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Abstract
Bridge inspections are relied heavily on visual inspection, and usually conducted within limited time windows, typically at 
night, to minimize their impact on traffic. This makes it difficult to inspect every meter of the structure, especially for large-
scale bridges with hard-to-access areas, which creates a risk of missing serious defects or even safety hazards. This paper 
presents a new technique for the semi-automated damage detection in tunnel linings and bridges using a hybrid approach 
based on photogrammetry and deep learning. The first approach involves using photogrammetry to reconstruct a 3D model. 
It is shown that a model with sub-centimeter accuracy can be obtained after noise removal. However, noise removal also 
reduces the point cloud density, making the 3D point cloud unsuitable for quantification of small-scale damages such as 
fine cracks. Therefore, the captured images are also analyzed using deep convolutional neural network (CNN) models to 
enable crack detection and segmentation. For this aim, in the second approach, the 3D model is generated by the output of 
CNN models to enable crack localization and quantification on 3D digital model. These two approaches were evaluated in 
separate case studies, showing that the proposed technique could be a valuable tool to assist human inspectors in detecting, 
localizing, and quantifying defects on concrete structures.
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1 Introduction

Due to the age of the world’s existing road infrastructure, 
damage and deterioration of existing concrete structures is 
becoming a major social and economic concern in many 
countries [1]. In fact, as of 2008, more than 35% of Europe’s 
220,000 bridges were over 100 years old, with only 11% 
being less than 10 years old [2]. At the same time, tunnel 
infrastructures are also becoming older, and road administra-
tors require more capable analysis and monitoring systems to 
determine the health of this critical infrastructures.

The process of detecting damage on existing structures 
and evaluating their performance is known as Structural 
Health Monitoring (SHM) [3]. SHM involves the long-term 
observation of the physical and functional condition of the 
construction and identifies extent of deterioration from the 
previous inspections. Its main purpose is to gather informa-
tion about issues such as concrete deterioration, steel rebar 
corrosion, water seepage, concrete cover delamination, 
spalling, deflection/settlement, cracks, and geometry. SHM 
inspections should be performed routinely to evaluate the 
condition of bridges, plan future structural interventions, and 
identify structures needing replacement [4]. Such inspec-
tions are usually based on field observations performed by 
a human inspector. However, they are time-consuming, and 
the collected data do not always provide adequate visualiza-
tion of locations and/or the extent of defects [1]. The maxi-
mum period between direct visual inspections varies greatly 
from country to country, ranging from 6 months in Australia 
to 3 years in Germany, while the period between detailed 
visual/instrumented inspections ranges from 2 to 10 years. 
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In Sweden, inspections must be performed every two years, 
with a detailed inspection every 10 years [5].

Visual inspections rely heavily on the subjective assess-
ments of individual inspectors, which influences their reli-
ability and repeatability [6]. In addition, visual inspection 
usually does not give detailed results and must be comple-
mented with the use of technological devices. Accordingly, a 
study by Graybeal et al. [7] found that at most 81% of visual 
inspections were assigned correctly, and Phares et al. [6] 
concluded that at least 48% of individual condition ratings 
from visual inspections were incorrect. There is, thus, a need 
for simple, inexpensive, and practical methods for monitor-
ing defect propagation and geometric deviation in structures 
as an alternative to traditional visual inspections.

The evolution of unmanned vehicles and sensors technol-
ogy has significantly improved the efficiency of structural 
health monitoring. Technologies such as UAV [8–11], laser 
scanning [4, 12–14], and photogrammetry [4, 8, 12, 13, 15, 
16], leading to significant increases in the accuracy and 
quality of data collection for structural assessment. Mod-
ern structural analysis techniques generally do not rely on 
physical contact and can rapidly generate very large data-
sets whose analysis can provide highly accurate and reli-
able descriptions of a structure. These techniques have been 
enabled by the remarkable advances in computer power, data 
storage capacity, and camera sensors that have been made 
in recent decades. One important technique in terms of 3D 
visualization of structures is photogrammetry, which is a 
contactless optical sensing method that has received con-
siderable attention due to its highly productive data acquisi-
tion, low cost, and ability to be used in almost any climate 
or environment [4, 17].

In addition to data collection, the logic behind defect 
detection is the other piece of puzzle leading to reach 
semi-autonomous structural inspection. For this aim, data 
driven approach offers a lot of benefits in automation, and 
one of its novels and rapidly emerging application is deep 
learning. Deep learning technique is gradually accepted by 
civil engineers as a powerful tool in various applications, 
especially for damage identification of structures. Machine 
learning technique is one of the most efficient techniques 
for damage identification, able to imitate intelligent human 
learning without following explicit instructions. Image-
based damage detection using deep learning algorithms has 
emerged as a powerful technique for SHM in recent years 
[18, 19]. This method has achieved remarkable performance 
in the crack detection [20–25], road/pavement inspection 
[26–31], corrosion detection [32], and overall condition 
assessment [33] with multiple damage types [34, 35]. How-
ever, the introduction of this application was a classifica-
tion approach for damage identification, presented by Rytter 
[36], and defined in four levels: (1) Detection: Determina-
tion whether or not the damage is existed in the structure, 

(2) Localization: Determination of the geometrical location/
position of detected damage, (3) Quantification: Extension 
and/or quantification of the severity of detected and local-
ized damages, and (4) Prediction of the remaining service 
life (RSL) of the structure.

1.1  Image‑based 3D reconstruction for civil 
infrastructure

Structure from Motion (SfM) is currently the most popu-
lar photogrammetric technique for generating a 3D model 
of a structure. It involves capturing numerous multi-view 
images of the structure of interest from the ground or the 
air, which can be done using affordable non-metric cameras. 
The resulting 3D models can be used to perform SHM on a 
computer, remotely, without the safety and time constraints 
associated with direct visual inspections. For a detailed 
explanation of the theoretical principles of image-based 3D 
reconstruction algorithms, interested readers are referred to 
the work of Remondino et al. [37].

