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A B S T R A C T

A probabilistic model for mooring chain fatigue damage is developed based on the S–N approach. The
effects of mean load and corrosion condition on the fatigue capacity of the chains are included by adopting
a parameterized S–N curve intercept parameter, and the model allows for the uncertainties and time
dependencies of these to be addressed. Uncertainties in fatigue loads are also accounted for, including the
annual variability which may be of importance in certain cases. Furthermore, the resulting model distinguishes
between damage due to prior known loads and future unknown loads, to allow for reduced uncertainties in
case that the load history is available from measurements or calculations. Measures are taken to ensure that
the correlation between mean and cyclic loads is handled implicitly. A case study based on extensive hindcast-
based simulations for a realistic mooring system is performed, and the respective effects of uncertainties in
fatigue capacity, corrosion development and fatigue loads are presented and discussed.
1. Introduction

Fatigue assessment of mooring systems, as prescribed by relevant
rules and standards (ISO 19901-7, 2013; DNV GL, 2018), involve con-
siderable uncertainties with respect to both load and capacity. At the
design stage, these uncertainties are handled by the use of large design
fatigue factors (DFFs), in combination with (presumably) conservative
assumptions. Examples of such assumptions are the joint direction and
intensity of wind and waves, heading strategy for weathervaning units
with active heading control, and the amount of marine growth and
associated increase in mooring line drag coefficients. For life extension
or in-service assessment during the operational lifetime, the analyses
normally follow the same approach as that used during design. The
numerical models and the input to the analyses may then be refined,
but assumptions similar to those made at the design stage are still
applied.

Current design codes target a maximum annual probability of moor-
ing line failure in the range from 10−3 to 10−5 (DNV GL, 2018).
Nevertheless, mooring lines historically tend to fail at an unreasonably
high rate; Ma et al. (2013) discuss more than 20 incidents that occurred
for permanent (long-term) mooring systems between 2001 and 2011;
Kvitrud (2014) reports 15 mooring line failures for permanent and
mobile units on the Norwegian Continental Shelf (NCS) between 2010
and 2013; Fontaine et al. (2014) report more than 40 failure events
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that occurred globally between 1997 and 2013. The root causes are
diverse, however; almost half of the events described in Fontaine et al.
(2014) were related to chain components and almost half of those were
caused by fatigue and corrosion (Fontaine et al., 2014). Uncertainties
in the dynamic loads and a lack of proper modeling of the effects that
influence the capacity are likely contributors to these failures.

In order to better understand and quantify the fatigue capacity and
degradation of mooring chains, a number of full scale fatigue tests
have been performed in recent years, both for used chains retrieved
after several years of service offshore (Fredheim et al., 2013; Gabrielsen
et al., 2017; Ma et al., 2019; Gabrielsen et al., 2019) and for new chains
of different sizes and material grades (Fernández et al., 2014; Zhang
and Smedley, 2019; Fernández et al., 2019). These tests have shown
that a reduction of the mean load increases the fatigue capacity (Zhang
and Smedley, 2019; Fernández et al., 2019), and that the remaining
fatigue life of used chains at low mean loads in some cases exceeds
that expected for new chains at higher mean loads (Gabrielsen et al.,
2019), but also that corrosion pits may have a significant detrimental
effect (Gabrielsen et al., 2019; Ma et al., 2019). Inclusion of these ef-
fects seems crucial to enable improved estimates of mooring line fatigue
life, both during design and for life extension of existing systems.
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Lone et al. (2021) proposed an extended S–N curve formulation
to include mean load and corrosion effects, by expressing the inter-
cept parameter of the S–N model as a function of the mean load
and a corrosion grade indicator. The coefficients of this model were
estimated empirically from a data set that consisted of 125 full scale
fatigue tests for both used (77 tests) and new chains (48 tests), tested
at various mean loads and with various degrees of corrosion. They
further demonstrated the impact on fatigue damage from considering
realistic corrosion levels by comparison to the damage obtained from
using the current design code (DNV GL, 2018). It was found that
the negative effect of corrosion must be properly accounted for to
avoid non-conservative fatigue damage estimates, in particular if the
favorable effect of a low mean load is realized (or if the system is
operated at high mean loads).

Knowledge of the load history may provide valuable insights to
the fatigue loads that the system has been exposed to during op-
eration. For instance, Russo et al. (2012) and Hørte et al. (2013)
used measurements combined with numerical simulations to improve
the estimates of wellhead fatigue damage accumulated during prior
operations. However, measurements of mooring line tension tend to be
inaccurate and biased (Brown et al., 2005). As an alternative, the load
history may be established from measurements of position and motion
of the floating unit, either in combination with a global performance
model (Renzi et al., 2017) or as the basis for neural networks that
are trained to predict mooring line tensions (Christiansen, 2014; Zhao
et al., 2021). Methods for proper use of such load histories may reduce
the uncertainties that were present for the design analyses, and thereby
improve the predictions of future loads and remaining fatigue life in
connection with life extension or reassessment.

Moan et al. (2005) showed that the annual variation of wave con-
ditions causes a considerable variability for the structural fatigue loads
of a ship-shaped production unit. This is likely to be the case also for
mooring system fatigue, considering the similarities in prevailing en-
vironmental loads. As a consequence, the uncertainty in future fatigue
damage may be underestimated if future fatigue loads are predicted
based on simple extrapolation of prior loads, neglecting its variability.
Addressing this variability may become particularly important if the
prior loads are known only for a limited number of years (large uncer-
tainties in estimation of the load distribution), or if the fatigue damage
is predicted for a limited number of years (annual variability may be
important).

In the present paper, we propose a new model for assessment
of mooring chain fatigue, based on the extended S–N formulation
proposed in Lone et al. (2021). A probabilistic approach is used, as
it enables us to properly address the uncertainties both in loads and
in the effects that influence the fatigue capacity of the components.
Furthermore, a probabilistic model forms the necessary basis for a
reliability-based integrity management of the mooring chains, as il-
lustrated in Fig. 1. The resulting model distinguishes between the
damage due to prior and future fatigue loads, respectively, to allow for
utilization of load measurements or calculations from prior operation
when available.

The paper is organized as follows. In Section 2, we develop the
probabilistic model for the fatigue damage of mooring chains, including
the effects of mean load, corrosion condition and fatigue load vari-
ability. In Section 3, we present a numerical mooring system model
and simulations that have been performed based on a long series of
hindcast data, and discuss some main results from these simulations
in the context of the present study. By pretending that the simulations
represent either load history measurements or possible realizations of
such calculated prior to operation, we demonstrate and discuss the
properties of the probabilistic model in a case study in Section 4. Some
main conclusions of the study are given in Section 5.
2

r

2. Probabilistic model for fatigue damage

2.1. Fatigue damage with mean load and corrosion dependency

The S–N approach to fatigue of mooring chain is considered. Fatigue
capacity is then expressed in terms of a stress-life (S–N) curve, defined
as

𝑁 = 𝐴 ⋅ 𝑆−𝑚 (1)

where 𝑁 is number of cycles to failure at constant stress range 𝑆, 𝑚
is the slope parameter and 𝐴 is the intercept parameter. The effects
of mean load and corrosion condition are included by expressing the
intercept parameter as a function of these parameters, as proposed
in Lone et al. (2021):

log𝐴(𝜎𝑚, 𝑐) = 𝑏0 + 𝑏1 ⋅ 𝑔1(𝜎𝑚) + 𝑏2 ⋅ 𝑔2(𝑐) (2)

here log(.) is the common logarithm, (𝑏𝑗 )𝑗∈{0,1,2} are coefficients and
1(𝜎𝑚) and 𝑔2(𝑐) are functions of the mean stress (𝜎𝑚) and a corrosion
rade (𝑐), respectively. The corrosion grade applied here is a custom
cale from 1 (new chain or mild corrosion) to 7 (severe corrosion),
ee Lone et al. (2021) for details. Strictly, an error term should also
e included to represent the predictive uncertainty of the regression
odel used to estimate the coefficients (Gelman and Hill, 2007). This

s excluded for now and introduced later, without loss of validity for
he derivations that follow.

By inverting the logarithm in (2) we get

(𝜎𝑚, 𝑐) = 10
(

𝑏0 + 𝑏1 ⋅ 𝑔1(𝜎𝑚) + 𝑏2 ⋅ 𝑔2(𝑐)
)

(3)

This formulation introduces a time-dependency to the capacity
odel, since (i) the mean load term depends on the stress process
hich fluctuates with time due to both short- and long-term variations

n the environmental load process, and (ii) the last term represents
egradation due to corrosion which is inherently a time-dependent
rocess.

For variable amplitude loading, we adopt the Palmgren–Miner hy-
othesis on linear accumulation of the fatigue effect from each stress
ycle. With the fatigue capacity described by (1) and (3), the Palmgren–
iner rule reads

=
∑

𝑖

𝑛𝑖
𝑁(𝜎𝑚,𝑖, 𝑐𝑖)

=
∑

𝑖

𝑛𝑖 ⋅ 𝑠𝑚𝑖
𝐴(𝜎𝑚,𝑖, 𝑐𝑖)

(4)

where 𝐷 is referred to as the fatigue damage and 𝑛𝑖 is the number of
ycles with the stress range 𝑠𝑖, mean stress 𝜎𝑚,𝑖 and corrosion grade 𝑐𝑖.1

For a deterministic case, calculation of the fatigue damage caused by
rior fatigue loads from the discrete sum in (4) is straightforward, and
fficient in terms of computational cost once the stress cycles have been
xtracted from the load history. In the case of uncertain variables, com-
utation of the fatigue damage distribution (by means of e.g., Monte
arlo simulation) requires multiple evaluations of (4), which leads to
significant increase in the computational cost. Furthermore, as it

tands, it is not suitable for prediction of fatigue damage due to future,
ncertain loads.

