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Abstract—We present a novel method for force allocation for overcon-
strained CDPR setups that guarantees continuously differentiable cable
forces and allows for small penalised errors in the resulting wrench. For
the latter, we also provide a bound on the error under some assumptions.
We study real-time feasibility by performing numerical simulations on a
large set of configurations.
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I. INTRODUCTION
A cable-driven parallel robot, hereafter referred to as a CDPR, is a

mobile platform driven by forces actuated through a set of cables in a
parallel topology. Recognised for their large workspace, lightweight
structure, fast dynamics, and reconfigurability [1–3], CDPR setups
have received significant attention in the last decades [4, 5] with
studied cases including diverse applications such as aerial cameras
[6], manufacturing [7], and hydrodynamic model testing [8].

This paper considers the force allocation problem of distributing a
set of lower and upper bounded pull forces in the individual cables
on an overconstrained CDPR setup (also referred to as overactuated
in the control literature), such that the resulting forces and moments
match the desired reference wrench. Within the CDPR literature, force
distribution [5] or tension distribution [9] is also used to mean the
same. The problem is an important component for the kinetic control
of CDPR platforms [10, 11]. For a comprehensive overview of CDPR,
including other topics, see [5].

For overconstrained CDPR setups, the force allocation problem
is underdetermined and typically solved as an optimisation problem
[4]. The cost function is often the 2-norm of the pull forces, which
is frequently solved using the pseudoinverse due to its computational
simplicity [5]. A drawback of this method is its inability to handle
inequality constraints on the forces. In [12], this is handled by
minimising the 2-norm about the medium force value, whilst the
redistributive pseudoinverse method iteratively saturates the actuator
forces, with the use of the pseudoinverse in each step [13]. Impor-
tantly, however, one generally cannot guarantee continuity of the
resulting forces using simple saturated pseudoinverse techniques [14].

Kernel-based methods [15] cast the problem as a combination of a
particular and a nullspace solution. In cases with one more actuator
than controlled DOFs, the solution minimising the 2-norm is here
found by an explicit expression. Although the complexity of the
method quickly increases with the number of actuators [9], it is
still relevant in practice, since the most common setups appear to
have either one (for planar CDPR) or two (for 6-DOF CDPR) more
actuators than controlled DOFs [9].

Pseudoinverse- and kernel-based methods can often run in deter-
ministic time with proven worst case computational complexity (see
for example [9]). Potential drawbacks are that they either cannot
handle a higher number of cables, are restricted to simple cost
functions, or reduce the workspace to less than what is maximally
feasible [16]. Iterative methods, allowing for more complex cost
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Fig. 1: A CDPR platform, with cable i highlighted.

functions, have generally not been preferred due to lack of real-
time guarantees (e.g., as discussed in [3, 5, 16, 17]). Of iterative
methods guaranteeing an optimal solution, quadratic programming
solvers have been popular; see for example [2]. Although quadratic
programming under certain conditions has been reported as real-time
feasible [13], limited information, has been presented on the real-time
feasibility of iterative methods for CDPR applications [5].

Beyond CDPR applications, variations of the force allocation
problem have been studied extensively both within air vehicle con-
trol [18, 19], underwater vehicle control [20], and marine vessel
control [21, 22]. Within these fields, continuity of solutions and
computational efficiency are important. Several methods similar to
those developed for CDPR have also been investigated in other
fields [23, 24]. Similar problems also arise in other contexts [14]
such as model predictive control [25] and control of multilegged ve-
hicles [26]. A slacked version of the force allocation problem for
CDPR, which is a framework where small errors in the resulting
wrench are allowed [19], has been considered in [27].

The contributions of this paper are:
1) The optimal force allocation problem for CDPR is analysed, and
a new cost function is proposed for the standard version of the
problem, ensuring C1 continuity of actuator forces (Section III).
2) A new cost function for the slacked version of the problem is
also proposed. It ensures that the slack remains close to zero when
needed. We derive an upper bound for the slack error under certain
assumptions. This allows for slack to compensate for errors in
the force equilibrium when feasibility is not achieved, making the
algorithm more robust (Section III).
3) We conjecture through extensive numerical simulations that a
solver based on the Newton’s method is feasible for use in real-time
applications. (Section IV).
4) The code for all presented results and methods is made accessible
(electronic attachment).

II. PROBLEM FORMULATION

A. Optimisation problem

Using Fig. 1 as a reference, we outline the kinematic relationship
between the actuator force vector f ∈ Rn and the global wrench
w ∈ Rm, where n is the number of connected actuators and m is
the number of controlled DOFs of the platform. Using the notation
of [28, Ch 2.2.1], with superscript (·){a} and (·){b} denoting earth-
fixed (stationary) and body-fixed coordinate frames, respectively, the
platforms pose vector is η := (p,Θ) ∈ R3 × S3

1 , where p :=
pa = (x, y, z) and Θ := (φ, θ, ψ) is the platform body pose and
orientation, respectively. For each actuator i ∈ {1, . . . , n}, let paai
be the fixed position of the ith cable exit point Ai. Similarly, let the
constant body-fixed lever arm from Ob to the ith cable attachment
anchor Ei (on the platform) be denoted rbi . It follows that the absolute
position of Ei is paei = p + R(Θ)rbi , where R(Θ) is the Euler
angle rotation matrix. We assume that from each actuator i, a force
fi directed along the straight line pai − pei, with direction denoted
by the unit vector ui := pai−pei

|pai−pei|
is actuated on the platform at Ei.

