Hindawi

Wireless Communications and Mobile Computing
Volume 2021, Article ID 6653816, 12 pages
https://doi.org/10.1155/2021/6653816

Research Article

WILEY

Hindawi

Mining Profitable and Concise Patterns in Large-Scale Internet of

Things Environments

Jerry Chun-Wei Lin ,! Youcef Djenouri ,> Gautam Srivastava (0,

and Philippe Fournier-Viger (°

"Western Norway University of Applied Sciences, Norway

2SINTEF Digital, Norway

’Brandon University, Canada

*China Medical University, Taiwan
*Shenzhen University, Shenzhen, China

3,4

Correspondence should be addressed to Jerry Chun-Wei Lin; jerrylin@ieee.org

Received 24 December 2020; Accepted 7 September 2021; Published 23 September 2021

Academic Editor: Xingsi Xue

Copyright © 2021 Jerry Chun-Wei Lin et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, HUIM (or a.k.a. high-utility itemset mining) can be seen as investigated in an extensive manner and studied in
many applications especially in basket-market analysis and its relevant applications. Since current basket-market scenario also
involves IoT equipment to collect information, i.e., sensor or smart devices, it is necessary to consider the mining of HUIs (or
ak.a. high-utility itemsets) in a large-scale database especially with IoT situations. First, a GA-based MapReduce model is
presented in this work known as GMR-Miner for mining closed patterns with high utilization in large-scale databases. The k
-means model is initially adopted to group transactions regarding their relevant correlation based on the frequency factor. A
genetic algorithm (GA) is utilized in the developed MapReduce framework that can be used to explore the potential and
possible candidates in a limited time. Also, the developed 3-tier MapReduce model can be easily deployed in Spark for the
handlings of any database of large scale for knowledge discovery of closed patterns with high utilization. We created sets of
extensive experimental environments for evaluating the results of the developed GMR-Miner compared to the well-known and
state-of-the-art CLS-Miner. We present our in-depth results to show that the developed GMR-Miner outperforms CLS-Miner
in many criteria, i.e., memory usage, scalability, and runtime.

1. Introduction

As there is rapid growth of information technologies regard-
ing machine learning models, Internet of Things (IoT) [1],
and edge and cloud computing [2, 3], data-driven mining
has become an important topic that can be used to extract
the meaningful information from the collections of those
techniques. Several pattern mining models [4-9] have been
extensively studied, and the most fundamental knowledge
of pattern mining in knowledge discovery in databases
(KDD) is called ARM or association rule mining, which is
deployed through varied applications and specific domains.
Among them, Apriori was presented for finding the associa-
tion rules set in transactional databases iteratively. This is a

standard approach that finds the candidate itemsets first then
derive the satisfied itemsets at each level or called as the level-
wise/generate-and-test model; a huge memory usage and the
computational cost are relevantly high. After that, a set of
association rules can be discovered and mined. Frequent
pattern- (FP-) tree [10] was designed to speed up mining
progress by building a condense tree structure. Thus, only
frequent 1-itemsets are held in the main memory that can
be used for later mining progress. In addition, a conditional
FP-tree is then recursively constructed to find the frequent
itemsets (or frequent patterns) according to different prefix
itemsets in the Header_Table. Both Apriori and FP-tree algo-
rithms ensure the DC (or a.k.a. downward closure) property
to avoid the heavy cost regarding “combinational explosion.”

https://orcid.org/0000-0001-8768-9709
https://orcid.org/0000-0003-0135-7450
https://orcid.org/0000-0002-3991-0488
https://orcid.org/0000-0002-7680-9899
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6653816

This property is then applied and extended to many pattern
mining algorithms in different domains and applications,
i.e., HUIM (or called high-utility itemset mining) [11-15].

HUIM used 2 properties (a.k.a. the internal + external
utility) to find the set of HUIs (or a.k.a. high-utility itemsets)
in the basket-market domain. The internal utility can be
considered as the quantity of an item of each transaction
in databases, and external utility can be treated as the unit
profit value of each item in databases. Those two values
can be replaced by other factors according to the specific
requirements, constraints, users’ needs, and applications.
The generic algorithm of HUIM [16] does not take DC
property for revealing the set of HUIs, which requires a huge
size of the search space. To solve this limitation, TWU (or
a.k.a. transaction-weighted utilization) model [14] considers
the transaction utility to construct the HTWUIs (or a.k.a.
high transaction-weighted utilization itemsets) as the item-
sets with the upper-bound values for maintaining the DC
property, which is named as TWDC (or a.k.a. transaction-
weighted downward closure) in HUIM. This property is
then used in many utility-driven mining algorithms, e.g.,
UP-growth+ [17], HUI-Miner [15], HUP-tree [18], FHM
[19], and d2HUP [20]. More algorithms to improve mining
effectiveness regarding the discovered patterns are then
developed and discussed by adapting utility concept in pat-
tern mining tasks. In IoT applications [21], many factors
can be considered as different values, e.g., interestingness,
weight, importance, and uncertainty degree; thus, HUIM
can be easily adopted into IoT and/or sensor networks to
turther discover the required information for data analysis
tasks. Based on this assumption, more important and spe-
cific information and knowledge will be discovered for later
decision or strategy making.

