarios increase the average morning load 
during the winter with 0.5–2 %, including all the apartment energy 
loads and EV charging. Compared to apartment electricity only, the 
average morning peak increases with about 10 % on workdays. The 
actual aggregated load will depend on a number of parameters, such as 
the EV density, the number of preheating sessions per day, the pre
heating power and duration, outdoor temperatures, and user habits. 

4. Conclusion 

The number of EVs is increasing globally, and in Norway the share of 
BEVs and PHEVs was 22 % of the total car stock in 2021 [20]. In cold 
climates, it is generally recommended to use electricity from the grid to 

Fig. 11. The relationship between E and D, with different Ts, EV sizes (SM or L) and heating systems (HP or PTC only). Model TDSH* predictions (lines), trial data 
(dots), and validation data (crosses). 

Fig. 12. Model CSH* predictions (lines), trial data (dots), and validation data 
(crosses) for E as a function of TC. The EVs have different sizes (SM and L) and 
heating systems (HP or PTC only). 

Fig. 10. The relationship between E and T, with different Ds, EV sizes (SM or L) and heating systems (HP or PTC only). Model TDSH* predictions (lines), trial data 
(dots), and validation data (crosses). 
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preheat the EV cabin before using the car. During workdays, a majority 
of EV cabin preheating sessions happen in the morning hours, when 
there is also a high demand for other energy use. Morning hours during 
cold winter days are the time of the year with the highest peak loads in 
Norway. It is thus important to understand the power load and energy 
consumption for grid-connected preheating of EV cabins. Our literature 
review identified a need for more experimental knowledge within this 
topic. This work presented data from preheating sessions of various EVs, 
during different outdoor temperatures. The models BMW i3, Jaguar I- 
PACE, Nissan Leaf, Tesla Model 3, and VW eGolf were tested, repre
senting 38 % of the EVs in the Norwegian EV stock. Based on the trial 

data, linear regression models were developed. Further, preheating 
loads were compared to typical electricity and heating loads in apart
ment buildings, and aggregated grid loads for preheating EVs were 
assessed. 

The preheating of EVs happened at two sites, both with a 7.4 kW CP. 
The outdoor temperatures varied between − 10 ◦C and + 10 ◦C. During 
the preheating, most of the EVs had a power use between 3 and 8 kW 
initially. After a 10 to 20 min initial period, the cabin preheating power 
was reduced to about 2 to 4 kW. Maximum duration for preheating is car 
dependent, and for example Nissan starts the preheating up do 2 h 
before departure, depending on the outdoor temperature, while Tesla 

Fig. 14. Average daily profiles for cold days: Aggregated EV cabin preheating loads per EV user.  

Fig. 15. Average daily profiles summer/winter: EV charging, apartment electricity use, and apartment space heating and DHW.  

Fig. 13. Example day January 9th 2018, for an apartment with one EV, showing energy for space heating and DHW, energy for EV charging (3.6 og 7.4 kW) and 
cabin preheating (2 or 4 kWh), and other electricity use in the apartment. 
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allows up to 4 h preheating after starting time, dependent on user 
preferences. The preheating duration for most of the trial sessions were 
between 15 and 45 min. In the trial, the preheating energy use was found 
to be up to 2 kWh for most EVs, while the Tesla used up to 5 kWh. Since 
some of the preheating sessions were interrupted by disconnecting the 
EVs, it is expected that the energy use can be higher. 

Multiple linear regression models were developed to investigate the 
relationship between various variables and the energy use for preheat
ing. Two models were selected to show the relationship between the 
cabin preheating energy use, outdoor temperature, and EV size/heating 
system (model TDSH*, R2 0.848 for training data and 0.895 for vali
dation data), and between the cabin preheating energy use, cabin tem
perature difference, preheating duration, and EV size / heating system 
(model CSH*, R2 0.860 for training data and 0.752 for validation data). 
The two selected models can be used in parallel, since they have 
different input values, and therefore different advantages when applying 
them in analysis. For the same cabin temperature difference, the pre
dicted preheating energy use for EVs with PTC was 2 times higher than 
for EVs with HP. Comparing predicted energy use for EVs with different 
sizes, preheating energy use for large EVs was 1.9 times higher than for 
small/medium EVs. Although this work has taken the first step to predict 
the energy consumption for grid-connected preheating of EV cabins, 
there are still some limitations. A larger dataset would improve the 
models, with an extended number of EV models, and EVs. 

Hourly energy loads for EV cabin preheating were compared with 
other energy loads in Norwegian apartment buildings. For an example 
day with cold outdoor temperatures, energy for EV cabin heating 
increased the hourly energy peak in the morning with 48 % or 95 %, 
assuming 2 or 4 kWh preheating. On an aggregated level, daily energy 
loads for preheating were assessed for four preheating scenarios. For the 
four scenarios, the workday morning peak varied between 0.15 kW and 
0.67 kW per EV user. This increase happens during hours where the grid 
is already under pressure. When comparing the daily profile for pre
heating with energy use in buildings on an aggregated level, it was 
assumed that every apartment had 0.7 EVs and that 50 % of the EVs used 
cabin preheating. During workdays, cabin preheating increases the 
average morning load during the winter with 0.5 to 2 %, including all 
the apartment energy loads and EV charging. Even though hourly pre
heating loads can be a high share of the energy use on an apartment 
level, the effect seems to be rather small on an aggregated level, given 
the assumptions in this study. Technological solutions can reduce the 
grid burden of EV cabin preheating. For example, the EV battery can 
provide energy for preheating on days where extended driving ranges 
are not needed. Further, even more EV models can have HPs installed, or 
the preheating power can be managed according to a local power limit. 

The work gives insight into the power and energy use related to 
preheating of EVs. Such knowledge is lacking in literature, and is useful 
when e.g. simulating and forecasting EV energy loads on the grid in cold 
climates. The EV cabin preheating power and energy loads are affected 
by a number of parameters, such as the type of EV, the CP, the pre
heating duration, and the temperature levels. More research on this area 
is needed, including real-world testing of different EVs under various 
conditions, knowledge on user habits, and analyses of how preheating of 
EV cabins and batteries may affect the power use in buildings, and their 
aggregated impact on the grid loads. The research can be applied when 
developing new EV preheating solutions, to assure that grid re
quirements are met, while still maintaining the demand for extended 
driving ranges, comfort, and safety. 
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of mass-scale deployment of electric vehicles and benefits of smart charging across 
all European countries. Appl Energy 2022;312:118676. https://doi.org/10.1016/j. 
apenergy.2022.118676. 

[4] Das HS, Rahman MM, Li S, Tan CW. Electric vehicles standards, charging 
infrastructure, and impact on grid integration: A technological review. Renew 
Sustain Energy Rev 2020;120. https://doi.org/10.1016/j.rser.2019.109618. 

[5] Powell S, Vianna Cezar G, Apostolaki-Iosifidou E, Rajagopal R. Large-scale 
scenarios of electric vehicle charging with a data-driven model of control. Energy. 
2022;248. https://doi.org/10.1016/j.energy.2022.123592. 

[6] Sørensen ÅL, Sartori I, Lindberg KB, Andresen I. A method for generating complete 
EV charging datasets and analysis of residential charging behaviour in a large 
Norwegian case study. Under Rev. 2023. 
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