Broome [38] has shown that there is no significant dif-
ference between accuracy of close-range photogrammetry 
(CRP) and terrestrial laser scanning (TLS); the distances 
measured using the two methods differed by only 0–7 mm. 
In addition, a cost benefit analysis showed that CRP is a 
far more cost-effective method overall because it requires 
substantially less expensive equipment. However, TLS was 
more accurate overall when performed by a skilled operator 
[38]. Point clouds used for infrastructure inspection must 
have sufficient accuracy and density to represent the kinds 
of small-scale visual details that inspectors look for dur-
ing an inspection, which are often less than a millimeter 
in size. However, generated point clouds usually include 
missing data, inaccurate geometric positioning [39], sur-
face deviations [40], and outlier-based noise [41]; each of 
these noise types is described in detail by Chen et al. [42]. 
In more detailed studies for small-scale defect detection by 
point clouds data, Valenca et al. [43] have shown that cracks 
with widths of 1.25 mm can be detected using a TLS scan-
ner if the scanning parameters are set properly. However, 
in real built structures, it is difficult to monitor cracks at 
submillimeter scales because they may be covered by dirt 
and moisture stains [43]. Therefore, data acquisition should 
only be performed after briefly checking the site, removing 
dust from spaces and surfaces, clearing shady vegetation, 
and ensuring access to designated spaces.

Due to the clear advantages of remote structural inspec-
tion using photogrammetry, it has been investigated by sev-
eral researchers. For instance, Jahanshahi and Masri [44] 
used computer vision and image processing algorithms to 
develop a technique for crack detection using 3D reconstruc-
tion. In addition to damage detection, geometrical devia-
tions must be monitored during routine inspections. This 
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can be achieved by analyzing point cloud datasets, which are 
typically generated by laser scanning or photogrammetry. 
It has been shown that image-based 3D reconstruction is 
an inexpensive and efficient method for 3D reconstruction 
[45], although its achievable accuracy is lower than that of 
terrestrial laser scanning (TLS) [4]. However, Kwak et al. 
[46] showed that submillimeter precision in the estimation 
of vertical deflections and horizontal displacements could be 
achieved by combining two photogrammetric reconstruction 
techniques, namely image-matching-based reconstruction, 
and model-based image fitting. This approach enabled a high 
level of automation while delivering a root-mean-square 
error (RMSE) of 0.5 mm.

Another important advantage of image-based 3D recon-
struction is its potential for automation [4, 17], which can 
be facilitated using unmanned aerial vehicles (UAVs) for 
image acquisition. Image acquisition using UAVs is valu-
able because it can facilitate data acquisition from both areas 
that are likely to be damage-prone and areas that are hard to 
access. Moreover, UAVs allow images of regions of inter-
est (ROI) to be captured at close range (and, thus, at high 
resolution), leading to improved pattern recognition and 
more accurate models in terms of geometric dimensions. 
Close-range images also provide more information on local 
structural details and improve feature-matching processes. 
However, procedures based on close-range imaging have 
the drawback of requiring the capture and analysis of more 
images than alternatives based on longer-range imaging, 
leading to higher computational costs. To overcome this 
problem, the hierarchical Dense Structure-from-Motion 
(DSfM) method, which was designed for use with UAV 
imaging systems, was proposed by Khaloo and Lattanzi 
[47]. Khaloo et al. [48] described the use of UAVs to gener-
ate 3D models with sufficient accuracy to detect defects on 
an 85 m-long timber truss bridge. The UAV-based method 
was found to outperform laser scanning with respect to the 
quality of the captured point clouds, the local noise level, 
and the ability to render damaged connections. However, 
neither TLS nor conventional DSfM have yet proven capable 
of generating point clouds accurate enough to resolve struc-
tural flaws on scales of 0.1 mm (the minimum dimension of 
a hairline crack) while simultaneously capturing a structure’s 
overall geometry.

Morgenthala et al. [8] presented a framework for auto-
mated UAV-based condition assessment inspections of 
bridges that encompasses flight path planning, structural 
surface model reconstruction, and surface defect detection. 
Additionally, Chen et al. [42] provided a case study of UAV 
bridge inspection by 3D reconstruction and discussed quality 
evaluation mechanism for 3D point cloud.

Once generated, 3D models can be analyzed using deep 
convolutional neural networks (CNNs) to enable semi-auto-
mated detection, localization, and quantification of existed 

defects. For example, Mirzazade et al. [10] proposed a CNN-
based workflow for detecting and measuring joint openings 
in the abutments of a trough bridge and mapping them onto 
a 3D model generated by photogrammetry. The method per-
formed well but was highly reliant on a prepared dataset for 
model training in both defect classification and segmenta-
tion tasks. This training dataset consisted of a large set of 
images of defects similar to those being inspected for in the 
structure of interest.

1.2  Damage detection using Convolutional Neural 
Networks (CNNs)

Image-based crack detection using CNN algorithms has 
emerged as a powerful technique for SHM in recent years 
[18, 19]. CNN-based image analysis methods have achieved 
remarkable performance in the detection of cracks [20–25], 
multiple damage types [26, 27], and overall condition 
assessment [33]. On these studies, four deep CNN archi-
tectures mostly have been used for classification purpose: 
VGGNet-19 [49], Inception v3 [50], GoogleNet [51], and 
ResNet-50 [52]. Mirzazade et al. [11] compared these four 
CNNs in terms of accuracy, loss, computation time, model 
size, and architectural depth, obtaining the results summa-
rized in Fig. 1 [11]. Briefly, InceptionV3 achieved the high-
est accuracy with the prepared dataset, but its computation 
time was almost two times that of GoogleNet [11].

