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In applications like computer aided design, geometric models are often represented 
numerically as polynomial splines or NURBS, even when they originate from primitive 
geometry. For purposes such as redesign and isogeometric analysis, it is of interest to 
extract information about the underlying geometry through reverse engineering. In this 
work we develop a novel method to determine these primitive shapes by combining 
clustering analysis with approximate implicitization. The proposed method is automatic 
and can recover algebraic hypersurfaces of any degree in any dimension. In exact 
arithmetic, the algorithm returns exact results. All the required parameters, such as the 
implicit degree of the patches and the number of clusters of the model, are inferred using 
numerical approaches in order to obtain an algorithm that requires as little manual input 
as possible. The effectiveness, efficiency and robustness of the method are shown both in 
a theoretical analysis and in numerical examples implemented in Python.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Reverse engineering, also known as back engineering, denotes a family of techniques moving from the physical instan-
tiation of a model to its abstraction, by extracting knowledge that can be used for the reconstruction or the enhancement 
of the model itself (Chikofsky and Cross, 1990). Such methods are widely used in applications to obtain CAD models, for 
instance from point clouds acquired by scanning an existing physical model. Among the various reasons behind this interest 
are the speed-up of manufacturing and analysis processes, together with the description of parts no longer manufactured or 
for which only real-scale prototypes are available. In mechanical part design, high accuracy models of manufactured parts 
are needed to model parts of larger objects that should be assembled together precisely. Industrial design and jewelry re-
production often use reverse engineered CAD models, which are usually easier to obtain than by directly designing complex 
free-form shapes with CAD systems. Medicine applies reverse engineering directly to the human body, such as in the cre-
ation of bone pieces for orthopedic surgery and prosthetic parts. Finally, reverse engineering is often exploited in animation 
to create animated sequences of pre-existing models.

In the field of isogeometric analysis (IGA), volumetric (trivariate) CAD models based on B-splines are used both for design 
and analysis. One major step in supporting IGA in industry is to provide backwards compatibility with today’s boundary 
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represented (B-rep) CAD models. Conversion from bivariate surface models to trivariate volume models is a challenging, and 
as yet unsolved problem. Methods for constructing such models include block structuring (Skytt and Dokken, 2016) and 
volumetric trimming (Dokken et al., 2019), or a hybrid of the two. In all cases, information about the underlying surfaces 
in the model is of key importance. This problem was the original motivation behind the work in this paper. However, 
the method can also be utilized for many of the applications outlined above in the description of reverse engineering. In 
particular, redesign of models is an interesting application. As CAD models are typically represented as discrete patches, 
modifying them individually becomes a cumbersome job when the number of patches is large. Our method clusters all 
patches belonging to the same primitives together. This could be a key tool in better supporting parametric design in CAD 
systems that are based on direct modelling.

The first step of a reverse engineering process is digitalization, i.e., the acquisition of 2-D or 3-D data point clouds. Once 
the acquisition is completed, model features are identified from the point clouds using segmentation techniques. Edge-based 
approaches to segmentation aim to find boundaries in the point data representing edges between surfaces. Faced-based 
segmentation proceeds in the opposite order, trying to partition a given point cloud according to the underlying primitive 
shapes (Várady et al., 1997). We refer the reader to Niu et al. (2015a,b), Song et al. (2015), Shu et al. (2016), Xia et al. 
(2016), Ghadai et al. (2018) for further strategies of feature detection in CA(G)D. Finally, surface modelling techniques are 
applied to represent points in each of the detected regions. Some of the most used representations are point clouds, meshes 
(e.g. polygons or triangles), boundary representations (e.g. NURBS or B-spline patches), constructive solid geometry (CSG) 
models, spatial partitioning models, and feature-based and constraint-based models (Fudos, 2006). An example of relevant 
problem related to the just-obtained representations is part-in-whole retrieval (PWR), where a part is given as a query 
model and all models containing such a query part are retrieved (see, for example, Xiao et al., 2011 and Muraleedharan et 
al., 2019).

In this paper the geometry is reconstructed using implicit algebraic surfaces. According to a survey reported in Rossignac 
(1987), “99 percent of mechanical parts can be modelled exactly if one combines natural quadrics with the possibility of 
representing fillets and blends.” Hence algebraic surfaces of low degree naturally provide global representations and are 
thus well suited to our application of detecting which patches belong to the same underlying geometry. The formal problem 
statement that we solve is as follows: given a set of non-overlapping rational parametrized patches in Rn , partition the 
patches into subsets corresponding to the underlying primitive shape they originate from.

The main contributions of this paper are:

• The introduction of a novel algorithm to group patches of a given CAD model with respect to the underlying primitive 
geometry.

• A theoretical study of the stability and the computational complexity of the method.
• The validation of the method on both synthetic and real data.

The paper is organized as follows. In Section 2 we introduce the main tools of our method, presenting basic definitions 
and existing results that will be used later on. In Section 3, the core of our paper, we present the building blocks and 
mathematical results forming the foundation of the detection method. In Section 4 we formalize these results into an 
explicit algorithm. In Section 5 we present a theoretical analysis of the robustness of the method. In Section 6 we present 
several examples of the application of our method, based on an implementation of the algorithm in Python that is available 
online (Raffo et al., 2019). Section 7 concludes the main part of the paper, discussing encountered challenges and directions 
for future research. Finally, in Appendix A we report some of the proofs regarding the mathematical theory behind the 
algorithm.

2. Background

2.1. Clustering methods

Clustering is a well-established unsupervised statistical learning technique, gathering a group of objects into a certain 
number of classes (or clusters) based on a flexible and non-parametric approach (see Hastie et al., 2001 and its references). 
The grouping is performed so as to ensure that objects in the same class are more similar to each other than to elements of 
other classes. The problem can be traced back to ancient Greece and has extensively been studied over the centuries for its 
various applications in medicine, natural sciences, psychology, economics and other fields. As a consequence, the literature 
on the topic is vast and heterogeneous with the yearly Classification Literature Automated Search Service listing dozens of 
books and hundreds of papers published on the topic.

