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Multi‑fidelity information fusion 
with concatenated neural networks
Suraj Pawar1, Omer San1*, Prakash Vedula2, Adil Rasheed3,5 & Trond Kvamsdal4,5

Recently, computational modeling has shifted towards the use of statistical inference, deep learning, 
and other data-driven modeling frameworks. Although this shift in modeling holds promise in many 
applications like design optimization and real-time control by lowering the computational burden, 
training deep learning models needs a huge amount of data. This big data is not always available for 
scientific problems and leads to poorly generalizable data-driven models. This gap can be furnished by 
leveraging information from physics-based models. Exploiting prior knowledge about the problem at 
hand, this study puts forth a physics-guided machine learning (PGML) approach to build more tailored, 
effective, and efficient surrogate models. For our analysis, without losing its generalizability and 
modularity, we focus on the development of predictive models for laminar and turbulent boundary 
layer flows. In particular, we combine the self-similarity solution and power-law velocity profile 
(low-fidelity models) with the noisy data obtained either from experiments or computational fluid 
dynamics simulations (high-fidelity models) through a concatenated neural network. We illustrate 
how the knowledge from these simplified models results in reducing uncertainties associated with 
deep learning models applied to boundary layer flow prediction problems. The proposed multi-fidelity 
information fusion framework produces physically consistent models that attempt to achieve better 
generalization than data-driven models obtained purely based on data. While we demonstrate our 
framework for a problem relevant to fluid mechanics, its workflow and principles can be adopted for 
many scientific problems where empirical, analytical, or simplified models are prevalent. In line with 
grand demands in novel PGML principles, this work builds a bridge between extensive physics-based 
theories and data-driven modeling paradigms and paves the way for using hybrid physics and machine 
learning modeling approaches for next-generation digital twin technologies.

The modeling of spatiotemporal dynamics of multiscale and multiphysics systems is an open problem relevant 
to many scientific and engineering applications. For instance, wind energy is a highly complex system whose 
dynamics is governed by global atmospheric processes to turbulent boundary layer formed around the blades 
that span nine orders of magnitudes1. Over the past several decades, we have improved our understanding of 
such multiphysics systems by developing accurate numerical models for governing equations of the system, such 
as Navier-Stokes equations for fluid flows. However, these numerical models can be computationally prohibitive, 
especially for nonlinear multiscale systems, and their use in real-time optimization and control is scarce. The 
recent advancement in machine learning (ML) and deep learning (DL) holds the great potential for tackling the 
challenge of modeling and analysis of high-dimensional systems and has been successful in diverse applications, 
such as fluid mechanics2, earth science3, and material science4. These advances have been driven by a vast amount 
of data generated from high-resolution numerical simulations, experimental and satellite measurements, and 
computing power along with the emergence of effective and efficient algorithms that can extract relevant pat-
terns from the data. ML/DL techniques has been successfully applied for turbulence closure modeling5, super-
resolution of climate data6, predicting clustered weather patterns7, reduced-order modeling8, and many more.

ML/DL models are capable of providing insights from data, exploiting these insights in building predictive 
tools, and continuously updating themselves as the new streams of data get available. Despite these advantages, 
ML/DL techniques lack interpretability and suffer from the curse of dimensionality. The interpretability issue 
can be addressed by understanding the physical implications of ML/DL models9, and understanding the neural 
network correlations discovered from the data10,11. By the curse of dimensionality, we mean that DL models are 
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data-hungry in nature. For instance, Bonavita and Laloyaux12 showed that the amount of the training data for 
nonlinear dynamical systems grows exponentially with the dimensionality of the system. Furthermore, pure ML/
DL models lead to poor extrapolation/generalization, i.e., they fit the observations data very well, but predictions 
may be poor and physically inconsistent for data beyond the distribution of the training dataset. To this end, 
physics-informed learning algorithms that leverage prior knowledge based on the physical and mathematical 
understanding of the system are proposed in several studies13.