1 When the mean load and corrosion dependent fatigue damage is expressed
n terms of a single sum, it is assumed that pairs of stress range and associated
ean stress are extracted and combined with the associated corrosion grade
ithout binning them into a histogram. In practice, the number of cycles (𝑛𝑖)
ill then be either 0.5 (for half cycles) or 1.0 (for full cycles). It may however
asily be extended to a double or triple sum to handle empirical distributions

epresented by histograms in two (𝑠, 𝜎𝑚) or three (𝑠, 𝜎𝑚, 𝑐) dimensions.
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Fig. 1. Simplified illustration of reliability-based integrity management of mooring chains. The scope of the present study is indicated by the red box.
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.2. Time-variant formulation

We now consider a time interval [ 𝑡, 𝑡 + 𝛥𝑡 ], which is sufficiently
short for the intercept parameter to be constant. Within this interval,
we express the number of cycles at each stress range level by the in-
stantaneous probability density function of the stress range distribution,
𝑓𝑆 (𝑠, 𝑡), such that 𝑛𝑖 = 𝜈(𝑡)𝑓𝑆 (𝑠𝑖, 𝑡)𝛥𝑠𝛥𝑡, where 𝜈(𝑡) is the instantaneous
cycle rate [s−1]. The fatigue damage accumulated during the time
period considered is then

𝐷(𝑡 + 𝛥𝑡) −𝐷(𝑡) =
𝜈(𝑡)

𝐴(𝜎𝑚(𝑡), 𝑐(𝑡))

{

∫

∞

0
𝑠𝑚 𝑓𝑆 (𝑠, 𝑡) 𝑑𝑠

}

𝛥𝑡 (5)

It follows from the Palmgren–Miner rule that the total fatigue
damage accumulated on the time interval [ 0, 𝑡 ] is

𝐷(𝑡) = ∫

𝑡

0

𝜈(𝑡)
𝐴(𝜎𝑚(𝑡), 𝑐(𝑡))

{

∫

∞

0
𝑠𝑚 𝑓𝑆 (𝑠, 𝑡) 𝑑𝑠

}

𝑑𝑡 (6)

By utilizing that the inner integral of (6) is the 𝑚-th moment of the
stress ranges, E[𝑆𝑚

|𝑡] = ∫ ∞
0 𝑠𝑚 𝑓𝑆 (𝑠, 𝑡) 𝑑𝑠, and insertion of (3), we obtain

𝐷(𝑡) = ∫

𝑡

0

𝜈(𝑡)E[𝑆𝑚
|𝑡]

10 {𝑏0 + 𝑏1 ⋅ 𝑔1(𝜎𝑚(𝑡)) + 𝑏2 ⋅ 𝑔2(𝑐(𝑡))}
𝑑𝑡 (7)

The underlying variables of this equation are (𝑚, 𝑏0, 𝑏1, 𝑏2, 𝜎𝑚(𝑡),
𝑐(𝑡), 𝜈(𝑡), 𝑠(𝑡)), some of which are time-variant. In principle, they are
all uncertain. Computation of this integral directly then requires the
instantaneous, joint probability distributions of the uncertain variables
to be known. This is hardly feasible in practice, since the environmental
load process changes both with seasonal variations and during each
day.

For the remainder of this paper we will assume that the S–N curve
slope parameter (𝑚) is fixed, and that all uncertainty associated with
the S–N curve is represented by uncertainty in (one or more of) the
coefficients of the intercept parameter (𝑏0, 𝑏1, 𝑏2).

2.3. Piecewise time-invariant formulation

The time period [ 0, 𝑡 ] is now split into 𝑁𝑇 intervals of duration
𝑇 , and we introduce the following assumption: the basic variables may
be considered as piecewise time-invariant. That is, within each of these
intervals, the properties of the random variables are assumed to be
constant. The time-variant formulation in (7) may then be written as a
sum of time-invariant terms:

𝐷(𝑡) =
𝑁𝑇
∑

𝑘=1

𝑛0,𝑘 E[𝑆𝑚]𝑘

10

(

𝑏0 + 𝑏1 ⋅ 𝑔
∗
1,𝑘 + 𝑏2 ⋅ 𝑔

∗
2,𝑘

) (8)

where 𝑛0,𝑘 = 𝜈𝑘 ⋅ 𝑇 is the number of stress cycles and (𝑔∗𝑗,𝑘)𝑗∈{1,2} are
representative values of the mean load and corrosion functions in the 𝑘-
th interval, respectively. Note that (8) does not necessarily represent
an approximation compared to the time-variant formulation in (7),
because (i) E[𝑆𝑚]𝑘 is calculated from the stress range distribution for
the period considered, and (ii) for each period there exists values of
𝑔∗1,𝑘 and 𝑔∗2,𝑘 that would yield the same result as if the time-variant
integral in (7) were computed. These may be referred to as equivalent
values of 𝑔1 and 𝑔2. In practice, however, they will normally need to
be approximated.
3

In many cases, corrosion may be assumed to be a slow process
compared to the duration of the period, unless a very long time interval
is considered (e.g., in the order of several years). A reasonable choice
for the representative value of the corrosion grade function could
therefore be its average value (that is, the time average of 𝑔2(𝑐) over the
𝑘-th period). Alternatively, the value at the end of each period could be
used as a more conservative choice. The impact of this choice is briefly
discussed in connection with the case study in Section 4.

For the mean load function, it is convenient to distinguish between
prior periods with known loads, and future periods with unknown
loads. In the next subsection we will show how the representative value
may be calculated for a period with known load history, which will be
useful later for assessment of prior fatigue damage. The representative
value for future periods will be addressed subsequently, in connection
with prediction of the future, uncertain fatigue loads.

2.4. Representative mean load

If the load history for a given time period is known, a representative
value for the mean load function may be calculated by requiring that
each of the terms in (8) results in the same fatigue damage as (4) when
calculated over the corresponding time intervals. For the 𝑘-th interval:

𝑛0,𝑘 ⋅ E[𝑆𝑚]𝑘

10

(

𝑏0 + 𝑏1 ⋅ 𝑔
∗
1,𝑘 + 𝑏2 ⋅ 𝑔

∗
2,𝑘

) =
∑

𝑖

𝑛𝑖 ⋅ 𝑠𝑚𝑖

10
(

𝑏0 + 𝑏1 ⋅ 𝑔1(𝜎𝑚,𝑖) + 𝑏2 ⋅ 𝑔2(𝑐𝑖)
) (9)

where the summation on the right hand side is over observations within
the time period [ (𝑘−1)𝑇 , 𝑘𝑇 ], 𝑛0,𝑘 =

∑

𝑖 𝑛𝑖 is the total number of stress
cycles and E[𝑆𝑚]𝑘 = 1

𝑛0,𝑘

∑

𝑖 𝑛𝑖 ⋅ 𝑠
𝑚
𝑖 is the 𝑚-th moment of 𝑆 for this

eriod. By replacing the corrosion grade function by its representative
alue, 𝑔2(𝑐𝑖) = 𝑔∗2,𝑘, and solving for 𝑔∗1,𝑘, we obtain:

∗
1,𝑘 = − 1

𝑏1
log

⎡

⎢

⎢

⎣

∑

𝑖 𝑛𝑖 ⋅ 𝑠
𝑚
𝑖 ⋅ 10−𝑏1 ⋅ 𝑔1(𝜎𝑚,𝑖)

𝑛0,𝑘 ⋅ E[𝑆𝑚]𝑘

⎤

⎥

⎥

⎦

(10)

Provided that 𝑏1 is fixed, Eq. (10) yields exactly the equivalent value
of the mean load function. In case it is uncertain, its mean value may
be used to provide a very good estimate of the equivalent value.

2.5. Fatigue load variables

We will now introduce two variables that will prove useful later.

𝑍 = 𝑛0 ⋅ E[𝑆𝑚] (11)

𝑍∗ = 𝑛0 ⋅ E[𝑆𝑚] ⋅ 10−𝑏1 ⋅ 𝑔
∗
1 (12)

which will both be loosely referred to as ‘‘fatigue load’’ variables. The
advantage of combining several variables into a single one is that any
correlation between them is implicitly handled when represented by
a probabilistic model. For the first variable (𝑍), the interdependency
between 𝑛0 and E[𝑆𝑚] is intuitive, as they are both direct results of the
cyclic stress process. If the mean load coefficient (𝑏1) is assumed fixed,
it useful to also include the mean load effect in the fatigue load variable

∗ ∗
(𝑍 ). Strictly, the mean load function 𝑔1(𝜎𝑚) (or as here, 𝑔1 ) is related
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to the fatigue capacity.2 However, since (i) it depends directly on the
underlying load process and (ii) a high mean load has a negative impact
on the fatigue capacity, it will be considered as a load variable in this
context.

2.6. Annual fatigue damage

In the following, time intervals with duration 𝑇 = 1 [year] is
onsidered. This implies that each of the terms in (8) corresponds to the
nnual fatigue damage in the 𝑘-th year. We further distinguish between
rior and future fatigue damage, such that

(𝑡) =
𝑁𝑝
∑

𝑘=1

𝑍𝑘

10

(

𝑏0 + 𝑏1 ⋅ 𝑔
∗
1,𝑘 + 𝑏2 ⋅ 𝑔

∗
2,𝑘

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Prior damage

+
𝑁𝑝+𝑁𝑓
∑

𝑘=𝑁𝑝+1

𝑍𝑘

10

(

𝑏0 + 𝑏1 ⋅ 𝑔
∗
1,𝑘 + 𝑏2 ⋅ 𝑔

∗
2,𝑘

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Future damage

(13)

r in the case that the mean load coefficient (𝑏1) is assumed fixed:

(𝑡) =
𝑁𝑝
∑

𝑘=1

𝑍∗
𝑘

10

(

𝑏0 + 𝑏2 ⋅ 𝑔
∗
2,𝑘

) +
𝑁𝑝+𝑁𝑓
∑

𝑘=𝑁𝑝+1

𝑍∗
𝑘

10

(

𝑏0 + 𝑏2 ⋅ 𝑔
∗
2,𝑘

) (14)

Here, 𝑁𝑝 and 𝑁𝑓 are the number of prior and future years, re-
spectively, and the total number of years considered is 𝑁𝑇 = 𝑁𝑝 +
𝑁𝑓 . The prior fatigue loads (𝑍 and 𝑔∗1 , or 𝑍∗) are assumed known,
hence; uncertainty in prior fatigue damage is caused by uncertainties
in the coefficients of the capacity model (𝑏0, 𝑏1, 𝑏2) and in the corrosion
grade development (𝑔∗2,𝑘). For future fatigue damage, the fatigue load
variables are uncertain as well, and a natural question is how these
may be predicted either from a known distribution or based on the
knowledge of prior loads.