Many groups working on defect localization have 
approached the problem of image-based crack detection by 
splitting images and treating it as a sub-image classification 
problem. For example, Zhang et al. [27] used over 500 pave-
ment images to train a ConvNet model that successfully rec-
ognized road cracks in a square image patch with dimensions 
of 99 × 99 pixels. Using a similar strategy, Kim et al. [53] 
proposed a transfer-learning network based on pre-trained 
R-CNN to detect cracks in a concrete bridge. Inspired by 
the famous CNN image classification model AlexNet [54], 
Kim and Cho [53] introduced an algorithm that classifies 
sub-images with dimensions of 227 × 227 pixels into four 

Model size

LossComputation time

GoogleNet

ResNet-50

Inception v3
VGG-19

Fig. 1  Damage detection performance of four CNN architectures. In 
all cases, the 1st and 4th levels correspond to the worst and best per-
formance with respect to the indicated items, respectively [11]
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classes: cracks, structural joints, plants, and intact surfaces. 
This multi-class model and the large window size yielded a 
significant improvement in identification accuracy. Moreo-
ver, the use of an overlap window made it possible to narrow 
the crack-containing region [53]. All the studies mentioned 
above used the sliding window method whereby a full image 
of a concrete surface is divided into sub-images on which 
image classification is subsequently performed, allowing 
sub-images containing cracks to be selected and analyzed 
to locate the damaged area and quantify its size.

Defect quantification using CNN requires semantic seg-
mentation of the detected crack-containing sub-images. 
Semantic segmentation is an important task in computer 
vision whose goal is pixel-wise classification. This is typi-
cally achieved using end-to-end networks consisting of two 
cooperative sub-networks (encoding and decoding) that clas-
sify each pixel of the image and then segment the image 
into distinct components based on the classifications. In the 
context studied here, the components of interest are detected 
defects.

In this work, CNNs were used to detect and segment dam-
aged areas so that their dimensions could be determined. A 
tool with these capabilities could be used by inspectors to 
monitor damage propagation over a structure’s service life. 
The task of pixel-wise damage detection using CNNs can be 
divided into two sub-tasks: (1) splitting images into multiple 

smaller sub-images and performing CNN classification in 
each for damage localization, and (2) applying semantic seg-
mentation on detected cracked sub-images for pixel-wise 
damage detection.

2  Methodology and inspection strategies

2.1  Proposed methodology

This study aims to develop new solutions for monitoring the 
condition of existing structures. Such solutions will allow 
defects to be identified at the earliest possible stage, mak-
ing it possible to perform maintenance while minimizing 
traffic disturbances. To this end, a new approach involving 
generating a digital structure model followed by a semi-
automated defect detection is presented. This will provide 
detailed information on the condition of the whole structure. 
Figure 2 presents an overview of the approach. First, image 
data are collected from different perspective (angles) on the 
structure. In the second step, these images are subjected to 
preprocessing and quality enhancement (e.g., background 
removal, brightness and blurring analysis) that may be 
needed for image-based 3D model reconstruction (see the 
work of Mirzazade et al. [10] for details), and photogram-
metry is used to generate a 3D model of the structure (also 

Fig. 2  Overview of the autono-
mous damage detection and 
quantification workflow
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called digital model). In the third step, generated point cloud 
by photogrammetry technique is analyzed for geometrical 
deviation assessment. In this study, another 3D point cloud 
of the structure is generated by laser scanning to verify the 
accuracy of image-based point cloud. The point cloud serves 
as a reference for geometric verification of the photogram-
metric model generated in step two.

Finally, in steps four and five, two Convolutional Neural 
Networks (CNN) are used for autonomous damage detection 
and pixel-wise segmentation to quantify the extent of the 
detected cracks in collected images. These two tasks have 
five distinct steps: (1) data acquisition, (2) dataset prepara-
tion, (3) designing and training CNNs, (4) damage detection 
and localization by splitting images into sub-images that are 
classified into “Crack” or “No Crack” areas using the CNN 
classifier, and (5) crack segmentation, mapping cracks onto 
a 3D model, and crack quantification. In step 5, pixel-wise 
crack segmentation is performed by applying U-Net seman-
tic segmentation on 2D images that are then stitched together 
to reconstruct a 3D model and generate an orthophoto of 

the defect-containing areas. The segmented crack can then 
be measured by determining the orientation of the camera’s 
position for each photo relative to the crack. Figure 3 shows 
a flowchart of the procedure.

2.2  Scientific novelty

This paper presents a pilot study that was conducted with the 
aim of developing inexpensive and easily deployed vision-
based non-contact defect quantification solutions that (i) 
are suitable for field applications and (ii) could improve the 
inspection, monitoring, and assessment of existing bridges. 
Such solutions could improve the accuracy and efficiency 
of bridge inspections by eliminating human error, allowing 
damage to be detected at an early stage. This in turn will ena-
ble preventative and remedial measures to be implemented 
in a timely fashion and make it easy to generate historical 
records showing the progress of a structure’s deterioration.

Pixel-wise crack segmentation

CNN architectures designed approaching 
classification and segmentation 

Splitting images to small sub-images, 
applying CNN classifier on each sub-

images

Locating sub-images classified as a 
cracked area

Semantic segmentation

1- Data acquisition

2- Dataset preparation

3- Designing CNNs 

and training
4- Damage detection, and 

localization

5- Crack segmentation, mapping 

on 3D model, and measurement

Site pre-checking
1.1.

Flight path planning
1.2.

Data collection
1.3.

Inception v3
(Classification)

3.1.
U-Net

(Segmentation)

3.2.

Detection
4.1.

Localization
4.2.

5.1.