There are two main techniques based on inductive biases, and learning biases to embed physics into ML/
DL models in combination with the observations data13. Inductive biases techniques relate to building tailored 
ML/DL model architecture that exploits the prior knowledge about the problem at hand to build physically 
consistent data-driven models. The representative examples includes embedding invariance property into neural 
network architecture14,15, imposing conservation laws of physical quantities or analytical constraints into neural 
network16–18, using prediction from simplified models as the bias19, enhancing feature space20, and adopting 
equivariant transformer networks21. The other approach based on learning biases imposes constraints such as 
governing equations in a soft manner by penalizing the loss function of ML/DL models. Some of the examples 
of this approach pertain to physics-informed neural networks22, statistically constrained generative adversarial 
networks23, and Bayesian framework with auto-regressive model24. There is also a class of hybrid analysis and 
modeling approaches that utilizes pure data-driven and physics-based models in tandem25. While many methods 
have been demonstrated to be successful in enforcing physics into ML/DL models, they offer many possibilities 
to fuse domain knowledge to improve the generalizability and data efficiency of data-driven models26.

In this work, we introduce a physics-guided machine learning (PGML) fraamework based on tailored neural 
network architecture that utilizes a concatenation layer for surrogate modeling of high-fidelity data given the 
solution from a computationally inexpensive low-fidelity model. There is a hierarchy of numerical models rang-
ing from simple empirical relations to highly accurate numerical discretization-based models across all scientific 
disciplines. For example, flow around airfoils can be modeled using tools extending from panel methods27 to the 
fully resolved direct numerical simulation (DNS)28. Another example is the wake modeling of wind turbines, 
where fast but typically inaccurate analytical models are adopted for tasks like layout optimization and wind 
farm control29. However these models are insufficient to take the unsteady nature of interactions of turbine 
wake with other wakes as well as atmospheric turbulence into account, and such effects can be modeled with 
computationally demanding but accurate models like large-eddy simulation (LES)30. Our work draws inspiration 
from these multi-fidelity modeling approaches and exploits the real-time prediction from low-fidelity models 
to inform a DL model of high-fidelity observations. The information fusion from the multi-fidelity sources of 
data leads to a robust and generalizable surrogate model in comparison to a purely data-driven model trained 
solely on high-fidelity data.

Figure 1 graphically illustrates the proposed data fusion approach from multimodal data streams in the 
process of generating PGML models. As shown in Fig. 1, a data-driven model can be constructed using the data 
obtained from high-resolution simulations and experimental measurements. The PGML framework further 
augments the ML model with the information from a low-fidelity representation of the system (such as analytical 
models, scaling laws, empirical relations, etc.). Ensemble of PGML models is trained using both the sources of 
data along with the uncertainty quantification mechanism that finally gives the predictive model to be employed 
in online tasks. In a nutshell, our work puts forth a novel data-driven framework to take prior knowledge about 
the system into account when generating a black-box deep learning predictive model. How should we inject 

Figure 1.   The proposed multi-fidelity information fusion framework. The prediction from the low-fidelity 
models (e.g., self-similarity solution or law of the wall) is concatenated with the latent variables at the certain 
hidden layer of the neural network. An ensemble of neural networks is trained using the negative log-likelihood 
loss function to estimate the uncertainty associated with the prediction. Here, x refers to independent variables 
or design parameters, or y indicates the quantities of interest, and h(x) represents a low-fidelity or simplified 
model that is fast-to-compute.
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physics and domain knowledge into machine learning models? How deep learning can be constructed as a 
trustworthy approach toward more accurate real-time prediction of nonlinear complex systems such as turbu-
lent flows? These are the fundamental research questions that we tackle in this paper, and provide our insights 
about these questions.

We demonstrate the application of our framework for boundary layer flows. Boundary layer phenomenon is 
one of the most important flows and is of engineering concern in many scientific and industrial applications31. 
The behavior of flow in the boundary layer has implications on the drag force in ship hulls and aircraft, the energy 
required to move oil through pipes, and the distribution of heat in the atmosphere32–34. Given that boundary 
layer flows are prevalent in engineering applications, building a computationally efficient and accurate surrogate 
model is of paramount importance for online tasks like boundary layer control to achieve lift enhancement, 
noise mitigation, drag reduction, and wall cooling. Additionally, boundary layer flows can be described using 
hierarchies of models that have different levels of fidelity spanning analytical models to DNS and hence represent 
an interesting test case for illustrating the effectiveness of PGML framework. While in this work we consider 
only two levels of fidelity, the proposed framework can be applied for blending information from various levels 
of fidelity. Moreover, the neural architecture search tools can be utilized to discover more complex and optimal 
architectures automatically35.