Mathematically, clustering refers to a family of methods aiming to partition a set X = {x1, . . . , xN } such that all elements 
of a cluster share the same or closely related properties. In the context of statistics, any coordinate of a (data) point xi =
(xi1, . . . , xin)T ∈Rn is the realization of a feature or attribute.

The grouping is performed by defining a notion of dissimilarity between elements of X .

Definition 1 (Dissimilarity). A dissimilarity on a set X is a function d : X × X →R such that for all x, y ∈ X :
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1. d(x, y) = d(y, x) (symmetry);
2. d(x, y) ≥ 0 (positive definiteness);
3. d(x, y) = 0 iff x = y (identity of indiscernibles).

The concept of dissimilarity is more general than the notion of distance, where in addition to the three properties in 
Definition 1 we take in account also the triangular inequality:

Definition 2 (Distance). A distance on a set X is a dissimilarity d : X × X →R such that:

4. d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z ∈ X (triangular inequality).

The choice of the dissimilarity (or distance) strongly depends on the problem of interest, since it allows one to determine 
which elements are closer to each other by giving a greater importance to certain properties compared to other unfavorable
ones. From a geometrical viewpoint, the use of a dissimilarity rather than a distance leads to a generalized metric space 
(Khamsi, 2015).

Example 1. A traditional way to measure distances in a Euclidean space Rn is a Minkowski distance, i.e., a member of the 
family of metrics:

dP (x,y) :=
(

n∑
i=1

|xi − yi|p

)1/p

, p ≥ 1.

Common choices in this family are the Manhattan, Euclidean and Chebyshev distances (respectively: p = 1, 2 and ∞).

Once the dissimilarity d between elements has been chosen, it is necessary to define a generalization of d to compare 
subsets of X . In this context generalization means that if two clusters are singletons, then their dissimilarity corresponds to 
the original dissimilarity between the respective elements. Clearly the generalization of d is not uniquely determined and 
must be chosen on a case-by-case basis. Finally, an algorithm for grouping the data is designed via the defined d so as to 
reach a faithful clustering after a finite number of steps.

Conventional clustering algorithms can be classified into two categories: hierarchical and partitional algorithms. There 
are two families of hierarchical algorithms:

• Agglomerative hierarchical algorithms start with singletons as clusters and proceed by merging the clusters that are 
closest step by step.

• Divisive hierarchical algorithms work the other way around, starting with a single cluster containing all the elements 
and proceeding with a sequence of partitioning steps.

In this work we follow the agglomerative hierarchical approach in order to minimize the a priori knowledge that is 
required, consisting in general of only the number of clusters. Partitional algorithms require further information. In our 
method we propose an approach to infer this parameter, in order to keep the algorithm automatic. We emphasize that the 
result of different clustering methods highly depends on the considered dissimilarity, which is both an advantage and a 
disadvantage since it requires an additional choice to be made. For further details we refer the reader to Gan et al. (2007)
and references therein.

2.2. Approximate implicitization

Implicitization is the process of computing an implicit representation of a parametric hypersurface. In algebraic geometry, 
traditional approaches to implicitization are based on Gröbner bases, resultants and moving curves and surfaces (Kotsireas, 
2004). These methods present different computational challenges, such as the presence of additional solutions and a low 
numerical stability. Over the last decades several alternatives have been introduced in CAGD to reach an acceptable trade-off 
between accuracy of representation and numerical stability.

Approximate implicitization (see Barrowclough and Dokken, 2012; Dokken, 1997) defines a family of algorithms for “ac-
curate” single polynomial approximations. Approximate implicitization can be performed piecewise by dividing the model 
into smooth components. This approach is of interest in applications from computer graphics, where the models are rarely 
described by a single polynomial. To simplify our presentation, we will restrict our attention to hypersurfaces in Rn (vari-
eties of codimension 1), even though the classical theory can be applied to varieties of any codimension. In order to avoid 
degenerate parametric hypersurfaces, we assume their domains � ⊂Rn−1 to be (Cartesian products of) closed intervals.

Definition 3 (Exact implicitization of a parametric hypersurface). Let p : � ⊂ Rn−1 → Rn be a hypersurface in Rn . An exact 
implicitization of p is any nonzero n-variate polynomial q such that:
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q(p(s)) = 0, s ∈ �

Definition 4 (Approximate implicitization of a parametric hypersurface). Let p : � ⊂ Rn−1 → Rn be a parametric hypersurface. 
An approximate implicitization of p within the tolerance ε ≥ 0 is any nonzero n-variate polynomial q, for which there exists 
a continuous direction function g : � → Sn , with Sn ⊂Rn the unit sphere, and a continuous error function η : � → (−ε, ε), 
such that:

q(p(s) + η(s)g(s)) = 0, s ∈ �

Lemma 1 (Dokken (1997)). Let q(x) = 0 define an algebraic hypersurface of degree m and p = p(s) be a (polynomial or) rational 
parametrization of (multi)degree n expressed in a given basis. Then it follows that the composition q

(
p(s)

)
can be expressed in a basis 

α(s) for the polynomials of (multi)degree at most mn. Explicitly,

q
(
p(s)

) = (Db)T α(s),

where

• D is a matrix built from products of the coordinate functions of p(s);
• b is a column vector containing the unknown coefficients of q with respect to a chosen basis for the polynomials of total degree at 

most m.

Note that, if b 
= 0 is in the nullspace of D, then q
(
p(s)

) = 0 and b contains the coefficients of an exact implicitization of 
p(s). If the kernel of D is trivial we look for an approximate implicit representation of p by minimizing the algebraic error
||q ◦ p||∞ .

Proposition 2 (Dokken (1997)). Let q(x) = 0 be an algebraic hypersurface of degree m and p = p(s) be a polynomial or rational 
parametrization of (multi)degree n expressed in a given basis. Then

min
‖b‖2=1

max
s∈�

|q(
p(s)

)| ≤ max
s∈�

||α(s)||2σmin,

where σmin is the smallest singular value of the matrix D defined in Lemma 1.