The relationship between the cable forces f = (f1, f2, · · · , fn)
and the resultant wrench w applied by the cables is described by
w(t) = W (t)f(t), where
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W (t)=
[
q1(t) q2(t) ··· qn(t)

]
, with qi(t)=

[
ui(t)

ri(t)×ui(t)

]
,

(1)
where ri(t)=rai (t)=R(Θ(t))rbi . Since the pose η(t) varies with
time, it follows that ui(t) and ri(t) are time-varying signals, and
hence also W (t). Hereafter, we will often denote vectors with their
time dependency (t) omitted.

For safety concerns, constraints are imposed on each actuator. A
minimum force limit fi,min is set to prevent the cable from losing
tension, while a maximum force limit fi,max is set due to actuator or
cable limitations. This constraint is formulated as;

h(f)<0, with h(f)=

[
f−fmin
fmax−f

]
(2)

where the symbol < denotes component-wise inequality. For the lth-
component in (2), a force-constraint hl(f)∈h(f) is said to be active
if the corresponding force is fixed at the constraint (that is hl(f)=0).

By introducing a slack variable s, and generally allowing for
some penalised errors werr=Qs in the resulting wrench, the problem
of tracking a reference wrench wref is formulated as the following
optimisation problem;

(f∗s ,s
∗)=argmin

f ,s
gf (f)+gs(s)︸ ︷︷ ︸

g(f,s)

(3a)

subject to Wf+Qs=wref, h(f)<0 (3b)

where f∗s and s∗ is the solution to (3b) that minimise g(f ,s), with
gf (f) and gs(s) being the cost-function of the cable-forces and slack
variable, respectively. The matrix Q∈Rm×q scales the penalty on
the slack variable s∈Rq . Hence, the resulting wrench is given by
w=Wf∗s=wref−Qs∗. With q=m, Q is diagonal. However, one
can eliminate the slack and corresponding elements of Q in any
DOFs where strict equality is required, such that q<m. In particular,
Qs and gs(s) can be null, resulting in the standard formulation [29]:

f∗=argmin
f

g(f) (4a)

subject to Wf=wref, h(f)<0. (4b)

We say that the CDPR configuration is wrench feasible when
(4b) is feasible. By using (3), with q 6=0, hereafter referred to as the
slacked formulation, situations outside the wrench-feasible workspace
can be handled. Slack will increase flexibility and robustness. We
recognise, however, that it is only relevant in a subset of applications.
For this reason, we consider the two formulations separately.

Since, in practice, wref and W are provided discretely by a
sampled control system, (3) and (4) will be solved in each time-
step. For safe and well-behaved performance, we require both that
solutions are continuous and that solutions are real-time feasible, as
recognised by several authors [9, 16].

B. A motivating example

To illustrate the proposed methods, we use a test case of an earlier
platform [5, 12] supported by eight symmetrically placed actuators,
as shown in Fig. 2, with geometry, parameters and trajectories given
in Table I (end of the paper). Of interest here is the resulting actuator
force trajectories, as well as the real-time capabilities of the solvers.
Other aspects, such as the dynamics of the platform, control laws,
and cable-cable interference (collision) are not considered.

Fig. 2(b) presents the resulting actuator forces using both the
pseudoinverse method (in blue) and a quadratic solver (in black).
Two distinct issues are identified as indicated.
Issue A. Wrench feasibility is lost, that is, (4) has no solution. These
cases have not received much attention within CDPR applications,
perhaps due to high demands on force accuracy, safety concerns,
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Fig. 2: Motivating example. (a) Trajectory and configuration. (b)

Resulting forces. Identifying two distinct issues (A-B).

or because most CDPR setup by design operates well within the
wrench-feasible workspace. We argue for the practical relevance of
this issue because: 1) in certain applications it is advantageous that
the CDPR system can handle wrench-values beyond the wrench-
feasible workspace. This is recognised as particularly important for
haptic interfaces [27]; 2) allowing for penalised errors in specified low
priority DOFs that do not cause any loss of fidelity [30] enhances the
robustness of the allocation; and 3) depending on the setup, there may
be sections in the operating workspace that are not wrench-feasible
due to low controllability (or singularities) [15].
Issue B. The p-norm cost functions can result in nonsmooth forces,
as seen by the quadratic solver (p=2) of Fig. 2(b). Whether non-
smooth control inputs are an issue depend on factors such as the
actuator technology, cable elasticity and tension regulation method.

The issues are particularly relevant to the authors ongoing research
project, where CDPR setups are used for marine model testing [8].
Here, a fixed and standardised actuator configuration along the basin
walls is planned for use on multiple platforms. The extent of the
wrench-feasible workspace will then limit the applicability of the
setup. By allowing penalised errors (Issue A) in low prioritised
DOFs, flexibility and robustness of the basin specific standardised
setup can be increased. Moreover, since accurate force-control is of
particular importance [8], the commanded forces are expected to be
more precisely tracked by the actuators when the force trajectories
are differentiable (Issue B).

C. Problem statement

We will address Issue A by applying the slacked formulation and
Issue B by providing theorems and cost functions such that the
resulting allocated actuator forces are guaranteed to be C1. We define
real-time feasibility as the ability to produce solutions according
to specified time limits with sufficiently high probability. We shall
design a resolution method for (3) and (4) that is real-time feasible
within one control cycle of typically a few milliseconds.

