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Abstract

Track disruptions in metro systems may lead to severe train delays with many passengers stranded
at platforms, unable to board on overloaded trains. Dispatchers may put in place different recovery
actions, such as alternating train directions and allowing short turns. The objective is to alleviate
the inconvenience for passengers and to regain the nominal train regularity. To characterize this
process, this paper develops nonlinear mixed integer programming (NMIP) models with two different
recovery strategies to reschedule trains during the disruption. For solving models in real time, the
hybrid formulation, which couples big-M and time-indexed formulations, is proposed to linearize the
proposed model as the mixed integer linear programming (MILP) model. Then, a two-stage approach
is designed for handling the real-time detected information (like dynamic arriving passengers and end
time of the disruption), including offline task (to select the best recovery strategy) and online task (to
implement the best strategy and update timetable). Finally, the numerical experiments from Beijing
metro Line 2 are implemented to verify the performance and effectiveness of the proposed hybrid
formulation and two-stage approach.
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1 Introduction

With the impressive expansion of the cities, urban transportation systems are under pressure everywhere.
For instance, in 2018, the passenger flow in Beijing metro network almost exceeded 10 million persons per
day [2], which accounts for 50% of the total flow in the Beijing public transit system [27]. A crucial role
in subway systems is played by ring lines such as Beijing Lines 2 and 10, Shanghai Line 4, Chengdu Line
7, etc. These lines commonly orbit the central business district and connect with radial lines, bearing
a large share of the overall transport pressure. For instance, the Beijing metro system consists of 20
lines, but the ring Lines 2 and 10 together account for approximately 20% of the total passenger flow
[2]. Indeed, transport demand and consequent pressure over the system is increased. In peak hours,
in some lines of Beijing metro, the headway between two consecutive trains has been shortened to 2
minutes; nevertheless, the average load rate of trains exceeds 140% [36]. This rate means that trains run

overcrowded with passengers pressed against each other.
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In practice, service disruptions frequently occur, with partial blockage of the urban rail transit. Disrup-
tions may be caused by different reasons, such as rolling stock failure, track failure, intrusions, medical
emergencies, weather/nature disasters, etc. [26, 34]. The blockage induces service train delay, with pas-
sengers stranded at stations unable to board on trains. For instance, in two months of 2017 in the Beijing
Subway, a total of 8 incidents occurred - including 2 passenger intrusions, 1 rolling stock failure and 5
track failures - with a service delay varying from 15 to 40 minutes.

In the recovery management process under a disruption scenario, we identify three successive phases
with different impacts on the system’s capacity, as illustrated in Figure 1 (see [20, 14]). In Phase I after
the incident occurs, the traffic capacity declines dramatically and very quickly from the normal service
level. Dispatchers identify the causes of the disruption and estimate its duration. Additionally, the
recovery strategy is established, including train rescheduling, passenger flow guidance, and bus bridging
service. Phase II begins when the established recovery actions are finally put in place. Capacity starts
rising again at a pace that depends on the effectiveness of the implemented actions. Phase III starts
when the disruption is over. After some time, the normal traffic capacity is regained.

From this schematic phasing, the crucial role played by the recovery actions in regaining the normal
regime in a short time is apparent. In practical operations, a number of train rescheduling strategies are
usually adopted, such as holding trains, short-turn operations, adding gap trains, station skipping, etc.
(see [34)).
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Figure 1: Three-phase disruption management in metro systems

All three phases are usually carried out by human dispatchers, and the impact of the recovery actions
depends critically on the level of expertise of the people in charge. Additionally, default rescheduling
strategies focus on re-establishing the normal train traffic flow, with little or no concern for passengers’
inconvenience. In contrast, since the passengers are the actual target of the offered service, every recovery
action should also aim at improving the quality of the service offered by explicitly taking into account
the estimated passenger flow.

The purpose of this paper was to develop models and algorithms to support dispatchers in all phases
of the disruption management. To this end, we need to address both the off-line problem of choosing the
recovery action and the online problem of controlling trains in real-time. In the off-line phase we limit our

developments to two common recovery strategies for ring lines'. The first strategy consists of alternating

1We focus on this type of network topology because our real-life test case, Line 2 in Beijing underground system, is a
ring line. Also, other, less frequent recovery actions could be addressed. Indeed, extending our models and methods would
be rather straightforward, but is out of the scope of the current paper.



trains in both directions on the single track parallel to the failure track (called ALTERNATE), whereas
the second consists of short-cutting the double ring structure, culminating with two double-ring sublines
that share a short section where they exchange passengers (called SHORTTURN). Correspondingly, two
nonlinear mixed integer programming (NMIP) models are firstly formulated to cope with the complicated
interaction between train scheduling and passenger flow management. To satisfy real-time computing
requirements, we propose a novel method coupling time-index and big-M formulations to linearize NMIP
model as the mixed integer linear programming (MILP) model. Then, for the real-time information
under the disruption scenario (like passenger demands and the duration time), a two-stage approach is
also designed by solving the proposed MILP models: in Task 1, executed in Phase 1, the best recovery
strategy is selected with a series of historical data to obtain the initial timetable; in Task 2, executed in
Phase 2, the initial timetable is iteratively updated for the real-time rescheduling according to the rolling
optimization.

Therefore, during Task 1, our method identifies the best recovery action. Previous works discuss several
strategies, such as alternate operation [37], holding train [9, 25], deadheading [11], station skipping [12],
short-turning with a fixed crossover track [29], but only focus on one of these targets, i.e., passenger or
train movement recoveries. In Task 2, the optimal strategy is implemented. Because the overall train
traffic flow is shaken up, the selected optimization model is now exploited at the operational level to
schedule in real-time movements of trains along the line according to the selected recovery strategy. The
objective is the minimization of a combination of passenger inconvenience and deviation from the wanted
timetable. This is the online (or closed-loop) phase of our approach, also tackled in [33] and [19]. The
online re-optimization thus allows better consideration of input data (as past passenger flows become
known). However, there is also an additional and crucial benefit: indeed, the duration of the disruption
is often underestimated, and the initial prediction can be corrected when better estimations are at hand.

Train scheduling problems, which include the (online) train dispatching and the (offline) train timetabling
problem, fall into the class of job shop scheduling problems ([28, 23]). There are basically two MILP
models for this class of disjunctive problems: big-M formulation and time-indexed formulation (a third
approach has been recently introduced in {17, 22|). For a full introduction and comparisons of these two
formulations (on single machine scheduling problems) we refer the reader to [30] (theoretical discussions)
and [15] (computational tests). As discussed in [30, 15], big-M formulations return poor bounds and
consequently generate large search trees when embedded in branch & bound schemes. However, linear
relaxations are solved very efficiently in short computing time. In contrast, time-indexed formulations
(see [4, 6, 39]) are much tighter because the number of binary variables grows linearly with the number
of periods in a discretized time horizon, and the relaxations are much harder to compute. The computa-
tional experience for single machine scheduling problems in [15] shows that the trade-off is in favor of the
big-M formulations. This trade-off is even more evident in the experience on real-time train rescheduling
in terminal metro stations reported in [21], where the time period in the discretization was fixed to 5
seconds by request of the subway engineers.

Nevertheless, in train scheduling, some works adopt time-indexed formulations with different solution
techniques (see [5, 24, 3, 38, 13]), especially for offline problems, where one can exploit longer computing
times. However, for the reasons described, big-M formulations are normally the preferred option (for
instance, [10, 8, 16, 32, 31]) for online train rescheduling problems. This option was also our initial call.
Informally, in our model, we need to synchronize two different submodels: one for train operations, and
the other for passenger flows. However, our attempts to extend in a natural way the classical big-M

model developed for train operations by linearizing passenger flows have failed because arrival rates vary



over time (fixed arrival rates are considered in [40]). Additionally, the alternative approach, namely, a full
time-indexed formulation, turned out to be unfeasible. Indeed, if we choose large discretization steps, the
solutions produced are unrealistic. With smaller discretization steps, the resulting MILP becomes too
large to be solved by state-of-the-art solvers. Interestingly, in the recent paper [35], which also combines
passenger flows and train scheduling, a full time-indexed formulation is successfully applied to compute
solutions by employing a smart discretization mechanism. We decide to investigate another direction.

In particular, we develop a novel MILP model, which embeds two major blocks: a “big-M block”
for modeling train movements, and a “time-indexed block” to model passenger flows over time. The key
observation is that a 5 minute-period discretization appears to be a reasonable approximation to represent
passenger flow dynamics so that the size of the time-indexed block can be kept at bay. By exploiting
this idea, we finally manage to tackle our experimental instances in the available computing time. Note
that the model makes use of passenger arrival rates at each platform and each point in time, which are
uncertain parameters. The sensitivity of timetables with respect to noise and disturbances has been the
subject of several studies (see, for instance, |7, 18]). In our case, we can take advantage of the availability
of many historical samples of passenger arrival rates. Rather than selecting (or calculating) a particular
sample matrix, we extend our basic MILP model to evaluate our objectives with respect to a set of arrival
rate matrices.