Proof. Applying the Cauchy-Schwarz inequality,

min
‖b‖2=1

max
s∈�

|q(
p(s)

)| = min
‖b‖2=1

max
s∈�

|(Db)T α(s)|
≤ max

s∈�
||α(s)||2 min

‖b‖2=1
||Db||2

= max
s∈�

||α(s)||2σmin,

where we used that the smallest singular value σmin of D takes the form

σmin = min
‖b‖2=1

||Db||2. �

Notice that the upper bound on the maximal algebraic error depends on the choice of the basis α . If the basis forms a 
non-negative partition of unity, then

min
‖b‖2=1

max
s∈�

|q(
p(s)

)| ≤ σmin.

Denoting by bi the singular vector corresponding to the singular value σi of D and with qi the algebraic hypersurface 
identified by bi , we have

|qi
(
p(s)

)| ≤ max
s∈�

||α(s)||2σi . (1)

Thus the singular value σi is a measure of how accurately qi(x) = 0 approximates p(s).
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2.2.1. Discrete approximate implicitization
One of the fastest and simplest numerical implementations of approximate implicitization is based on a discrete least 

squares approximation of a point cloud P = {p(si)}N
i=1 sampled from the parametric manifold. The choice of using a point 

cloud sampled in parameter space is equivalent to choosing α to be a Lagrange basis. This approach considers a collocation 
matrix D, expressed elementwise in terms of a basis {π j}M

j=1 of the set of n-variate polynomials of total degree at most m
as

Di, j = π j
(
p(si)

)
, i = 1, . . . , N, j = 1, . . . , M. (2)

Analogously to Proposition 2, we can bound the algebraic error as

min
‖b‖2=1

max
s∈�

|q(p(s))| ≤ max
s∈�

‖α(s)‖2σmin ≤ �(α)σmin,

where

• �(α) is the Lebesgue constant from interpolation theory defined by �(α) := maxs∈�‖α(s)‖1.
• σmin is the smallest singular value of D. This singular value depends on the point cloud P , the total degree m and 

the basis {π j}M
j=1. Thus, a more correct notation is σ (m)

min(P, {π j}M
j=1). For the sake of simplicity, the dependence on the 

point cloud P , the total degree m and the basis {π j}M
j=1 are omitted when not risking a misunderstanding.

We summarize the procedure to compute a discrete approximate implicitization as follows:

Algorithm 1. Given a point cloud P := {p(s1), . . . ,p(sN)} sampled from a parametric hypersurface p and a degree m for the 
implicit polynomial.

1. Construct the collocation matrix D by evaluating the polynomial basis {π j} j at each point of P as in (2).
2. Compute the singular value decomposition D = U�VT .

3. Select b = vT
min the right singular vector corresponding to the smallest singular value σ (m)

min

(
P, {π j}M

j=1

)
.

3. The algorithm

CAD models can nowadays include millions of patches and billions of control points, making it necessary to develop 
algorithms that can process a huge amount of data. The novel approach we present combines flexibility, a controlled com-
putational complexity and a high robustness to work in floating-point arithmetic. In exact arithmetic, the algorithm returns 
exact results. Our method does not require knowledge of the degree of the patches or the number of primitive shapes from 
which a certain model originates. Our idea is to infer these parameters using numerical approaches, to keep the algorithm 
automatic when they are not a priori available.

In this section the individual parts of the proposed reverse engineering algorithm are described in detail. We start with 
a pre-processing step aimed at dividing the set of all components in subsets according to their degree. Next, we describe a 
strategy for grouping the patches according to the primitive shapes they originate from, followed by description of how the 
free parameters are set. We end the section with a sketch of the complete algorithm.

3.1. Calibration and pre-processing

Let X be the set of all the patches composing the model in Rn (here: n = 2, 3). The pre-processing step consists of the 
partitioning X = ∪i Xi of the patches according to the suspected degree of their implicit form. The following lemma shows 
that we can use approximate implicitization to achieve our purpose.

Lemma 3. Let τ be a non-trivial polynomial or rational patch in Rn. Then the implicit degree of τ can be written as

m := min
{

m̄ ∈N∗ s.t. σ (m̄)
min = 0

}
, (3)

where σ (m̄)
min is the shorthand notation for the smallest singular value of Algorithm 1. Here, P is a point cloud sampled on τ and {π j}M

j=1
is any basis of total degree m̄.

Proof. From Proposition 2 it follows that

• Approximate implicitization of degree m̄ < m provides the coefficients of an approximate implicit representation, to-
gether with strictly positive smallest singular value that measures the accuracy of the approximation.
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• Approximate implicitization of degree m̄ = m provides the coefficients of the exact implicit representation, and the 
smallest singular value is zero. �

Remark 4. Let Nmin be the minimum number of samples guaranteeing a unique exact implicitization (e.g. Nmin = m2 + 1
for a non-degenerate rational parametric planar curve of implicit degree m). Lemma 3 can be extended to consider discrete 
approximate implicitization if at least Nmin unique samples are considered (see Barrowclough and Dokken, 2012 for details).

Remark 5. Trimmed surfaces introduce a few additional complexities, but can be dealt with in a similar way. Given that 
trimming curves are often irregular, it is in general not possible to achieve a regular sampling that conforms to the bound-
aries of the model. In general we may say that if the underlying surface belongs to a certain primitive, then so will any 
trimmed region of that surface. Conversely, although it is possible that the trimmed region of a surface belongs to a certain 
primitive while the underlying surface does not, such cases are pathological. We can thus deal with trimmed surfaces in two 
ways. The first approach is to simply sample the underlying surface regularly, disregarding the trimming region. Another 
approach is to perform random oversampling of points within the trimmed region to ensure that enough samples are taken. 
The latter approach is also robust to pathological examples.

Equation (3) is useful to determine the implicit degree of a patch. This characterization for the implicit degree fails when 
we work in floating-point arithmetic, due to the approximations adopted in the computation. A possible modification is the 
relaxation of (3) by the weaker criterion

m := min
{

m̄ ∈N∗ s.t. σ (m̄)
min < ξ(m̄)

}
, (4)

where the threshold ξ (m̄) is introduced to take into account the rounding-off error of floating point arithmetic and other 
possible sources of uncertainty. Note that this parameter depends on the implicit degree chosen in the computation of 
discrete approximate implicitization.