III. COST FUNCTIONS AND CONTINUITY

A. Continuity conditions

These assumptions are referred to in the remainder of the paper;

A.1 The CDPR setup is overconstrained (n>m) and W (t) has full
row-rank for each t≥0.

A.2 The set of equality and inequality constraints in (4b) has at least
one solution for each t≥0 (wrench feasibility).

A.3 The maps t 7→W (t) and t 7→wref(t) are continuously differen-
tiable for each t>0.
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A.4 There exists a δ>0 such that (4b) has at least one solution with
h(f(t))<δ for each t≥0 (wrench feasibility margin).

A.5 The gradients of the equality constraints and of the active
inequality constraints in (4b) are linearly independent at the
solution f∗(t) for each t≥0.

Since wref(t) is typically generated by a reference model, it is
assumed to be sufficiently smooth by construction. Also, W (t)=
W (η(t)) is continuously differentiable by integration of the platform
body dynamics η̈, so A.3 is in general fulfilled.

For any problem that holds under A.2, one only needs to adjust
lower- and upper constraint limits by δ to make it also hold under
A.4, hence adding few additional restrictions in practice.

A.5 is known as the linear independence constraint qualification
(LICQ) in numerical optimisation. It holds if we assert that the
remaining block matrix of W is full row-rank after removing active-
constraint columns. In certain situations, active constraints combined
with parallel lines could potentially cause A.5 not to hold. However,
later in this paper, we will ensure that no constraints are active so
that A.5 holds under A.4 and A.1.

The following proofs1 are for brevity only shown for the standard
formulation. However, the reader should note that with small adap-
tations, the same can be shown for the slacked formulation by using

x=
[
f> s>

]>
, A=

[
W Q

]
, g(x)=gf (f)+gs(s), (5)

and replacing f with x and W with A where appropriate in the
following proofs.

Considering the standard formulation (4), and introducing the
notion of convexity [34], the following results hold for the time-
continuous case f∗(t):

Theorem 1 Under A.1-A.3, if f 7→g(f) is a continuous and strictly
convex function, then t 7→f∗(t) of (4) is a continuous function.

Proof of Theorem 1: We simply refer to the maximum
theorem [33, p. 116]. In short, with Ω(t)={f∈Rn: W (t)f=
wref(t), h(f)<0} being the feasible set, t 7→Ω(t) is compact (affine
constraints) such that Ω(t) 6=∅ (assumption of feasibility) for each
t≥0. Therefore Ω:R≥0⇒Rn is a compact valued correspondence.
With W (t) full row rank, Ω(t) is a continuous correspondence
(implicit function theorem). Since also g(f) is continuous, the
conditions of the referenced theorem are satisfied, such that f∗(t)
is lower semicontinuous. By strict convexity (with affine constraints)
the components of f∗(t) are single-valued, and f∗(t) is a continuous
vector-valued function. �

Theorem 2. Under A.1-A.4, if f 7→g(f) is C2 and strongly convex,
then t 7→f∗(t) of (4) is a piecewise C1 function with discontinuities
in d

dt
f∗(t) only appearing where any of the constraints in h(f∗)

shifts between being active and inactive.
Proof of Theorem 2: Since the cost function of (4) is a C2

convex function subject to affine constraints, the first-order necessary
optimality conditions are met [35, Remark 2.2]. This condition implies
that if f=f∗ is a minimiser, then there at time t exists some λ∈Rm
and µ∈R2n satisfying the KKT conditions [36]:

R(z,t)=

∇fg(f)+W (t)>λ+∇fh
>(f)µ

W (t)f−wref(t)
diag(µ)h(f)

=0 (6a)

h(f)<0, µ<0 (6b)

where z=
[
f>,λ>,µ>

]>∈R3n+m, and ∇fh
>(f)=

[
I −I

]
.

By strict convexity, the second-order sufficient condition is met [35,
Theorem 2.4], which implies that any solution satisfying (6) is a local

1Considering the existing literature on CDPR, we believe these results to be
valuable. The results are, however, less novel from a mathematical perspective.
Proofs and results that with some effort can be shown to cover Theorem 1
and Theorem 2 can be found in [31–33]

minimiser. By Assumption 2, with g(f) continuous, a well-defined
minimiser f∗ exists, and by strict convexity, it must be unique. Let
hA be those inequality constraints corresponding to strictly active
constraints in (6a), and µA the corresponding elements in µ, that is,
hi=0, µi>0 =⇒µi∈µA, hi∈hA. Moreover let zA=col(f ,λ,µA)∈
Rn+m+na (where na is the number of active constraints) and let
RA(zA,t) equals (6a) with rows containing inactive constraints along
with the corresponding components in ∇fh(f) removed. For a fixed
strictly active set hA, RA(zA,t)=0, defines zA implicitly by

∂zA
∂t

=−
(
∂RA
∂zA

)−1
∂RA
∂t

. (7)

RA(zA,t) is continuously differentiable w.r.t. zA, and;

∂RA(zA,t)

∂zA
=

 ∇2
fg(f) W>(t) ∇fhA(f)

W (t) 0 0(
diag(µA)∇fh

>
A (f)

)
0 0

 (8)

is continuously invertible (by strong convexity and LICQ).
Moreover, the second term

∂R(zA,t)

∂t
=

 ∂
∂t

(
W (t)>λ

)
∂
∂t

(W (t)f−wref(t))