Instead of classic pattern mining approaches such as
FIM (or ak.a. frequent itemset mining) or ARM (or a.ka.
association rule mining) for decision-making, it can disclose
more useful and relevant information based on the property
of HUIM. The reason is that the HUIM can reveal more
information by taking internal and external factors in the
mining progress. However, the generic model for discover-
ing the required patterns requires to analyse a huge number
of the candidates first, which is ineflicient and it is also hard
to find the meaningful patterns from a very huge number of
patterns. Closed-pattern mining constraint [1, 22-25] was
then adapted in pattern mining to provide better functional-
ities for mining condense and compress patterns. This strat-
egy is then used in HUIM, which is arisen as a new topic
called CHUIM (or a.k.a. closed high-utility itemset mining)
[26, 27]. Based on this model, less but more meaningful
information will be discovered by two conditions as follows:
(1) the superset of an itemset has different support values to
an itemset itself and (2) the utility of an itemset is no less
than the predefined minimum utility count (threshold).
CHUD algorithm [26] was investigated to firstly find the
CHUISs (or called closed high-utility itemsets) by using the
generic TWU model [14]. Since TWU model is a level-
wise and generate-and-test model, a huge number of the
computational cost is needed and a huge memory usage is
required to keep the candidates level-by-level, which is inef-

Wireless Communications and Mobile Computing

ficient and time-consuming. CHUI-Miner [27] was investi-
gated to build the extended utility-list (EU-list) that keeps
the revealed information in the main memory; the divide-
and-conquer mechanism is then used to find the CHUIs
correctly and completely. To better improve mining perfor-
mance, CLS-Miner [28] was designed by using the matrix to
lower the size of the search space. This model has good per-
formance compared to the existing models and is considered
as the state-of-the-art approach for CHUIM. The generic
CLS-Miner is, however, not possible to be performed for dis-
covering the CHUIS in large-scale databases; it is inappropri-
ate in real and industrial domains and applications. Past
works have been developed to present the parallel and
distributed models used in HUIM [29], but those generic
models need to find a very large set of the candidate itemsets
for decision-making; it needs high computational cost and a
huge memory usage to deliver the complete information. To
build an effective and efficient model for revealing the CHUIs
has become an important issue in pattern mining research.

Up until now, there has been no model existing that can
be used for CHUIM in any database of large scale. Moreover,
in the case of correctly and completely mining the needed
CHUI making use of distributed and parallel frameworks,
we require a strong model to be able to distribute the trans-
actions in an effective and efficient manner to the processing
nodes. For solving this known limitation, GMR-Miner is
developed and introduced in this paper. Main findings are
as follows:

(i) We design a 3-tier MapReduce framework deployed
in Spark for mining CHUIS in large-scale datasets

(ii) A k-means model is made use of for grouping
relevant transactions into clusters; thus, ensuring
discovered CHUI numbers is complete and correct

(iii) A GA-based model makes utilization of the MapRe-
duce framework to explore the possible and potential
candidates in a limited time for greatly reducing the
computational cost

(iv) Experimental evaluation shows that GMR-Miner
has a strong and outstanding performance

2. Related Work

2.1. MapReduce Framework. MapReduce [30] is a parallel
and distributed framework that was originally designed
and implemented by Dean and Ghemawat. It can be made
and implemented to handle large databases. It uses both
parallel and distributed models on clusters in 2 main com-
ponents, Mapper and Reducer, respectively. With regard to
pattern mining and the MapReduce framework, the authors
in [31] proposed 3 algorithms, using Apriori property to dis-
cover the necessary and relevant information. To be used in
HUIM, the authors in [29] invented PHUI-growth to be
used in the mining of HUIs from big data. As CHUIM
research rapidly grows, efficient model development is a
necessity for discovering CHUIs in large-scale databases.
We refer readers to [29-31] for more in-depth information

Wireless Communications and Mobile Computing

on the MapReduce framework and skip an in-depth discus-
sion here in lieu of space considerations in the manuscript.

2.2. Evolutionary Computation. Genetic algorithm (GA) was
presented by Holland [32] as the first optimization approach
in evolutionary computation. The benefit to use GA is that it
is not a trivial task to implement GA for real applications.
GA 1is used to solve the NP-hard question and provides a
solution optimally. The idea for GA implementation is to
encode the solutions as a chromosome, and each chromo-
some is represented as an individual in the population. To
evaluate the goodness of the chromosome, a fitness function
should be predefined in the evolutionary process. Since GA
is the fundamental approach in evolutionary computation,
many extensions [33, 34] are then developed and studied
to enhance its efficiency.