In summary, the main contributions of this paper to the current body of research are the following;:

e Modeling and solving the decision problem associated with the offline recovery strategy selection
and the online implementation of the best adaptive schedule.

e Including the passenger satisfaction and headway deviation as main components in the objective
function and, to this end, explicitly handling passenger flows with arrival rates that vary over time.

e Developing a novel formulation by combining big-M and time-indexed models.

e Testing our approach over real-life instances from Line 2 of the Beijing metro system.

For comparative convenience, the detailed characteristics of some closely related references are sum-

marised in Table 1.

Table 1: Characteristics comparison of some closely related studies

Recovery strategy

Publication Objective! .5 Linear formulation® Solution algorithm
(online)

Ghaemi et al. [14] TD Short-turn (no) Big-M Gurobi

Xu et al. [37] TD Alternate operation (no) Big-M Heuristic algorithm

Interlocki t
Mannino and Mascis [21] TD nterioc lflg route Big-M Branch and bound
of terminals (yes)

Sanchez-Martinez et al. [33] PTT Holding train (yes) - Non-linear optimizer
Gao et al. [12] PTT, NBP  Station skipping (no) - Heuristic algorithm
A imate d i
Yin et al. [38] PTT, TEC Running time (no) Time-indexed pproxima e. ynamic
programming approach
This paper NBP, HD Alternate a.nd short-turn Coupling 'I\;vo—.task approach
operations (yes) with CPLEX

! Symbols description of objective: train delay time or cost (TD), passenger travel time (PTT), train energy consumption
(TEC), number of nonboarding passengers (NBP), headway deviation (HD).
2 Onli ans whether the ref is lied line scheduli ith real-ti dynamic inf ati
nline means whether the reference is applied to online scheduling with real-time dynamic information.
Linear formulation includes big-M and time-indexed formulations. “Coupling” means coupling those two formulations.

The rest of this paper is organized as follows. The problem is introduced in Section 2. In Section 3,
we describe the proposed MILP models, and in Section 4, we describe the overall two-stage approach to

handle the rescheduling problem from both offline and online perspectives. Our experiments with real-life



data from Beijing metro Line 2 are implemented in Section 5, and final conclusions are given in Section
6.

2 Problem description

We consider a double-track, bidirectional double-loop line as in Figure 2, including N stations, 2N
stopping platforms (1 platform per station and per direction) and some crossover tracks. The set of
platforms is denoted by & = {1,...,2N}. During normal operations, the inner loop is traveled clockwise,
through platforms 1,..., N. The outer loop is run in the opposite direction through platforms N +
1,...,2N. We have two platforms at each station, one in the inner loop and the other in the outer
loop, with the matched platforms (1,2N),(2,2N —1),---, (N, N +1). Moreover, the terminal platforms
1, N,N + 1,2N are connected to the external depot, where trains enter and exit the line. In normal
operations, an inner train leaves the depot to start its first cyclic service from platform 1; then, it
runs through the sequence? (1,2,..., N, 1) of platforms and then starts the next service at platform 1.
Similarly, in the outer loop, each cyclic service will go through the sequence (N+1,N+2,...,2N, N+1).
The inner and outer loops are connected by crossover tracks. Crossovers can only be used in emergency

situations.

J_, J_, Outer loop

2N-q 2N-g+1 2N-g+2

Figure 2: The structure of the rail transit line

We select the single blockage of one inter-station caused by a power failure (other reasons are discussed
in Section 1). Normally, each traction substation transforms the voltage from high to low and provides for
adjacent sections of upstream and downstream through the overhead line/third rail. Due to electricity
tripping, power supply failure of one direction will affect the provided voltage of the other direction.
Hence, we assume that the corresponding section of track blockage will be limited to only one train
operation. Note that, this assumption could be modified for different types of disruptions.

In the example of Figure 3, we depict a track blockage in the inner loop that is in the track section
between platforms ¢ and ¢ + 1, for instance, because of a power failure. In this track section, trains
without onboard storage devices cannot operate until the failure is repaired. In addition, for power
supply reasons, we assume that only one train at a time is allowed to operate on the corresponding outer
section, namely, the track section between platforms 2N — ¢ and 2N — g + 1 (which are matched with

inner platforms ¢ + 1 and ¢, respectively).

2Train routes (or subroutes) will be denoted by the ordered list of platforms (s1, s2,...). The track section between two
successive platforms, for example, u and w, is denoted by [u, w].



In Figure 3, we have 5 service trains operating on the transit line, and 14 groups of passengers
(P1,...,P14) waiting at different platforms: P1,...,P7 are in the inner loop, whereas P8,..., P14
are in the outer loop. Trains 1, 4 and 5 are in the outer loop with Train 1 in section [2N — 2,2N — 1],
Train 4 in [2N — ¢,2N — ¢+ 1] and Train 5 in [2N — ¢ — 2,2N — ¢ — 1]. For the inner loop trains, Train
2 is in section [1,2] and Train 3 in section [¢ — 1,¢]. When the disruption occurs, nearby Trains 3, 4
and 5 will be held at the next platforms where they wait for new instructions until a recovery timetable
becomes available. As a consequence, passengers P1, ..., P14 queue up at platforms ¢, ¢+ 1, 2N — ¢ and

2N — g+ 1, and wait for the service recovery.
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Figure 3: Two train recovery strategies

2.1 Recovery strategies

In this paper, we compare two recovery strategies when one track fails: the first with alternate operations,
and the second with short-turn and bidirectional operations. Both strategies exploit the availability of
crossovers. Figure 4 may help understand the role of the crossovers in both strategies.

In the figure, the disruption occurs in the track between platforms Ep and Sp in the inner loop (later
denoted as bad loop because it contains the disrupted track, whereas the other loop is the good loop).

Traversing the bad loop according to the natural orientation - namely, the one followed by trains during



L d .

S, ...
MmO /.
5 ..

A A o . /

c g
-
éﬂ Gﬂ a

4
w)
o
|
e
(9]
e
w
=

Figure 4: The two “near-by” crossovers C, and Cj, and the “opposite” crossover C,

normal operations, we denote by C, the first crossover encountered on the loop after the failure track,
and by Cy the last crossover encountered before the failure track (see Figure 4). Crossover C, meets the
inner loop in a point G, and the outer loop in point G,; crossover Cj, meets the inner loop in point Gy
and the outer loop in point G. Additionally, the first platform on the inner loop after G, (Gp) is E,
(Eyp), corresponding to platform E, (Ejp) on the good loop.

ALTERNATE strategy. In this setting, trains are allowed to crossover between the inner and the outer
loops in proximity of the failure track during recovery phases. Then, the bad-loop trains are redirected
to the good loop at the first crossover C, and then return to their original loop at the second crossover
C,. In this way, the failure track is skipped. The tracks on the good loop between C}, and C, (precisely,
between points [G,, Gp] in the figure), which are parallel to the skipped tracks on the bad loop, will be
traversed by trains in both directions. More specifically, the trains on the bad loop will take the detour
Sy = Gp—= Gy =Gy, — Gy — E,.

To clarify this scenario, we observe the example of Figure 3(a). Here, C, and C}, correspond to Crossover
4 and Crossover 3, respectively. Train 3 cannot continue on its normal route because of the disruption of
section [q, ¢+ 1]. Instead, it travels through Crossover 3, continues on the section 2N — ¢+ 1,2N —¢] (in
the opposite direction) and then takes Crossover 4 to regain the normal route. The modified subroute
(g—1,2N —q+1,2N —q,q+2), is represented by the pink dotted line. Accordingly, the inner passengers
will move from the inner platform to the matched outer platform: namely, P1,..., P3 will move to 2N —gq,
whereas passengers P4, ..., P7 move to 2N — ¢ + 1 and then wait for the next inner trains. The outer
passengers P8, ..., P14 will stick to their plans and board the outer Train 4 at the original platforms.
With this strategy, trains will alternate in both directions on track section [2N — ¢,2N — ¢ + 1] with a
drastic reduction of frequency and thus of capacity. Especially in peak-hours, not all passengers will be
able to board the first incoming train, and the average number of waiting and nonboarding passengers
will increase (along with their dissatisfaction). This increase is particularly true for platforms at an
increasing distance from the disrupted track along the inner route because trains may easily reach their
capacity at earlier platforms. Because of the reduced capacity over the single-track region between the
two crossovers, this strategy cannot be applied when the number of platforms on the single-track region

is too large.