0

 (9)

is differentiable w.r.t. t, according to A.3. Therefore, by the implicit
function theorem, given a fixed strictly active set hA, for every pair
(z̄A,t̄) satisfying RA(z̄A,t̄)=0, there exists a unique differentiable
function ϑ:R≥0 →Rn+m+na , in the neighbourhood of z̄A, such that
RA(ϑ(t̄),t̄)=0. As long as the active set remains strictly active,
substituting zA(t) with ϑ(t̄) implies that zA(t) and thus f(t) is
continuously differentiable w.r.t. t. In points where the active set
changes (hA is not strictly active), ∂zA

∂t
is not defined. However, the

left and right-handed derivatives exist. �
Practical implications of Theorems 1 and 2:

• Since cost functions using p-norms with 1<p<∞ are strictly
convex, they yield continuous trajectories.2

• Most relevant CDPR studies use p-norms in the cost functions
but one may also look at other strongly convex cost functions
that have favourable properties.

• Even with strongly convex cost functions, one should expect
discontinuities in the derivative d

dt
f∗(t) at instances where any

individual force fi locks onto or detaches from either fi,min

or fi,max, which explain Issue B. The method presented in the
next section, will ensure that the actuator forces never reach the
constraints, resulting in C1 continuity of actuator forces.

B. Cost functions ensuring C1

1) Cost function for the standard formulation: The cost
function for the standard formulation is often chosen as a norm of the
difference to some preferred force vector f0, that is g(f)=|f−f0|p,
with the 2-norm by far the most used [5]. The use of higher p-norms
is sometimes desired [4, 38], as it puts comparatively higher costs
on large deviations from the preferred force vector.

Adaptable logarithmic barriers functions are typically used as
numerical tools in interior-point nonlinear programming solvers to
represent inequality constraints with a high degree of accuracy [39].
Inspired by this (but different in that we use them in the cost function
rather than using them as a tool for numerical regularisation), we
introduce fixed logarithmic barrier functions. Combining them with
the traditional norm-functions, we propose the cost function:

g(f)=
n∑
i=1

(
|fi−f0,i|p

αpi
−c1log(fi−fi,min)−c2log(fi,max−fi)

)
. (10)

2In the literature on CDPR, more complex and less general proofs, such as
in [15], are often referred to for the same result; see [5, 9, 37].
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Fig. 3: Logarithmic barrier cost for a cable constrained between
fmin and fmax for different values of c1 and c2. k is needed only
for visualisation purposes (to harmonise the minima). Norm function
cost term for p=2 is included for reference.

The logarithmic terms should keep the resulting actuator forces
away from their respective limits. This facilitates faster solver con-
vergence by effectively removing the hard inequality constraints from
the formulation. The p-norms are minimised to the power of p,
for computational efficiency, and normalised by a factor of αi to
avoid numerical accuracy issues and achieve convergence. In this
paper, we use αi=

fi,max−f0,i,min
2

. The preferred force vector f0

will typically be dependent on application specific factors such as
actuator technology, cable properties, safety concerns, and operating
conditions. The constants c1 and c2 enable adjustments in how fast
the cost function increases as fi approaches the limit (see Fig. 3).

Proposition 1. For the standard formulation (4) and with cost
function given by (10), with c1>0, c2>0 and 1<p<∞, and under
A.1-A.5, the solution f∗(t) is a C1 vector-valued function.

Proof of Proposition 1: If any of the constraints h(f∗)
were active, (10) implies that the cost g(f∗) would be infinite. This
cannot be since there by A.4 and (10) must always exist a solution
f∗ with a finite g(f∗). Since h(f∗) is never active, Proposition
1 follows directly from Theorem 2. Note that A.5 is automatically
fulfilled under A.1, since constraints are never active and W is full
row-rank. �

2) Cost function for the slacked formulation: We propose a
cost function for the slacked formulation (3) that reuses gf (f)=g(f)
from (10), while gs(s) is set as the strongly convex function

gs(s)=

q∑
j=1

(bj

√
εj+s2j+s

2
j ), (11)

where
√
εj+s2j approximates the absolute value norm and s2j is

added to ensure strong convexity also for large magnitudes of s. Here
εj>0 adjusts the curvature of the cost function around sj=0 while
the parameter bj>0 steers the gradient of the cost term. Importantly,
this function allows for a high gradient even for small values of sj ,
which can ensure that, when possible, it is cheaper to adjust the force
tensions than to increase the slack (see Proposition 2).

In the remainder of the paper, both for simplicity and space
considerations, it is assumed that{

fi,min=fmin, fi,max=fmax, f0,i=f0
}
∀i∈{1,···,n}. (12a){

bj=b, εj=ε
}
∀j∈{1,···,q} with q=m (12b)

c=max(c1,c2), Q=I∈Rm×m (12c)

Moreover, letH be any generalised inverse ofW such thatWHy=
y for all y∈Rm. Let Hν1 be the H that has the lowest matrix one-
norm [40], and define

σ:=||Hν1||1 (13a)

λ:=max(|fmax−f0|,|f0−fmin|) (13b)

δ∗(f∗s)=min
{
hl(f∗s) : l∈1,···,2n

}
(13c)

γ(f∗s):=
pλp−1

αpp
+

c

δ∗(f∗s)
+

c

fmax−fmin−δ∗(f∗s)
, (13d)

where hl(f∗s) is the lth row of (2) with f=f∗s , and γ(f∗s) represents
an upper bound for the cost-function gradient of any individual line