In GA, 3 operations are generally considered to iteratively
perform for obtaining a better solution, and they are indicated
as (1) mutation, (2) crossover, and (3) selection. For the evolu-
tionary progress of GA, first, each possible solution is then
encoded as a chromosome, which can be presented as a string
by binary or decimal encoding scheme. The crossover operation
is then performed to swap the parts of the chromosomes that
can be used to produce the offspring as a new solution for the
next generation. The idea of crossover operation is to generate
the possible solutions and better convergence in a search space.
After that, a mutation operation is then executed to flip some
digits of a chromosome, which generates new solutions. The
idea of mutation operation is to change parts of a solution ran-
domly, which can increase the diversity of the population and
provide a mechanism for escaping from a local optimum. Note
that the ratio for running the crossover and mutation is differ-
ent, and normally, the ratio of crossover operation is higher
than that of the ratio of mutation operation. After that, the
selection operation is then operated to find the elite solutions
for the next round (or generation). This selection mechanism
is mostly based on the fitness value. Thus, iterative progress is
then performed until the termination condition is achieved.
Several criteria can be set to terminate the progress of evolution-
ary model by (1) the number of iterations is achieved by the pre-
defined the number of generations or (2) the fitness value
becomes stable without further big changes; the algorithm is
converged. However, in traditional GA-based model, it takes
long time to be converged by the 3 generic operations.

Several EC-based approaches were adapted to generic
ARM [35], HUIM [13, 36], and high average-utility itemset
mining (HAUIM) [37] for knowledge discovery. Qodmanan
et al. [35] presented a GA-based model to mine the associa-
tion rules without minimum support and confidence thresh-
olds. The designed fitness function can produce more
interesting and important rules rather than the traditional
approaches. Kannimuthu and Premalatha [36] first adapted
the GA-based model in HUIM that can discover the set of
the HUIs in a limit time. Gunawan et al. [13] presented a
BSPO model for mining HUIM without threshold value.
Further extensions are then developed in progress to adapt
the evolutionary computation (EC) for mining the required
information. Song and Huang [37] used the PSO model for
revealing the high average-utility itemsets.

2.3. High-Utility Itemset Mining (HUIM). There can be very
beneficial reasons to analyse the purchase behaviours of
customers in basket-market domains since the revealed
information and knowledge will provide the realistic and
profitable values of the products to the company, e.g., super-
market or shopping mall. Generic models of association rule
mining/frequent itemset mining only take occurrence fre-
quency as the major consideration, which provide the insuf-
ficient knowledge to make the efficient decision especially it
is not applicable on an item with lower frequency in the
database but can bring higher profit than the others, i.e., dia-
mond or caviar. HUIM [16] was presented to take the inter-
nal factor (considered as the quantity of the item in the
transactions) and external factor (considered as unit profit
for the item in any database) to reveal the set of HUIs, which
shows an alternative model for making more precise and
accurate strategies for decision-making.

Traditional models of HUIM [16] do not hold the DC
property; thus, it takes a very huge search space by “combi-
national explosion” mechanism to reveal the required infor-
mation. TWU model [14] was presented to build the upper-
bound values on the itemsets by holding and maintaining
the HTWUIs. This model can hold the TWDC property to
solve the limitation of the past HUIM models. Although
TWU model is efficient but it still builds the very high
upper-bound values on the itemsets; thus, several models
were, respectively, presented to mine the set of HUIs and
speed up mining performance. The high-utility pattern-
(HUP-) tree was developed to keep the required information
into a tree structure, which provides good performance than
that of the traditional TWU model. Utility-pattern- (UP-)
growth and UP-growth+ [17] were then developed to mine
the set of HUIs efficiently from the implemented utility-
pattern tree. The above algorithms are, however, still based
on TWU model to keep the loose upper-bound values on
itemsets; thus, the number of discovered candidates in phase
1 is still a lot. To reduce this limitation by having a lot of
candidates in phase 2, HUI-Miner [15] was designed and
implemented by a linked-list structure named utility-list-
(UL-) structure that can avoid the generate-and-test and
tree-based models for mining the set of HUIs. It also uses
the join operator to generate k-itemsets; thus, the required
HUIs at different levels can be found and discovered effi-
ciently. FHM [19] was investigated to build a matrix struc-
ture effectively to store the cooccurrence relationships
among itemsets that can be used to reduce the search space
efficiently since the unpromising candidate itemsets can be
early pruned and removed. FIM [38] was then developed
and implemented to work on two strategies that can be used
to establish the tight upper-bound values on the itemsets; the
size of the search space can be reduced greatly. Several works
of HUIM are then extensively studied and discussed. Srivas-
tava et al. [39] used the prelarge and fusion models to mine
the set of HUIs from wireless sensor networks for the real
industry applications. Several approaches and studies are
then developed in HUIM, and this research issue has been
still developed in progress [9, 40].

Although most of the pattern mining models, e.g., ARM
or HUIM, can find the required information for decision-

making, it is sometimes not a trivial task to retrieve the most
useful and meaningful information from a huge number of
the rules especially for some online decision-making system,
i.e.,, stock market analysis. Thus, it is possible to provide less
but meaningful information and knowledge for further
decision-making. Closed pattern mining of frequent itemset
mining [22, 23] is a good model to find the less but concise
patterns as the solution for decision-making. Instead of min-
ing a high number of patterns for decision-making, closed
frequent itemset mining can greatly reduce the size of the
discovered patterns; thus, it is somehow easier to make the
decision in a short time. Closed-pattern mining model was
also adapted the concept of HUIM; thus, the CHUI-Miner
[27] was presented to find the CHUISs in the databases. Since
CHUI-Miner is a one-phase approach; thus, it uses the EU-
list model to keep the necessary information for the later
mining progress. However, the CHUI-Miner still relies on
TWU property to maintain the upper-bound values on the
itemsets; it still suffers the limitation of huge search spaces
for finding the required patterns; thus, the execution time
is costly. Up to now, the state-of-the-art model called CLS-
Miner [6] was presented that incorporates the UL-
structure EUCS strategy in the mining progress. The EUCS
model is very beneficial to reduce the number of 2-itemsets
for the further progress; thus, the size of search space can
be greatly reduced. Moreover, CLS-Miner applies the effi-
cient strategies to prune the size of the search space as well;
thus, the mining performance can be sped up. Up to now,
none of the existing models can thus be used to handle the
large-scale databases for mining the CHUIs, which is the
major task and research issue in this work.