Suppose that we want to distinguish the patches of degree m from those of greater degree. A statistical approach to infer 
such thresholds is the following.

Algorithm 2. Given the implicit degree of interest m.

1. Generate:
• Q 1 � 1 random patches of implicit degree m;
• Q 2 � 1 random patches of implicit degree m + 1.

2. For each of these two sets, average the smallest singular values computed by applying discrete approximate implicitiza-
tion of degree m on each patch. Denote these two values with ξ1 and ξ2.

3. Finally, compute ξ (m) as the geometric mean of ξ1 and ξ2, i.e.,

ξ (m) =
√

ξ1ξ2.

The use of a geometric mean allows computation of a value whose exponent in the scientific form is intermediate to the 
ones of ξ1 and ξ2. Notice that in applications such as CAD, curves and surfaces have often low implicit degree (e.g. degree 
1 and 2 for natural quadrics). As we will see in Section 5, the estimation of the implicit degree can fail in floating-point 
arithmetic.

3.2. An agglomerative approach

As previously mentioned, hierarchical algorithms are subdivided into agglomerative and divisive hierarchical algorithms. 
The agglomerative approach starts with each object belonging to a separate cluster. Then a sequence of irreversible steps is 
taken to construct a hierarchy of clusters.

In our case, X is the set of patches to cluster. We want to reach a partition where patches in the same cluster are 
the only ones originating from the same primitive shape. We propose to derive the dissimilarity measure from discrete 
approximate implicitization. Since we have already partitioned X = ∪i Xi according to the suspected implicit degree of the 
patches, we can assume that all the patches in X have same degree m. Starting from each patch in a single cluster, at each 
step the two clusters with smallest dissimilarity are merged.

As a first step to define a dissimilarity on X , we identify each patch with a point cloud of N points sampled on its 
parametrization, where N ≥ Nmin and Nmin is the constant of Remark 4. Typically a uniform sampling scheme is chosen. 
This assumption will guarantee the minimum number of samples for a unique exact implicitization when considering a pair 
of patches lying on the same primitive shape. Let Ẍ be the set of such point clouds, following the indexing and partitioning 
of X . Notice that the points can be chosen such that the patches in X are in 1-1 correspondence to the point clouds of Ẍ , 
i.e.,
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X � τ
1−1←−→ τ̈ := {P τ

1 , . . . , P τ
N} ∈ Ẍ .

Definition 5 (Family of candidate dissimilarities dλ). Let λ ≥ 0. For each pair of patches τ1 and τ2 in X , let τ̈1 and τ̈2 be their 
respective point clouds in Ẍ . We define

dλ(τ1, τ2) := σ
(m)
min (τ̈1 ∪ τ̈2) + λ||rCM(τ̈1) − rCM(τ̈2)||2,

where

• λ is a regularization parameter.
• σ

(m)
min (τ̈1 ∪ τ̈2) is the smallest singular value computed by applying discrete approximate implicitization of degree m to 

the point cloud τ̈1 ∪ τ̈2.
• ||rCM(τ̈1) − rCM(τ̈2)||2 is the Euclidean distance between the center of masses of the two point clouds.

Lemma 5. Let X be a set of patches such that the centers of masses of the elements of X are distinct. Let dλ be the map defined in 
Definition 5. Then:

i) The map dλ is a dissimilarity ⇐⇒ λ > 0.
ii) There exists λ∗ > 0 such that dλ is a distance ⇐⇒ λ ≥ λ∗ .

Proof. i) It is obvious that dλ is non-negative and symmetric for any λ ≥ 0. Let’s then prove the identity of indiscernibles. 
Let τ1, τ2 be a pair of patches in X . Then

dλ(τ1, τ2) = 0 ⇐⇒ σ
(m)
min (τ̈1 ∪ τ̈2) + λ||rCM(τ̈1) − rCM(τ̈2)||2 = 0

⇐⇒
{
σ

(m)
min (τ̈1 ∪ τ̈2) = 0

λ||rCM(τ̈1) − rCM(τ̈2)||2 = 0
,

where the last equivalence arises from the non-negativity of the two terms. Notice that:
• The smallest singular value σ is zero iff τ1 and τ2 lie on the same hypersurface of degree m.
• λ||rCM(τ̈1) − rCM(τ̈2)||2 = 0 iff the patches have the same center of mass or λ = 0. Since the first case is excluded by 

hypothesis, the lemma is proved.
ii) Let τ1, τ2, τ3 be three patches in X . Then d(τ1, τ2) ≤ d(τ1, τ3) + d(τ1, τ2) iff

λ ≥ σ
(m)
min (τ̈1 ∪ τ̈2) − σ

(m)
min (τ̈1 ∪ τ̈3) − σ

(m)
min (τ̈2 ∪ τ̈3)∑2

i=1 ||rCM(τ̈i) − rCM(τ̈3)||2 − ||rCM(τ̈1) − rCM(τ̈2)||2
=: λτ1,τ2,τ3 ,

which is well-defined by the triangle inequality for the Euclidean distance and since distinct patches have distinct 
center of masses by assumption. Hence, it follows that the triangular inequality holds (only) for dλ with

λ ≥ λ∗ := max
τ1,τ2,τ3∈X

λτ1,τ2,τ3 . �
Remark 6. Notice that:

i) Any pair of patches τ1 and τ2 belongs to the same primitive shape iff σ (m)
min (τ̈1 ∪ τ̈2) = 0 or, equivalently, iff d0(τ1, τ2) =

0.
ii) A parameter λ > 0 is required to exploit the theory of clustering analysis. On the other hand, λ should penalize the 

term ||rCM(τ̈1) − rCM(τ̈2)||2 in order to preserve the behavior of d0 described i). We can choose λ ≈ 0, e.g. λ = 10−10, 
to approximate d0 by a dissimilarity. We remark that this constant is typically much smaller than λ∗ .

iii) The assumption in Lemma 5 is reasonable for applications such as CAD, where patches do not overlap.