SHORTTURN strategy. In this strategy, we make use of a shuttle train in the segment parallel to

the failure track in order to guarantee the correct headway between successive trains on the rest of the



line. In addition to the two crossovers Cp and C, (before and after the failure track) introduced for
the ALTERNATE strategy, we pick a third, “opposite” crossover C, as follows. Note first that C, and C,
split each of the original loops into two segments. For the bad loop, one segment contains the failure
track, and we call the remaining part the opposite segment. Similarly, the good loop is also split into two
segments, one “parallel” to the failure track, and an opposite segment. Crossover C, is chosen to connect
the opposite segment in the bad loop to the opposite segment in the good loop. If no such crossover
exists, the strategy cannot be applied. Note that, the SHORTTURN strategy has two advantages: (1)
A much flexible operation mode can be taken into consideration. By optimizing the recovery strategy,
the best location of crossover track C, can be found through considering the pre-specified/historical
passenger demands. The optimal recovery strategy can expectedly improve the system efficiency as much
as possible. (2) The SHORTTURN strategy is helpful for transporting the short-distance passengers inside
the left-/right-loop, since the train needs to unload all passengers before it turns around on the crossover
tracks, which in essence provides more space for passengers and improve the transportation efficiency.
Especially, we note that the short-turn can also occur on the disrupted section in a special case, when C,
overlaps with the crossover track C, or Cp.

In Figure 4, three crossovers meet the inner loop in three points, i.e., Gy, G4, G, (in clockwise order),
with the failure track between G, and G,. Similarly, three corresponding points where the crossovers
meet the outer loop will be G, G4, G, (in clockwise order). We can then identify two new loops. “Right”
loop b, is obtained by concatenating Crossover Cj, the section of outer loop from Gy to G,, Crossover
C,, the section of inner loop from G, to G}, and platform Ej. In addition, “left” loop a, is obtained by
concatenating Crossover C,, the section of outer loop from G, to G, Crossover C,, and the section of
inner loop from G, to G,. Trains will be rerouted on these two new loops. In particular, some trains
will run on Loop b and other trains on Loop a. The passengers between G, and G} will be served by
a bidirectional shuttle. The bidirectional shuttles will “penetrate” the left loop a to the first station E,,
where it will exchange passengers with the left loop trains. On the other side, things go slightly different,
as the right loop trains are now “penetrating” the bidirectional section until the first station Ej to the
left of G, in order to exchange passengers with the shuttles.

Letting C}, C, and C, correspond to Crossover 3, Crossover 4 and Crossover 1, respectively, this
strategy is depicted in Figure 3(b). Here, the line is divided into a left loop (between Crossover 1 and
Crossover 4), a bidirectional track (between Crossover 3 and Crossover 4) and a right loop (between
Crossover 1 and Crossover 3), where the corresponding operation routes are shown in orange, blue and
red dotted lines, respectively. To connect the left and right loop passenger flows, a bidirectional shuttle
operates between the outer platforms 2N — ¢ — 1 and 2NV — g + 1. The choice of the suitable boundary
crossover (', depends on the expected number of passengers at the platforms and train capacity.

In the example of Figure 3(b), Trains 1 and 3 start the short-turn operations on the right loop, and
Train 4 begins the bidirectional operation from platform 2N — g 4+ 1. On the left loop, Trains 2 and
5 operate the service for the left loop. Passengers P1,...,P3 and P8, ..., P11 can only take Train 4
at platform 2N — q to 2N — ¢ — 1 or 2N — g + 1 to transfer to left-loop or right-loop trains to their
destinations. When the destination platform belongs to the right loop, passengers can directly take the
right-loop Train 3 at platform 2NV —g+1 after alighting the bidirectional Train 4; otherwise, the passenger
should change the platform from 2V — ¢ — 1 to ¢ + 2 to transfer to left-loop trains.



2.2 Passenger arrival process

Passengers arrive over time at stations where they wait, board, alight and, possibly, transfer from one
train to another. In our case, transferring is only considered in the SHORTTURN strategy. In prin-
ciple, the arrival rate of new passengers at stations could be immediately derived by time-dependent
origin-destination (OD) matrices (see, e.g., [38], [1], [24]). However, OD matrices are seldom available.
Nevertheless, arrival rates can be easily collected in real time at each station.

We assume we have at hand for every platform u the (expected/historical) passenger arrival rate over
time, which is a continuous function p“(t) of the time ¢. Observe that if A € IR is sufficiently small, we
may assume that p*(t + A) = p*(¢t). This assumption allows us to sample the function in a discrete set
of points. In particular, we discretize the planning horizon [Tstq, Tend] (namely, Phase 1T in Figure 2)

into @ — 1 periods of equal size 6, starting at T, = 11,75, ...,To—1, respectively, and with T,q = 1.

Then, the arrival rate p¥ is defined as the number of passengers arriving at platform u € {1,...,2N} in
period i € {1,2,...,Q —1}. Welet P=[p¥],i=1,...,Q — 1, u € U be the arrival rates matrix.

In our model, we will make use of a historical set P = {P!,..., PRS} of arrival rates matrices that are
sampled over a suitable period of time, where, for r = 1,..., RS, we have P" = [p;""], i =1,...,Q — 1,
uel.

To better understand the passenger traveling process, consider the example illustrated in Figure 5.
The black lines are the planned timetables, whereas the red lines are the rescheduled timetable, after a
disruption has occurred. Bidirectional Train [ and right-zone Trains k — 1 and k, respectively, stop at
inner platform ¢ and the relevant outer platform 2N — ¢+ 1. In the figure, we also show 17 groups P1,...,
P17 (50 passengers per group) waiting at platforms g and 2N — ¢+ 1, respectively, including transferring
passenger groups P1, P12 and P13. We assume that the average boarding rate is 1 person/s and the

maximum dwell time is 300 seconds. In this illustration, each train can load up to 500 passengers. The
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Figure 5: Passengers waiting, boarding, alighting and transferring at platform 2N — ¢+ 1



capacity is represented in each train by 5 rectangles, each associated with a load of 100 passengers. The
light gray rectangles represent the residual capacity after passengers alighting, so Trains k—1, [ and k41
can load at most 100, 350 and 400 passengers, respectively, corresponding to 2, 7 and 8 groups. Thus,
when Train k& — 1 arrives at platform 2N — g+ 1, only two groups of waiting passengers (i.e., P2 and P3)
can go on board. In principle, the next arrival Train [ could accommodate up to 7 groups of passengers
(from P4 to P9 and transferring P1). However, since the maximum dwell time is 300 seconds, Train [ can
board 300 passengers, i.e., 6 groups. Finally, Train k& will accommodate groups P10,..., P17, including

transferring passengers P12 and P13 from Train [.

2.3 Objectives

When choosing an appropriate rescheduling strategy, we consider the trade-off between regaining the
regular passenger transport capacity and train regularity. In particular, we consider a term for the
number of passengers unable to board on the first incoming train and a term for the average headway
deviation in the objective. Observe that maintaining the desired train headway is crucial for trains quick
recovery to the planned timetable.

Assuming the fixed capacity of trains and fleet sizes, the number of transported passengers is essentially
associated with dwell times, train frequency, train residual capacity and the actual number of passengers
waiting at platforms. Note that the two terms in the objective function are somehow competing. Indeed,
longer dwell times allow more passengers to board trains but increase headway deviations.

Particularly, when the passenger demand is much less, and all the waiting passengers can board the
first arrival train, the passenger flow can be neglected in the model since the second objective is essentially
co-monotone with the first one. However, during the disruption, a large amount of passengers might be
accumulated on each platform, and the passenger demand could exceed the total train capacity, above
all, in the peak hours. In this case, these two objectives are not necessarily co-monotone due to different
distributions of the passengers on individual platforms. Thus, it is necessary for us to take passenger
demands into consideration specifically in order to transport the accumulated passengers as soon as

possible. In our model, we will make the following assumptions.

1. Between successive platforms, there is only one track per direction. Additionally, in each station
there is only one platform per direction. Crossovers can accommodate at most one train at a time.
Trains can only stop at platforms (i.e., not on the tracks between platforms), and they are not

allowed to skip the stop at platforms.

2. During the disruption period, the fleet size does not change, and the running time on each track

section and each crossover is a fixed, known parameter.
3. No waiting passengers are leaving the station without boarding (to adopt a different traffic mode).

4. No more than one train at a time can occupy the section on the good loop parallel to the failure
track for the power supply failure (in the example of Figure 3(b), the section between platforms
2N —q and 2N — g+ 1).

3 Mathematical model

In this section, we develop MILP formulations for the rescheduling problems associated with the two

strategies in the previous section. We assume passengers arrive at platforms over time with a given

10



projected rate. The fleet of trains in each direction has fixed size V. The platforms in the inner loop will
be labeled as 1,..., N, while in the outer loop as N + 1,...,2N. We introduce here some notation to

denote the position of the three relevant crossovers (see Figure 4):

e The blockage occurs in the inner loop in the section [Sp, Ep], parallel to section [Ep, Sp] on the

outer loop.

Cp meets the inner loop at point G} on the track [S, Ep], and the outer loop at point G on the
parallel track [Ey, Spl;

e C, meets the inner loop at point G, on track [S,, E,], and the outer loop at point G, on track
[Eav Sa];

e C, meets the inner loop at point G, on track [S,, E,], and the outer loop at point G, on track
[Eo, So] 2.

Extending our model to a more general setting is straightforward but would require more complex
definitions without adding particular insight.