3. Preliminary and Problem Statement

A set of items in the database is denoted as I and defined as
I={i, iy, 1,}. Also assume that a database is denoted as
D and defined as D={T,, T,, -+, T,,}. Note that each T, €I
(1 <d < n), and there is n transaction in the database D. Sup-
pose that the quality of an item i; in a transaction T} is
denoted as q(ij, Ty), and the unit profit of an item i; is
denoted as p(i;). Note that both g(i;, T;) and p(j;) are the
positive integers. Assume that an itemset is denoted as X
such that X = {i;,i,, -, i; }. The length of X is considered
the size of the itemset X, which can be considered as k
-itemset (k=1,2,---,m). Key definitions of this paper are
given as follows.

Definition 1. The utility of an item i; in a transaction T is
denoted as u(i;, T;) and defined as follows:

”(ij’ Td) = Q(ij’ Td) Xp(ij)’ (1)

where q(i;, T,) is the quantitative value of i; in T/; and p(i;)
is the unit profit of an item i; in the unit of the profit table.

Wireless Communications and Mobile Computing

Definition 2. The utility of an itemset X in a transaction T is
denoted as u(X, T;) and defined as follows:

u(X, Ty) =Y u(i, T,). (2)

IJGX

Definition 3. The utility of an itemset X in a database D is
denoted as u(X) and defined as follows:

uX)=)

XCT AT €D

u(X, Ty). (3)

Definition 4. The utility of a transaction T is denoted as ¢
u(T,) and defined as follows:

tu(T,) = Z u(ip Ty)- (4)

ij€Ty

Definition 5. The total utility of a database D is denoted as
u(D) and defined as follows:

u(D)= Y tu(T,). (5)

T, eD

Definition 6. Suppose an itemset is defined as X, and the
minimum utility threshold is set as §. An itemset is a high-
utility itemset (HUI) if it follows the following condition as

u(X) =68 xu(D). (6)

Definition 7. Suppose an itemset X is a CHUL It must have the
following conditions as follows: (1) any superset (i.e., Y) of X
will not have the same support value such as sup (V)=
sup (X) and (2) u(X) is larger than or equal to the mini-
mum utility count. Note that u(Y) is also larger than or
equal to the minimum utility count.

For the generic association rule mining or frequent item-
set mining, it holds the downward closure property to avoid
the “combinational explosion” issue. To increase the mining
performance in HUIM, a new property called transaction-
weighted downward closure (TWDC) was established by
TWU model [14] that can be used and adapted in HUIM
to solve the limitation of the generic models.

Definition 8. An itemset is denoted as X, and its transaction-
weighted utility is denoted as twu(X). To calculate the
transaction-weighted utility of X, it follows the condition
as follows:

twu(X) = Z

T,€DAXCT,

tu(Ty). (7)

Current works [14, 17, 19] regarding HUIM applied the
TWU model to keep the TWDC property; it also adapts to
CHUIM [27] to avoid the problem of “combinational

Wireless Communications and Mobile Computing

explosion.” In addition, the UL-list-based model [15] and
EUCS-based approach [19] are beneficial to efficiently reveal
the required high-utility itemsets. For example, UL-list uses
the join operator, which is easily to find the (k + 1)-item-
sets level wisely without candidate generation. The EUCS
model uses the matrix structure to keep the TWU values
of 2-itemsets. Based on the DC and TWDC properties, if a
2-itemset is not a HTWUI, its superset will not be the
HTWUI either; the superset of the itemset can be discarded
and ignored. Thus, the search space can be reduced effi-
ciently. As we mentioned, the CHUIM can produce a
smaller number of useful and meaningful patterns; thus, it
is possible to make the decision quickly based on some spe-
cific online applications. The generic models [27, 28] of
CCCCCCHUIM cannot, however, handle the large-scale
and big datasets, which is not applicable in real-life situa-
tions and applications. We thus then developed a MapRe-
duce framework that can be used to process the CHUIM
in very big and large-scale datasets.

Problem Statement: Suppose a very large transactional
database D, and each transaction in D consists of the pur-
chased items with their quantity values. A profit table is
assumed as a ptable that keeps the unit profit of the items
in the database. Let § be the minimum utility threshold in
the database. The purpose of this paper is aimed at finding
the complete set of the CHUI efficiency by the cloud-
computing techniques for handling the large-scale datasets.