The dissimilarities between pairs of patches are stored in the |X | × |X | matrix DX , known as the dissimilarity matrix.
Now that we have defined a dissimilarity between elements, we extend it to clusters by defining the map Dλ : 2X ×2X →

[0, +∞) using a complete-linkage approach:

Dλ(Ci, C j) := max
τk∈Ci ,τl∈C j

dλ(τk, τl).

The main reason for choosing complete-linkage is its relatively low computational cost, since the dissimilarity matrix at step 
k is just a submatrix of DX . In addition numerical results show that it works well in practice.

Finally, starting from each patch in a separate cluster, we merge at each step the pair of clusters with smallest dissim-
ilarity Dλ . The merging continues until the correct number of primitive shapes is detected, using the stopping criterion 
described in the next section.



8 A. Raffo et al. / Computer Aided Geometric Design 80 (2020) 101876
3.3. Stopping criterion for the agglomerative approach

How should one estimate the final number of clusters? We propose to define a stopping criterion considering the map 
d0 as follows:

• At each iteration k we compute, for each cluster, the maximum value of d0 for pairs of patches. From a numerical 
viewpoint, it corresponds to an empirical estimation of the maximum error in the approximate implicitization of the 
patches.

• We consider then the maximum of the maxima and denote it by e(k) . We will refer to e(k) as the representation error at 
iteration k.

Suppose L is the number of underlying primitives and let P := |X | be the number of patches. Then:

• In exact arithmetic, e(k) = 0 for k = 1, . . . , P − L and e(k) > 0 for k = P − L + 1, . . . , N − 1. Therefore the number of 
iterations can be defined as the maximum index k such that e(k) = 0, i.e.,

k̄ := max{k|e(k) = 0}. (5)

• In floating-point arithmetic, Equation (5) does not, in general, return any integer. We thus aim at designing a stopping 
criterion that can handle round-off error. We propose to estimate the number of iterations k̄ as the index where the 
representation error jumps significantly for the first time, i.e.,

k̄ := min{k|e(k) > η}.
One way to choose the stopping tolerance η is to proceed similarly to Algorithm 2:

Algorithm 3. Given the maximum implicit degree of interest mmax:

1. Generate P3 � 1 sets {Di}M
i=1 of random patches of implicit degree between 1 and mmax.

2. Compute the number of iterations k̄i for an exact clustering of each Di , considering that the number of clusters for 
training sets is known.

3. Compute, for each Di , the respective representation error ei at iteration k̄i .
4. Define η := (min ei)

2.

Such an empirical threshold η lies between 0 and the smallest representation error of an incorrect representation. When-
ever e(k) is smaller than η, the algorithm will proceed by joining the clusters having this smallest dissimilarity. Otherwise, 
the algorithm will stop.

As an alternative to this stopping criterion based on absolutes, one may prefer the following relative stopping criterion.

Algorithm 4. Given a sequence e(k) , k = 1, . . . , P − 1, of representation errors:

1. Set e(0) := e(1) .
2. Define ẽ(k) := e(k)/e(k−1) , for k = 1, . . . , N − 1.
3. Define k̄ := (

arg maxk ẽ(k)
) − 1.

Additional details on the use of these two criteria are provided in Section 6.

4. Sketch of the algorithm for the detection of primitive shapes

We now present a sketch of the complete detection algorithm described earlier in this section. The input consists of a 
finite set of patches X lying on different manifolds and having different centers of mass. As output, the algorithm returns 
the partition of X corresponding to the manifolds the patches come from.

First, we partition X according to the implicit degree of the patches as described in Section 3.1. The tuning parameters 
{ξ (m)} are computed using Algorithm 2. The maximum implicit degree of the patches mmax is returned as a result of this 
first step.

Finally, we apply the agglomerative clustering approach described in Section 3.2 to each of the subsets Xi . We will 
denote with Xi = ∪ j X (k)

i, j the partition of the cluster Xi into the clusters X (k)
i, j at step k, and with Xi = ∪ j Xi, j the final 

partition corresponding to the primitive shapes.
The tolerance η is assumed to be previously computed as in Section 3.3. We recall that in the agglomerative approach 

each patch constitutes a single cluster at the initial step.
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Input: The set of polynomial patches X .
Output: The partition X1, . . . , Xmmax according to the implicit degree.

1 Set m := 0 (degree for discrete approximate implicitization);
2 while |X | > 0 do
3 Set m := m + 1 (increment the degree for approximate implicitization);
4 Compute ξ (m) as defined in Algorithm 2;
5 Set Xm := ∅;
6 for τ ∈ X do
7 if σ

(m)
min(τ ) < ξ(m) then

8 Set Xm := Xm ∪ {τ };
9 Set X := X\{τ };

10 end
11 end
12 end
13 Set mmax := m;
14 return X1, . . . , Xmmax

Algorithm 5: Partition of the set of patches X according to their implicit degrees.

Input:

∣∣∣∣ X = ∪i Xi the initial partition according to the implicit degree.
η the threshold for the stopping criterion.

Output: The final partition X = ∪i, j Xi, j according to the underlying primitive shapes.
1 for i = 1 : mmax do
2 Set Pi := |Xi | (number of clusters at step 0);
3 if Pi > 1 then

Initial step:

4 Set DX := 0Pi×Pi (dissimilarity matrix at step 0);
5 for j1 = 1 : Pi do
6 for j2 = j1 + 1 : Pi do
7 Set DX ( j1, j2) := dλ

(
τ j1 , τ j2

)
.

8 end
9 end

10 DX := DX + DT
X ;

11 Define the partition Xi = ∪Pi
j=1 X (0)

i, j , where each cluster X (0)
i, j contains one and only one patch (agglomerative approach);

Agglomerative process:

12 Set k := 0 and e(0) := 0;

13 while e(k) < η do
14 Set Pk

i := |Xi | (number of clusters at step k);
15 if k = 0 then
16 Set D0

X := DX (dissimilarity matrix at step 0);
17 else
18 Set Dk

X := 0Pk
i ×Pk

i
(dissimilarity matrix at step k);

19 for j1 = 1 : Pk
i do

20 for j2 = j1 + 1 : Pk
i do

21 Set Dk
X ( j1, j2) := Dλ(X (k)

i, j1
, X (k)

i, j2
);

22 end
23 end

24 Dk
X := Dk

X + (
Dk

X

)T
;

25 Find the pair of clusters X (k)

i, j̄1
and X (k)

i, j̄2
minimizing Dλ;

26 Set the partition for step k + 1 by merging X (k)

i, j̄1
and X (k)

i, j̄2
;

27 Compute e(k+1) as described in Section 3.3;
28 Set k := k + 1;
29 end
30 end
31 end

32 return X = ∪X (k−1)
i, j

Algorithm 6: Partition of the set of patches X corresponding to the underlying primitive shapes.