We start now by describing parameters, variables, and constraints associated with train operations.
Then, we will focus on modeling passenger flows and finally, we discuss the objective function. Note
that in normal operations, the number K of trains in each direction is constant. During the disruption,
the total number of trains (2K) does not change; however, the number of trains running through the
different sections in which the line is decomposed will depend on the adopted strategy, in particular, on the
position of the boundary crossover C, (see Figure 4) and on the time when the strategy is implemented.

For clarity, the related parameters and variables are summarized in Table 2.

Table 2: Related parameters and variables in the formulation

Symbol Definition

[Tstas Tend) disruption duration interval

u set of platforms, U = {1,...,2N}

K set of service trains, K = {1,...,2K}

Q set of periods in planning time horizon, @ = {1,...,Q}

R set of passenger arrival rate samples, R = {1,..., RS}

Ki/Ko inner/outer loop trains (ALTERNATE strategy)

Kr/Kr/Kp  left/right/bidirectional trains (SHORTTURN strategy)

R%v(w) running time from platform u to next platform v(u)

O, required time for switch transaction of crossover track

Smin/Smaz minimal/maximal dwell time at any platform

Honin minimal headway between successive trains

H, planned headway between two successive service trains

Ry boarding passenger ratio at each time

C loading passenger capacity of single service train

A" alighting rate of in-vehicle remaining passengers at platform u, A" € [0, 1]
dy! departure time of service train k at platform w

ap arrival time of service train k at platform u

Sy dwell time of service train k at platform u

ykl binary variable that is 1 if train k precedes [ in the shared region; otherwise, 0
py passenger arrival rate at platform wu at time period i, 1 € Q \ {Q}

pwy number of passengers waiting for train k at platform u

pby number of passengers boarding on train k at platform u

pay number of passengers alighting from train k£ at platform w

pry number of passengers remaining in train k after departing from platform u

3We remark here that the position of crossover C, is indeed one of the decisions to take in Phase 1 with the help of our
model. However, to simplify the following discussion and notation, here we consider for C, only one position.
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3.1 Modeling train operations

For train k € K, we denote by d}, a}}, s} € IRy the (variable) arrival, departure and dwell time,
respectively, at platform u € Y. In the normal operation, we let K; = {1,..., K} be the set of inner
loop trains and Ko = {K + 1,...2K} be the set of outer loop trains. Therefore, the first train in the
inner direction will be train 1, whereas the first train in the outer direction will be K 4+ 1. With the
ALTERNATE strategy, the number of trains in each direction does not change w.r.t. the normal regime;
therefore, we keep the same notation (even if now the outer and inner loops have a short overlap). For
the SHORTTURN, the set of all trains IC is partitioned into three sets K, g, Kp, i.e., the sets of left loop
trains, of right loop trains, and of bidirectional trains, respectively. The exact size of each set, in this
case, depends on the specific moment in which Phase IT begins and the position of the shortcut. In any
case, all the sets of trains are naturally ordered. We also assume that trains are ordered, and with some
abuse of notation, for k € Ky (k € Ko, k € K, k € Kg, k € Kp) we denote by k + 1 the train following
kin K; (Ko, Ki, Kr, Kg). Finally, observe that several constraints are common for both strategies. For

ease of notation, we only write such constraints for the ALTERNATE strategy *.

3.1.1 Timetable constraint

(1) Running time constraint Denoting by R“*(%) the time necessary for a train to run from platform

u to platform v(u), we have

aZ(“) —dp=R""™, wel,kek o

Note that in normal operations v(u) = u+ 1 for u # N and u # 2N; if u = N (u = 2N) then the train
will start a new cycle in v(u) = 1 (v(u) = N). In this case, R**(") also includes the additional dwell
time required for the change of train service. Finally, when trains cross over between the loops, u and
v(u) assume values that depend on the crossing points, and the constant R“(%) will clearly also embed

the time to run the crossover.

(2) Dwell time constraint Next, the dwell time of a train at a platform is limited in a given range:
Smin < dp —a < Smaz, uEUkEK (2)

where Sinin, Smaz are input parameters that are equal for all trains.

(3) Headway constraint Consecutive trains must hold a safe distance. Assuming a constant speed

on all tracks, this distance becomes®:

dif —di_y > Hpin, uel,ke\{l,K+1} (3)

where H,,;, is the minimum required headway.

4For the similar reason, in the rest parts of this section, we also apply ALTERNATE strategy to model passenger flow and
objective.

5 Actually, H,,i, may also depend on the platform u, but we neglect this here for sake of brevity. Also, this constraint
can easily take into account headway between trains at platforms.
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3.1.2 Disruption dependent constraints

Recall that we can have only one train at a time on the bidirectional section [Ep, Sp]. Consequently, a
train cannot occupy the track before the leading train (in the same direction) has cleared it. For a pair

of consecutive trains £k — 1 and k, this condition is translated into

dFr —afP, >0, keko\{K+1}

AP —al? >0, kek;\{1}
where the different orderings of the platforms depend on the direction of the trains.

3.1.3 Sequencing constraints

When applying recovering strategies, trains from the two loops end up running through the same line
resources. When this happens, we need to sequence them correctly on the shared tracks and crossovers.

In the ALTERNATE strategy (described in Figure 4), trains in both directions share the outer section
[S4, Eb], but the section can accommodate only one-way trains at a time. For any pair of trains in
opposite directions, for example, k € Kz and [ € Ko, we introduce a binary variable y*! that is 1 if &k

precedes [ on the section; otherwise, 0. Then, we have:

A —a¥r >0, — MyM,
) ke /CI,Z € Ko (5)
" —ai 2 O+ My - 1),

where O, is the time needed to switch a crossover track, and M is a suitably large constant. We here
use the classical big-M trick: indeed, when y*' = 1, the first constraint is always satisfied (by otherwise
feasible departures and arrivals), and thus it becomes redundant. Conversely, when 3*' = 0, the second

constraint becomes redundant.

Remark 1. In the SHORTTURN strategy (see Figure 4), the line is divided into three parts by crossovers
tracks Cy, Cy and C,. Trains running on the right loop and on the left loop will share the unit capacity
region around crossover C,, and they need to alternate on it. Therefore, for | € Kr and k € Kgr, we

introduce the binary variable y'* that is 1 if | precedes k in the region; otherwise, 0. Then, we have:

e —ap> > 0, — My'k,
l e ICLJC € Kgr (6>

dfe —ap” = O+ M(y™ - 1),

Trains running on the left loop and the bidirectional trains in the shared outer section [E,,S,] also
need to alternate. Forl € Ky, and j € Kg, binary variable y* is 1 if j precedes | in the shared region;
otherwise, 0. Additionally, because a bidirectional train j € Kp goes through intermediate platforms both
in the left and right directions, when necessary, we duplicate arrival and departure variables. Therefore,

we have
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_ —
di’* = dj* > Hpin + M(y" = 1),

P
dfa _alEa >0, — My, leKr,jeKp (7)
=
df* — a3 > 0.+ My - 1),

The first constraint ensures the minimum headway H ., when the bidirectional train j precedes the left
loop train 1. Observe that since train | can only leave platform E, moving towards the right, we do need
to duplicate the Uaria% The second and third constraints in (7) allow (()n-ly one train at a time in the
shared region. Here, df ® denotes a departure towards the right, whereas ajs-'“ is an arrival when moving
leftwards to the terminal F,.

When considering the right loop trains, first observe that in our strategy they overlap with bidirectional
trains only in the first platform Ey, (see Figure 4). The sequencing process can thus be modeled similarly
to the last two constraints in (7) after introducing suitable variables and constants (which we omit writing
for the sake of brevity).

3.2 Modeling passenger flow

As described in Section 2, at platform w, a number of passengers will wait for the next train k. This
number depends on the passengers already waiting for the previous train k£ — 1 but unable to board, on
the passengers arriving at the station in the meantime, and for the SHORTTURN strategy, on transferring
passengers. The number of boarding passengers depends on the spare capacity of train k, which in turn
depends on the number of passengers on board when arriving at u and the number of passengers alighting
at u. To describe this dynamic, we introduce several new variable quantities and some constants. For
platform u and train k, pr} represents the passengers on board train £ when the train leaves platform
u (and thus when the train arrives at the next platform); paj is the number of passengers alighting the
train, pwy is the number of passengers waiting when k arrives, pbj’ is the number of boarding passengers
and finally, pcj is the residual capacity of the train.

Alighting passengers. We assume that the number of passengers at platform u is proportional (by

a factor A*) to the number of passengers on board when the train arrives at the platform u

" pri7t A% weld\{I,N+1},keK
pbay = (8)

0, wue{l,N+1},ke Kk

Waiting passengers®. The passengers pwj: waiting for train £ at platform u consist of the passengers
pwp_, waiting for the previous train which could not be boarded, and passengers arriving after the
previous train has left, namely, the p(d}_,, d},u) passengers arriving at platform « in the time interval

[di_,,d}]. Therefore, if we denote by pb} the passengers boarding on train k at u, we have
pup = pwi_y — phi_y +p(df_y i, u), weU ke K\ {LK 41} ©)

Observe that the above expression is nonlinear, as the factor p(dy_,,d},u) is a function of the variable

quantities dj}_; and d};. We will see in Section 3.4 how to linearize this term.