Mapping segmented crack on 3D model
5.2.

Crack measurement
5.2.

Fig. 3  Workflow of the proposed method for semi- automated damage detection and quantification
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3  Field deployment

3.1  Selected case studies

3.1.1  Kedkejokk tunnel

The Kedkejokk tunnel is a concrete arch tunnel built 
in 1906. It is located in the Riksgränsen region (at km 
1533 + 175 according to the nomenclature of Trafikver-
ket, the Swedish Transport Authority), near the Norwegian 
border in northern Sweden. As shown in Fig. 4, it crosses 
a narrow stream of water. The tunnel width is 4.0 m and 
its total length is 41.2 m. It is located on a hillside, and 
there are steep slopes between the tunnel’s foundation and 
existed railway. The surrounding area is sparsely vegetated 
with scattered small trees and bushes. The tunnel was sur-
veyed on two consecutive days, during which the weather 
conditions varied from cloudy to sunny. Because the tun-
nel under the railway infrastructure was dark, images were 
captured with the camera in AV mode and the ISO was 
set automatically based on the light environment. It was 
necessary to use a shutter time of almost 20 s to capture 
sufficient light, which made the process time-consuming.

3.1.2  Juovajokk bridge

The Juovajokk bridge is a simply supported bridge made 
from reinforced concrete that was built in 1902 in the vicin-
ity of Abisko in northern Sweden (at km 1504 + 915 using 
the Trafikverket nomenclature). Its superstructure was 
replaced in 1960, and it spans a stream as shown in Fig. 5. 
The bridge’s span and width are 5.5 m and 3.8 m, respec-
tively. The surrounding area is densely vegetated and there 
are steep slopes behind the abutments that made it difficult 
to balance a tripod for image acquisition. During the survey, 
some areas under the bridge were frozen, making the sur-
face slippery. It took around 3.5 h to completely survey the 
bridge during a partially sunny morning with temperatures 
below 0 °C.

3.2  Data acquisition

The equipment used for TLS was a long-range RIEGL 
VZ-400 3D terrestrial laser scanner (see Fig. 6a). This 3D 
scanner operates on the time-of-flight principle and can 
perform measurements at distances between 1.5 and 600 m 
with a nominal accuracy of 5 mm at 100 m. It uses near-
infrared laser wavelengths with a laser beam divergence of 

Fig. 4  Photos of Kedkejokk 
tunnel

Fig. 5  Photos of Juovajokk 
bridge
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0.3 milliradians (mrad), corresponding to a beam diameter 
increase of 30 mm per 100 m of distance. The instrument’s 
maximum vertical and horizontal scan angle ranges are 
100° and 360°, respectively. The raw TLS data, i.e., point 
clouds captured from multiple scans, were post-processed 
(registered and geo-referenced) using the Leica Cyclone 
software package, which automatically aligns the scans 
and exports the point cloud in various formats for further 
processing.

The equipment used for CRP (Fig. 6b) consisted of a 
Canon EOS6D Mark II DSLR camera with a full-frame 
complementary metal–oxide–semiconductor (CMOS) 
optical sensor giving a resolution of 12.8 megapixels. The 
camera was equipped with Canon EF 24 mm and 20 mm 
wide-angle prime lenses; its interior orientation is speci-
fied in Table 1.

Image acquisition is the first step in image-based 3D 
reconstruction. The acquired images were fed into a com-
mercial SfM software package, Agisoft PhotoScan Pro 
(LLC, 2017) that simultaneously determines the camera’s 
interior orientation and defines parameters relating to its 
exterior orientation, such as the camera’s angle and the 
working distance relative to the scanned object. Images of 
the two case studies were captured from several points of 
view corresponding to different working distances between 
the camera and the bridge; the working distance is arguably 
the variable with the greatest impact on data quality. The 
information presented in Table 1 was used to calculate the 
Ground Sampling Distance (GSD) and Field of View (FOV) 
as functions of the working distance for both lenses (see 
Fig. 7a, b). The GSD is the distance between the centers of 
two consecutive pixels on the target surface. Smaller GSD 
values correspond to higher resolutions and are therefore 
preferred. However, in practice it is also necessary to con-
sider the FOV value because a larger FOV minimizes the 
number of images that must be captured (see the work of 
Chen et al. [42] for further details).

After calculating the GSD and FOV, an appropriate Work-
ing Distance (WD) and tilt angle (�) can be selected to match 
the surveying objectives for image collection. The graphs pre-
sented in Fig. 7a, b show that at any given working distance, 
the 24 mm lens gave a lower GSD (and, thus, a higher resolu-
tion leading to the capture of more detail) than the 20 mm lens. 
However, its FOV is lower than that of the 20 mm lens, making 
it necessary to acquire and process more images to cover all 
the surfaces of the structure. Consequently, more processing 
time and resources are needed to generate the 3D model when 
scanning with the 24 mm lens. To strike an optimal balance 
between processing time and resolution, a zoom lens can be 
used for data acquisition. A zoom lens is a mechanical assem-
bly of lens elements whose focal length can be varied to main-
tain a consistent GSD at different working distances, which is 

Fig. 6  Data acquisition equip-
ment. a RIEGL VZ-400, 3D ter-
restrial laser scanner, b Canon 
EOS6D Mark II digital camera 
with lenses

Table 1  Interior orientation of the sensor used for CRP

Lens 24 mm 20 mm

Aperture f/2.8–f/22 f/2.8–f/22
Diffraction-limited aperture f/9.3
Closest focusing distance 0.66′/0.20 m 0.25 m (0.82 ft)
Horizontal viewing angle 74° 84°
Diagonal viewing angle 84° 94°
Vertical viewing angle 53° 62°
Filter diameter 58 mm 72 mm
Focal length 24 mm 20 mm
Pixel dimensions 6240 × 4160
Pixel size 5.75 µm
Sensor size 35.9 × 24.0 mm
Shutter speed 30–1/4000 s in 1/3 stop increments
Frame rate 29.97 fps
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important when performing hierarchical Dense Structure from 
Motion (DSfM). The collected images were used for 3D model 
generation as described below.