4.1. Computational complexity

In this section we analyze the computational complexity of the proposed algorithm in the case of curves and using 
approximate implicitization with total degree at most m.
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4.1.1. Complexity of approximate implicitization
We start by determining the computational complexity for approximate implicitization. For curves in R2, the collocation 

matrix D (2) has the form (π j(pi))
N,M
i=1, j=1, involving:

• N points p1, . . . , pN sampled from one or more segments.
• M polynomials π1, . . . , πM spanning the space Rm[x, y] of bivariate polynomials of total degree at most m. In particular,

M := dimRm[x, y] = (m + 1)(m + 2)

2
. (6)

The computational complexity of approximate implicitization is the result of two contributions:

• For the monomial basis considered in this paper, using a triangular scheme to assemble the entries of D reduces the 
computational complexity to O(Nm2).

• The singular value decomposition of an N × M matrix has computational complexity O(min(N M2, N2M)) (Beneš and 
Kruis, 2018). In our setting, this yields

O(min(N M2, N2M)) = O(min(Nm4, N2m2))

In case of points lying exactly on parametric curves, we can (without loss of generality) set N := Nmin, where Nmin
is the minimum number of samples that guarantees a unique exact implicitization. By assuming the parametric planar 
curve to be rational non-degenerate, Nmin = m2 + 1 (see Remark 4), which leads to a total computational cost of O(m6). 
Although approximate implicitization exhibits high complexity with respect to patch degree, we are mainly concerned with 
low degree patches in this work, as motivated in the introduction. Due to this, the total computational time is dominated 
by the number of patches P = ∑mmax

m=1 Pm , to be clustered.

4.1.2. Estimating the degree of the patches
Algorithm 5 runs approximate implicitization of degree m a total of P − ∑m−1

k=0 Pk times, where we set P0 := 0 and 
where m = 1, . . . , mmax. Thus the routine for estimation of degree has O(P ) complexity in the number of patches. This 
result is independent of the dimension of the hypersurfaces to be clustered.

4.1.3. Assembling the dissimilarity matrix
Considering the degree of the patches to be constant (e.g. mmax in the worst case), the complexity of assembling the 

dissimilarity matrix is proportional to the number of elements in the matrix, that is O(P 2), regardless of the dimension of 
the hypersurfaces to be clustered. It may be noted, moreover, that each element of the dissimilarity matrix can be computed 
independently, implying that the matrix assembly is highly parallelizable (embarrassingly parallel).

4.1.4. Clustering procedure
The naive implementation of agglomerative hierarchical clustering requires O(P 3) operations (Day and Edelsbrunner, 

1984). However, even with this implementation, for all cases we have encountered so far, the assembly of the dissimilarity 
matrix requires most of the computational time. The dominance of the assembly procedure is even more prominent for 
surfaces in R3. Thus, in practice, the number of patches required before the clustering step becomes dominant is excessively 
high. If the clustering of such a large number of patches is required, it is also possible to exploit the complete-linkage 
approach to implement the clustering procedure with O(P 2) complexity (Defays, 1977).

5. Theoretical analysis

In this section we state three propositions on the stability and robustness of discrete approximate implicitization under 
scaling, translation and rotation when the monomial basis is considered. The proofs are given in the appendix. These results 
of the study are generalizable to hypersurfaces of Rn .

Proposition 7 (Scaling and smallest singular value). Let

pa(t) = (
a1x(t),a2 y(t)

)
, t ∈ [a,b] ⊂R,

be a family of scaled polynomial or rational parametric segments, where a = (a1, a2) ∈R2 with a1, a2 > 0. Let Pa := {pa(t j)} j be a 
family of uniformly sampled point clouds. Then

lim σ
(m)
min (Pa) = 0.
(a1,a2)→(0,0)
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Fig. 1. Initial (left) and corresponding classified dataset (right), with segments colored by cluster. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Proposition 8 (Translations and smallest singular value). Let

pa(t) = (
x(t) + a1, y(t) + a2

)
, t ∈ [a,b] ⊂R,

be a family of translated polynomial or rational parametric segments, where a := (a1, a2) ∈ R2 . Let Pa := {pa(t j)} j be a family of 
uniformly sampled point clouds. Then

lim
ak→∞σ

(m)
min (Pa) = 0, k = 1,2.

Proposition 9 (Rotation and smallest singular value). Let

pθ (t) = (
x(t) y(t)

)(
cos θ − sin θ

sin θ cos θ

)
, t ∈ [a,b] ⊂ R,

be a family of polynomial or rational parametric segments rotated about the origin, where θ ∈ [0, 2π ]. Let Pθ := {pθ (t j)} j be a family 
of uniformly sampled point clouds. Then there exists α, β ∈R>0 such that

α ≤ σ
(m)
min (Pθ ) ≤ β.

These propositions imply that the algorithm is not guaranteed correct in floating-point arithmetic, since the smallest 
singular value can be small enough that the weak condition (4) or the stopping criterion of Section 3.3 fail. However, these 
issues can be mitigated by performing further preprocessing on the data (rescaling to a fixed size, calibrating, etc.). The next 
section shows that the algorithm works well in practice.

6. Experimental results

Our algorithm has been tested on two- and three-dimensional examples. We first describe its behavior for segments 
originating from lines and conics in a plane, then we study its correctness, robustness and efficiency when applied to line 
segments and Bézier approximations of circular segments, and finally we test its correctness on a real-world industrial 
example of a 3D CAD model.