6The formulas presented here must be slightly amended when considering the transferring stations in SHORTTURN
strategy. The modeling is simple but involved, requiring the introduction of auxiliary variables and constraints. For the
sake of clarity and brevity, we omit here the details, which would not add much to the discussion.
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Residual capacity. The residual capacity of train k£ at platform u depends on the empty train
capacity C', the number pr}:*l of passengers in the train when the train leaves the previous platform, and

the number paj! of passengers alighting train at platform w.

u C—prvt4pa¥, ued\{I,N+1},kekK
pck:{ i+ pa \ } (10)

C, ue{l,N+1}LkeK

Boarding passengers. The number of boarding passengers pbi depends on the number of waiting
passengers pw;, on the dwell time s} and the boarding passenger rate R, and on the residual capacity

pcp of the train after alighting passengers.
pb = min{ Ry - s, pwi,pcpt, uweU ke (11)

Note that the above relationship can be easily linearized”.
Onboard passengers. Finally, the number pr} of passengers remaining onboard when train k£ departs

from platform wu is given as:

(12)

" pri~t+pby —pay, welUd\{L,N+1}keK
’r‘ =
Prk by, we{l,N+1},kek

We conclude this subsection with an important remark.

Remark 2. In our model, we have variables modeling train timetables, namely, vectors d,a € R>U.
and variables modeling passenger flows, namely, vectors pr,pb,pa,pc € RXU. However, for fized
d e IR’CXL’, then a,pr,pb,pa,pc are uniquely determined by solving the system of linear equations
defined by Equation (1) and equations (8)~(12).

3.3 Objective function

As mentioned, our objective function is the convex combination of two terms. The first term f,, is the
accumulated number of passengers unable to board the first arriving train because of the limited residual

capacity of the train®

fo =Y (pwi —pbj) (13)

ke ueld
The second term represents the positive deviation from the planned headway H, between trains k — 1
and k.
fo= Y > max{d} —di_, - H,,0} (14)

K\{1,K+1} ueld

Note that the expression for f; can be easily linearized by replacing it with the sum of nonnegative

variables ¢}* and introducing the constraint ¢} > d} —dy_, — Hp, for k € K\ {1,K + 1}, u e U.

"Because the objective function favors smaller values of waiting passengers (i.e., larger values of boarding passengers),
the above nonlinear constraint can be replaced by the following linear constraints:

pbiy < Ry - s,
by < pwy, uel,kek
pbi < pcit,

8The expression of fy, also includes an additional term to account for those passengers unable to board the last service
train. We omit it here for brevity.
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The overall objective function is then the weighted sum of the two terms, where the nonnegative weights

Aw, Ap (with Ay, + A, = 1) are chosen by the planner according to the preferred target.

min f = Ay fu+ M i (15)

In practice, the setting of these two weights is dependent on the relative importance given by the
dispatching policy and operators. Typically, facing with more arriving passengers in peak hours, the
number of non-boarding passengers is set as the prior objective to increase transport ability, with a large
value of weight \,,. By contrast, in off-peak hours with fewer passengers, the second weight of headway
deviation is favoured to regain regularity with the planned headway. Since the planned headway is
pre-designed to make a trade-off between service quality and train operation cost (or other operational
requirements), the price weight A;, could be set as a larger value in this case.

Actually, in our rescheduling model, the minimal headway H,,;, is usually smaller than planned head-
way H, (i.e., Hyin < Hp). In this case, the solution space is further enlarged (that is, the planned
headway H),, is only a feasible case of our proposed model). With the enlarged solution space, the optimal
solution can be searched with the objective of the weighted average non-boarding passengers and headway

deviation, where the rescheduled optimal headway can be finally deduced.

3.4 Coupling continuous and time-indexed variables

Here, we show how to linearize the term p(dj_,,d}, u) in Equation (9), which describes the number of
passengers arriving at a platform between two successive departures. A classical way to do this procedure
is by using time-indexed formulations (as in [24, 35]) because they provide tight bounds and allow
modeling complex relations by simple linear constraints. There is, however, a price to pay: the number
of variables and constraints of the model increase dramatically (depending on the size of the time steps).
Therefore, the time required to solve the overall problem, or even just its linear relaxation, may exceed
the time allowed by the application. This has been, for instance, our experience with train rescheduling
problems in metro systems, see [21]. The problem is that we need a rather aggressive discretization in
order to represent train movements with sufficient details. In contrast, a grosser discretization suffices
to represent passenger arrival dynamics. We will exploit this observation in the sequel of the paper
to develop a model that makes use of both classical representations to describe different entities and
dynamics.

We see now how to linearize the term p(d}_,,d},u) appearing in Equation (9). Recall that for the
arrival matrix P = [p¥] (or P" = [p;""] when looking at the r-th sample matrix), the arrival rate p¥ at

platform u is assumed to be constant in the period i € O\ {@}.

Modeling departure times. To this end, we introduce time-indexed variables and couple them with
the continuous variables of our original formulation. For k € K, w € U and i € Q, we introduce the
binary variable zf ' which is 1 if and only if the train k& departs from platform w in the time interval
[T}, Tit1) (here we let Tg1 >> Tg)?. We also introduce the slack variable xf’u, representing the offset of

the departure time of train k from platform u with respect to T; when the departure occurs in [T}, T;41);

9For Q = {1,...,Q}, the corresponding interval denotes as [T, Tg+1) if i is set as Q. Observe that the larger value of
Tg+1 aims to contain departures times of all service trains on the whole line.
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otherwise, the value of the variable is 0. Thus, we have:
Q
p=> Tzt 4l uelkek (16)
i=1
Also, since departure d} occurs in exactly one interval, we have
Q
Soabt=1 uelkek (17)
Finally, the offset is smaller than the period size:

< ( i+1 - E)Zhua u € uyk € ’Cvl € Q \ {Q} (18)
> &,

k
v ueZ/IkeICzeQ

where ¢ is a suitably small constant.

Remark 3. Observe that the “full” time-indexed formulation, proposed by previous studies (see [4, 6, 39]),
is the special form of our novel formulation, in which trains depart from and arrive at each station over the
discretized timestamps. For instance, the whole time horizon [Tsiq, Tena) is discretized as T1,Ta,--- ,Tg
by a time interval §. Then, the departure time can be expressed as Equation (19) for the “full” time-
indezed formulation, in which binary variable z “ takes 1 if train k departs from platform u at time T;,

and its value takes 0 otherwise.

Q
dp=>"T 2", uelkek (19)
i=1

where
dat=1, uel,kek
i=1
Comparing with these two methods, the expression of the novel formulation (see Equation (16)) is the same

U

as the “full” time-indexed formulation if letting slack variable a:f equals to 0. However, for accuracy, the
“full” time-indexed formulation requires a much smaller time interval § to discretize the time horizon than
our proposed method, leading to more decision variables and longer computational time in the optimization

process (Please see the comparison results in Section 5.6).

In Figure 6 we exemplify (part of) a feasible solution. The horizon [Tstq, Tend] is discretized into
11,15, ...,Ty. Two trains k and k depart from station u at time dy € [T, T3) and d}i > Tg. Correspond-
ingly, binary variables zg " and zgu are both 1 (while all other z-variables are 0). For the slack variables

xlg " and x%“ we show the corresponding feasibility intervals.
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Figure 6: An example of feasible values for the coupling formulation

Modeling passenger arrivals. Observe first that in a period ¢ € Q without train departures from
platform w, the number of passengers accumulating during the period amounts to p¥(Ti+1 — 13).

We introduce an auxiliary binary variable bf’", which is 1 if train k departs from platform w in a period
7 <1, that is:

Bt =" uwel keK i€ Q (20)
j=1

Clearly, if train k — 1 leaves in a period before period i, and train k leaves in a period after ¢, then
passengers arriving at the station accumulate on the platform during the entire period i, and the contri-
bution of (the passengers arriving in) period 4 to the total queue amounts to p}*(T;+1 — T;), which is also

equivalent to:
P (L1 — T —b8"), wel ke K\{LK +1},i€ 0\ {Q} (21)

Now, if train £ — 1 departs in period j, then the contribution of period j to the total queue must be

corrected according to the offset, and amounts to:

Q-1
w k—1,u k,u w k—1u u k—1,u k,u w k—1u
Py (Tjpr — T5)(b; —b;") —pjz; = pj (Tj1 — T;)(b; = b)) — 2:1 Di%; J (22)
1=

wel,ke K\ {1,K +1},j € 9\ {Q}

Finally, if train k leaves in a period [, the contribution of period [ to the queue for train k& will amount

to

Q-1
pralt = plaft, ueld,keK,le Q\{Q} (23)
1=1

Combining all the contributions and remembering that the difference (bffl’” — bf“) is 1 precisely in
the periods when k — 1 has left « and k has not left yet, we have that the number of passengers waiting

for train k£ at platform w is:

Q-1 Q-1 Q-1
S OpH T =Ty M =00 = > piay 4+ Y plalt, wel, ke K\{1,K +1} (24)
i=1 i=1 i=1
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The quantity (24) replaces the term p(d}_,,d}, u) when linearizing Equation (9).