2.7. Uncertainty in future fatigue loads

We now assume that the long-term environment is represented
by a stationary process, and that the annual distribution of waves is
independent from year to year. Similarly, the annual distribution of
wind is assumed independent from one year to another. We further
introduce the following additional assumptions:

• The system is operated the same way each year. For instance, if the
unit is operated with different winter and summer positions, these
adjustments are assumed to be the same each years. For storage
units with periodic changes in loading condition, the variations
in draft are assumed to be similar from one year to another.

• The mooring line properties do not change with time. If a mooring
line segment is replaced, it is assumed that the replacement does
not affect the properties of the mooring line, and any changes in
for instance marine growth (which affects the response through
increased drag) are neglected.

Under these assumptions, the annual fatigue loads (𝑍 or 𝑍∗) are
independent and identically distributed (i.i.d.) for any year 𝑘. A ma-
jor benefit from considering annual distributions is that the seasonal
variations in the environmental load process are implicitly accounted
for.

The uncertainties in future fatigue loads may then be attributed to
two main contributions:

2 For a structure with nonlinear restoring characteristics, such as a mooring
ine, the mean load will certainly influence the stress process as well. This is
owever implicitly represented in the stress range distribution, and therefore
n E[𝑆𝑚].
4

s

1. Inherent variability, caused by the natural randomness of the
environmental loads. This uncertainty is commonly referred to
as aleatory uncertainty, and may be modeled by assigning a
probability distribution to 𝑍 (or 𝑍∗).

2. Uncertainty of the distribution parameters (for the probability
distribution in the previous item), caused by lack of knowledge
about the true parameters (e.g., because they need to be esti-
mated from sparse data). This uncertainty is commonly referred
to as statistical or epistemic uncertainty.

An additional source of uncertainty is introduced through the prob-
abilistic modeling under item 1 above, as the selected distribution
model may or may not represent the inherent variability well (this
is commonly referred to as model uncertainty). Hence, selection of an
appropriate distribution model is essential to properly account for the
fatigue load variability. With the available data of prior fatigue loads as
a basis, the choice of one distribution over another could be based on
criteria such as the Akaike Information Criterion (AIC) or the Bayesian
Information Criterion (BIC) (see e.g., Burnham and Anderson, 2002),
although this is not addressed in the present paper.

Once a distribution model has been selected, the choice should
generally be assessed by for instance goodness-of-fit (GoF) tests (see
e.g., Ang and Tang, 2007). An example of this is given in Appendix A,
where GoF tests are successfully performed for lognormal distribution
of 𝑍 and 𝑍∗, based on the data set presented in Section 3.

One way to address the epistemic uncertainty about the distribution
parameters is to consider probability distributions for the parameters
themselves. For some few probability distributions, exact sampling dis-
tributions for the parameters may be established (Ang and Tang, 2007;
Bury, 1999). In the general case, however, they may be approximated
by for instance Bayesian methods (O’Connor et al., 2007) or Bootstrap
methods (parametric or non-parametric) (Efron and Tibshirani, 1986),
possibly in combination (Efron, 2012).

Here, based on the results in Appendix A, we will consider the
case that the annual variability may be represented by a lognormal
distribution, and outline a parametric Bootstrap procedure to address
the distribution parameter uncertainty.

2.7.1. Lognormal distribution of annual fatigue load
We will consider the special case that the annual fatigue load may

be assumed to follow a lognormal distribution, denoted 𝑍 ∼ 𝐿𝑁(.).
For readability we will refer only to 𝑍 in this section, however, the
discussion that follows is equally applicable also to 𝑍∗.

The lognormal probability density function is

𝑓𝑍 (𝑧 ; 𝜇, 𝜎) =
1

𝑧 ⋅ 𝜎 ⋅
√

2𝜋
exp

[

−1
2

(

ln(𝑧) − 𝜇
𝜎

)2
]

(15)

here ln(.) is the natural logarithm, and the distribution parameters
𝜇, 𝜎) are respectively the mean value and standard deviation of the
ormal variate ln(𝑍). The cumulative distribution function (CDF) is

𝑍 (𝑧 ; 𝜇, 𝜎) = 𝛷
(

ln(𝑧) − 𝜇
𝜎

)

(16)

where 𝛷(.) is the standard normal CDF. The true values of the distri-
bution parameters are unknown, but may be estimated from a sample
of observed values (e.g., from prior years). The maximum likelihood
estimates (MLEs) (Bury, 1999) are

̂ = 1
𝑁

𝑁
∑

𝑖=1
ln(𝑧𝑖) (17)

𝜎̂ =

√

√

√

√
1

𝑁 − 1

𝑁
∑

𝑖=1

(

ln(𝑧𝑖) − 𝜇̂
)2 (18)

where 𝑁 is the sample size. These estimators yield unbiased point
stimates for the distribution parameters (𝜇, 𝜎), and correspond to the
ample mean and standard deviation of ln(𝑍).
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An attractive property of the lognormal distribution is that exact
sampling distributions for 𝜇 and 𝜎 may be established from sampling
theory for the normal distribution of ln(𝑍) (Bury, 1999). These could in
turn be used to assess the effect of the epistemic parameter uncertainty
on the prediction of future loads (and ultimately, on the fatigue dam-
age). Here, however, we will instead consider a Bootstrap procedure
that may be used for a Monte Carlo simulation to generate a sample dis-
tribution for future loads under parameter uncertainty. This approach
is more generic (than using the theoretical sampling distributions) and
may easily be adapted for use with probability distributions other than
the lognormal.

A parametric Bootstrap for this purpose may be performed as fol-
lows (assuming that 𝜇̂ and 𝜎̂ are estimated by (17) and (18) from a
sample of prior loads of size 𝑁=𝑁𝑝):

Step 1. Draw a sample of 𝑁𝑝 realizations from 𝑍 ∼ 𝐿𝑁(𝜇̂, 𝜎̂).
Step 2. Fit distribution parameters (𝜇̂𝐵𝑆 , 𝜎̂𝐵𝑆 ) to the sample from step

1, using (17) and (18).
Step 3. Repeat previous steps 𝑁𝐵𝑆 times to obtain a Bootstrap sam-

ple of the parameters, (𝜇̂(𝑖)
𝐵𝑆 , 𝜎̂

(𝑖)
𝐵𝑆 ), 𝑖 ∈ (1,… , 𝑁𝐵𝑆 ).

Step 4. For each of the parameter sets from step 3, draw 𝑁𝑓 realiza-
tions from 𝑍 ∼ 𝐿𝑁(𝜇̂(𝑖)

𝐵𝑆 , 𝜎̂𝐵𝑆 )
(𝑖).

In practice, this sampling scheme generates a (joint) Bootstrap dis-
tribution of (𝜇, 𝜎), given the observed prior loads, and uses this to draw
a sample of 𝑁𝐵𝑆 realizations of 𝑁𝑓 i.i.d. future loads from a conditional
distribution of 𝑍. That is, the future loads are i.i.d. conditional on each
realization of the distribution parameters. The procedure is analogous
to drawing samples of future loads from a Bayesian posterior predictive
distribution (Hastie et al., 2001, Section 8.4) except that here, an
unweighted Bootstrap distribution is used for the parameters in lieu
of a Bayesian posterior.

2.8. Summary of proposed model

To summarize the proposed model, we will illustrate how it may be
used for fatigue assessment of a mooring chain component. Specifically,
a procedure to estimate the fatigue damage distribution by means of
Monte Carlo simulation (MCS) is outlined. Recall that the following
assumptions have been made so far:

• Fatigue capacity is described by the S–N model in (1), with a
mean load and corrosion dependent intercept parameter on the
form defined by (3) (Section 2.1).

• For variable amplitude loads, the Palmgren–Miner hypothesis is
adopted (Section 2.1).

• The S–N model slope parameter (𝑚) is assumed fixed (Section 2.2).
• The underlying random variables may be considered as piecewise

time-invariant (Section 2.3).
• The annual fatigue loads (prior and future) are i.i.d. (Section 2.7).

Furthermore, to enable a concise illustration of the approach, the
following additional assumptions are introduced:

• All uncertainty associated with the fatigue capacity is represented
by a random 𝑏0 coefficient, whereas the (𝑏1, 𝑏2) coefficients are
assumed fixed. This simplification implies that the annual fatigue
load may be conveniently represented by 𝑍∗. Note that the effect
of this assumption is addressed as part of the case study in
Section 4.

• The annual fatigue load (𝑍∗) follows a lognormal distribution.
This implies that the estimators and the bootstrap procedure
described in Section 2.7.1 may be used.

Fig. 2 shows a flow chart for the suggested procedure, given these
latter assumptions, using MCS to generate 𝑁 realizations of the
5

𝑀𝐶
fatigue damage calculated from (14). Selected aspects of this workflow
are briefly described and discussed in the subsequent paragraphs.