4  3D model generation

Both bridges were scanned on cloudy to sunny days and 3D 
point clouds were successfully generated from both the TLS 
and CRP scanning data. Table 2 shows the scanning dura-
tion, hardware, and software used for this purpose as well 
as the main challenges encountered during inspection and 

modeling in each case study. Figure 8 shows the locations 
where the camera was set up for CRP data acquisition in 
each case. Good performance was achieved when using CRP 
due to its easy set-up and high productivity.

Both generated point clouds were imported into 
Autodesk ReCap to extract measurements of the bridges’ 
structural elements (see Fig.  9). Measurements of the 
bridges’ structural elements can be found in as-built draw-
ings to obtain ground truth as a reference model; however, 
in Kedkejokk tunnel, due to the performed repairment and 
new installed lining, the existed as-built is totally different 
compared with current condition. Therefore, TLS model 

a. GSD and FOV as func�ons of the working distance for the 20 mm lens

b. GSD and FOV as func�ons of the working distance for the 24 mm lens
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considered as an updated and more reliable ground truth 
for both case studies, Table 3. Therefore, last column of 
Table 3 shows higher geometric deviation for the Ked-
kejokk tunnel compared with that of Juovajokk bridge, 
which is due to the geometry of tunnel, which is longer in 
axis direction versus others, in addition to the poor light 
conditions in tunnel. The need for suitable light condi-
tions and scale bars for large structures (especially those 

that are long in one direction like the Kedkejokk tunnel) 
to minimize geometric deviation are notable weaknesses 
of the CRP method when compared to TLS. The effects of 
geometric deviations in assessments of existing concrete 
bridges were discussed in detail by Mirzazade et al. [17]. 
Overall, the image-based generated 3D models provided 
information, with less than 1% error, for bridge inspection, 
especially in hard-to-access areas, while presenting mini-
mal risks and safety issues. In the next part of the paper, 
the Juovajokk bridge is used as a case study for 3D model 
quality assessment because it has a variety of surfaces, 
materials, and geometric shapes that present different chal-
lenges in 3D model reconstruction. In addition, the Ked-
kejokk tunnel is examined as a case study for autonomous 
damage detection, segmentation, and quantification due to 
its poor lighting and hard-to-access areas present signifi-
cant difficulties for human inspectors.

4.1  Data quality evaluation

The Structure-from-Motion process (SfM) starts with 
image acquisition, determines the interior orientation, and 
defines parameters relating to the exterior orientation of 
the camera, such as camera angle and work distance, rela-
tive to the scanned object. However, generated model usu-
ally include missing data, inaccurate geometric position-
ing, surface deviations, and outlier-based noise. Fig. 10 
shows a confidence model illustrating the reliability of 
the image-based point cloud for each part of the model 
from Juovajokk bridge; warm colors indicate noisy parts 
while cold colors indicate areas where the confidence in 
the generated point cloud is relatively high.

Table 2  Scanning details for the Kedkejokk tunnel and Juovajokk bridge

Kedkejokk tunnel Juovajokk bridge

Time duration • 12 h (CRP)
• 2 h (TLS)

• 3 h and 30 min (CRP)
• 1 h (TLS)

Hardware • Canon EOS6D digital camera
• Canon EF 24 mm, and 20 mm wide-angle prime lens
• RIEGL VZ-400

Software • Agisoft PhotoScan Pro (LLC, 2017)
• Leica Cyclone software package

Distance to construction 1.5–2 m 2–4 m
Difficulties; inspection • Light condition

• Narrow space
• Rush flow and low temperature of water

• Hard to access areas
• Slippery areas due to frozen water

Difficulties; Modeling • Changing in environmental light due to long image acquisition 
period of time

• Light reflection on pattern-free 
and smooth surfaces

Fig. 8  Photogrammetric scanning positions for the Juovajokk bridge 
and Kedkejokk tunnel
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4.1.1  Incomplete data

In 3D model reconstruction, missing data give rise to 
areas with poor overlap, especially for slim or narrow 

parts of the structure such as struts (Fig. 11) or cables, 
because of a lack of sufficient features for image 
matching.

Fig. 9  Measurements of bridge 
structural elements by CRP 
(left), and laser scanning (right)

Table 3  Accuracy of 3D models 
generated using TLS and CRP

a Original values before repair are as-built dimension, but after lining replacement, tunnel width is changed

Component As-built 
dimension 
(mm)

TLS CRP TLS vs. CRP
(Ref.: TLS)

(mm) %∆L (mm) %∆L %∆L

Juovajokk bridge Span 5500 5432 − 1.2% 5456 − 0.80% 0.44%
Width (deck) 3800 3805 0.13% 3810 0.26% 0.13%

Kedkejokk tunnel Widtha 4000 2750 – 2774 – 0.87%
Lengtha 41,200 44,014 – 44,156 – 0.32%

Fig. 10  Confidence model of the Juovajokk Bridge. Blue parts have reliable triangulation while red parts have comparatively high noise levels
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4.1.2  Outlier noise and surface deviation

Outlier noise usually appears around the boundary of the 
structure because textureless backgrounds (like the sky) tend 
to confuse 3D reconstruction approaches. For example, the 
area underneath the bridge in Fig. 12 is poorly reconstructed 
because the reconstruction algorithm treats the background 

(sky) as part of the front object (bridge). Furthermore, since 
the camera failed to fully observe the area beneath the beam, 
many outliers appear around the border. Those outlier points 
will affect subsequent surface reconstructions and generate 
floating artifacts around the object. In addition, shadows and 
large tilt angles can weaken or hide surface textures, making 
this part noisier. Commercial software tools such as Agisoft 
PhotoScan Pro (Agisoft LLC, 2017), which was used in this 
work, include outlier noise removal as part of the standard 
rendering procedure (see Fig. 12).