3.5 Extending the models to multiple arrival rate samples

So far, we have introduced two MILP models, one for each strategy. One program modeling the ALTER-
NATE strategy refers to as ALTERNATEMILP, with constraints (1)~(5), and another program modeling
the SHORTTURN strategy refers to as SHORTTURNMILP, with constraints (1)~(3) and (6)~(7). The two
models share the same objective function (15). Both models receive as input the 2N x (@ — 1) matrix
P of the passenger arrival rates. Each model then computes the best timetable d € R according to
the strategy.

With a series of historical samples P° = {P!, ..., PRS} of the arrival rate matrix'®, we modify the

R that are

MILP models for ALTERNATEMILP and SHORTTURNMILP for finding departures d €
“good” with respect to all our samples. To this end, we proceed as follows. Note that, for the fixed
timetable, by Remark 2, the value of the variables describing the passenger flows introduced in Section
3.2 depends only on the matrix P and are uniquely determined. In the extended model, for r € R, we
introduce variables pw,”", pb,”", pri’" and pa;’", to represent passengers waiting, boarding, onboard, and
alighting train k£ at platform w when the arrival rate matrix is P", respectively. Every constraint from
(8) to (12) is then substituted by RS copies, and in copy r, the original variables are replaced with the
corresponding r-th extended counterpart, for r € R. Therefore, for instance, constraint (12) is replaced

by the RS constraints
pri” = pr T b —palT, ke K,uceU\{1,N+1},r€R

For the term p(d}_,,d},u), appearing in constraint (9), this will be replaced in the r-th copy of
Equation (24) by the quantity

Q-
Zpl Tipr — T)(0F " — b Z ok 1“+Zp“ b wel ke K\{l,K+1},reR

Note that Remark 2 also applies to the extended model. Therefore, let d be a timetable, and let
pw(d), pb(d) € RIFIXIUIXES e the waiting passengers vector and the boarding passenger vector asso-
ciated with d, respectively. Then, we denote by fr(d) the objective function value associated with the

timetable d, namely,
— 1 — —
fr(d) = )‘w'ﬁZsz(d)'i')\hfh(d)
= Ay~ RS Z Z prk —pby"(d) + A Z Z max{d} — —H,,0} (25)

Remark 4. Similarly for the other constraints and the full model, see Appendiz B. Particularly, with
a total of RS historical passenger samples P° = {P', ... PESY the objective function will be applied in
the two-stage approach (i.e., in Task 1) to find the appropriate recovery strategy and timetable for the

variable passenger demands under the disruption.

10There are a total of RS samples, denoted as R = {1,2,..., RS}. Those samples could be obtained from different days
of metro operation data to represent the variability of passenger demands.
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4 Overall solution: a two-stage approach

With the historical and real-time detected data (like passenger demands and end time of the disruption),
we develop a two-stage approach to provide adaptively optimized timetable so as to meet the real scenario
as much as possible. The models linearized by the hybrid formulation (In Section 3) will be exploited in
our approach to the recovery problem.

In Section 1, we have identified two phases between the start and the end of the blockage. In Phase
I, the problem is detected and the recovery strategy is established and communicated to the system and
operators. In Phase II, the recovery strategy is implemented. Accordingly, two-stage approach will split
into two tasks: The first task is carried out in Phase I and is devoted to selecting the best strategy by
comparing the timetables produced by the different models. The output of this first task will be the
selected model, and the corresponding initial timetable that will apply to the next phase. Once the
strategy is selected (and implemented by the dispatchers), we enter Phase II, and correspondingly, the
second task of our approach starts. During the second task, we use the selected model to take real-
time dispatching decisions. These decisions are taken by applying the selected model and by updating
the entries of the sample matrices to their actual values for the past events. Clearly, in this task, the

associated instances must be solved very quickly in order to provide updated plans in real-time scenarios.

First task. In thistask, we need first to decide between the ALTERNATE and the SHORTTURN strategies.
In the SHORTTURN strategy, we also need to decide where to place the short-cut crossover C, (see Figure
4). Accordingly, we will solve one MILP for ALTERNATE and one MILP for SHORTTURN and each position
of the crossover C,. As input to this task, we have the set P = {P?, ..., PRS} of historical arrival rate
matrices, the prediction on the end time T ; of the disruption, and all other relevant input data.

The strategy (and cross-over position in case of SHORTTURN) returning the best value of the extended
objective function is selected at the end of this process. The associated model is denoted as BESTMILP,
and the initially extended timetable is d°. Once the strategy is selected, the dispatcher will communicate
it to the system and operators (see Figure 1) along with the initial timetable d°, which is input as

incumbent solution d* = d° to the next task. At this point, Phase II begins.

Second task. In this task, the model BESTMILP is solved iteratively in the real-time setting, for
example, every AT seconds, starting at Ty,. At any new resolution, time moves forward, and some
of the input parameters may change and some variables corresponding to past events are fixed to the
actually realized values. Denote by 7" = Ty, + n - AT the time iteration n = 1,... that is executed,
and let BESTMILP™ be the model solved. In task 1, P® = {P' ..., PES} is the original set of sample
matrices and Tgnd is the predicted disruption end time. As the iterations proceed over time, however,
better estimations may arrive and the predicted end time may change. We denote by T} , the end
time predicted at iteration n. Similarly, at iteration n, all arrival rates before 7" are known exactly.
Therefore, we modify the matrices in PY by substituting the original predicted values with the actually
realized values. We denote by P" the modified set of sample matrices at time 7". Additionally, all
departure and arrival times before 7™ are fixed to their actual values and become constants in the current
BESTMILP™.

After solving BESTMILP™ at iteration n, the new solution (and associated timetable d™) is compared
with the incumbent d*. In principle, the current timetable d” is optimal and should replace the incumbent

and be communicated to the dispatchers and the field through the signaling system. However, to enforce
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some stability in the solution, the timetable is updated only if the objective value of this new solution
f(d™) is significantly better than the old one, namely, at least v times the incumbent evaluated f(d*) at

time 7™, where v < 1 is a predefined parameter.

Basic data:
e Historical arrival e Track layout
matrix-p° o Fleet size & Services
e EndtimeT?, e Train capacity ...

! !

Solve AlternateMilp

Solve ShortTurnMilp for each
crossover position

Best strategy | Timetable d” = d°

n=1
e Updated arrival ¥
matrix P" - Solve BestMilp" |«
e Updated end P
time T,
Timetabled" n=n+1

Figure 7: The flowchart of the two-stage approach

5 Numerical experiments

In this section, we present our numerical experiments. All instances are from Line 2 of the Beijing metro
system. Our algorithm is coded in C# on an Intel(R) Core(TM) i5-7200 CPU @ 2.50 GHz with 16.00
GB RAM. As the MILP solver, the IBM CPLEX 12.7.1 is used to solve the proposed models with default

settings.

5.1 The test-bed

Beijing metro Line 2 is a bidirectional loop line, consisting of 18 stations and 36 sections in total in the
inner and outer loops (Figure 8). In the default operational mode, the inner loop is traversed clockwise
starting at JISHUITAN, whereas the outer loop is traversed anticlockwise starting at XIZHIMEN. Beijing
metro Line 2 has a rectangular shape around the city center. Additional data, including the platform
index, the running time to the next station, the positions of the 7 crossover tracks, and the minimum
dwell time are given in Appendix A. At a given point in time, passenger arrival rates are very different for

the different stations. Similarly, for a given station, arrival rates vary significantly over the day. Real-life
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Figure 8: The route map of Beijing metro Line 2

passenger arrival rates!! PY at different stations for a day are depicted in Figure 9. In the peak hour,
the arrival rate even exceeds 60 persons/min at XIZHIMEN, JISHUITAN, DONGZHIMEN, and reaches
100 persons/min at Beijing Railway Station.
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Figure 9: Passenger arrival rates at different stations of Beijing metro Line 2 in a weekend day

In our numerical experiments, we assume the disruption occurs at some time before 9:30 between
CHANGCHUNIJIE and FUXINGMEN in the inner direction. The disruption is initially estimated to end
at 10:00. We then consider a 30-minute planning time horizon from 9:30 to 10:00 - assuming that Task 1
(and Phase I) can be completed no later than 9:30. The fleet amounts to 30 trains, providing 40 services
during our planning horizon. The capacity C of the trains is 1200 passengers. Finally, we have a total
of ten historical arrival rate samples, presented by P = {P!,... P!}, When the disruption occurs, all
in-service trains stop at the nearest stations and wait for dispatching directions. The second task (and
Phase II) starts at 9:30.