4. The Developed GA-Based MapReduce
Model for CHUIM

We first design a GA-based decomposition model and a 3-
tier MapReduce framework for handling large-scale
CHUIM in this section. The idea of exploring the decompo-
sition and combining the 3-tier MapReduce is to reduce the
search space for finding the required information, which
easily is explored by the genetic algorithm (GA). First, the
set of transactions D is then partitioned into several groups
G={G,,G,, -, G}, in which each group G, contains sev-
eral transactions in D, and k is set as the group number in
the database. Generally, the groups hold disjoint relation-
ship, in which for every two different groups, it holds the
condition as follows:

(G»G,). 1(G) n1(G,) = @, (8)

where I(G;) is the set items of the group G; and I(G;) is the
set items of the group G;.

Proposition 9. Let G be the groups of transactions in the
original database D. If the groups in G have no shared items,
the set of all relevant frequent itemsets is considered as the
unions of the full groups’ frequent itemsets. We thus can note
that

where F; is considered as a set of the relevant frequent item-
sets of the group G;.

Proof. Consider V(i j) € [1 -+~ k], 1(G,) N I(G;) = &, we can
obtain that Vie[l---k]: F;={p|sup (D,I,p) >min_sup}.
The support of the pattern p is examined by checking all
transactions in D. Considering a pattern p exists in I(G,),

e, pcl(G)=Veep,ecl(G)=Veep,etI(G)),(Vje(l
- klvj#i) = pel(G;) = F;={p|sup (G, I(G;), p) > min_

k
sup}=>F={ig1 F;}.00 O

The proposition above clearly shows that transactions
that are in D must follow certain conditions above, from
which the dependent groups can be fully revealed. Thus,
relevant frequent itemsets can be identified using pattern
mining approaches in groups. However, this is not a realistic
scenario, and the objective is to decrease the number of
items shared by the separated groups. Existing work [5]
identified that k-means [41] and DBSCAN [42] can obtain
a good performance of transaction decomposition, and k
-means showed better results than that of the DBSCAN.
Thus, a k-means model is used in the designed framework
for transaction decomposition that can group highly rele-
vant transactions in the same group. After that, a GA-
based MapReduce- (GMR-) Miner algorithm that consists
of GA and 3-tier MapReduce framework for mining the
closed patterns with high utilization is then presented. Three
phases in the designed framework regarding different
MapReduce tasks are described below.

4.1. Exploration. After dividing the transactions into several
groups, each Mapper is fed with a partition. The framework
for MapReduce is applied in this step for the exploration of
any and all promising items which may be CHUI in addition
to their supersets. Any unpromising itemsets can easily be
discarded in this step to make good mining progress due
to the design properties which can be stated as follows.

Property 10. We can say that if there exists a known pattern ¢
that clearly is or can be defined as a frequent pattern, it can
be defined as a frequent itemset in one part.

Proof. Let a database D being split into n parts such that
{D,,D,, -+, D, }; the total frequency of each part is calcu-
lated as {|D,|,|D,l, -+, |D,|}. Assume that the minimum
support threshold is considered as § in the database, and
t is considered as a frequent pattern in D. We then can
obtain the following situation as follows:

s(t) =0 x |Dyl. (10)

The counter-evidence, {s,,s,,+,s,}, is used to show
the support value of an itemset (pattern) ¢ of each part.
Obviously, t is not considered as the frequent itemset in
the entire part such that s; <8 x|D;|,s, <8 X |D,|, s,
<8x|D,|. Then, s(t)=Y",|D,| is different to the above

definition. This, we can prove that the correctness is held
by this property.000 O

Based on the developed Property 10, it is then studied
and extended to the designed MapReduce model. Thus, the
integrity of the mined information is then ensured. Accord-
ing to the DC property used in the Apriori algorithm, Prop-
erty 11 is studied and extended from Property 10 to ensure
that the supersets can satisfy the condition. The definition
is then given as follows.

Property 11. Suppose two itemsets ¢ and ¢’ hold the situation
such as t t'. Thus, in the database D, we can ensure that
s(t, D) = s(t', D) maintains the correctness.

Based on Property 11, if a support of an itemset ¢ is less
than the minimum support threshold (count, 8 x |DJ), it is
not treated as a frequent itemset, neither its supersets. That
is, it does not affect the final results if ¢ is then early removed.
In the proposed paper, each Mapper acquires a database par-
tition. Thus, the pair of <key, value> for an itemset with its
support value (or called frequency) is output in a certain
partition to the Reducer. Following that, a GA-based tech-
nique is used to investigate the possible search space for
the next Reducer phase. All frequent itemsets are treated as
individuals in the first population, and then, the unsatisfied
itemsets are removed to efficiently minimize the search
space for later processes. This GA-based technique can sig-
nificantly cut computational costs by avoiding the need to
explore the whole search space. Following that, all promising
frequent itemsets are inspected to determine the complete
closed frequent itemsets [22, 23] by the next MapReduce
framework to reveal the satisfied CHUTISs.

To be concluded, the initial MapReduce divides the clus-
tered dataset into numerous parts (or called partitions),
which are subsequently processed independently by each
Mapper. The GA model then generates a search space for
prospective candidates that can be used to reduce the size
of the search space. Following that, all satisfied frequent
itemsets are mined and revealed, and unsatisfied frequent
itemsets are deleted here. Once again, only satisfied CHUIs
will be sent to the subsequent MapReduce model for reveal-
ing the set of CHUIs. The following is the description of the
exploitation phase.