6.1. Straight lines and conics

Let Fc = {Ci}L
i=1 be a family of L curves, where the type of each curve (e.g. straight line, parabola, ellipse, hyperbola) is 

randomly chosen with equal probability. Each curve Ci is obtained as follows: random parameters are sampled to define a 
rotation about the origin, a dilation and a translation of the canonical curve chosen as representative of the type of Ci . A 
family of Pi continuous subsegments is sampled. The extracted segments are gathered in the set X . The method is tested 
on the set X , which, after a suitable rescaling, is contained in the region [−1, 1] × [−1, 1]. An example is shown in Fig. 1.

We consider the stopping tolerance presented in Algorithm 3, as it has experimentally shown to work well with data 
affected by the only round-off error. The algorithm is run 105 times to compute the average misclassification rate of the 
approach. This index is given by the ratio between the number of misclassified segments and the total number of segments, 
averaged over the number of times the algorithm is run. The average misclassification rate is 2.14 · 10−2. Equivalently, the 
97.86% of the segments are on average correctly classified. Notice that the inaccuracy can be explained by the randomness 
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Fig. 2. Initial gear (left) and corresponding classified gear (right), with segments colored by cluster.

Table 1
A breakdown of the CPU times ti (seconds) and complexity order oi := log2(ti+1/ti) when applied to gears with exponentially 
increasing number of teeth/segments.

# teeth 4 8 16 32 64 128
# segments 17 33 65 129 257 513

tassembly 0.006 0.021 0.071 0.256 1.095 4.025
oassembly - 1.708 1.778 1.843 2.096 1.879

tclustering 0.002 0.003 0.008 0.042 0.115 0.405
oclustering - 0.980 1.339 2.352 1.436 1.823

ttotal 0.009 0.025 0.081 0.300 1.211 4.433
ototal - 1.483 1.681 1.888 2.015 1.872

of the dataset, where some of the dilations can compromise the degree estimation or the stopping criteria (see Section 5
for details about the robustness of discrete approximate implicitization).

6.2. Cubic Bézier curve approximations to circular segments

Let X be the set of segments of the two-dimensional gear in Fig. 2. The gear is built as follows:

• Three concentric circles with radii 1, 1.5 and 2 are approximated by means of cubic Bézier curves. Notice that the 
segments do not lie exactly on the underlying primitives.

• Concentric line segments are used to connect inner and outer arcs to form the teeth.

Again, we apply the algorithm in order to detect the primitive shapes underlying the model. We here use the stopping cri-
teria introduced in Algorithm 4, because experimentally more robust when working with polynomial Bézier approximations. 
The resulting output shows the correct detection of the clusters.

6.2.1. Increasing number of teeth
The algorithm is applied to gears with increasing numbers of teeth and run on a 2019 MacBook pro with 2.4 GHz 

8-cores Intel®CoreTM i9-processor, resulting in the CPU times shown in Table 1. Although these times suggest that both 
the dissimilarity matrix assembly and the clustering procedure in the implementation (Raffo et al., 2019) have O(P 2)

complexity, a further breakdown of the CPU times (Raffo et al., 2019) shows that, in the naive implementation, repeatedly 
locating the smallest singular value in the clustering procedure yields O(P 3) complexity. However, for P ≤ 16384 patches, 
this term is dominated by the O(P 2) complexity of the remainder of the algorithm.

6.2.2. Increasing Gaussian noise
Table 2 displays the results of running the algorithm on an 8-tooth gear with addition of synthetic Gaussian noise. Here, 

the mean is set to 0 while the standard deviation is increased until the algorithm fails. This experiment suggests that, 
although well-suited for parametrically defined patches affected by round-off error, this method may require additional 
information when the input is perturbed by a significant amount of noise.
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Table 2
Sensitivity of the method when an 8-tooth gear is perturbed by Gaussian noise of fixed mean 
μ = 0 and increasing standard deviation σ in each direction. Here, ✓ and ✗ mean, respec-
tively, a correct and an incorrect clustering of the patches. The asterisk signifies that the 
stopping criterion of Algorithm 4 fails, but the method yields the correct result via a user-
defined threshold (or when the number of clusters is known).

σ 10−5 10−4 10−3 10−2

result ✓ ✓∗ ✓∗ ✗

Fig. 3. Initial unclassified (left) and corresponding classified (right) Nugear model provided by STAM, with patches colored by cluster.

6.3. Surface patches from a real-world industrial example

In this example we utilize industrial data provided by the high-tech engineering firm STAM, based in Genoa, Italy. 
The data, from STAM’s Nugear model, consists of 133 trimmed B-spline patches where the underlying geometry comes 
from planes, cylinders and cones. The individual patches are colored randomly in Fig. 3 (left). In order to deal with the 
trimmed patches in this example, we opt for a random oversampling approach, where we extract a random subsample of 
64 points from oversampled surface data, cf. Remark 5. This approach is robust as we can always increase the density of 
the oversampling until we obtain 64 points within the trimmed region. Moreover, 64 points is always sufficient for dealing 
with patches of algebraic degree less than or equal to two, which are the targeted primitives of this example. The samples 
are generated using the same tessellation code that is used for visualization purposes.

The algorithm for surfaces in R3 proceeds in exactly the same way as the version for curves in R2, with the exception 
that we must apply approximate implicitization to surfaces in R3 rather than curves in R2. The algorithm correctly classifies 
all surfaces that should be classified together. The rest of the patches, dark-colored in Fig. 3 (right), should all be clustered 
individually. However, an empirical user-defined threshold was required in order to avoid some of these surfaces being 
classified together incorrectly. The issue arises in that some of the bicubic spline surfaces are very close to planar, but not 
exactly. These surfaces are each classified as quadrics in the first step of the algorithm, but due to the almost linear nature 
of the surfaces, pairs of them also fit well to quadric surfaces. Thus, it is difficult to choose a threshold that stops the 
algorithm at the appropriate point.

7. Conclusion

This paper presents a novel method for clustering patches of a CAD model with respect to the underlying surface they 
originate from, based on approximate implicitization. The method has been tested on both synthetic and real world in-
dustrial data, and some theoretical results are presented to show the properties of the method. The results show that the 
approach is computationally feasible and can handle thousands of patches in a matter of seconds.