Assessment by the naked eye reveals little difference in 
quality between the final rendered CRP and TLS models. 
Table 4 lists the point cloud densities achieved with each 
scanning methods for the two areas shown in Fig. 13.

These results showed that a higher point-cloud density 
does not necessarily yield a more detailed model with a 
higher resolution. Despite the high point-cloud density 
achieved using CRP, the resulting model had surface devi-
ations, came from outlier noises, that had to be mitigated 
during post-processing. Figure 14 shows the point cloud 
deviation of the photogrammetric model relative to the 
laser scanning model for the two areas shown in Fig. 12. 
These graphs were generated by aligning the CRP data to 
the TLS data using the iterative closest point (ICP) algo-
rithm of Besl and McKay [55], and calculating the dis-
tance between specific points in each set. For each point in 
the CRP data set, a search was performed to find the near-
est neighbor point in the TLS data set, and the offset dis-
tance between these two points was recorded. As shown by 
the graphs in Fig. 14, the standard deviation of the result-
ing cloud-to-cloud distance maps was highest for the area 
underneath the bridge (area 2), which is mostly due to this 
area’s poor lighting and the lack of distinct features in the 
captured images. Outlier noise can be removed by apply-
ing a threshold for detecting outlier points with excessive 
deviations. As discussed previously [17], a reasonable 
threshold for this purpose is equal to the mean cloud-to-
cloud distance plus/minus twice the standard deviation. 

Fig. 11  An example of a missing data problem resulting from a lack of features on the struts
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Fig. 12  Removal of outlier noise from the initially generated model 
by Agisoft PhotoScan Pro (Agisoft LLC, 2017)
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Therefore, taking the TLS point cloud as the ground truth, 
all points for which the absolute cloud-to-cloud distance 
was more than twice the standard deviation were filtered 
out as surface deviation noise. Finally, the degree of sur-
face deviation in the two studied areas was calculated as 

the ratio of the number of filtered points in each area to 
the total number of points in the same area (see Table 5).

Table 5 shows the degree of surface deviation in the 
CRP clouds for areas 1 and 2 when applying different noise 
removal thresholds. The cells with gray shading show the 

Table 4  Resolutions achieved 
by CRP and TLS for two 
different areas of the Juovajokk 
bridge

Area Intended area 
 (m2)

Reconstruction 
method

Number of points Local point 
density (points/
(m2)

1-Abutment 8.23 TLS 1,297,370 157,639
CRP 1,883,544 228,863

2-Underneath 13.97 TLS 1,342,556 96,102
CRP 1,391,184 99,583

Fig. 13  Areas of the abutment 
and underneath of the bridge 
used to evaluate the point cloud 
densities of the CRP and TLS 
models

2

1
1

2

Point cloud generated by 
Photogrammetry (CRP)

Point cloud generated by 
Laser scanning (TLS)

Fig. 14  Absolute cloud-to-cloud deviations between the CRP and TLS point clouds, using the TLS cloud as a reference, for areas 1 (abutment) 
and 2 (underneath) of the Juovajokk bridge

Table 5  Absolute numbers of 
deviating points in the CRP 
clouds, percentage of surface 
deviation, and local point-cloud 
density after noise removal for 
areas 1 and 2 of the Juovajokk 
bridge when applying different 
noise removal thresholds

Threshold for surface 
deviation noises

Absolute number of deviating 
points

Percentage of surface 
deviation noise

Local point density 
after noise removal 
(points/(m2)

Area 1 
(1,883,544 
points)

Area 2 
(1,391,184 
points)

Area 1 Area 2 Area 1 Area 2

Up to 2 cm 938,778 943,934 49.8% 67.8% 114,889 32,065
Up to 2.4 cm 793,496 839,322 42.1% 60.3% 132,511 39,534
Up to 4 cm 438,727 459,156 23.3% 33.0% 175,537 66,720
Up to 4.2 cm 411,144 418,073 21.8% 30.0% 178,970 69,708
Up to 5 cm 313,327 238,415 16.6% 17.1% 190,871 82,554
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results obtained when applying the suggested threshold of 
twice the standard deviation for the area under considera-
tion. As expected, the local point density in both areas of the 
CRP cloud after noise removal is lower than that of the TLS 
cloud, and lowering the threshold to increase noise removal 
exacerbates this difference. This means that while these CRP 
point clouds could be used to monitor geometric deviations 
of the structure, they cannot be used for small-scale dam-
age detection due to their low point density. However, this 
is not a severe limitation because damage detection using 
deep CNN is performed using image data rather than a 3D 
point cloud.

A representative cloud-to-cloud distance map, to illustrate 
outlier noises, is shown in Fig. 15. In this figure, points with 

warmer colors have higher deviations. Surface deviations 
can be filtered out by applying a threshold based on the abso-
lute cloud-to-cloud distance.

5  Damage detection

The Kedkejokk tunnel was used as a case study to test the 
capabilities of deep learning algorithms for crack detec-
tion and quantification in hard-to-access areas with poor 
lighting. Then after data acquisition, which is discussed in 
Sect. 3.2, datasets for training CNNs must be pre-processed. 
The training dataset used in this work consists of 40,000 
images with RGB channels (227 × 227 pixels each) divided 
into two classes (Crack and No Crack) comprising 20,000 
images each. The dataset was generated by Özgenel et al. 
[56] from 458 high-resolution images (4032 × 3024 pixels) 
of concrete surfaces at the METU campus; the high-resolu-
tion images were converted into a much larger set of smaller 
images using the method proposed by Zhang et al. [27]. Two 
models were trained using this dataset: (1) a classification 
CNN model based on the Inception V3 architecture, and (2) 
a semantic segmentation with an end-to-end CNN based on 
the U-Net architecture that was trained using binary seg-
mented crack images. Some representative images from the 
dataset are shown in Fig. 16.