Methods
In this Section, we first provide the details of the concatenated neural network architecture as a PGML frame-
work that blends the information from models of different levels of fidelity and then present the deep ensemble 
method used to quantify the uncertainty associated with the prediction. Then, we discuss the multi-fidelity data 
fusion for laminar and turbulent boundary layer flows over a flat plate.

Multi‑fidelity concatenated neural network.  A neural network is a computational graph composed of 
several layers consisting of the predefined number of neurons. Each neuron is associated with certain coefficients 
called weights and some bias. The input from the previous layer is multiplied by a weight matrix as shown below

where Xl−1 is the output of the (l − 1)th layer, Wl is the matrix of weights for the lth layer, and Sl is the input-
weight product. The summation of the above input-weight product and the bias is then passed through a node’s 
activation function which is usually some nonlinear function. The introduction of nonlinearity through activa-
tion function allows the neural network to learn highly complex relations between the input and output. The 
output of the lth layer can be written as

where Bl is the vector of biasing parameters for the lth layer and ζ is the activation function. If there are NL layers 
between the input and the output in a neural network, then the neural network mapping F : X → Y(X) can 
be represented as follows

where � represents the weight and bias of the corresponding layer of the neural network and Y is the final out-
put of the neural network. For the concatenated neural network, the information from the low-fidelity model is 
injected at a certain intermediate layer of the neural network as follows

where C (·, ·) represents the concatenation operation and the information from the low-fidelity model, i.e., h(X) 
is injected at ith layer, and �i are the trainable parameters of the corresponding layer. The concatenation operator 
takes the latent variables at a particular layer and combines them with information from the low-fidelity model 
to return a vector. Specifically, if the ith layer has Di neurons and h(X) ∈ R

Dh , the input to the (i + 1) th layer will 
be in RDi+Dh . During the training of the neural network, the weights of the neural network are updated using 
the backpropagation and gradient descent algorithm. The backpropagation algorithm involves computation of 
the gradient of the loss function with respect to each of the trainable parameters and the trainable parameters 
are updated using a gradient descent algorithm. In a concatenated neural network, the prediction from the low-
fidelity model is injected at an intermediate layer of the network. Therefore, the low-fidelity model prediction 
is also the input feature to the network, and the training does not involve computing the gradient of the loss 
function with respect to this injected feature. However, the number of trainable parameters is increased and 
the change in the number of trainable parameters will depend on the dimension of the low-fidelity data and the 
number of neurons in the subsequent hidden layer.

One important caveat in a concatenated neural network is the selection of an appropriate intermediate layer 
at which to inject the low-fidelity model information, and tools like automated machine learning (AutoML)36 
can be applied to automate this search. The concatenation operator given by Eq. 4 can also be applied to all hid-
den layers simultaneously as

(1)S
l = W

l
X
l−1,

(2)X
l = ζ(Sl + B

l),

(3)Y = ζNL (·;�NL ) ◦ · · · ◦ ζ2(·;�2) ◦ ζ1(X;�1)

(4)
Y = ζNL (·;�NL ) ◦ · · · ◦ C (ζi(·;�i), h(X))

︸ ︷︷ ︸

Concatenation layer

◦ · · · ◦ ζ1(X;�1),
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We highlight here that the proposed PGML framework is modular and Equation 5 can be generalized for fusing 
information from multiple low-fidelity models. However, we dedicate this study to investigate the feasibility of 
the proposed PGML framework for only two levels of approximations. An additional optimization problem can 
be constructed to search the best architecture in terms of relevant hyperparameters such as the number of hid-
den layers, and the location and sparsity of the concatenation structure. Such auto PGML investigations will be 
a topic that we will pursue in our future works.

Deep ensembles: training and prediction.  Deep learning algorithms like neural networks approximate 
the mapping from inputs to outputs using trainable parameters called weights and biases. The parameters of the 
neural network are determined through the minimization of the loss function. The prediction from the neural 
network is usually a point estimate, i.e., continuous outputs for regression tasks and discrete classes for classifi-
cation problems. However, the information about the confidence in the model’s prediction might be crucial for 
many scientific applications37. The uncertainty estimates can also be useful for applications like sensor placement 
and Bayesian optimization. In this study, we apply the deep ensembles algorithm for estimating the probabilistic 
distribution function (PDF) of output conditioned on the inputs38. While there are state-of-the-art methods like 
Bayesian neural networks39 that quantifies uncertainty by learning the distribution of weights, deep ensembles is 
adopted due to their simplicity and scalability.