Scenarios. Two main scenarios are addressed. The first is design veri-
fication (or, any fatigue assessment performed prior to operation). In
this scenario, all fatigue loads are future loads. Hence, we have 𝑁𝑝 = 0
and 𝑁𝑇 = 𝑁𝑓 . Estimation of 𝑍∗ distribution (type and parameters)
could then be based on possible realizations of annual fatigue loads,
e.g., from numerical simulations for 𝑁 years of historic hindcast data
– similar to those that will be presented in Section 3. The second
scenario is in-service assessment after 𝑁𝑝 years of operation. Load history
is then assumed available for 𝑁 = 𝑁𝑝 prior years, and the objective
is to estimate the fatigue damage distribution after a total of 𝑁𝑇 =
𝑁𝑝 +𝑁𝑓 years. In this scenario, the prior fatigue loads (denoted 𝑧∗𝑝 in
the figure) are used both to estimate the 𝑍∗ distribution parameters,
and as deterministic loads for the prior fatigue damage.

Fatigue capacity. For a given chain component, the 𝑏0 term is con-
sidered as random but time-invariant, since the time-dependency of
the fatigue capacity is handled by the mean load and corrosion grade
terms of the intercept parameter. Each realization of the fatigue damage
therefore requires only one realization of 𝑏0. Also, note that with 𝑏1
and 𝑏2 fixed, the mean load and corrosion grade effects on the capacity
may be regarded as deterministic functions of random loads, expressed
through 𝑔∗1 and 𝑔∗2 .

Fatigue loads. Each realization of the fatigue damage after 𝑁𝑇 years
requires 𝑁𝑓 realizations of 𝑍∗. This may equivalently be understood
as drawing a single realization of 𝑁𝑓 i.i.d. random variables, each
representing the fatigue load in one of the future years.

Corrosion model. The probabilistic corrosion model could be based on
one or more underlying random variables. The main point at this stage
is that for each realization of the corrosion grade history, it should
enable calculation of the representative value of 𝑔2(𝑐) (i.e., 𝑔∗2 ) for each
of the 𝑁𝑇 years. An example of a simple probabilistic model for this
purpose is presented and applied for the case study in Section 4.

Fatigue damage distribution. The fatigue damage sample distribution is
the main result and output from the workflow. Strictly, computation
of (14) yields the accumulated fatigue damage after the last of the
𝑁𝑇 years (i.e., a sample of size 𝑁𝑀𝐶 is obtained). However, using the
samples drawn in the MCS, computation of the fatigue damage by the
end of each of the 𝑁𝑇 years is available at practically no additional
computational cost, resulting in a sample of size 𝑁𝑀𝐶 ×𝑁𝑇 .

Reliability analysis. A main goal in applying a probabilistic approach
to fatigue is to enable a reliability analysis, to calculate the proba-
bility of (fatigue) failure. This requires a limit state function to be
defined (Melchers and Beck, 2018), and this will normally require
additional probabilistic models that are not addressed in the present
study. Examples of such are model uncertainties that account for the
uncertainty in the Palmgren–Miner rule (Wirsching and Chen, 1988)
and uncertainties and possible bias in load measurements or simula-
tions. The figure indicates how the workflow could be integrated as
part of a reliability analysis that is based on MCS, with the fatigue
damage sample distribution as direct input. In a more general case,
however, the limit state function could be expressed as a direct function
of all underlying random variables to allow for alternative calculation
methods such as FORM or SORM (Melchers and Beck, 2018). The
results from the reliability analysis may in turn be used as the basis
for decision making, such as for instance inspection planning and chain
replacement schemes.

A note on the need for the additional assumptions. Although conve-
nient, the additional assumptions that were introduced are not strictly
necessary. Firstly; if the 𝑏1 coefficient is random, the following adjust-

∗
ments could be done: the sensitivity for 𝑔1 to variations in 𝑏1 should
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Fig. 2. Fatigue damage distribution analysis by Monte Carlo simulation. Gray boxes with dashed arrows indicate how the workflow could be integrated as part of a reliability
nalysis for decision making and inspection planning.
e assessed, and future loads should be modeled through the joint
istribution of 𝑔∗1 and 𝑍 instead of the marginal distribution of 𝑍∗.
lternatively, if the annual variability of 𝑔∗1 is shown to be reasonably
mall, it could be set to a fixed (and possibly conservative) value to
llow for the marginal distribution of 𝑍 to be used. Secondly; if the
nnual fatigue load is found to follow a different probability distribu-
ion (other than the lognormal), different estimators for its distribution
arameters would be used and an adjusted Bootstrap procedure (or
lternative approaches) to address the epistemic uncertainty of these
arameters could be considered.

omputational cost. As the model relies on load measurements and/or
imulations for several years of operation, the computational cost of
stablishing the probabilistic fatigue load model will generally be sig-
ificant. Important factors affecting the exact computational effort are
he sources from which the fatigue loads are obtained and the number
f prior years considered. However, once the probabilistic model for

(or 𝑍∗) is established, a fatigue damage sample distribution may
e generated at a low computational cost. For example, using custom-
ritten Python code implementing the workflow illustrated in Fig. 2,

he following performance was obtained on a standard commercial
aptop3: with 𝑁𝑝 = 0 and 𝑁𝑓 = 15, a fatigue damage sample of size

3 The laptop used is equipped with a Quad-Core Intel Core i7-8650U CPU
1.90 GHz.
6

𝑁𝑀𝐶 = 105 was generated in less than 0.5 s, and a sample of size
𝑁𝑀𝐶 = 106 was generated in less than 2 s.

3. Basis for the case study

The basis for the case study in Section 4 is now presented. Moor-
ing line responses are computed by numerical time domain simula-
tions based on environmental data from a hindcast series that covers
61 years. Results for response variables of interest (𝑔∗1 , 𝑍,𝑍∗) are
presented and discussed.

3.1. Description of platform and mooring system

A semi-submersible production unit operating at 300 m water depth
in the Norwegian Sea is considered. The platform has six columns, two
pontoons with length 102.4 m at a distance of 96 m, a draft of 25 m and
a total displacement of 84848 metric tonnes. It is permanently moored
by a spread mooring system that consists of 16 lines in clusters of four
(Fig. 3). The fairleads are located at a radial distance of approximately
68 m from the unit center, 8.8 m below the still water level. The
mooring pattern is slightly asymmetric, with shorter lines towards east.
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Fig. 3. Horizontal projection of mooring system.

Fig. 4. Mooring line composition. Not to scale.

A lower pretension4 is applied for the westward cluster to reduce the
extreme loads in these lines, as they point towards the dominating
wave directions. All lines are composed of a catenary chain-wire-chain
configuration, with studless chain for the upper and lower segments,
and steel wire rope in-between (Fig. 4):

• Chain segments: studless R4 chain, with a nominal diameter of
142 mm and a nominal (tabulated) MBL of 18033 kN.

• Steel wire rope: sheathed spiral strand wire, with a diameter of
156 mm (incl. 20 mm plastic sheathing).

Anchor positions applied in the numerical model are based on field
measurements, and the lengths of the platform chain segments have
been adjusted to obtain pretensions close to those measured on site.

3.2. Environmental data

Environmental conditions are based on a hindcast data series for
the Norwegian Sea (Reistad et al., 2011), representing simultaneous
observations of wave and wind conditions over successive 3 h. Each
sea state is characterized by (i) significant wave height, wave spectral
peak period and mean direction for total sea, and (ii) wind velocity and
direction. Note that it is also possible to extract sea state parameters for
wind sea and swell, which enables modeling of the two wave systems

4 Pretension is defined as the tension in the mooring line, at the fairlead,
when there are no environmental loads acting on the unit or on the mooring
lines.
7

from separate directions instead of applying a single wave spectrum for
the total sea. This is assumed to be of limited importance for the semi-
submersible unit considered, since the wave load magnitude is not that
sensitive to the angles of attack (which would not necessarily be the
case for a ship-shaped and weathervaning unit, as heading towards one
wave system may then increase the wave loads induced by the other
wave system).

For the present study, 61 full years of hindcast data from 1958
through 2018 have been applied. In total, this constitutes 178420 sea
states of 3-hour duration. Some main characteristics of the hindcast
series are visualized in Figs. 5–7, showing that:

• There is considerable annual variation in the intensity of the
largest sea states (Fig. 5).

• The most frequent wave directions are from southwest and west,
followed by north and northwest (Fig. 6). Very few of the sea
states are with waves from east and southeast.

• Wind and total sea wave directions appear to be fairly uncorre-
lated for the lowest sea states, but with an increasing and strong
correlation for increasing sea state intensity (Fig. 7). For the
most severe sea states, wind and waves act roughly in the same
direction.

In addition to waves and wind, current has been included based
on a simple relation to the wind velocity, in accordance with DNV GL
(2019): 𝑈𝑐 = 0.20+0.05 ⋅𝑈𝑤, where 𝑈𝑐 and 𝑈𝑤 are the current and wind
velocities, respectively. Current direction is rotated 15◦ clockwise from
the wind direction.

3.3. Method description

Tension–tension fatigue of a chain component located at the fairlead
is considered. Mooring line responses are computed with time domain
simulations, using a decoupled approach5:

1. Floater motions are simulated with a quasi-static representation
of the mooring line forces.

2. The motion from step 1 is imposed on finite-element (FE) models
of the mooring lines of interest, to obtain time series of mooring
line axial tension that include geometric non-linearities and
dynamic effects such as drag and inertia.

The first step is performed with the computer program SIMO (SIN-
TEF Ocean, 2019a), which solves the nonlinear and dynamic equation
of motion in time domain with excitation from waves, wind and cur-
rent. Waves are described by the double-peaked Torsethaugen wave
spectrum (DNV GL, 2019; Torsethaugen and Haver, 2004), assuming
long-crested (unidirectional) sea. Wind speed fluctuations are modeled
by the NPD/ISO wind spectrum (ISO 19901-1, 2015), whereas the
current velocity is assumed constant. The quasi-static representation of
the mooring lines implies that the nonlinear restoring characteristics
of the lines are accounted for, whereas dynamic effects due to drag
and inertia are neglected. The numerical model includes frequency
dependent hydrodynamic coefficients for first and second order (wave
drift) wave excitation based on potential theory, where the latter have
been adjusted empirically through comparison to model test results.
Wave–current interactions are represented through a simplified wave
drift damping formulation, and frequency dependent added mass and
potential damping are represented by retardation functions. Wind and
current loads are included by means of quadratic load models. Ad-
ditional damping is provided through linear and quadratic damping
matrices, representing viscous damping due to columns and pontoons

5 See e.g. Ormberg and Larsen (1998), Ormberg et al. (1998) for a dis-
cussion on the differences between coupled and decoupled (referred to as
‘‘separated’’ in the first reference) simulation of mooring line response.
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Fig. 5. Excerpt of hindcast series for significant wave height, years 1980–2000.
Fig. 6. Relative frequency of occurrence for total sea mean wave direction (coming
from), years 1958–2018.