(that is; γ(f∗s)≥|∇fg(f∗s)|∞). We now state the following result on
the bound of the slack s∗:

Proposition 2. For the slack formulation (3), using gf (f) given
by (10), gs(s) given by (11), and under (12) . If b≥σγ(f∗s), then
(s∗,f∗s) satisfies the bounding relationship

|s∗|∞≤

√
εσ2γ2(f∗s)

b2−σ2γ2(f∗s)
. (14)

The qualitative interpretation of Proposition 2 is that given
b�σγ(f∗s) and a small ε, then s∗ will be close to zero. For a fixed b,
W , and wref, there will be a lower limit for δ∗ such that b>σγ(f∗s)

does not hold. This value can be considered as the limit for how close
a force can be to a constraint before the slack is allowed to increase
significantly.

Proof of Proposition 2: Let V (f ,s)=gs(s)+gf (f). At
(f∗s ,s

∗), a directional derivative of V along any vector u satisfying
(3b) is zero:

∇V (f∗s ,s
∗)u=

[
∇fgf (f∗s)

> ∇sgs(s∗)>
]
u=0. (15)

With H being any generalised inverse of W , u can be taken as:

u=

[
−Hd
d

]
, for d∈Rm

(
since

[
W I

][f∗s−Hd
s∗+d

]
=wref

)
.

Let d:=dk, where dk∈Rm is vector that has all zero-entries except
the kth entry pk. Moreover, pk=sign(s∗k), where s∗k is the kth

element of s∗, for k∈{1,···,m}. Moving the s∗ dependent part to
the right side of (15) and taking the absolute value of both sides, we
get

|∇fgf (f∗s)
>Hdk|=|∇sgs(s∗)pk|, (16)

where ∇sgs(s∗)pk=b
|s∗k|√
ε+s∗2

k

+2|s∗k|≥b
|s∗k|√
ε+s∗2

k

. The left-hand

side of (16) can be bounded by
|∇fgf (f∗s)Hdk|≤|∇fgf (f∗s)|∞|Hdk|

≤|∇fgf (f∗s)|∞︸ ︷︷ ︸
≤γ(f∗s)

||H||1︸ ︷︷ ︸
σ

≤σγ(f∗s)
(17)

Letting3 ||H||1=||Hν1||1=σ, we get b |s∗k|√
ε+s∗2

k

≤σγ(f∗s), which

for b>σγ(f∗s) can be rearranged to

|s∗k|≤

√
εσ2γ2(f∗s)

b2−σ2γ2(f∗s)
. (18)

Since this must hold for each k, we get (14). �
This result can be used in the design and tuning phase to provide

insight for choosing adequate values for the cost function. It might
also be computed during runtime if computational resources allow it.

C. Properties of resulting trajectories

We will now use the motivating example of Section II-B to
demonstrate the properties of the presented cost functions. Hereafter,
whenever the motivating example is considered, only the first half
of the trajectory is used, ensuring that the trajectory is feasible also
with the standard formulation.

1) Standard formulation: Fig. 4 shows the resulting trajectory
for three sets of ci values. In accordance with Theorem 2, with c>0,
the force rates become C1 continuous, as expected.

When deciding c1 and c2, we recommend considering the relative
magnitude of each term of the gradient of (10) as fi ranges in the
interval {fi,min ,fi,max}. We use c1=c2=0.1 in later examples.

3An iterative method for finding Hν1 is described in [40]. Alternatively
one may use the simpler pseudoinverse (that is, H=W †=⇒σ=||W †||1),
which will yield a higher bound.
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Fig. 4: Force solutions to the standard formulation for the
motivating example with varying values of c1,c2. One cable (no.
8) is highlighted with solid lines. (a) Actuator forces. (b) Force rates.
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Fig. 5: Force solutions to the slacked formulation for the motivating

example with varying values of b and ε and two different sets of
constraints. One cable (no. 3) is shown with solid lines.

2) Slacked formulation: Fig. 5 shows the resulting trajectory for
varying values of b and ε, both for the default case and a case where
both upper and lower constraint limits have been contracted, making
the trajectory infeasible. Fig. 6 shows the resulting absolute norm-
error of the slack. The dashed lines in the figure indicate sections
where b≥σγ(f∗s) does not hold.

To emphasise their relative effect, (ε,b) is intentionally chosen
such the relative difference of log10(

√
ε
b

) remains an integer. The
effect is evident in the non-dashed line-sections of Fig. 6, where
the logarithmic difference in the slack magnitude remains integers.
In general, the error is small whenever no forces are close to their
respective constraints. In sections that otherwise would be infeasible,
the method robustly produces solutions by increasing the slack.

As observed in Fig. 5, a lower ε and a higher b cause sharper shifts
in actuator force rates in the transition between the feasible and non-
feasible configurations. The result can be that the discretised forces
in practice are nonsmooth, even if t 7→f(t) remains differentiable. In
the following, we use ε=10−3 and b=200.