Here, we briefly discuss the uncertainty quantification mechanism of deep ensembles. We assume that our 
training dataset D consists of N samples D = {Xi ,Yi}Ni=1 , where X ∈ R

P represents the P−dimensional fea-
tures and the label is Q−dimensional, i.e., Y ∈ R

Q . A neural network is trained by minimizing the loss function 
L (Y, Ỹ(X;�)) , where Ỹ is the predicted label from a neural network parameterized by � (i.e., trainable param-
eters of the whole neural network). The most common loss function for regression tasks is the mean squared 
error (MSE) between true and predicted labels averaged over all samples in the dataset. The MSE loss function 
does not give an estimate of the probability distribution of P (Ỹ|X) and hence the uncertainty estimate is usually 
absent with the prediction from neural networks.

In order to quantify the predictive uncertainty, the neural network is trained to output the mean and variance 
of the Gaussian distribution in the output layer. The weights of the neural network are determined by minimizing 
the negative log-likelihood L as follows

where the mean µ and the variance σ 2 are parameterized by the neural network. The positivity constraint is 
enforced for the variance by passing the output corresponding to variance of distribution though the softplus 
function log(1+ exp(·)) , and adding a minimum variance (for example 10−6 ) for numerical stability. If we 
assume the variance to be constant in Equation 6 (i.e., it does not depend on input features), then the negative 
log-likelihood loss function becomes analogous to the MSE loss function. Therefore, from a probabilistic point of 
view, minimizing the MSE is equivalent to minimizing negative log-likelihood with an assumption of Gaussian 
distribution with constant standard deviation40,41.

The ensemble of neural networks has been demonstrated to be successful in improving the predictive perfor-
mance of machine learning models42. There are broadly two methods of generating ensembles, (i) randomization-
based approaches where the ensembles can be trained in parallel without any interaction, and (ii) boosting-
based approaches where the ensembles are trained sequentially43. The randomization procedure for generating 
ensembles of neural networks should be such that prediction from individual models are de-correlated and each 
individual models are strong (i.e., high accuracy). In this work, the random initialization of weights of the neural 
network is used for generating ensembles. There are other schemes such as bagging where the ensembles of neural 
networks are trained on a different subset of the original training data. However, random initialization is better 
than bagging for improving predictive accuracy and uncertainty38,44. This simple and yet robust randomization 
approach is highly scalable as it allows for distributed training of neural networks and can be applied to many 
scientific problems. For computing the predictive probability distribution, we approximate the ensemble predic-
tion as a Gaussian whose mean and variance are computed as follows

where µ�j
 and σ�j

 is the mean and standard deviation of predicted probability distribution by the jth neural 
network. We employ an ensemble of five neural networks in this study (i.e., M = 5).

(5)

Y = ζNL (·;�NL ) ◦ C (ζNL−1(·;�NL−1), h(X)) ◦ · · · ◦ C (ζi(·;�i), h(X)) ◦ · · · ◦ C (ζ1(·;�1), h(X))
︸ ︷︷ ︸

Concatenation layers

.

(6)� = argmin
�

[L ], where L =
N∑

i=1

1

2
logσ 2(Xi)+

(Yi − µ(Xi))
2

2σ 2(Xi)
,

(7)µ∗(X) =
1

M

M∑

j=1

µ�j
(X),

(8)σ 2
∗ (X) =

1

M

M∑

j=1

(σ 2
�j
(X)+ µ2

�j
(X))− µ2

∗(X),
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Multi‑fidelity data fusion for laminar boundary layer.  The first test case considered in this study 
is the laminar boundary layer flow. Boundary layer flows can be characterized by dividing the flow into two 
regions, one inside the boundary layer where the viscosity dominates and one outside the boundary layer where 
the effect of viscosity can be neglected. The low-fidelity model considered for laminar flow is the steady-state 
two-dimensional laminar boundary layer described using Blasius equation45. The core idea behind Blasius equa-
tion is transforming a partial differential equation (PDE) comprised of the flat plate boundary layer equations, 
with zero pressure gradient, into a single ordinary differential equation (ODE) by using a similarity solution 
approach. The derivation of the Blasius equation can be found in many texts on fluid mechanics and we describe 
only the final form. The Blasius equation and its boundary conditions can be written as