Table 1
Mooring lines considered for dynamic simulation with RIFLEX.
Line Cluster Pretension

[% MBL]

1 South 12.0
5 West 10.9
9 North 11.9
13 East 12.1

as well as damping contributions induced by mooring lines and risers.
Quasi-static models of the risers are included to ensure that their
stiffness contributions are accounted for.

The second step is performed with RIFLEX (SINTEF Ocean, 2019b),
using bar elements for the mooring line FE model. Drag, added mass
and inertia effects on the mooring line responses are then accounted for,
including the effects of marine growth which are represented through
increased drag coefficients and unit mass in line with DNV GL (2018).
In the present study, one mooring line from each cluster is considered
for the dynamic simulation, as listed in Table 1. Examples of the axial
tension time series obtained for two of these lines are shown in Fig. 8,
for one 3-hour sea state. Time series of nominal stress are obtained
from dividing axial tension response by the nominal cross section
area of the mooring chain links. Stress cycles are then extracted by
rainflow counting, using the algorithm from ASTME E1049-85 (ASTM
International, 2017, Section 5.4.4).

For each of the 3-hour sea states, a simulation of 3-hour duration
is conducted. Steinkjer et al. (2010) showed that this may imply
8

Fig. 7. Relative direction of wind-waves vs. significant wave height, years 1958–2018.

considerable statistical uncertainty for the short-term fatigue damage
of similar slender structures. This uncertainty is not addressed in the
current study for the following reasons:

• All 3-hour sea states are simulated, without any kind of blocking
to reduce the number of simulations. It is therefore reasonable to
assume that the resulting statistical uncertainty is small when the
fatigue damage is summed up over a year. This is in line with the
findings in Steinkjer et al. (2010).

• For the present study, the simulations are assumed to mimic
a realization of measured load histories. Hence, any statistical
uncertainty arising from the stochastic realizations of short-term
conditions may be considered irrelevant.

3.4. Results from hindcast-based simulations

For each of the years considered in the simulations, the representa-
tive mean load (𝑔∗1 ) and the fatigue load variables (𝑍,𝑍∗) have been
calculated from the (annual) joint, empirical distributions of stress
cycles and mean load. For these calculations, the mean load function
is 𝑔1(𝜎𝑚) = 𝜆𝑚, where 𝜆𝑚 is the mean load expressed as percentage of
the nominal MBL. The relevant S–N curve coefficients have been kept
fixed at 𝑚 = 3 and 𝑏1 = −0.0507 (Lone et al., 2021).

Statistics for these annual response values are presented in Table 2.
The mean value of the representative mean load is seen to be higher
than the pretension (see Table 1) for all mooring lines except line
13 (East). This may be explained by considering the directions of
the lines. For waves from the dominating wave directions (western
sectors), the platform is offset towards east, thereby reducing the mean
tension in the eastern cluster. Hence, for line 13, the majority of the
fatigue loads are accumulated at mean loads below the pretension. The
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Fig. 8. Example of 3-hour axial tension time series for chain components located at fairlead. Significant wave height 10.7 m, wave spectral peak period 14.3 s and wind velocity
23.4 m/s. Wind and waves from west.
Table 2
Annual load statistics, based on simulations for 61 years (1958–2018).

Variable,
Mooring line

Cluster Mean CoV Skewness Excess
kurtosis

Fitted parametersa

𝜇̂ 𝜎̂

𝑔∗1 [% MBL]
1 South 12.8 0.04 0.17 −0.71
5 West 12.1 0.02 0.96 1.46
9 North 12.6 0.04 −0.17 −0.64
13 East 11.2 0.03 0.31 0.20

𝑍 = 𝑛0 ⋅ E[𝑆𝑚] [MPa3]
1 South 8.53×107 0.26 0.85 1.31 18.23 0.257
5 West 6.20×107 0.38 1.13 1.31 17.88 0.364
9 North 7.53×107 0.24 0.49 −0.72 18.11 0.235
13 East 9.20×107 0.33 1.04 1.06 18.29 0.316

𝑍∗ = 𝑛0 ⋅ E[𝑆𝑚] ⋅ 10−𝑏1 ⋅𝑔∗1 [MPa3]
1 South 3.82×108 0.29 1.20 2.92 19.72 0.282
5 West 2.59×108 0.41 1.28 1.76 19.30 0.389
9 North 3.31×108 0.25 0.45 −0.87 19.59 0.252
13 East 3.36×108 0.30 0.93 0.71 19.59 0.287

CoV: Coefficient of Variation.
aLognormal distribution parameters estimated by Eqs. (17) and (18).
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ther lines are to a larger degree orientated towards the dominating
ave directions, and therefore accumulate most of the fatigue loads
t mean loads above their pretensions. The largest difference between
retension and representative mean load is seen for line 5 (West), which
oints in the statistically most exposed direction.

The highest mean annual fatigue load (𝑍) is obtained for mooring
line 13 (East), which experiences large tangential motions for the upper
end of the mooring line and therefore large cyclic loads due to its
orientation along the axis of the dominating wave directions. This
is also the case for line 5 (West), but the larger line length gives a
softer stiffness characteristics despite the higher mean loads, effectively
reducing the cyclic loads.

When the fatigue load is combined with the mean load effect (𝑍∗),
the highest mean value is obtained for line 1 (South). The significance
of this result is the following. If mooring line fatigue were assessed
without accounting for the mean load effect, assuming similar corrosion
conditions for all lines, the eastern cluster would be the most critical
ue to the higher cyclic loads (as expressed through 𝑍). By accounting

for the mean load effect on fatigue capacity, using 𝑍∗, the relative
mportance of the clusters is altered and the southern cluster becomes
he most critical. This is consistent with the findings in an initial study
or this unit, as reported in Lone et al. (2020), and underlines the need
o account for mean loads to properly identify the critical mooring lines
ith respect to fatigue.

Annual variability is represented by the coefficient of variation
CoV). For representative mean load, the CoV is seen to be low for
ll mooring lines. A considerably larger variability is observed for the
nnual fatigue load, with the highest CoV at 37% for line 5. When
9

atigue load is combined with the mean load effect, the CoV for line
increases to 40%. Line 13 is the only mooring line that experiences a

eduction in the CoV when the mean load effect is included, indicating
negative correlation between 𝑔∗1 and 𝑍 for this line. This is confirmed
y the scatter plots in Fig. 9 for lines 5 and 13, and the associated
orrelation coefficients are estimated to 0.86 and −0.76, respectively.
he orientation of the southern and northern clusters causes a weaker
orrelation between 𝑔∗1 and 𝑍 for lines 1 and 9, with correlation
oefficients at 0.39 and 0.22, respectively. This is because a larger
hare of the fatigue loads for these lines are induced by waves acting
ess along their respective directions, with a more varying effect on
he mean loads. As an example, for line 1; frequent waves from the
outhwestern sectors will induce mean loads that are higher than the
retension, whereas waves from the western sectors (which are also
uite frequent) will have a lesser impact in this regard.

The results statistics in Table 2 also show that the annual fatigue
oad variables (𝑍,𝑍∗) are positively skewed, and visual inspection of
istograms (not presented here) indicate that they could be well repre-
ented by a lognormal probability distribution. Based on goodness-of-fit
ests it is concluded that the lognormal distribution is acceptable for

and 𝑍∗ for all four mooring line. For details and test-of-fit results,
ee Appendix A.

Only two of the mooring lines will be considered for the case study,
o limit the amount of results. As the objective is to demonstrate the
roperties of the probabilistic model, the following lines are selected:

• Line 5 (West), on the basis of the high annual fatigue load

variability.
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Fig. 9. Scatter plot of 𝑔∗1 vs. 𝑍 (annual values) for lines 5 (left) and 13 (right). Correlation coefficients are given in figure titles.
Fig. 10. Annual representative mean load and fatigue load variables for mooring lines considered in the case study.
• Line 13 (East), on the basis of mean load properties that deviate
from the those of the other lines.

Bar plots of 𝑔∗1 , 𝑍 and 𝑍∗ for the selected lines are shown in Fig. 10,
for all 61 years. The limited variability of the representative mean load
is evident from the plot, as is also the distinct variability of the fatigue
loads. For line 5, the maximum values of 𝑍 and 𝑍∗ are more than
six and seven times higher than the respective minimum values. For
10
line 13, the corresponding ratios of maximum to minimum values are
around five and four, respectively.

Note that the case study selection excludes line 1 (South), for
which the highest combined fatigue and mean load effect is observed
(i.e., highest mean value of 𝑍∗). This does not limit the value of the case
study, as this line exhibits load properties that are within the bounds
of the selected lines.
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4. Case study

In this section, we apply the probabilistic model established in
Section 2 to the data set presented in Section 3, to demonstrate the
properties of the model. Uncertainties in fatigue capacity, corrosion
grade and fatigue loads are addressed one at a time, to present and
discuss their respective effect on the fatigue damage uncertainty.

The scenario considered is that fatigue damage is accumulated
over 15 years, starting in 1980. Initially, the fatigue loads during all
15 years are assumed known, which enables us to isolate the effects of
uncertainty in fatigue capacity and corrosion grade, respectively. We
then consider two scenarios with uncertain fatigue loads; one relevant
for design verification, and one relevant for in-service assessment after
ten years of operation.