IV. NEWTON’S METHOD ON THE KKT CONDITIONS AND

REAL-TIME FEASIBILITY

In general, iterative solvers are needed to solve (3) or (4) with
(11) and (10). We present a solution to the problem by iteratively
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0 2 4 6 8 10
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0.1

0.2

0.3

(b)
Fig. 6: Slack corresponding to Fig. 5 for the two cases of

constraints. (Note that Q=diag(1) implies |s∗|∞=|werr|∞). (a)
fi,min=5[N ],fi,max=40[N ]. (b) fi,min=7[N ],fi,max=38[N ].

performing Newton steps on the KKT conditions (6), until conver-
gence. Variations of this method are widely used within the numerical
optimisation literature [41, p.175]. We are not aware of other papers
that go in details on the use of this algorithm for use in CDPR
applications (note that [42] considers a different analytical-iterative
scheme based on the KKT conditions). Using the notation defined
in (5) (with x=f , and A=W for the standard formulation) we next
briefly describe the key parts of the implemented algorithm;
1) At iteration k, a Newton step is performed on the KKT conditions:[

∇2
xg(xk) A>

A 0

][
∆xk

λk+∆λk

]
=−

[
∇xg(xk)
Axk−wref

]
(19)

We denote the Newton direction dk=
[
∆xk ∆λk

]>.
2) In each iteration, we perform a line-search (backtracing) to
determine how large the step in this direction should be:[

xk+1

λk+1

]
=

[
xk
λk

]
+κdk (20)

3) κ is determined using a line-search strategy where we ensure that
solutions remain feasible and that the following merit function is
decreasing from step k to k+1:

φ(x,λ)=

∣∣∣∣∇xg(x)+A>λ
Ax−wref

∣∣∣∣
∞

(21)

4) When the merit function is below the predetermined tolerance
threshold, the solutions are returned, with the number of iterations
and line-steps recorded. The use of the algorithm to solve (4) or (3)
until convergence at a time instance tk is hereafter referred to as
one evaluation. Further implementation details are provided in the
electronic appendix.

When discussing evaluation time, we generally refer to the com-
putation time used to perform an evaluation at a specific time instant
tk in the trajectory, while the trajectory evaluation time refers to
the computation time for evaluating all data-points in the trajectory.
We only consider computation times using warm start initialisation,
where (19) is initialised at the solution of the preceding evaluation
(good warm start initialisation points should always be available,
due to continuity and smoothness of solutions). The internal iterative
procedure (20) is not found to constitute a separate computational
issue and is only briefly discussed in the electronic appendix. Corre-
sponding results obtained from data with cold start initialisation are
also discussed there.

The following examination of computation times uses a standard,
relatively powerful workstation computer4 with Windows 10, and with
the solver scripts being compiled to C-code. Time is measured using
MATLAB’s tic and toc functions.5 As computational resources differ
depending on computer configuration, the reader is encouraged to
test computation times on their own configurations by use of the

4Intel Core i7-7700 (QC/8 MB/8 T/3,6 GHz/65 W)
5To overcome issues in estimating very short time-intervals, each function-

evaluation is repeated until at-least 0.1 second had elapsed with subsequent
averaging. Also, process priority is set to real-time in Windows 10.
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Fig. 7: Solver characteristics and computation time on the

motivating example. (a) Computational speed over the trajectory. (b)
Number of iterations as a function of changing grid size (K) in the
trajectory (c) Trajectory evaluation time as a function of changing
the number of cables. (d) Trajectory evaluation time as a function of
changing p in the cost function.
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Fig. 8: Sample of randomly generated trajectory and configuration.
(a) η(tk). (b) wref(tk). (c) Randomised configuration mode.

electronic appendix.

A. Performance on the motivating example trajectory

We consider computation times for the motivating example with
default solver parameters given in Table I(b)-(c). Fig. 7(a) presents
the evaluation time along the trajectory, demonstrating how real-time
feasibility is achieved well within limits6. Fig. 7(b) shows the number
of iterations when changing the grid size K, demonstrating how
shorter step-sizes, generally results in better initialization and quicker
convergence (short cycle times and frequent resampling generally
appears to be preferred within relevant literature [43]). Fig. 7(c)
demonstrates how the algorithm handles an increased number of
cables7 (some common force allocation methods are not well adapted
to handling a large number of cables [13]). Finally, Fig. 7(d) shows
how the trajectory evaluation time is nearly independent on the choice
of the norm8 p.

B. Assessing method robustness through randomised cases

A concern in using Newton’s method for optimisation in real-time
applications is that the solver, for some configurations, could undergo
a sequence of iterations with particularly slow linear convergence,
requiring numerous iterations to reach the stopping criterion. Ac-
cording to [44] (see also [41, Chapter 12]), it is difficult to assess
with generality where relevant local convergence results hold (that
is, where quadratic and superlinear convergence can be shown).

6For reference Fig. 7(a) also includes computation time using a C-compiled
pseudoinverse without equality constraints

7In Fig. 7(c), the number of cables were increased until each actuator-
base was connected via a cable to each actuator-endpoint). To ensure that the
trajectories were feasible for all cable combinations, fmin was reduced from
5[N ] to 1[N ].

8For high values of p, numerical issues and nonlinearity may degrade the
performance of the solver. In that case, one may consider increasing α to
avoid large nonlinearities.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

10
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2

10
4
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Randomized configuration

Fig. 9: Distribution of the number of cables for trajectories in
Case 1

Therefore, accurate performance must, in practice, be deducted from
numerical experiments.