Before training, the datasets were divided into training 
and validation groups comprising 70% and 30% of the total 
data, respectively. The datasets were augmented with ran-
domly cropped and rescaled (1 × to 2 × ) images to enable 
learning of important features at different scales and posi-
tions. Random rotation (between 0° and 90°) and random 
mirroring in both X and Y directions were also performed. 
Data normalization was then performed to avoid undesired 
bias due to the inclusion of high-frequency information. This 
ensured that the data frequency was normally distributed 
with a mean of 0 and a variance of 1.Fig. 15  A cloud-to-cloud absolute distance map for the region under-

neath the bridge

Fig. 16  Representative images 
from the dataset prepared by 
Özgenel et al. (2018) [56] that 
was used for training both 
CNNs N
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Using the result of previous studies by authors [10, 11] 
and based on obtained iterative optimization of gradient 
descent for similar dataset, optimized hyperparameters and 
needed training epochs to avoid underfitting were consid-
ered. Therefore, fifteen training epochs were performed for 
the classification CNN model based on Inception V3, while 
5 and 8 training epochs were performed for the segmenta-
tion models based on U-Net and SegNet, respectively. The 
learning rate was assumed to be 0.001 and the mini-batch 
size was set to 128 and 1 images for image classification and 
segmentation, respectively. The verification frequency was 
set to 20 iterations, and training was performed using an 
Intel ® Core ™ i9-9880H CPU running at 2.30 GHz.

5.1  Crack localization

All of the captured images were divided into sub-images 
with dimensions of 227 × 227 pixels and those containing 
cracks were detected by the CNN classification model. 
Bounding boxes were then drawn around sub-images iden-
tified as potentially cracked regions. A trade-off must be 
struck when determining the size of the sub-images; a 
smaller size will increase the precision of localization, but 
as the image becomes more finely divided, the information 
content of the sub-images declines, creating a risk that they 
may lack sufficient information to confidently determine 
whether damage is present. For each sub-image, an overlap 
region with a thickness of 15 pixels in the vertical and hori-
zontal directions was defined to avoid risk of missing data 
on the borders of the sub-images.

In general, increasing the number of training epochs 
increases the training accuracy and, thus, reduces the train-
ing loss. However, too many training epochs may cause the 
model to overfit the training data. In other word, model 
does not learn the training dataset and memorizes that. 
Therefore, validation accuracy is found for each epoch 
to investigate whether it overfits or not. Figure 17 shows 
how the training accuracy and training loss varied with the 
number of epochs when training the InceptionV3 CNN-
based classifier. After training, the model’s confusion 

matrix was generated using the test dataset (which com-
prised 30% of the total dataset) to determine the number of 
true and false positive and negative predictions that were 
obtained (see Fig. 17).

5.2  Crack segmentation

Semantic segmentation is an important task in computer 
vision whose goal is pixel-wise segmentation. This is typi-
cally performed using an end-to-end network consisting of 
two cooperative sub-networks (encoding and decoding) 
classifying individual pixels as Crack or No Crack areas. A 
previous study [10] comparing the performance of U-Net 
[57] and SegNet [58] for semantic segmentation of small-
scale block openings concluded that U-Net offered better 
performance. In this work, both models were tested for 
crack segmentation. Figure 18 shows the corresponding 
training accuracy and loss graphs.

As found in the earlier study, U-Net achieved a higher 
overall accuracy than SegNet and required fewer train-
ing epochs to achieve good accuracy. Figure 19 shows the 
pixel-wise crack segmentation results obtained using the 
U-Net and SegNet models after 5 and 8 training epochs, 
respectively. Because the U-Net model achieved better 
crack segmentation performance even with less training 
epochs, it was applied to all sub-images that were found 
to contain cracks using the classifier model to segment the 
defects. Final images were then generated by merging the 
processed sub-images.

Since crack quantification was performed by count-
ing pixels, it was important to verify the quality of the 
semantic segmentation by matching it to ground truth 
data. Table 6 shows the metrics used to evaluate crack 
segmentation by U-Net and SegNet with respect to the 
ground truth.
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Fig. 17  Accuracy and loss curves for the training and validation of the Inception V3 classifier model and the confusion matrix obtained after 
applying the trained model to the test dataset
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5.3  Workflow evaluation and crack quantification

The developed workflow was tested by applying it to a new 
high-resolution image (6240 × 4160 pixels) of the Kedke-
jokk tunnel, captured in an area that would be difficult for 
a human inspector to access. Figure 20 shows the cracks 
detected by the CNNs, with damaged areas enclosed in red 
bounding boxes and segmented cracks shown using red pix-
els. Both false positives and false negatives were obtained. 
False positives (indicated by filled red boxes) occurred in 
areas containing crack-like patterns, while false negatives 
(indicated by dashed yellow boxes) are areas that contain 
clearly visible cracks whose shapes and scales differ from 
those of the cracks included in the dataset used to train the 
Inception V3 classifier model. To avoid false positives, a 
deeper CNN could be trained to extract deeper features from 
the training dataset. The incidence of false negatives could 
be reduced by further augmentation of the training dataset 

with randomly rescaled images to enable the detection of 
cracks with different scales and shapes. Figure 21 shows the 
precision of crack segmentation achieved with U-Net which 
is needed for crack quantification.