Monte Carlo simulation (MCS) is used extensively throughout the
case study, to simulate realizations of the uncertain variables and
ultimately evaluate the accumulated fatigue damage represented by
the piecewise time-invariant summation in either (13) or (14). The
procedure generally follows that outlined in Section 2.8 (Fig. 2), except
for the initial case considering uncertainty of the fatigue capacity
model. The MCS for this particular case is described in the relevant
subsection. A sample size of 𝑁𝑀𝐶 = 105 is generated for all simulations
unless otherwise noted.

For the entire case study we will use the mean load function
𝑔1(𝜎𝑚) = 𝜆𝑚, where 𝜆𝑚 is the mean load in % MBL, and the corrosion
rade function 𝑔2(𝑐) = 𝑐.

.1. Uncertainty in fatigue capacity

We start by considering only uncertainty in the fatigue capacity, as
efined by the intercept parameter in (3). Specifically, we will assess
he respective importance of the predictive and the inferential uncertain-

ties in the S–N regression model established in Lone et al. (2021). The
former uncertainty relates to the standard error of the regression model
(residuals), whereas the latter relates to the standard errors of the
estimated regression coefficients (Gelman and Hill, 2007). To address
these, we temporarily introduce an error term (𝜀) to the intercept
parameter, so that the equation describing the fatigue capacity becomes

𝐴(𝜎𝑚, 𝑐) = 10
(

𝑏0 + 𝑏1 ⋅ 𝑔1(𝜎𝑚) + 𝑏2 ⋅ 𝑔2(𝑐) + 𝜀
)

(19)

and update the denominator of the fatigue damage summation in (13)
accordingly. The regression analysis performed in Lone et al. (2021)
has been rerun for the present study, to calculate the standard errors
of the (𝑏𝑗 )𝑗∈{0,1,2} coefficients (Table 3). Their covariance matrix is

𝜮 =
⎡

⎢

⎢

⎣

7.770×10−3 −3.829×10−4 −4.453×10−4

−3.829×10−4 2.046×10−5 1.714×10−5

−4.453×10−4 1.714×10−5 5.612×10−5

⎤

⎥

⎥

⎦

(20)

and the corresponding correlation matrix is

𝝆 =
⎡

⎢

⎢

⎣

1. −0.96 −0.67
−0.96 1. 0.51
−0.67 0.51 1.

⎤

⎥

⎥

⎦

(21)

Two cases are simulated, using MCS with the procedure outlined
in Gelman and Hill (2007, Chapter 7): (i) predictive uncertainty only,
that is, random error (𝜀) and deterministic 𝑏𝑗 -coefficients, and (ii)
combined predictive and inferential uncertainty, that is, random error
and random 𝑏𝑗 -coefficients. For each realization in this MCS, we draw
one value for each of the random variables in the capacity model
and calculate the fatigue damage by (13), assuming that simultaneous
observations of 𝑍 and 𝑔∗1 through the 𝑁𝑇 = 𝑁𝑝 = 15 years from
1980 to 1994 are deterministic and known. Note that for consistency,
the annual representative mean loads (𝑔∗1 ) for these years are first
recalculated for each realization of the mean load coefficient (𝑏1), using
11

(10) with the joint, empirical distributions of stress ranges and mean
Table 3
Probabilistic description of fatigue capacity variables.

Variable Mean value Standard deviation Distribution Note

𝑏0 12.249 0.088 Normal a

𝑏1 −0.0507 0.0045 Normal a

𝑏2 −0.106 0.0075 Normal a

𝜀 0 𝜎𝜀 Normal
𝜎𝜀 0.170 – Fixed b

aMultivariate normal with covariance matrix given in (20).
bStandard error of the capacity model.

Fig. 11. Importance of predictive vs. inferential uncertainty of fatigue capacity model.
Expected value and 95% confidence interval of fatigue damage sample distributions.
For each of the mooring lines, the values are normalized wrt. expected damage for the
case with predictive uncertainty only.

loads. The corrosion grade is assumed to evolve deterministically from
𝑐 = 1 at the beginning of 1980 to 𝑐 = 4 at the end of 1994, with a linear
development.

Results are shown in Fig. 11, for mooring lines 5 (West) and 13
(East). Uncertainty in fatigue capacity is dominated by the predictive
uncertainty, and the mean value and the upper limit of the 95% confi-
dence interval increase by less than 1% when inferential uncertainty
is included as well. The small effect of the inferential uncertainty
is primarily caused by the strong correlation between the regression
coefficients; a low value of 𝑏0 is likely to be combined with high values
of 𝑏1 and 𝑏2, as seen from Fig. 12.

It should noted that the standard error of the model (𝜎𝜀) is here
assumed deterministic for both cases. Strictly, it is distributed according
to 𝜎̂𝜀

√

(𝑛 − 𝑙)∕𝜒2
𝑛−𝑙, where 𝜎̂𝜀 = 0.170 is the estimated standard error,

𝑛 = 125 is the number of fatigue tests included in the regression
analysis, 𝑙 = 3 is the number of estimated coefficients and 𝜒2

𝑛−𝑙 is a
chi-square distribution with (𝑛− 𝑙) degrees-of-freedom. However; if this
were included in the MCS, the upper bound of the confidence interval
would increase only by around 1%.

A limitation in the assessment performed here is that mean loads
and corrosion grades are assumed deterministic. Hence, interactions
between uncertainties in these and the uncertainties in (𝑏1, 𝑏2) are
neglected. Considering the negligible impact of the inferential uncer-
tainty, however, it is reasonable to assume that this would be of limited
importance.

A convenient simplification of the model is then to omit the error term
in (19) and include this uncertainty in the 𝑏0 coefficient instead by letting
𝜎𝑏0 = 𝜎𝜀, while assuming deterministic (𝑏1, 𝑏2) coefficients with values fixed
at the respective mean values in Table 3. Furthermore, with 𝑏1 fixed, the
variable 𝑍∗ may be used to represent the fatigue loads.

In other words, the fatigue capacity may be modeled by 𝑏0 ∼
𝑁(12.249, 0.1702), 𝑏1 = −0.0507 and 𝑏2 = −0.106. Since the fatigue
damage is proportional to 10−𝑏0 , it follows that the CoV of fatigue
damage due to uncertainty in capacity alone is 0.41.

4.2. Uncertainty in corrosion grade

In order to obtain proper corrosion grade estimates for mooring

chains, the components must be inspected. A priori, the only available
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Fig. 12. Simulated values of the S–N curve coefficients; 𝑏1 vs. 𝑏0 (left), 𝑏2 vs. 𝑏0 (center) and 𝑏2 vs. 𝑏1 (right).
Table 4
Cases for assessment of corrosion grade uncertainty.

Case 𝐶end 𝜂 Description

I 4 1 Reference case
IIa 𝑈 (1, 7) 1 Linear corrosion grade development
IIb 𝑈 (1, 7) 2 Slow initial corrosion grade development
IIc 𝑈 (1, 7) 0.5 Fast initial corrosion grade development

information is that the grade is bounded by the value at installation
(𝑐 = 1) and the upper limit of the corrosion grade scale (𝑐 = 7). Even
if the grade at a given point in time is known, the fatigue damage is
also affected by its development from 1 to this value, as a more rapid
increase in the corrosion grade will result in a higher fatigue damage
compared to a slower development. A detailed or complex model of
the corrosion development is beyond the scope of the present study. For
simplicity, we will assume that the representative value of the corrosion
grade function in the 𝑘-th year may be expressed as

𝑔∗2,𝑘 = 𝑐𝑘 = 1 + (𝐶end − 1) ⋅ (𝑘 − 𝑎
𝐿

)𝜂 (22)

where 𝐿 is the service life, 𝐶end is the corrosion grade at the end of
the service life, 𝜂 is an exponent that determines the shape of the
time history, and 𝑎 ∈ [0, 1] controls which value is taken as the
representative one. For example, 𝑎 = 0.5 implies that the corrosion
grade is represented by its value halfway through that year (which here
corresponds to the average value of 𝑔2(𝑐)), whereas 𝑎 = 0 means that
the value at the end of the year is used. Examples of time histories
with three different values of 𝜂 are shown in Fig. 13. In the following,
𝜂 is assumed to be deterministic (i.e., the shape of the time history is
fixed), the service life 𝐿 is assumed to be 15 years and 𝐶end is assumed
to follow a uniform distribution with support [1, 7], denoted 𝐶end ∼
𝑈 (1, 7). One could argue that a corrosion grade of 1 after 15 years is
unlikely, and that bounds [2, 7] would be more appropriate. However,
as the main purpose here is to illustrate the effect on fatigue damage
uncertainty, this is disregarded.

Cases for assessing the effect of corrosion grade uncertainty are
listed in Table 4. A deterministic fatigue load history is used for all these
cases, and the coefficients of the fatigue capacity model are assumed
fixed at their mean values. Case I with fixed final corrosion grade
then yields a deterministic fatigue damage, and serves as a reference
case. Uncertain corrosion grade is introduced for case IIa, whereas the
effect of the shape of the corrosion grade development (through 𝜂) is
addressed by cases IIb and IIc. Note that E[𝐶end] = 4 for all the listed
cases, and the temporal expected value of 𝑔∗2,𝑘 matches the respective
time histories in Fig. 13.

The representative value is here fixed at the average value of the
corrosion grade (i.e., 𝑎 = 0.5). The effect of using an alternative
representative value is addressed in Appendix B, where it is shown that
the value of 𝑎 is of minor importance compared to effect of the shape
(𝜂) for the model used here.
12
Fig. 13. Example of corrosion grade histories with 𝐶end = 4, 𝐿 = 15, 𝑎 = 0.5 and
different shape parameters.