HThese are confidential, real-life data from Beijing Subway Company.
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5.2 First task results

In this task, we solve seven instances of MILP models, one corresponding to the ALTERNATE strategy
and six for the SHORTTURN strategy (namely, one for each candidate position of the short-turn crossover,
denoted as C, = 1,...,6, see Figure 4 and Table 7). For each instance, we fix the maximum CPU time
to 150 seconds.

In Table 3, we show the results for task 1. The first line corresponds to the ALTERNATE strategy (“ALT”
in the table), whereas the other lines correspond to SHORTTURN strategy (“TURN”) for each crossover
position (from cl to ¢6). In the ALTERNATE strategy, the line is still divided into the inner and outer
loop (I/0), whereas for the SHORTTURN strategy, we identify a left loop, a right loop and a bidirectional
section (L/R/B). Especially when setting ¢6 (i.e., C, overlaps the last crossover track C} in Figure 4),
the whole line is split into the rest and bidirectional section (Re/B). For all these segments, in Table
3, we give the number of platforms, the fleet size and the number of train services. Then, the average
objective value fg, the average number of nonboarding passengers f,,, the average headway deviation
fn'? are provided for each strategy with the given maximum allowed dwell time s,,q4, (constraint (2)).

Finally, in the last column, we display the integrality gap value returned by CPLEX at termination.

Table 3: Initial optimization results of two strategies

Strategy # Platforms  Fleet size  # Services  Smax fr Fw fn Gap(%)

Avr 18/18 15/15 17/16 690s 17.19 11.05 23.33 3.00%
TURN <l 1/27/6 1/25/1 11/32/2  180s | 479 579  3.79  13.86%
TurN 2 6/25/6 6/23/1 13/29/2 180s | 4.49 553 344  7.09%
TURN_c3 14/17/6 14/15/1 21/21/2 180s | 4.89  6.01 377  12.20%
TURN_c4 20/11/6 19/10/1 26/17/2 180s 4.77 6.00 3.53 11.94%
TURN _c5 22/9/6 21/8/1 27/14/2  180s | 4.85  6.26  3.44  15.63%
TURN c6 31/6 29/1 36/2 180s 4.87 6.19 3.56 13.31%

The extended maximal dwell time (690 seconds) with the ALTERNATE strategy is a consequence of
potential conflicts between trains running in opposite directions on the long shared track. This of course
causes a substantial increase of headway deviation f; and nonboarding passengers f,, with the cost of
increased total travel time. In contrast, dwell time can be shortened to 180 seconds with SHORTTURN.
SHORTTURN with crossover ¢2 (“TURN_c2”), with 6, 25 and 6 platforms in left, right and bidirectional
segment and has the best objective value 4.49.

In Figure 10 we give some additional details of the solutions associated with “ArLT”, “TURN_¢2” and
“TURN_¢6”. In particular, we present the timetables (visualized as train graphs) and the total boarding
and final nonboarding passengers'®. In the figure, for ALTERNATE, the timetables for the inner and outer
loop are represented by red and blue lines (the sequence of platforms is shown on the left and right y-axis,
respectively). Longer stops are necessary to avoid conflicts on the shared outer platforms 22, 23 and 24,
especially in the green rectangle in the dashed line. Observe the presence of nonboarding passengers in
almost every station (mainly concentrated at the end of the disruption period). They sum up to more
than 30% of all passengers traveling in the system, with a stunning 94% of the passengers stranded at
platform 15. In contrast, the timetable in Figure 10(c), returned by the SHORTTURN strategy (in red,
blue and orange the trains on the left, right and bidirectional segments, respectively) has a small headway
deviation; the non-boarding passengers (13.8% of all passengers) are mainly concentrated at platforms 14,

15, 21 and 22, varying from 57% to 89% of the final nonboarding passengers at each platform. Merging

2Here, fr, fw and f are the average values of the extended objective function fgr, nonboarding passengers f,, and
headway deviation f (see Equations (25), (13) and (14)) for each train at each station on each sample, where the coefficients
in the convex combination (15) are set as Ay, = Ap, = 1/2.

13Note that, those two passenger numbers are the average corresponding to a total of ten inputted passenger samples P°.
Final boarding passengers mean the number of passengers that are not able to board before the end of the disruption.
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left and right sections in SHORTTURN strategy, all other service trains operate on the long rest loop
with a small headway deviation, except the one bidirectional train'* (i.e., blue and orange lines in Figure
10(e)). Besides of bidirectional platforms 14, 15, 21 and 22, the non-boarding passengers are increasingly
stranded at rest-zone platforms 7, 19, 32, 33 and 34 for the limited train capacity, totally accounting for

14.6% of all passengers.

5.3 Second task results

For this task, we allow 30 seconds of computing time for each iteration. Since passenger arrival rates
are sampled every five minutes, in our experiments we also solve a new instance of BESTMILP every 5
minutes (i.e. AT = 300 seconds). Additionally, since stability is not an issue in these tests, we let v = 1.

According to the results presented in Table 3, the SHORTTURN strategy with crossover ¢2 (i.e.,
“TURN_¢2”) is the best and is therefore selected for the online rescheduling. Initially, the end of the
planning horizon T , is set to 10:00 am, namely, the expected end time of the disruption. However,
at 9:50, we simulate the decision of delaying Tfnd to 10:05 due to a more accurate prediction on the
disruption duration. Therefore, in total we have six iterations, i.e., n =1,...,6.

The results of the second task iterations are presented in Table 4. To fully understand the figures in this
table, keep in mind that at iteration n, i.e., at time 7" = T, +n - AT, we solve problem BESTMILP™,
with the current set P™ of partially realized sample matrices, current predicted end time 77} ; and a fixed
timetable for arrivals and departures before 7™. Every row (except the last) corresponds to an iteration
of the algorithm, including the first task iteration 0. The objective value at iteration n is shown in the
column f_g, whereas f? and f}’: are the two components in the objective (before averaging), namely, the
nonboarding passengers, and the headway component, respectively.

To understand the role of re-optimization, we also give in column f™(d"~!) the value of the optimal
timetable computed at iteration n — 1, evaluated with the updated arrival rates P™ at iteration n. Note
that at iteration 4, the new prediction on the end time becomes available and there is a sharp increase
in the passenger component of the objective function value. This is because the expected duration of the
disruption has increased, and consequently, also the number of nonboarding passengers. However, this
does not correspond to more difficult MILPs for iteration 4, 5, 6, as the integrality gap at termination is
constantly below 1%. Additionally, observe that from iteration 2, CPLEX can exploit the previous solu-
tion as a warm-start solution: this is clearly helping the computation, as the integral gap at termination
falls from almost 5% to values of approximately 1%.

Additionally, we compute the first task initial timetable with the additional information on the extended
duration of the disruption'®, namely, by letting T , = 10:05. Let this solution be d°*. We can now use
the actually realized set P° of arrival rates to evaluate. The resulting objective value is 9.08. Compared
with the final fg = 7.85, we see how the online recalculation allows for significant improvements over the
initial solution.

Then, the final timetable is visualized in Figure 11(a), whereas Figure 11(b) shows how the objectives

evolve over the iterations of the algorithm!”.

4For the bidirectional and rest-zone train, relevant routes respectively are 21 — --- — 24--- — 21 and 16 — --- — 18 —
l1—---=12—+24—= ... —=36—19.--- = 21.

15 Trains travelling through inner (outer) stop indices are represented with dotted (solid) lines, shown in left (right) y-axis.

16Observe that the initial timetable d° is not feasible anymore since T,,,q is changed.

171n the figure, “total” represents the value of the whole transit line.
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Table 4: Computation results of strategy “TURN_¢2” in the optimization process

Iter. " T 4 frarh fg o IS Gap(%)
0 9:30 10:00 - 4.49 5.53 3.44 7.09%
1 9:35 10:00 4.48 4.43 5.42 3.44 4.74%
2 9:40 10:00 4.58 4.48 5.45 3.48 1.26%
3 9:45 10:00 4.72 4.70 5.94 3.47 0.21%
4 9:50 10:05 - 6.49 8.52 4.47 0.14%
5 9:55 10:05 7.22 7.20 9.93 4.48 0.91%
6 10:00 10:05 8.06 7.85 11.25 4.45 0.07%
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Figure 11: The new timetable and relevant performance at the second task

5.4 Experiments with different weight factors

The relative weights of the passengers-related objective f, and the headway-related objective f;, in
the overall objective fr are given by the coefficients \,, A in the convex combination (15). Here,
we study how fr changes with such coefficients, in the case of the ALTERNATE strategy (i.e., model
ALTERNATEMILP) and the SHORTTURN strategy (i.e., model SHORTTURNMILP) with crossover ¢2 at the
first task.