where f (η) is a function of similarity variable η . The similarity variable η is defined as η = y
√
u∞/(xν) , where y 

is the direction normal to the plate, x is the direction along its length with zero being the leading edge, u∞ is the 
freestream velocity, and ν is the kinematic viscosity of the fluid. The third-order ODE is first split into a coupled 
system of three first-order ODEs. Then we apply the shooting method to determine the initial value for f ′′(0) , 
and the first-order ODEs are numerically integrated with the fourth-order Runge-Kutta scheme46. The velocity 
profile from the Blasius solution can be determined using the relation ū = u∞f ′ , where overbar symbol is used 
to indicate the low-fidelity model estimate. The high-fidelity observations are generated by solving the RANS 
equations with the PISO algorithm47 available in OpenFoam. We get the velocity (components along streamwise 
and wall-normal directions) and the pressure distribution from CFD simulation. The Reynolds number based 
on the length of the flat plate used for generating data is ReL = 5× 104 , where L is the length of the flat plate. 
The training data for the concatenated neural network is sampled from the whole domain and the velocity field 
is contaminated by adding a white Gaussian noise with zero mean and a standard deviation of 0.05. Advanced 
sampling methods like Latin hypercube sampling, clustered sampling can be utilized to reduce the number of 
samples required for training and we will consider this as part of our future work.

For the laminar boundary layer reconstruction task, the input to the neural network is the location of the 
sensor, i.e., X = [x, y] , where x and y are the positions of the sensors in streamwise and wall-normal directions. 
The output of the neural network is the probability distribution of u, v, p represented by their mean and standard 
deviation, where u is the velocity in the streamwise direction, v is the velocity in the wall-normal direction, and 
p is the pressure at the sensor’s location. Additionally, the velocity profile obtained from the Blasius solution 
is used as the low-fidelity model, i.e., h(X) = [ū] . Following our previous discussion, the problem formulation 
can be written as

Multi‑fidelity data fusion for turbulent boundary layer.  The boundary layer around the flat plate 
transitions to turbulence at high Reynolds number. Before the advent of supercomputing, it was not possible 
to numerically solve the Navier-Stokes equations for turbulent flows and fluid dynamicists had to resort to 
experimental studies to derive empirical relations for high Reynolds number flows. In this study, the low-fidelity 
approximation for the turbulent boundary layer is obtained using the one-seventh power law. The one-seventh 
power law48 for computing the mean (or ensemble-averaged) velocity profile for flat-plate turbulent boundary 
layer is given as follows

where u∞ is the freestream velocity, y is the direction normal to the plate, and the turbulent boundary layer 
thickness δ is computed as follows48

where Rex is the Reynolds number at a given x-location. There are many such empirical relations available to 
approximate turbulent boundary layers such as the log law, and Spalding’s law of the wall49. The high-fidelity data 
is generated for the flat-plate turbulent boundary layer with zero pressure gradient by solving the incompressible 
RANS equations with the SIMPLE algorithm and k − ω-SST turbulent model implemented in OpenFoam. The 
Reynolds number based on the length of the flat plate for turbulent boundary layer simulation is ReL = 1× 107 . 
One important parameter in turbulence modeling is the dimensionless distance in the normal direction called 
wall y+ and is defined as y+ =

√
yuτ /ν , where uτ is the friction velocity. The friction velocity is calculated based 

on the wall shear stress as uτ =
√
τw/ρ . The mesh is refined near the flat plate in such a way that the near-wall y+ 

is below 5. The locations for collecting the data are sampled in such a way that more points are clustered near the 
leading edge and the wall, and are contaminated by adding a white Gaussian noise with zero mean and a standard 
deviation of 1.0 to mimic the measurement error. The formulation of turbulent boundary layer reconstruction 
is similar to the laminar boundary reconstruction as given in Equation 11 except for the low-fidelity model. The 
low-fidelity model prediction for turbulent boundary layer flow is calculated using Equation 12.