4.2. Exploitation. The exploitation phase begins with the
usage of current CHUIM models (e.g., CLS-Miner [28]) to
mine the CHUIs for each partition. Given that mining the
set of CHUIs in the whole dataset is not straightforward,
the second MapReduce is executed in parallel with the par-
tial, tiny, and numerous sets from promising itemsets from
the initial MapReduce on each node. Due to the fact that
each node requires less memory, the MapReduce architec-
ture is capable of running a large database on a single
machine. The candidate’s utility is then explored for each
node in order to determine the progress of the exploitation
mining. The horizontal structure known as tidsetis used to
store the transaction ID and its associated frequent itemsets.

Wireless Communications and Mobile Computing

Due to the efficient tidset structure, it is simple to calculate
the frequencies of the itemsets in the mining progress; thus,
the computational cost can be greatly minimized and the
performance can be greatly improved.

Additionally, a straightforward load balancing strategy is
used to divide the transactions into the second MapReduce
tasks based on their sizes before performing the second
MapReduce. The computational cost of the exploitation pro-
cess can thus be decreased. The number of produced tasks
should correspond to the number of Mappers. The workload
of each node is determined by the amount of promising
itemsets in a transaction, and then, the transaction is
assigned to the node with the least workload, which is capa-
ble of evenly distributing the computation among the nodes.
When compared to the serialization model, this technique
can significantly lower processing costs. The load balancing
equation is given as follows.

WL, = WL, + Num, (11)

where WL, is the workload of node i, and Num is the num-
ber of patterns derived from the first MapReduce of the per-
formed transaction. The CLS-Miner [28] is applied here to
mine the set of local CHUIs at each partition D,. The local
CHUI is then output from each Mapper, and the result is a
pair of {pattern, (utility ; p;) }.

The Mapper stage first executes the CLS-Miner to mine
the set of CHUIs within the partition and then assigns the
local CHUIs with the same key (or itemset/pattern) to the
same Reducer. It is possible to calculate the partial total util-
ity in a partition; the local CHUI can be recognized if its util-
ity value is not smaller than the sum of the partial total
utility in the partition. As a result, the CHUI that has been
satisfied is output to the result file; otherwise, the Reducers
output the key-value pair that will be used later in the gener-
ation of the candidate set. Following that, all candidates
(possible patterns) and the tidset are required for the next-
generation phase, which is completed during the second
MapReduce phase. Crossover and mutation procedures are
done on the second MapReduce framework to produce the
possible candidates for the actual CHUIs between the Map-
per and Reducer of each partition.

In this phase, each MapReduce component considers
only one cluster of transactions. This allows to highly reduce
exploring the solution space. At the same time, the candidate
patterns have been calculated for their utilities of each node.
Therefore, by using a developed tidset structure, the calcu-
lated utility can be used to speed up the checking process.

4.3. Integration. The purpose of this stage is to catch any pat-
terns that have been missed in the local clusters due to min-
ing progress. It takes into account both shared and clusters
during the exploration and exploitation processes. This
enables the discovery of all associated CHUIs across the
whole database. From the shared items, potential candidate
CHUISs are established initially. It is then investigated to find
the significance of each generated pattern over the entire
database by utilizing the integration function. The designed
framework proposes an aggregation function, which is the

Wireless Communications and Mobile Computing

Output: a set of discovered closed high-utility itemsets (CHUTs)
perform k-means to cluster D as (p;, p,, =, p,,)-
perform exploration function {
for each p, {
set key-value pair as (tid, t-itemset).
for each t-itemset {
calculate sup (¢).
1
write(t,< sup (), p; >).
}

for each t in p; {
sup (t) =sup () + <sup (t), p >.
}

write(t, sup (t)).
}
perform exploitation {
build tidset.
for each p, {
set key-value pair as (tid, t-itemset).
for each t-itemset {
calculate u(#) by CLS-Miner.
}
write(t,<u(t), p, >)
}

for each t in p; {
u(t) =u(t) + <u(t), p; > .

write(t, u(t)).
}
perform integration {
project t-itemset as utility-list (UL).
build EUCS of 2-itemsets.
for each Cin ¢ {
check Cg-itemset.
if C appears in tidset and tid == key {
write a pair (C, lu(C)).
else {
write a pair (C, lu(C)).
}
}
}
for each Cin t {
gu(C) = gu(C) + lu(C).
if gu(C) > =6 xu(D) {
write(C, gu(C)).
}
}
}

Input: D, a quantitative database; ptable, a profit table of all items; § , a minimum utility count.