We examine the robustness of real-time feasibility of our method
by applying it to a large number of randomised configurations
and trajectories which we believe challenge the algorithm for most
relevant applications, sampled as follows (see also Table I(d)):
1) In each trajectory, η(t) and wref(t) are set to vary between
randomised lower and upper limits according to Table I(d). See
sample in Fig. 8(a,b).
2) Two configurations are used: In the fixed configuration mode, the
actuators are realistically configured as before (e.g., Table I(a)). In
the randomised configuration mode, between 8 and 24 actuators are
placed randomly around the platform according to Table I(d). See
sample in Fig. 8(c).
3) The tests are run using the solver parameters of Table I(c), except
for the lower constraint fmin, which is reduced from 5[N ] to 1[N ].
4) We separate between two cases. In Case 1 we only consider
trajectories that are not feasible. In Case 2, we also consider infeasible
trajectories.

1) Case 1: Feasible trajectories only: For this case, we sampled
trajectories until 104 feasible trajectories were sampled for both the
randomised and for the fixed configuration (corresponding to 2·107

evaluations for each solver-setup). The likelihood that actuator forces
are feasible increases with the number of randomly placed actuators.
Hence, the resulting trajectories for the randomised configuration tend
to feature a higher number of cables as illustrated by Fig. 9. The bar
at 8 cables, corresponds to the half of the tests that were performed
for the fixed configuration.

The bar charts of Fig. 10(a-c) illustrate the number of evaluation-
instances as a function of the number of iterations for different solver
setups, showing that no more than twelve iterations were used.

The cutoff criteria h(f(t))<δ for classifying a trajectory as
infeasible (relates to A.4) is indicated in Fig. 10(a-b). Increasing the
cutoff criteria results in fewer evaluations with many iterations. This
illustrates how, for the standard formulation, nonlinear sections near
the edges of the feasible workspace reduce the performance of the
warm start initialisation. As shown in Fig.10(c), this is not a problem
with the slacked formulation, where the highest number of iterations
is five.

Fig. 10(d) shows the resulting error (|werr|∞) of the slacked
formulation. It never exceeds 0.026, showing how the slacked version
can also be used on feasible trajectories with small to negligible effect
on the resulting wrench. Therefore, if one expects trajectories to be
close to the boundaries of the feasible workspace, the slack version
might be a good compromise between accuracy and robustness.

2) Case 2: Including infeasible trajectories: For this case,
which aims to investigate the slacked method, 104 trajectories were
sampled for the fixed configuration, without rejecting infeasible
trajectories. The distribution of iterations is shown in Fig. 11(a),
while the corresponding distribution of the slack s∗ is given by
Fig. 11(b). The number of iterations remains limited and never
exceeds 17. Comparing Fig. 10 with Fig. 11, it is evident that
introducing infeasible trajectories result in more iterations, which is
not so surprising since more nonlinear sections of the cost functions
typically lead to a higher number of iterations.
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Fig. 10: Case 1. (a-c) Number of iterations per evaluation for

approximately 2·107 different evaluations (in each subfigure) (d)
Distribution of |werr|∞ using the slacked solver setup. (Note that
Q=I implies |s∗|∞=|werr|∞)

0 5 10 15

10
0

10
2

10
4

10
6

(a)
0 2 4 6 8 10

10
-6

10
-4

10
-2

10
0

10
2

(b)
Fig. 11: Case 2: Number of iterations per evaluation (2×107
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3) Relating the number of iterations to the evaluation times:
To assess how the number of iterations and evaluation times relates
to each other, data from all separate evaluation instances is plotted
in Fig. 12. We see that when initialised in warm start, the evaluation
times are always shorter than 0.25ms It is believed that in practice,
the upper outliers that are far away from the mean evaluation times
are likely to be due to noise (jitter, task-scheduling, inaccurate timing,
etc.) associated with estimating short intervals, which a real-time
dedicated computer should overcome (see next section).

Due to randomisations, the upper number of iterations experienced
should be seen as strong indicators of what to expect in worst-
cases rather than as theoretical maximums. Therefore, some safety
margin, accounting for a higher number of iterations, is advised. In
the electronic appendix, we show corresponding data when cold start
initialisation is used. These provide more samples for higher number
of iterations, and show that the trends seen in Fig. 12 continues, also
for a higher number of iterations, indicating that even if accounting
for a substantially higher number of iterations, real-time feasibility
is achieved.

C. Test on a practical application
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Fig. 12: Scatterplots of evaluation-time as a function of iterations.
Time data calculated over by averaging computation times over ten
repeated evaluations.

(a)

45 75

3

4

5

(b)

45 75
-0.4

0.5

(c)
Fig. 13: Experimental data from one of the setups that have been

used by the authors and collaborators [8]. Measured forces has been
lowpass filtered at 1 Hz. (a) The planar, 4-cabled marine CDPR. (b)
Cable force tracking. (c) Target wrench tracking

The presented methods have been applied successfully in experi-
ments at the Marine Technology Center at NTNU; see Fig. 13. The
code was executed on real-time hardware (NI cRIO-9034) and always
provided solutions within each cycle time of 5 ms (using 1-4 Newton
iterations). Fig. 13(b-c) illustrates the force tracking performance for
a sample interval from one of the experimental tests, where the
algorithm was used to compute target cable forces f∗∈R4 from
target wrench wref={wref,x,wref,y,wref,ψ}∈R3. The resulting mea-
sured forces f̂∈R4, is mapped back to the corresponding load vector
ŵ∈R3 to assess the wrench tracking performance. Force tracking
represents a separate control problem, which depends on actuators
technology, actuator control methods, force sensors, communication
and more. This is pursued in other studies and not considered here.