(9)2f ′′′ + ff ′′ = 0,

(10)f (0) = f ′(0) = 0, f ′(∞) = 1,

(11){µ(X), σ(X)} = F (X, h(X)), P (Y|X, h(X)) = N(µ∗(X), σ∗(X)).

(12)
ū

u∞
≈

{ ( y
δ

)1/7
for y ≤ δ,

1 for y > δ,

(13)δ ≈
0.38x

(Rex)1/5
,
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For both laminar and turbulent boundary layer reconstruction problem, we use a neural network with three 
hidden layers and twenty neurons in each hidden layer. The three hidden layers were found to be enough for pro-
viding sufficiently accurate prediction and hence we chose this architecture to reduce the computational overhead 
of training and inference. The prediction from the low-fidelity model is concatenated at the second hidden layer. 
Specifically, the equation for the concatenated neural network employed in this study can be written as follows

where ζ1, ζ2, ζ3 are the ReLU activation functions, and ζ4 is the linear activation function. The neural network 
architecture shown in Fig. 2 is representative of the network used within the proposed multi-fidelity data-fusion 
framework for the boundary layer reconstruction task. In terms of the trainable parameters, the ML model has 
1,026 parameters, and the PGML model has 1,046 parameters.

Results
In this section, we demonstrate the capability of the proposed approach presented in Methods section to recon-
struct laminar and turbulent boundary layer flows around the flat plate.

Laminar flow past a flat plate.  We refer to a simple feed-forward neural network as the machine learning 
(ML) model and the concatenated neural network augmented with low-fidelity data is called the physics-guided 
machine learning (PGML) model. The ML model is trained solely based on the high-fidelity data, while the 
PGML model uses the prediction from a physics-based low-fidelity model (Blasius equations, see Eqs. 9 and 10) 
along with the high-fidelity data. Figure 3 shows the profile of the horizontal component of velocity versus dis-
tance from the wall, at the location x/L = 0.5 , for different amounts of data used for training the ML and PGML 
models. The velocity is normalized with the freestream velocity and the vertical distance is normalized using the 
boundary layer thickness for laminar flow over the flat plate. The ML model fails to capture the accurate velocity 
profile when the velocity field information at 10% of locations within the computational domain is utilized for 
training. The mean velocity profile predicted by the PGML model is highly accurate even with just 10% of the 
observations. The predicted mean velocity profile is also accompanied by a confidence interval spanning one 
standard deviation (SD) on either side of the mean velocity profile and is an outcome of the uncertainty quan-
tification mechanism built into deep ensembles. Deep ensembles achieve uncertainty quantification by training 
an ensemble of neural networks with the negative log-likelihood loss function. The uncertainty estimate asso-
ciated with the PGML model is lower than the ML model and this is particularly notable near the wall within 
the boundary layer, i.e., for y/δ < 0.8 . However, we note that the prediction of laminar flow past a flat plate is a 
relatively simple task and therefore even the ML model is giving sufficiently accurate prediction. The improve-
ment in the prediction by the PGML framework is noticeable for the turbulent flow past a flat plate, which will 
be presented in the following section.

(14)
Y = ζ4(·;�4) ◦ ζ3(X;�3) ◦ C (ζ2(·;�2), h(X))

︸ ︷︷ ︸

Concatenation layer

◦ζ1(X;�1),

Figure 2.   Illustration of the multi-fidelity data-fusion framework applied to the laminar flat plate boundary 
layer prediction task. The self-similarity Blasius solution is replaced by the one-seventh power law when 
applying to the turbulent boundary layer flows.
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Turbulent flow past a flat plate.  Next, we evaluate the performance of the proposed PGML approach for 
reconstruction of turbulent boundary layer flow over a (smooth) flat plate. The prior knowledge we concatenate 
in this case is the one-seventh power law velocity profile (i.e., see Eq. 12). Figure 4 displays the variation of the 
normalized velocity profile in the vertical direction at x/L = 0.5 for different amounts of data used for training 
the ML and PGML models. We can observe that the ML model performs very poorly for the data-sparse regime 
(i.e., 5% and 10% of the observations). Such situations are very common in scientific applications where a collec-
tion of high-fidelity data either from experiments or numerical simulations can be prohibitive. The PGML model 
on the other hand leads to an accurate prediction by exploiting the correlation between low- and high-fidelity 
data. The prediction from the ML model is also not reliable as indicated by the high width of the confidence 
band. Figure 5 shows the velocity profile in the near-wall region to illustrate how well the boundary condition 
is satisfied by the prediction obtained from both ML and PGML models. The velocity field predicted by the ML 
model is highly inaccurate in the near-wall region even when 30% of the observations are available for training. 
The PGML model provides very accurate prediction even in the low-data regime, and the prediction improves 
further as more data is used for training. The PGML model captures the slope of the velocity profile at the wall 
with very high accuracy. The slope of the boundary layer profile ∂u/∂y at the wall determines the skin friction 
drag along the wall. This quantity is not predicted accurately with the ML model and this can lead to poor esti-
mation of the quantity of interests like the total drag. The PGML model is successful in predicting the correct 
slope of the velocity profile at the wall and therefore will lead to a more accurate estimation of total drag.