Our core idea is conceptually quite simple: reverse engineering of CAD patches into their underlying primitives, by using 
their low-degree implicit representation consistently throughout the algorithm as a basis for establishing similarity in a 
clustering procedure. However, several modifications were necessary to make this work in practice. Clustering proceeds on 
local patches, and the goodness of fit of approximate implicitization depends on the scale and position of the coordinate 
system (e.g., locally a circle looks like a line). This was addressed by introducing an initial tuning step to adapt tolerances 
to the provided data, and by adding a term to the dissimilarity metric measuring the distance between patches. The latter 
change also makes our dissimilarity satisfy the formal definition of a dissimilarity for the types of patches considered in 
this paper.

For future work, we intend to extend the method to other contexts. For example, reverse engineering of physical models 
could also be done in this way, although work would be required on stabilizing the algorithm in the case of noisy data. The 
algorithm could also be applied to tessellated models, both for the purposes of redesign and upsampling of the tessellation 
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resolution. In that case, the challenge would be segmenting which parts of the tessellation belong to different ‘patches’ of 
the model. Finally, we aim at designing a more robust version that can be used to treat data affected by noise and outliers.
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Appendix A

In this appendix we provide the proofs left out of Section 5, for discrete approximate implicitization of degree d = 1, 2
to point clouds with sufficiently many points sampled from curves of at least this degree. In this case the collocation matrix 
D has full rank.

Proof of Proposition 7. Equipping the basis with the lexicographic order, we can express the collocation matrix of the scaled 
curve pa1,a2 as

Da1,a2 = D1,1 · Sa1,a2 , Sa1,a2 := diag([1,a1,a2,a2
1,a1a2,a2

2, . . . ]),
with D1,1 := D. Notice that:

• The smallest singular value σ (m)
min (Pa) of Da1,a2 is the reciprocal of the largest singular value of

D†
a1,a2 = S−1

a1,a2
· D†

1,1,

where † denotes the Moore-Penrose inverse.
• The largest singular value of D†

a1,a2 is the square root of the largest eigenvalue of D†
a1,a2 (D†

a1,a2 )
T .

Therefore

σ
(m)
min (Pa) =

[
λmax (B)

]−1/2
,

where

B = S−1
a1,a2

· C · S−1
a1,a2

, C := D†
1,1 · D†

1,1

T
.

Suppose B has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Then

tr (B) =
n∑

i=1

λi = c11 + c22
1

a2
1

+ c33
1

a2
2

+ . . .

where ci,i is the square of the Euclidean norm of the i-th row of D†
a1,a2 . Since D†

a1,a2 has full rank whenever a1, a2 
= 0, then 
tr (B) (and consequently λ1) approaches +∞ when a1 or a2 approaches zero. It follows that σ (m)

min (Pa) approaches zero 
when a1 or a2 approaches zero. �
Proof of Proposition 8. The collocation matrix Da1,a2 has the form

Da1,a2 = D0,0Ta1,a2 , Ta1,a2 :=

⎛⎜⎜⎜⎜⎜⎜⎝
1 a1 a2 a2

1 a1a2 a2
2

0 1 0 2a1 a2 0
0 0 1 0 a1 2a2
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and D0,0 := D. Notice that, since discrete approximate implicitization of degree 2 is applied to a curve of implicit degree 
greater than 2, we can assume that the collocation matrix has full rank. Notice also that:
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• The smallest singular value of Da1,a2 is the reciprocal of the largest singular value of

D†
a1,a2 = T−a1,−a2 · D†

0,0.

• The largest singular value of D†
a1,a2 is the square root of the largest eigenvalue of B := D†

a1,a2 (D†
a1,a2 )

T .

Therefore

σ
(m)
min (Pa) =

[
λmax (B)

]−1/2
,

where

B := T−a1,−a2 CTT−a1,−a2
, C := D†

0,0

(
D†

0,0

)T
.

Suppose B has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Then

tr (B) =
n∑

i=1

λi =
∑

0≤i+ j≤4

αi, ja
i
1a j

2, (7)

for some αi, j ∈R. Notice that α0,4 > 0, since it is the square of the Euclidean norm of the 4-th row of the full-rank matrix 
D†

0,0. A similar argument holds for α4,0. It follows that tr (B) (and consequently λ1) approaches +∞ when either a1 or a2

approaches ∞, and consequently σ (m)
min (Pa) approaches zero when either a1 or a2 approaches ∞. �

Proof of Proposition 9. We treat separately the following cases:
Discrete approximate implicitization of degree 1. The collocation matrix Dθ can be expressed as

Dθ = D0 · Rθ , Rθ :=
⎛⎝1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎞⎠ ,

with D0 := D. It follows that the SVD of Dθ is

Dθ = D0Rθ = U�VT Rθ = U�ṼT ,

where Ṽ := RT
θ V is unitary since Rθ and V are unitary. Thus, the smallest singular value of discrete approximate implicitiza-

tion of degree 1 is not influenced by rotations, and it suffices to choose α = β = σ
(m)
min (P0).

Discrete approximate implicitization of degree greater than 1. The collocation matrix Dθ can be expressed as

Dθ = D0 · Rθ ,

where Rθ is the block diagonal matrix

Rθ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
0 cos θ sin θ 0 0 0 · · ·
0 − sin θ cos θ 0 0 0 · · ·
0 0 0 cos2 θ sin θ cos θ sin2 θ · · ·
0 0 0 −2 sin θ cos θ cos2 θ − sin2 θ 2 sin θ cos θ · · ·
0 0 0 sin2 θ − sin θ cos θ cos2 θ · · ·
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The case of degree greater than 1 differs since the matrix Rθ is not unitary. The smallest singular value of Dθ is the square 
root of the smallest eigenvalue of DT

θ Dθ . The eigenvalues of DT
θ Dθ are continuous functions in θ . Since θ ∈ [0, 2π ] lies in 

a compact space, we conclude by the extreme value theorem that each of these eigenvalues has a compact and connected 
range. Since Dθ has full rank, we conclude that the range does not contain 0. �
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