For )\, € [0,1], Figure 12(a) shows the behavior of average nonboarding passengers f, and average
headway deviation fj, for both strategies. With the increased weight factor of nonboarding passenger A,
the average nonboarding passengers f,, (solid blue and orange lines, value range on the left y-axis) drops
significantly from 15 to 7.5 in the ALTERNATE, and from 7.4 to 6.2 in the SHORTTURN. In contrast,
the average headway deviation f; of the two strategies (represented by the dashed blue and orange
lines, range on the right y-axis), increase from 21.1 to 31.7, and from 4.1 to 8.9, with 50.5% and 119%
growth, respectively. Note that the impact of increasing A, is much stronger on the f,, component for
the ALTERNATE, mainly because by starting from a higher value, there is more room for improvements
(by varying dwell times). Obviously, these two objectives f, and f}, are not co-monotone with different
tendencies of decline and growth, corresponding to a large number of waiting passengers on Line 2. With
increasing \,, the cumulative effects of these two terms on the objective value fr is shown in Figure
12(b).

5.5 Experiments with different arrival rates

Next, we move on to studying the influence of arrival rates on the solution and algorithm performance.
To this end, starting from our family of arrival rate matrices P° = {P, ..., P1°} we construct 10 families
PO3j) = {r; - P',...,r; - P} with r; = 0.2j, j = 1,...,10. Then, we apply extended models ALTER-
NATEMILP and SHORTTURNMILP (with crossover ¢3). The results for average nonboarding passengers

fw, average headway deviation f; and objective value fr are shown in Figure 13, respectively. For the
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Figure 12: The performance of ALTERNATES and SHORTTURN strategies with A,

low value of the coefficient, the two strategies have similar effects on f,,. Then, the increasing number of
passengers causes a larger growth of average nonboarding passengers f,, for the ALTERNATE compared
with the SHORTTURN (Figure 13(a)). Indeed, due to the shared section, the ALTERNATE requires longer
dwell time to avoid potential conflicts, leading to large headway deviations and, ultimately, to insufficient
capacity to transport passengers. Trying to transport more passengers, both strategies will tend to ex-
ploit longer dwell times and this in turn induces a gradual increase in the average headway deviation fj,.
However, the increase of fg is mainly determined by the corresponding increase of f,,, see Figure 13(b).

Our experiments indicate that, in general, the SHORTTURN strategy (with the best possible choice for
the border cross-over) dominates the ALTERNATE, at the cost of an increase in computational time. This

increased time is, however, still within the acceptable time limits 2.
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Figure 13: The performance of ALTERNATES and SHORTTURN strategies with A,

5.6 Experiments with “full” time-indexed formulation

For comparison purposes, we also develop and test a “full” time-indexed formulation for the ALTERNATE
strategy. By “full” we mean that both passenger flows and train schedules are modeled through binary
time-indexed variables. The results are given in Table 5. With larger time steps (15 secs and 30 secs),

instances become infeasible. With a time step of 5 secs, CPLEX needs 6000 secs to reach a 24.89% gap,

181n practice, the average number of transfer process will be increased for passengers in the SHORTTURN strategy, but
with less waiting time. Additionally, this strategy is a more flexible operation for dynamic passenger demands than the
ALTERNATE strategy, while also requires the much higher automatic level of crossover switch.
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due to the very large number of binary variables and constraints. Even if our implementation of the
time-indexed formulation is rather straightforward, the long-running times reported in Table 5 indicate
that it is not an immediate concern to develop a time-indexed formulation that is competitive with our
mixed MILP model.

Table 5: Optimization result of full time-indexed formulation in the ALTERNATE strategy

Time step (seconds) | computation time (seconds) fr fuw fn Gap
5 6000 17.67 12.17 23.16 24.89%
15 infeasible - - - -
30 infeasible - - - -

6 Conclusions and future research

When a blockage or disruption occurs in a metro line, the overall service is disturbed, and passengers may
start queuing up in stations, especially at peak hours. In this paper, we propose a two-stage methodology
to select a suitable recovery strategy (first task), and subsequently to implement it in an efficient way
(second task). In both tasks, we solve one or more MILP problems that also take into account passenger
flows by minimizing a measure of the total nonboarding passengers. To this end, we introduce a mixed-
type formulation by intertwining a big-M block (mainly for the train scheduling part) with a time-indexed
block (for modeling passenger flows). This idea allowed us to solve realistic instances of our problem from
a major metro line in Beijing. In our experiments, we show that the approach is capable of selecting the
best strategy (among those modeled) and then support the dispatchers in rescheduling trains during the
disruption and the recovery phase.

There are some open questions and possible future developments. First, when the OD data are available,
one may extend these models to cope with the actual numbers of boarding and alighting passengers at each
station. Second, this paper only focuses on two possible recovery strategies; therefore, modeling other
alternatives is a natural extension. Third, a blockage in the ring line also likely affects the connected
radial lines in a way that depends on passenger detour decisions. It would be interesting to model such

behavior and then predict and possibly control the impact on the other lines.
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Appendix A Basic operational data of Line 2

In Table 6, we give some relevant figures for each station and each direction, namely, the platform index,
and running time to the next station on the loop. The last column gives the planned dwell time at each

station.
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Table 6: Running time and dwell time of Beijing metro Line 2

. Inner loop Outer loop .
Station name Platform Running time Platform  Running time Dwell time
JISHUITAN 1 180 36 190 35
GULOUDAJIE 2 120 35 180 40
ANDINGMEN 3 120 34 180 30
YONGHEGONG Lama Temple 4 240 33 60 30
DONGZHIMEN 5 120 32 240 30
DONGSISHITIAO 6 120 31 120 30
CHAOYANGMEN 7 180 30 120 40
JIANGUOMEN 8 120 29 180 40
Beijing Railway Station 9 180 28 120 40
CHONGWENMEN 10 120 27 180 35
QIANMEN 11 180 26 180 35
HEPINGMEN 12 60 25 120 35
XUANWUMEN 13 120 24 120 35
CHANGCHUNJIE 14 180 23 120 40
FUXINGMEN 15 180 22 120 40
FUCHENGMEN 16 120 21 180 35
CHEGONGZHUANG 17 130 20 120 40
XIZHIMEN 18 190 19 120 30

The locations of 7 crossover tracks are presented in Table 7, including the station name and the platform
indexes on the inner and out loop lines. A crossover connects a section between two stations in the inner
loop to a section between the same pair of stations in the outer loop. Each section is identified by the
pair of adjacent platforms. Therefore, for instance, crossover track 3 (between YONGHEGONG Lama
Temple and DONGZHIMEN) connects a point on section (4,5) in the inner loop to a point on section
(32, 33) in the outer loop.

Table 7: The stations nearby crossover tracks on Beijing metro Line 2

Track Stations name Inner platforms Outer platforms
cl (CHEGONGZHUANG, XIZHIMEN) (17,18) (19,20)
c2 (XIZHIMEN,JISHUITAN) (18,1) (19,36)
c3 (YONGHEGONG Lama Temple, DONGZHIMEN) (4,5) (32,33)
c4 (CHAOYANGMEN,JIANGUOMEN) (7,8) (29,30)
c5 (JIANGUOMEN,Beijing Railway Station) (8,9) (28,29)
c6 (HEPINGMEN,XUANWUMEN) (12,13) (24,25)
c7 (FUXINGMEN,FUCHENGMEN) (15,16) (21,22)

Appendix B Complete formulation for the ALTERNATE strategy

According to Figure 3(a), we give an example to illustrate the whole formulation model of the ALTERNATE
strategy. With the extended objective function (25) and constraints (see Section 3), the MILP model can

be written as:
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min fr(d)

St Smin < df — ap < Smaz, uweU ke KL\{l,K+1} (26a)
al™ —dt = R**™, welkek (26b)
di —di_1 > Hpin, uweld,keK\{1,K+1} (26¢)
ENTI_@NTT >0 ke Ko\ {K +1} (26d)
SN N >0, ke \ {1} (26e)
At =N > 9, - MyM ke Kr,le Ko (26f)
N @8 >0, 4+ M@y 1), keKg,lekKo (26g)
pby" < Rp-si, uelUd,keK,reR (26h)
pby" < puwy, ueU,kekK,reR (261)
by < peit, veld,kek,reR (263)
Q
doat=1, uelkek (26k)

pwy" > [pwy’ — bZ’rl +p(dy_, d},u)] — Mzg“, uel,kek\ {1 K+1hreR (261)

Q-1
pldyi_y, it u) Zpl Tipr — Ti)(bF 0" = o) — pfrfl”+zp"””, (26m)
=1
ueld, ke C\{l,K+1},reR

bt =Y "2 welkeKieQ (26m)

j=1

Q
:ZTi-zf’"—&—xf’“, veld,kek (260)

Pt < Ty =Ty —e)2F", welkekK,ieQ (26p)
Pt > e (26q)
e {01}, weldkekK,icQ 261

(26r)
di,ap,pby" pwl" € Ry, uveld,kek (26s)
Note that, constraints (26a)~(26g) guarantee train safety operations, including timetable constraints,
disruption dependent constraints and sequencing constraints. The next seven constraints (26h)~(26n)
are to linearize the f), of the objection function. Finally, the last five constraints denote the relationship

and values of those relevant variables.
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