The conducted experiments have demonstrated the applicability of
the methods presented in this paper. However, the rather few actuators
and relative slow motions of the marine platform do not sufficiently
challenge the algorithm to verify the limiting performance. For this
purpose, the simulation studies were performed to more significantly
challenge the performance of the presented methods.

V. MULTIMEDIA ATTACHMENT

To promote further developments, adaptation and replication, an
electronic appendix containing additional material, implementation
details, animations and code for producing all figures in the paper is
attached and available at http://ieeexplore.ieee.org. A more extensive
version can also be found at Github [45]-the CDPR force allocation
toolbox, as a tool for engineers who wish to explore the force
allocation algorithms further.

VI. CONCLUSIONS

By using a new cost function for the optimal force allocation
problem, continuous differentiability of the actuator forces in a CDPR
are guaranteed, which avoids undesired discontinuous accelerations
of actuators. We further show that a Newton’s method implementation
for solving the KKT conditions, specialised to the problem at hand,
can be used in practical real-time applications. The presented methods
are flexible in handling different problem configurations (varying
number of cables, p- norms and actuator configurations) and allow
for an intuitive tuning of the cost-function, thus overcoming some
of the challenges of existing methods. For use in cases where it is
suitable, we have also introduced and analysed a slacked version of
the optimal force allocation problem, and provided an upper bound
of the wrench-error.

A delimiting note: Although we argue that the majority of
the practical cases is covered by the presented study on real-time
feasibility, it is not difficult to design setups where the number of
iterations exceeds the numbers presented in this paper (for example
with a near singular W , or with abrupt changes in reference wrench
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TABLE I: Configurations, parameters and trajectories
(a) Actuator placements and cable connections

Cable exit points (paa) Cable attachment anchors
(
rbi
)

1 2 3 4 5 6 7 8 1 2 3

x -0.415 -0.415 0.415 0.415 0.415 -0.415 -0.415 0.415 -0.0525 0.0525 0
y -0.315 -0.315 -0.315 -0.315 0.315 0.315 0.315 0.315 -0.076 -0.076 0.124
z -0.500 0.500 0.500 -0.500 -0.500 0.500 -0.500 0 0 0 0

Cable: 1 2 3 4 5 6 7 8
rbi : 1 1 2 2 3 3 3 3
paa: 1 2 3 4 5 6 7 8

(b) Motivating example; parameters and trajectories
Parameter Value

f0

[
15 15 15 15 15 15 15 15

]>
fmax

[
40 40 40 40 40 40 40 40

]>
fmin

[
5 5 5 5 5 5 5 5

]>
Evaluations K∗ 2000 before Section III. 1000 after Section III.

t∗∗K 20 [s] before Section III. 10 [s] after Section III.

Wrench wref(tk):
(Fx,Fy ,Fz ,Mx,My ,Mz)(

0,0,5,0,0,0
)

Tractory:η(tk)tk=∆tk

∆t=
tK
K

ω=0.1π

 (x,y,z,φ,θ,ψ)(
0.1sin(ωtk),0.1cos(ωtk),0.34sin(ωtk)cos(2ωtk)−0.052,

−0.02tkcos(ωtk),0,−0.17sin(ωtk)cos(2ωtk)

)
∗K is the number of evenly spaced evaluations points tk along the trajectory.
∗∗tK is the time at the final evaluation point (that is, the total trajectory time).

(c) Cost function and solver parameters∗
Parameter Value
c1,c2 (0.1,0.1)

p (norm): 2
εj 10−3, for j=1,2,···m

Parameter Value
bj 200, for j=1,2,···m
αi (fmax−fmin)/2, for i=1,2,···n

Tolerance 5e−5
∗With different force-levels one may consider scaling some solver parameters.

(d) Data for drawing of trajectories and configurations
Case Value

Sampling, paai: Drawn from surface area of cuboid with center at (0,0,0) and side lengths (0.83,0.63,1)
random paei Drawn from the line segments constituting the hull from the motivating example
config. (i.e., Triangle with vertices at ae1,ae2 and ,ae3 )

Fixed
config.

As in Table I(a)

Sampling of η0=rnd(m,1)ηlim, ηK=rnd(m,1)ηlim, η(tk)=η0+ k
K

(ηK−η0)

trajectories, w0=rnd(m,1)wlim, wK=rnd(m,1)wlim, wref(tk)=w0+0.5(wK−w0)(1−cos(3π k
K

))

Case 1 wref,lim =
[
50 50 50 1 1 1

]>, ηlim =
[
0.3 0.15 0.4 0.3 0.3 0.3

]>
Sampling of η0=rnd(m,1)ηlim, ηK=rnd(m,1)ηlim, η(tk)=η0+ k

K
(ηK−η0)

trajectories, w0=rnd(m,1)wlim, wK=rnd(m,1)wlim, wref(tk)=w0+0.5(wK−w0)(1−cos(1π k
K

))

Case 2 wref,lim =
[
20 20 20 2 2 2

]>, ηlim =
[
0.24 0.12 0.24 0.3 0.3 0.3

]>
∗rnd(m,1)∈Rm is a vector with m elements, uniformly sampled from the interval between -1 and 1.

between two subsequent iterations). When testing a new setup, we
therefore recommend to first use the provided methods to verify that
the number of iterations remains acceptable using suitable offline
scenarios.
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