Figures 6, 7, 8 show the spatial variation of the predicted mean of the velocity field, confidence interval of 
two standard deviations, and the error with respect to the true velocity field near the wall region for 5%, 10%, 
and 30% of the training data, respectively. As the training data increases, the error decreases for both ML and 
PGML models. The confidence estimate associated with the PGML model is substantially higher (i.e., lower 
uncertainty) than the ML model for all three datasets. Moreover, the error of the PGML model is greatly reduced 
compared to the ML model. One other benefit of constructing a PGML approach is its modular nature that can 
provide an opportunity of bridging the gap between domain-specific knowledge and physics-agnostic models.

In our previous numerical experiments, we focused on the reconstruction task within the interpolation region. 
Both ML and PGML models were trained using the data sampled from the whole domain, i.e., up to L = 2.0 , 
where L is the length of the flat plate. In our next numerical experiments, we sample observations only from the 
region till L = 1.5 . Therefore, the region between L = 1.5 to L = 2.0 corresponds to the extrapolation region. We 
quantify the performance of the ML and PGML model using the variation of root mean squared error (RMSE) 
percentage along the streamwise direction as follows

Figure 3.   Boundary layer prediction for laminar flat plate flow at x/L = 0.5 along with the observations used 
for training the ML and PGML model. The amount of observations data used for training the model is 10% 
(left), 30% (middle), and 50% (right). The shaded area corresponds to two standard deviation (2-SD) band.
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where uT is the velocity of the high-fidelity model, uP is the velocity predicted from the data-driven model, Ny 
is the spatial resolution in the wall-normal direction. From Figure 9, we can see that the RMSE increases sub-
stantially in the extrapolation region for the ML model, especially when the observations are very sparse, i.e., 
5% of the data. This is a well-known limitation of DL models to extrapolate poorly in the absence of dense data. 
The PGML model on the other hand has RMSE almost one order of magnitude less than the ML model in the 
interpolation region. Additionally, the increase in RMSE is not significant in the extrapolation region. This shows 
that the PGML model is robust for the unseen condition, and it performs well for out-of-distribution examples.

Discussion
This study aims to develop a physics-guided machine learning (PGML) framework to improve data-driven mod-
els using prior knowledge from low-fidelity models. The PGML is a new deep neural network architecture that 
makes it possible to inject known physics during the training and deployment processes to reduce uncertainty and 
consequently improve the trade-off between efficiency and accuracy. Our design of a hierarchically sequential 
learning algorithm allows us to embed simplified theories, low order models, or empirical laws directly into deep 
learning models. These physics-based injections assist the neural network models in constraining the output to a 
manifold of the physically consistent solution and leads to improved reliability and generalizability. The PGML 
model trained using the deep ensembles algorithm provides us an estimate of the uncertainty associated with 
the prediction. This uncertainty information can be used for several applications like active learning, sensor 
placement, and optimization. Some of the questions addressed in this study are as follows

•	 How prior information on the physics of the problem can be used to improve black-box machine learning 
models?

•	 Can a concatenated neural network architecture augmented with a simplified or empirical model outperform 
a pure data-driven reconstruction model?

•	 How can these data-driven predictive models be quantified regarding their uncertainties?
•	 What is the generalizability of predictive performance across ML and PGML architectures, when these are 

applied to unseen conditions?