Results for mooring line 5 (West) are shown in Fig. 14. With uncer-
tain corrosion grade and linear development (case IIa), the expected
fatigue damage is approximately the same as that obtained for the
deterministic reference case (which also has a linear development). The
uncertainty introduced is reflected through a fatigue damage CoV that
grows to about 0.25, and a 97.5-percentile which is roughly 50% higher
than the deterministic reference value at the end of the period. The
effect of the shape of the time history is clear from the results for cases
IIb and IIc. With 𝜂 = 2, the slow initial corrosion grade development
yields a slower fatigue damage growth than for the other cases. This
results in a lower expected value, and a more narrow distribution
as reflected by the lower CoV – although the accelerating corrosion
growth towards the end of the period lifts the CoV and reduces the
relative gap.

The highest expected damage is obtained for the case with 𝜂 =
0.5, due to the fast initial corrosion grade growth. This case also
results in the widest distribution, represented by the higher CoV and
97.5-percentile. The latter effect is a direct result of the simplified
probabilistic model defined in (22) and applied here, which gives a
wider corrosion grade distribution (higher upper bound) for the early
years with a lower value of the shape parameter (𝜂).

Note that the change in slope which is seen after 1988 in Fig. 14
is a result of the fatigue load history used. The loads are higher in
some of the following years than in the first nine years considered (see
Fig. 10(c)), and this increases the impact of the corrosion grade and its
uncertainty towards the end of the period considered.

4.3. Uncertainty in future fatigue loads

So far, we have assumed that the fatigue loads are known. We will
now consider two scenarios with unknown fatigue loads. To isolate the
effect of these uncertain fatigue loads, the coefficients of the capacity
model are assumed fixed at their mean values, and the corrosion grade
is assumed fixed at 𝑔∗2 = 𝑐 = 1. In practice, this implies that the
degradation due to corrosion is neglected for the present cases, and
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Fig. 14. Corrosion grade uncertainty: effect of shape of corrosion history. Mooring line 5 (West).
Fig. 15. Fatigue load uncertainty: design verification scenario. Mooring line 5 (upper figures) and 13 (lower).
that the denominator of the fatigue damage summation in (14) becomes
constant.

Two distinctly different scenarios are addressed. The first is a design
verification scenario, where the fatigue loads are uncertain for all the
15 years considered. The distribution of the fatigue loads is assumed
known, from the simulations presented in Section 3.6

The second scenario is in-service assessment. Fatigue loads from
𝑁𝑝 = 10 prior years are known, whereas the loads in the subsequent
𝑁𝑓 = 5 future years are uncertain and must be predicted based on
inference of the prior loads. Sample statistics for the load variable (𝑍∗)
during the prior years from 1980 to 1989 are listed in Table 5, along
with estimated distribution parameters and test-of-fit results to justify
a lognormal distribution. Note that the estimated mean value of 𝑍∗

grees quite well with the ‘‘true’’ values (Table 2), whereas the CoV is
verestimated for both mooring lines.

Cases to assess the effect of uncertainty in future loads are listed
n Table 6. Case III, with known loads for all 15 years, is included
s a deterministic reference case. Two cases are defined for the in-
ervice scenario. For case Va, the point-estimates of the distribution

6 This implies that the fatigue loads that are assumed unknown (for the
ears 1980–1994) are here included in the estimation of the distribution
arameters. This inconsistency is disregarded for the sake of this example.
13
parameters are used, thereby neglecting the epistemic uncertainty of
the load distribution. This latter uncertainty is addressed with case Vb,
applying the bootstrap procedure described in Section 2.7.1.

Note that for the in-service assessment scenario, one could imagine a
case where the fatigue load distribution parameters are assumed known
initially (as for the design scenario), and either applied ‘‘as-is’’ for the
future loads or used as priors for a Bayesian estimation of the posterior
distribution of the parameters. Such a case is not considered here.

Results for the design scenario are shown in Fig. 15, and we first
consider those for mooring line 5 (upper part of figure). Due to the
neglected degradation, the estimated expected fatigue damage for the
design case (IV) grows at a constant, annual rate. After nine years
(1988), the expected damage is around 15% higher than the reference
case. After 15 years, it is roughly 12% on the low side, due the high
fatigue loads for the reference case in some of the final six years.
Still, the final damage of the deterministic case is within the 97.5-
percentile of the design case. The results obtained for mooring line 13
are consistent with those for line 5, although with less margin between
the estimated 97.5-percentile and the fatigue damage of the reference
case.

The CoV plot (Fig. 15(b)) demonstrates a high variability for the
initial years, which is significantly reduced to yield a more narrow
fatigue damage distribution towards the end of the period. Actually,
for this particular case, the fatigue damage is proportional to the sum
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Fig. 16. Fatigue load uncertainty: in-service assessment scenario. Vertical dotted line indicates transition from known to uncertain fatigue loads. Mooring line 5 (upper figures)
and 13 (lower).
Fig. 17. Probability of exceedance from sample distribution of accumulated fatigue damage after 15 years. Values are normalized wrt. fatigue damage of the reference case with
known loads. Mooring lines 5 (left) and 13 (right). Sample size 5×105.
Table 5
Sample statistics, estimated lognormal distribution parameters and test-of-fit results for 𝑍∗. Years 1980–1989.

Line Cluster Sample statistics Fitted parameters Test statistic a Reject?

Mean CoV 𝜇̂ 𝜎̂ K–S A–D

5 West 2.61×108 0.55 19.27 0.469 0.249 0.597 No
13 East 3.49×108 0.35 19.62 0.313 0.188 0.409 No

CoV: Coefficient of Variation; K–S: Kolmogorov–Smirnov test; A–D: Anderson–Darling test.
aCritical values (5% level of significance): K–S = 0.409; A–D = 0.685.
Table 6
Cases for assessment of uncertainty in future loads.

Case Scenario 𝑁𝑝 𝑁𝑓 𝑍∗ Parameters (𝜇, 𝜎)

III Reference case 15 0 𝑧∗𝑝
a

IV Design 0 15 𝐿𝑁(𝜇, 𝜎) Table 2
Va In-service 10 5 𝐿𝑁(𝜇̂, 𝜎̂) Table 5
Vb In-service 10 5 𝐿𝑁(𝜇̂𝐵𝑆 , 𝜎̂𝐵𝑆 ) Bootstrap

aKnown loads. See Fig. 10(c), years 1980–1994.
14
of the uncertain and i.i.d. fatigue loads. The temporal evolution of the
CoV may therefore be calculated from the relation 𝑉 (𝑁)

𝐷 = 𝑉𝑍∗∕
√

𝑁 ,
where 𝑉 (𝑁)

𝐷 is the CoV of accumulated fatigue damage after 𝑁 years and
𝑉𝑍∗ is the CoV of 𝑍∗. This supports the following somewhat intuitive
conclusion for the design scenario: both the expected fatigue load and
the annual variability are important for the initial years, whereas the
mean value is of main importance in the long run. It is emphasized,
however, that the degradation due to corrosion is here neglected. The
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importance of annual variability for the later years could increase if
interaction with uncertain corrosion development is considered.

Results for the in-service cases are shown in Fig. 16. The fatigue
loads are deterministic and equal to those of the reference case up to
and including the 10th year (1989). After 15 years, the expected fatigue
damage is roughly 10% on the low side of the reference case, whereas
the 97.5-percentile is around or slightly above it. The CoV is zero for
the deterministic part of the simulation. It then increases through the
future years (meaning that the standard deviation increases faster than
the expected value), but remains on the low side of the design case CoV
– despite the higher fatigue load variability for the in-service cases (see
CoVs in Table 2 vs. Table 5).

Judging by the CoVs and the 97.5-percentiles in Fig. 16, the boot-
strap procedure (case Vb) adds little uncertainty compared to using the
point-estimates and neglecting the epistemic uncertainty of the fatigue
loads (case Va). As demonstrated by the exceedance plots in Fig. 17,
however, it yields a more skewed distribution with a longer upper tail.
The difference is small at an exceedance probability of 10−1, but consid-
erably more pronounced at probability level 10−3–10−4. The implication
s that the epistemic uncertainty is here of limited importance for the
entral part of the fatigue damage distribution, whereas it may be of
arger importance for problems governed by the tail of the distribution,
uch as calculation of failure probabilities for mooring lines with a high
atigue reliability.

The exceedance plots also include the sample distributions of the
esign case. Although not directly comparable to the in-service cases
for which the fatigue load parameter estimation is based on a subset
f the data), it still provides an interesting basis for comparison. Firstly;
he tail of the sample distribution for in-service case Va is slightly
n the low side of the design case, despite its higher fatigue load
ariability for future years. This is a result of the reduced uncertainty
ue to knowledge of the fatigue loads in prior years. Secondly; for
n-service case Vb, which addresses the epistemic uncertainty of the
atigue load parameters, the tail is on the high side of the design case.
his may be interpreted as the cost of not knowing the true distribution
arameters, and estimating them from a limited basis. Finally; note that
or a different set of cases, the sample distributions of the in-service
ases could be shifted either right or left compared to that of the design
ase, depending on the prior loads, the number of prior years, or the
otal number of years considered.

.4. Conclusions of case study

Using deterministic fatigue load and corrosion grade histories, it has
een shown that the impact of the inferential uncertainty of the S–N
urve coefficients estimated in Lone et al. (2021) is negligible compared
o that of the predictive uncertainty of the underlying regression model.
his result is used to justify the following simplification of the S–N
apacity model: the mean load and corrosion grade effect coefficients
𝑏1 and 𝑏2, respectively) may be assumed fixed at their respective
ean values, whereas the predictive uncertainty is included in the
robabilistic description of the 𝑏0 coefficient.

Based on a simple probabilistic corrosion grade model, the impact
f uncertain corrosion grade at end of the service life and the shape
f the time history have been demonstrated. A faster initial corrosion
rade development, with uncertain final value, is seen to increase both
he expected value and the CoV of the accumulated fatigue damage
ompared to a slower initial development.