ArgoriTHM 1: The designed GMR-Miner algorithm.

sum of local support for shared patterns across all clusters,

TaBLE 1: The parameters of the used databases.

to be used as an integration function. Afterwards, the rele- Dataset D|

I

C

MaxLen

vant CHUIs of the shared items are concatenated with the SIGN 730
relevant CHUIs of the local clusters to derive the globally)

relevant patterns across the entire transaction database. Leviathan >,834
Additionally, the tidset generated by the second MapReduce =~ MSNBC 31,790
is used to decrease the computation required to mine the BMS 59,601

267
9,025
17
197

52
33.8
13.3

2.5

94

100
100
267

patterns of each node. Additionally, the utility-list structure

8
70
60 —
w
§ 504 D\D\D\D\[
T 40 1
<
=
2 30
=)
S 20
S
10
0 T T T T
0 20 40 60 80 100
Number of clusters
[k-means
-+ Without k-means
(a) SIGN
70
60 —
£
8 50 %\E}-\ﬂ\(
= :
T 40
£
2 30 - D\D\D\D\D
(5]
<
& 20
]
X 10
0 T T T T
0 20 40 60 80 100
Number of clusters
—{+ k-means

—1+ Without k-means

(c) MSNBC

% of the shared items

% of the shared items

Wireless Communications and Mobile Computing

70
60
50 D\D\D\F
—]
40
30 Dﬂﬂ\m\[
]
20 H
10
0 T T T T
0 20 40 60 80 100
Number of clusters
-+ k-means
-+ Without k-means
(b) Leviathan
70
60
50
40 D\D\—D\D\
30
20
10
0 T T T T
0 20 40 60 80 100
Number of clusters
-+ k-means
-+ Without k-means

(d) BMS

FiGURE 1: The decomposition clustering quality.

and EUCS are constructed to hold the data required for the
calculation, and the computational cost is lowered as a result
of these two structures. Additional information on utility-list
and EUCS is available in [28].

The third MapReduce framework can then be used to
determine and identify global patterns about CHUIs using
the set of candidate patterns (local CHUIs) and the tidset.
The genetic algorithm’s selection operator is used in this
phase to retain only the relevant patterns for the next gener-
ation, and the fitness (utility) of each candidate pattern is
calculated. Each Mapper stage converts the information in
the itemset into a utility-list and then determines the local
utility of all itemsets in the candidate set. Besides, the EUCS
is then applied here to reduce computation if the investi-
gated itemset does not meet the needs. If an investigated
itemset can be found from tidset by using its transaction
ID, it shows that the utility of the itemset was determined
before in the second MapReduce stage; the Mapper here
then delivers a pair value of regarding pattern and its utility
such as (pattern; utility) for the next Reducer phase. Other-
wise, the utility of the pattern can be thus determined by the
utility-list structure and a pair value is then output as the
result. According to three strategies here such as EUCS,

tidset, and utility-list, the mining progress can be sped up,
and the computational cost is then reduced for finding the
global itemsets with their utility values in the entire database.
The Reducer stage here is considered to sum up the utilities
of the investigated pattern, and if this value is larger than the
8 X u(D) in the Reducer stage, it is the globally CHUI and
will be released as the final output of the designed frame-
work. Detailed progress of the designed framework is then
shown in Algorithm 1.

5. Experimental Evaluation

In the experiments, four realistic databases [43] are then
used in this paper to state the performance of the developed
GMR-Miner approach compared to the state-of-the-art
CLS-Miner [28] model in terms of runtime, memory usage,
and scalability under a varied number of nodes in the devel-
oped 3-tier MapReduce framework. Note that the developed
MapReduce is then deployed in Spark since Spark provides a
higher capability to handle the large-scale databases. The
properties of 4 conducted databases are then described in
Table 1. Here, |D| is the number of database size, which
showed the number of transactions in the database. |I|

Wireless Communications and Mobile Computing

900

800 i

700

Memory usgae (MB)

600 —

500 T T T
0 2000 4000 6000
Size of the database

8000 10000

—=— CLS-miner
—— GMR-miner

(a) SING (6 =0.05)
900 i

800

700

Memory usgae (MB)

600

500 4 T T T T
0 2000 4000 6000 8000
Size of the database

10000

—5— CLS-miner
—o— GMR-miner

(c) MSNBC (6 =0.08)

850

800

750

700

Memory usgae (MB)

650

6004

T T T T
0 2000 4000 6000 8000

Size of the database

10000

—&— CLS-miner
—o— GMR-miner

(b) Leviathan (6 =0.13)
450

400

350

300

250

Memory usgae (MB)

200

150 T T T T
0 2000 4000 6000 8000
Size of the database

10000

—=— CLS-miner
—— GMR-miner

(d) BMS (6 =0.04)

FIGURE 2: Memory usage of the compared algorithms.

indicated the number of distinct items in the database. C
showed the average number of items in a transaction, and
MaxLen is the maximum size of a transaction in the data-
base. The used databases in Table 1 are then enlarged and
duplicated by various numbers (e.g., 1, 20, 50, 100, 200,
500, 1,000, 2,000, 5,000, and 10,000) for the later perfor-
mance evaluation.

5.1. Quality of Clustering. Figure 1 shows the quality evalua-
tion of the returned clusters by using the k-means and the
intuitive clustering algorithm on the four datasets used in
the experiments. The intuitive clustering divides the transac-
tions into k-clusters randomly without any processing. In
the conducted experiments, the quality of the returned clus-
ters is then decided by the % of the shared items in clusters,
and the object here is to lower the value. We also set the
number of clusters in the experiments from 1 to 100; thus,
the % for the shared items is then reduced for the evaluation
with and without k-means approach. However, there is a
large difference between k-means and intuitive algorithms
in all cases. For instance, by using k-means to split the trans-
actions, the percentage of shared items does not exceed 40%.
However, without using the k-means, the percentage of

shared items reaches 60%. With the further explanations
by the property of k-means model, it finds the centroid point
based on the similarity equation; the intuitive idea only pro-
cesses the points by randomness operations. Overall, these
experiments clearly showed the benefit of k-means in data
decomposition. Thus, we can observe that the k-means
model adapted in this MapReduce framework is useful and
effective to mine the CHUISs in large-scale databases.