After crack detection and segmentation, realistic 3D coor-
dinates of the detected defects are extracted to measure the 
dimensions of the segmented cracks. For this purpose, an 
orthomosaic image or orthophoto must be generated, pro-
viding a photorealistic representation of the region of inter-
est (ROI) from which crack dimensions can be measured. 
Orthophotos can be generated from images captured from 
different perspectives using collinearity equations [59]. The 
distance of the camera from the surface and the ground sam-
pling distance (GSD) can then be calculated, allowing the 
dimensions of the cracks to be determined by counting the 
numbers of crack pixels in the horizontal and vertical direc-
tions. Figure 22 illustrates this process as performed in a 
controlled environment.
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Fig. 18  Accuracy and loss training curves for semantic segmentation using U-Net and SegNet

Fig. 19  The performance of the 
two trained CNNs in crack seg-
mentation; pixels classified as 
parts of cracks are shown in red
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Table 6  Accuracies of the 
U-Net and SegNet segmentation 
models compared to the ground 
truth

Architecture Training 
epochs

Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF Score

U-Net 5 0.97347 0.79777 0.68244 0.95677 0.82509
SegNet 8 0.88893 0.79681 0.51817 0.86612 0.64191
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Using the approach described above, a 3D model of the 
Kedkejokk tunnel was generated by the hierarchical Dense 
Structure-from-Motion (DSfM) method, with an elevated 
resolution in the defected area. Cracks in this area were 
then segmented with the trained CNNs and an orthophoto 
was generated to measure the width of the cracks. Figure 23 
shows the results obtained at three points along a detected 
crack whose coordinates were recorded on the digital model 
to serve as documented data from the autonomous inspec-
tion. A good accuracy was achieved, although it should be 

noted that the accuracy of the results increases with the GSD 
of the captured images.

6  Conclusions and contributions

This paper introduces a method for semi-automated bridge 
inspection based on the generation of a photogrammetric 
3D model followed by CNN-based crack detection, localiza-
tion, and quantification. Case studies on two existed concrete 
structure were performed to evaluate and refine these two 
processes.

The Juovajokk bridge served as the case study for the 
first process, i.e., photogrammetric 3D model generation. 
Major challenges in this process were discussed, ranging 
from digital image acquisition to model quality evaluation, 
as well as parameters that influence model quality. It was 
concluded that:

1. Close-range photogrammetry (CRP) offers several ben-
efits compared to conventional monitoring methods, 
namely:

• Safe remote monitoring of difficult to access areas.
• High productivity while providing data with suffi-

cient accuracy for reliable analysis.
• Easy set-up requiring comparatively little operator 

skill.

2. During data acquisition, it is vital to determine the opti-
mal distance for image acquisition; the acquired images 
should be of sufficiently high resolution to permit the 

Fig. 20  Cracks detected and segmented by the studied CNNs

inspected image inspected image

Wrong Crack area (False Positive) detection

Correct Crack detection

Zoom in areas

Fig. 21  Accuracy of crack segmentation using trained U-Net
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detection of small-scale defects while capturing the few-
est images possible. Resolution depends on the camera’s 
calibration and interior orientation including the focal 
length and sensor size.

3. Drawbacks of the photogrammetric approach include 
long post-processing times, computational cost, and 
greater noise when compared to laser scanning. Outlier 
noise removal discussed by applying an outlier removal 
threshold based on the point-to-point deviation between 
the photogrammetric point cloud and a reference point 
cloud. A threshold of twice the standard deviation pro-
vides acceptable accuracy while limiting the loss of 
point-cloud density.

The Kedkejokk tunnel served as the case study for the 
second process, i.e., semi-automated crack detection, locali-
zation, and segmentation using deep convolutional neural 
network models. In this step, the captured images were split-
ted into a set of sub-images that were classified into Crack 
and No Crack groups using a CNN classifier, InceptionV3 
model. An end-to-end CNN with the U-Net architecture 
was then used to perform pixel-wise segmentation of the 
detected cracks within the sub-images. To increase accuracy 
and reduce computational cost, only the sub-images assigned 
to the “Crack” class by the classifier were subjected to this 
process. When this approach was applied to the case study, 
a crack in a hard-to-access area was successfully detected 
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Fig. 23  Crack quantification 
in a hard-to-access area of the 
Kedkejokk tunnel using the 
proposed method
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and measured by pixel-wise mapping to an orthophoto. It 
was concluded that:

1. Generated datasets augmented and increased by ran-
dom rescaling, horizontal/vertical flipping, changing 
the brightness/contrast/color, and random cropping of 
the included images. This improves the ability of the 
trained models to extract desired features under diverse 
conditions. However, it is important to minimize blur-
ring in the captured images as this tends to cause loss of 
features.

2. The experimental results reveal that the size of the sub-
images has an important effect on training times; smaller 
images contain fewer features than large ones and, thus, 
require far more iterations to reach convergence. How-
ever, the larger the images, the worse the precision of 
the boundary boxes around damaged areas. In addition, 
larger sub-images decreased the precision of semantic 
segmentation performed on those detected sub-images.

3. The proposed method has considerable potential in auto-
mated infrastructure inspection but some problems, due 
to background noise, remain to be overcome. The exist-
ence of noisy patterns such as shadows, dirt, and snow 
or water spots on surfaces makes crack detection very 
challenging, especially for the fine cracks.

Overall, while the semi-automated inspection technique 
proposed herein performs well, it clearly still requires super-
vision by a human inspector. A feedback system incorporat-
ing corrections supplied by expert inspectors could enable 
continuous improvement in the trained algorithm, allowing 
the proposed method to become an increasingly effective 
assistant for bridge inspectors that facilitates inspection of 
hard-to-access areas while also making inspection safer and 
more productive. Further research into the applications of 
reinforcement learning in autonomous inspection is, thus, 
warranted.
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