For the case study presented here, fatigue load uncertainty alone
auses a CoV in the range 0.05–0.11 for accumulated fatigue damage
fter 15 years. This is considerably less than the CoV due to uncertainty
n fatigue capacity (0.41) or corrosion grade development (0.19–0.31).
owever, these quantities and their relative importance could be dif-

erent for other systems or for alternative cases or quantities of interest;
i) other mooring systems could exhibit larger fatigue load variability
15

r the loads could be found to follow a different probability distribution –
han the lognormal considered here; (ii) the corrosion grade uncertainty
ould be reduced through inspection; (iii) the total effect of fatigue load
ncertainty could increase if interaction with corrosion grade uncer-
ainty were considered; (iv) the relative importance may be different for
he tail of the fatigue damage distribution, which has only been briefly
ddressed in the present study but could be governing for calculation
f failure probability.

. Conclusions

A new probabilistic model for mooring chain fatigue has been
eveloped, based on a S–N formulation with parameterized dependence
o mean load and corrosion grade. Time dependencies of underlying
andom variables are handled by expressing the accumulated fatigue
amage as a sum of time-invariant contributions. Owing to the intro-
uction of representative values for the mean load and corrosion grade
unctions, this piecewise time-invariant formulation represents only a
inor inaccuracy compared to a fully time-variant one.

The model enables accounting for the uncertain and temporal de-
elopment of corrosion, as well as the variability of both mean loads
nd cyclic fatigue loads. To account for the correlation between the
atter two loads it is proposed that they are combined into a single
andom variable. A necessary condition for this measure to be taken
s that the mean load effect on the fatigue capacity is assumed to
e deterministic. By distinguishing between the fatigue damage due
o prior known loads and that caused by future uncertain loads, the
tilization of load history from prior operation is enabled. This way,
ncertainties that were present at the design stage may be reduced in
onnection with in-service assessment of the mooring system fatigue
erformance.

Mooring line response simulations have been performed for a real-
stic mooring system in the Norwegian Sea, based on a long series of
indcast data. Results from these simulations have been presented and
iscussed in light of the probabilistic model, and then used as the basis
or a case study. Based on our model, the case study demonstrated the
solated effects of uncertainty in capacity, corrosion and fatigue loads
n the distribution of accumulated fatigue damage.

uture work. Although the model implicitly handles the interaction
etween corrosion grade uncertainty and fatigue load variability, this
as not been explicitly addressed or quantified in the present study. The
ase study results do, however, suggest that such interaction could be of
ome importance. For future work, this could be quantified by means of
or instance a global sensitivity analysis, using variance decomposition
echniques (Saltelli et al., 2008).

A probabilistic fatigue damage model forms the basis for reliability
nalysis to calculate the probability of mooring line fatigue failure.
n addition to the uncertainties addressed explicitly in the present
tudy, such analysis needs to take into account model uncertainties
ddressing inaccuracies and possible bias introduced by the underlying
athematical models and inaccurate data. Examples relevant for the

urrent model include: the use of a S–N model to represent the fa-
igue effect; load measurements; numerical mooring system model and
nvironmental data (when load history stems from simulations); the
se of a parametric distribution to represent future loads. Furthermore,
mooring system does not consist of a single chain component, as

onsidered here, but of several lines that may each be composed of
ultiple segments with typically 100+ components each. A reliability

nalysis must reflect that fatigue failure in any of these components
eads to a mooring line failure.
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Appendix A. Goodness-of-fit tests for lognormal distribution of 𝒁
and 𝒁∗

Goodness-of-fit tests have been performed to assess the validity
of the assumption that the fatigue load variables 𝑍 and 𝑍∗ follow
a lognormal distribution. Two different tests have been applied: (i)
the Kolmogorov–Smirnov (K–S) test, which considers the maximum
discrepancy between the empirical and theoretical (fitted) distribu-
tion functions, and (ii) the Anderson–Darling (A–D) test, which places
more weight in the tails of the distribution. For details on these test
procedures, see e.g., Ang and Tang (2007).

Annual data from all 61 years of simulations is considered, with
lognormal distribution parameters (𝜇, 𝜎) estimated from Eqs. (17) and
(18). Results are listed in Table A.7, along with critical values for
significance level 5%. The calculated test statistics are below the critical
value for both tests, for both response variables and all mooring lines
considered. Therefore, the lognormal distribution is acceptable at the
5% level of significance.

Probability paper plots are presented in Fig. A.18, for comparison
of the empirical and fitted distributions for lines 5 and 13. The plots
demonstrate good agreement for the central part of the distributions for
both response variables. Some discrepancies are observed in the right
tail, with the empirical distribution on the high side. This indicates
that the fitted lognormal distribution may be non-conservative in the
upper tail region, but the plots give limited basis as to conclude whether
the deviations are caused by statistical uncertainty or systematic bias.
In any case, as fatigue damage is accumulated over several years the
exact tail behavior of the annual load distribution becomes less impor-
tant compared to the overall fit. Minor emphasis is therefore placed
on the observed discrepancies, as long as the test-of-fit results are
acceptable.

Appendix B. Effect of choice of representative value for corrosion
grade function

The effect of choice of representative value for the corrosion grade
is considered, using known fatigue loads and a linear corrosion grade
development (𝜂 = 1). Two cases are compared: corrosion grade function
is represented by the its final value in each year (𝑎 = 0), versus using
the average value (𝑎 = 0.5). The latter is identical to case IIa of the case
study (see Section 4.2, Table 4).

Results are shown in Fig. B.19. When the final value is used (𝑎 = 0),
the fatigue damage increases compared to when the average value is
used (𝑎 = 0.5). The differences are small, however, with less than
2% increase for the CoV and only 3%–4% for the expected damage
and 97.5-percentile. Furthermore, the impact of different representative
16

values is small compared to that of different shapes (cf. Fig. 14).
On this basis, the average value seems like a reasonable choice for
the representative value, since using the final value for each year is
demonstrably conservative. However, larger differences could result
for a different probabilistic model or if an alternative corrosion grade
function (𝑔2(𝑐)) was used.

Nomenclature

E[.] Mathematical expectation
ln(.) Natural logarithm
log(.) Common logarithm
∼ distributed as
𝐿𝑁(𝜇, 𝜎) Lognormal distribution with scale parameter exp{𝜇}

and shape parameter 𝜎
𝑁(𝜇, 𝜎2) Normal distribution with mean 𝜇 and variance 𝜎2

𝑈 (𝑎, 𝑏) Uniform distribution with support [𝑎, 𝑏]
𝜂 Exponent of probabilistic corrosion model, see (22)
𝜇̂ Maximum likelihood estimate of 𝜇
𝜎̂ Maximum likelihood estimate of 𝜎
𝜇 Mean value

Logarithm of scale parameter of lognormal
distribution

𝜎 Standard deviation
Shape parameter of lognormal distribution

𝜎𝑚 Mean stress [MPa]
𝜎𝜀 Standard error of regression model
𝜀 Regression error, see (19)
𝑎 Variable of probabilistic corrosion model, support

[0, 1], see (22)
𝐴(𝜎𝑚, 𝑐) Mean load and corrosion dependent intercept

parameter of S–N curve, see (3)
𝑏0 Coefficient of S–N curve intercept parameter, see (3)
𝑏1 Coefficient of S–N curve intercept parameter (mean

load effect), see (3)
𝑏2 Coefficient of S–N curve intercept parameter

(corrosion grade effect), see (3)
𝑐 Corrosion grade, support [1, 7]
𝐶end Corrosion grade at end of service life, see (22)
𝐷 Fatigue damage (Palmgren–Miner sum)
𝑔1(𝜎𝑚) Mean load function, see (3)
𝑔∗1 Representative value of mean load function over a

specified period, see (10)
𝑔2(𝑐) Corrosion grade function, see (3)
𝑔∗2 Representative value of corrosion grade function

over a specified period
𝑚 Slope parameter of S–N curve
𝑁 Number of cycles to failure, see (1)

Sample size for estimation of distribution
parameters, see (17) and (18)

𝑁𝑓 Number of future years
𝑁𝑝 Number of prior years
𝑁𝑇 Total number of years
𝑁𝑀𝐶 Sample size (number of realizations) generated in

Monte Carlo simulation
𝑆 Stress range [MPa]
𝑍 Fatigue load, see (11)
𝑍∗ Fatigue load including mean load effect, see (12)
𝑧𝑝, 𝑧∗𝑝 Realization of prior fatigue loads
CoV Coefficient of Variation
i.i.d. independent and identically distributed
MCS Monte Carlo Simulation
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Fig. A.18. Empirical (markers) vs. fitted (dashed) distributions for 𝑍 (left) and 𝑍∗ (right) on lognormal probability paper. Simulation data for 61 years (1958–2918). Mooring
ines 5 (upper) and 13 (lower).
able A.7
est-of-fit results for lognormal distribution, at 5% level of significance. Based on simulations for 61 years.
Variable,
Mooring line

Cluster Fitted parameters K–S test A–D test

𝜇̂ 𝜎̂ Test statistic Critical value Reject? Test statistic Critical value Reject?

𝑍 = 𝑛0 ⋅ E[𝑆𝑚]
1 South 18.23 0.257 0.057 0.171 No 0.257 0.741 No
5 West 17.88 0.364 0.075 0.171 No 0.390 0.741 No
9 North 18.11 0.235 0.095 0.171 No 0.644 0.741 No
13 East 18.29 0.316 0.066 0.171 No 0.238 0.741 No

𝑍∗ = 𝑛0 ⋅ E[𝑆𝑚] ⋅ 10−𝑏1 ⋅𝑔∗1
1 South 19.72 0.282 0.064 0.171 No 0.232 0.741 No
5 West 19.30 0.389 0.083 0.171 No 0.408 0.741 No
9 North 19.59 0.252 0.093 0.171 No 0.714 0.741 No
13 East 19.59 0.287 0.062 0.171 No 0.192 0.741 No
Fig. B.19. Corrosion grade uncertainty: effect of choice of representative value. Mooring line 5 (West).
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