(15)RMSE(x) = 100×
(

1

Ny

Ny
∑

j=1

(
uT (yj)− uP(yj)

uT (yj)

)2)1/2

Figure 4.   Boundary layer prediction for turbulent flat plate flow at x/L = 0.5 along with the observations used 
for training the ML and PGML model. The amount of observations data used for training the model is 5% (left), 
10% (middle), and 30% (right). The shaded area corresponds to two standard deviation (2-SD) band.
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Figure 5.   Boundary layer prediction in the near-wall region for turbulent flat plate flow at x/L = 0.5 along with 
the observations used for training the ML and PGML model. The amount of observations data used for training 
the model is 5% (left), 10% (middle), and 30% (right). The shaded area corresponds to two standard deviation 
(2-SD) band.

Figure 6.   Prediction of the turbulent flat plate boundary layer with 5% of data used for training the ML and 
PGML model. The error is calculated as the difference between the true flow field and the flow field predicted by 
ML and PGML models. The figure is created by Matplotlib v3.5.150.
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To provide a proof-of-concept of the PGML framework, we use the laminar and turbulent flow over a flat plate 
as the prototypical test cases where the self-similar solution is used as the low-fidelity model, and Reynolds-
Averaged Navier-Stokes equations (RANS) is a high-fidelity model. Although our notion of high-fidelity here 
is relative to the selected low-fidelity model, the chief idea, which is scalable with different notions, is to use 
low-fidelity models to restrict the neural network to a manifold, such that less data is required to train the 
network and to improve its predictive capability under extrapolation. Our analysis indicates that an injection 
of the empirical relations like one-seventh power law improves the predictive model significantly for estimating 
canonical turbulent flat plate boundary layer flows. We found that the PGML outperforms its ML counterpart 
by reducing the RMSE to nearly an order of magnitude lower levels. We also demonstrated that the proposed 
PGML framework substantially reduces the model uncertainty even when only sparse observations are available. 
Furthermore, generalizability of results is also supported when we integrate our predictive models for unseen 

Figure 7.   Prediction of the turbulent flat plate boundary layer with 10% of data used for training the ML and 
PGML model. The error is calculated as the difference between the true flow field and the flow field predicted by 
ML and PGML models. The figure is created by Matplotlib v3.5.150.

Figure 8.   Prediction of the turbulent flat plate boundary layer with 30% of data used for training the ML and 
PGML model. The error is calculated as the difference between the true flow field and the flow field predicted by 
ML and PGML models. The figure is created by Matplotlib v3.5.150.
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conditions. Specifically, the RMSE distributions for the ML model (with respect to true data) are around 20% 
and 30% for interpolation and extrapolation regions, respectively. However, the PGML model has superior per-
formance in both interpolation and extrapolation regions with the RMSE distribution in the range of 3%. For 
laminar flows, we also showed that a PGML approach (via injecting the Blasius solution) outperforms the ML 
approach. The Blasius approximation can also be extended for heat transfer problems (based on Falkner-Skan 
solutions) and for strongly nonlinear problems using non-similarity solutions51.

The concatenated neural networks are capable of discovering a correlation between low- and high-fidelity 
data allowing for smaller training dataset sizes, training time, and improved extrapolation performance. There-
fore, the PGML model has a great potential for a vast number of physical systems where a hierarchy of models 
is commonly used. The proposed framework is very modular and can be applied to a wide range of problems in 
fluid mechanics. Additionally, the framework is compatible with different neural network architectures making 
it suitable for complex high-dimensional problems. For example, one can treat the flow over a two-dimensional 
cylinder as the low-fidelity model for reconstructing the flow around a three-dimensional cylinder. Another 
interesting example is the wake prediction behind wind turbines, where analytical wake models can serve as the 
low-fidelity model for high-fidelity models like RANS solver. One of the challenges with the PGML framework 
is coupling of steady and unsteady solver, i.e., RANS as the low-fidelity model and large eddy simulation (LES) 
as the high-fidelity model. If one is interested only in the time-averaged quantities from LES simulation, inject-
ing information from the RANS solution within the neural network will help in pruning the space of possible 
solutions. We plan to extend the PGML framework for these high-dimensional systems with more complex 
low- and high-fidelity data fusion in our future studies. We also highlight that the PGML approach could be 
useful for generating physics consistent initial conditions to accelerate large-scale high-fidelity computations 
with eliminating non-physical initial transient time.
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