5.2. Memory Usage. To demonstrate the usability of the
developed MapReduce model, the results are carried and
compared to the CLS-Miner [28] in terms of memory usage,
which are shown in Figure 2. By varying the size of the data-
base, it can be seen that the developed GMR-Miner outper-
forms CLS-Miner in all cases. For instance, only 350 MB is
needed by the GMR-Miner to deal with 10,000 times of
BMS data. However, 420 MB is needed by the CLS-Miner
to handle the same data. These results are reached due to
the decomposition step, where each cluster contains similar
transactions, and also the intelligent operators of the genetic
algorithm where it accurately explores the possible solution
space. Thus, less memory usage is then required by the
developed GMR-Miner compared to CLS-Miner algorithm.

10

Runtime (s)
W
1

0 T T T T
12 4 8 16 32

Number of nodes

—&— CLS-miner
—6— GMR-miner

(a) BMS x 1000

Wireless Communications and Mobile Computing

Speedup

T T T T T T
0 5 10 15 20 25 30

Number of nodes

—=— CLS-miner
—6— GMR-miner

(b) BMS x 1000

FIGURE 3: Scalability results in terms of runtime and speedup.

TaBLE 2: Clustering quality versus pattern mining accuracy.

Data % of the shared items % of the relevant patters
40 79
SIGN 35 88
30 96
40 77
Leviathan 35 83
30 95
40 72
MSNBC 35 88
30 97
40 84
BMS 35 86
30 91

5.3. Scalability. To show that the designed GMR-Miner
achieves good robustness and applicable in real applications
for the large-scale scenario, the scalability on a big dataset is
illustrated in Figure 3. Here, we duplicated the BMS dataset
1,000 times for scalability evaluation under a varied number
of nodes from 1 to 32. The results showed that the developed
GMR-Miner outperforms the CLS-Miner in terms of run-
time and speedup under a varied number of nodes, where
a high gap between the two approaches is observed. For
instance, with 32 nodes, the speedup of the GMR-Miner is
9 for handling 1,000 times of BMS data. However, the speed
up of the CLS-Miner is only 5 to handle the same data and
with the same number of nodes. This result confirmed the

usefulness of genetic algorithms and decomposition for dis-
covering CHUIs in big and large-scale datasets. In general,
the developed model can easily process the very big and
large databases for mining the required CHUIs, which is
very suitable and appropriate for the market engineering.

5.4. Clustering Quality vs. Pattern Mining Accuracy. Table 2
presents the quality of the pattern mining process with varying
on the clustering quality using the four data (SIGN, Leviathan,
MSNBC, and BMS). By varying the quality of the clustering
detected by the % of the shared items in the clusters from
40% to 30%, the accuracy of the pattern mining solution
increases from 70% to 90% for all the databases used in the
experiments. This result is reached thanks to the low depen-
dency among clusters, where the mining process may be
applied differently on each cluster of transactions.

6. Conclusion and Discussion

Mining high-profitable and concise patterns in IoT environ-
ments is not a trivial task since the collected data is usually a
large-scale dataset. Past studies of mining CHUIs cannot
handle (1) large-scale dataset and (2) mining the required
information in a limited time. In this paper, we used a 3-
tier MapReduce framework deployed in Spark for efficiently
mining the closed patterns with high utilization (or ak.a.
CHUISs). To better explore the possible and potential candi-
dates instead of the entire search space, the genetic algo-
rithm (GA) is also utilized in the designed model for better
pattern exploration progress. Experiments are then showed
that the designed GMR-Miner outperforms the CLS-Miner
in terms of execution time, memory, and scalability regard-
ing a different number of nodes. In the future, a better data

Wireless Communications and Mobile Computing

structure can be deployed instead of a utility-list structure
for obtaining better performance, and the incremental
model can also be investigated and explored as a further
research topic to handle the issue of dynamic data mining.
In addition, to find the sufficient and satisfied solutions in
a limit time, other algorithms such as PSO or ACO in evolu-
tionary computation can also be explored and studied as the
further extension.

Data Availability

The data used to support the findings of this study have been
deposited in the SPMF repository (doi:10.1007/978-3-319-
46131-1_8).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Western Norway University of Applied Sciences, Norway,
provides partial funding support for the work carried out
in this paper.

References

[1] M. J. Zaki and C. J. Hsiao, “Efficient algorithms for mining
closed itemsets and their lattice structure,” IEEE Transactions
on Knowledge and Data Engineering, vol. 17, no. 4, pp. 462-
478, 2005.

B. Lin, F. Zhu, J. Zhang et al,, “A time-driven data placement

strategy for a scientific workflow combining edge computing

and cloud computing,” IEEE Transactions on Industrial Infor-

matics, vol. 15, no. 7, pp. 4254-4265, 2019.

[3] Y.Quand N. Xiong, “RFH: a resilient, fault-tolerant and high-
efficient replication algorithm for distributed cloud storage,” in
2012 41st International Conference on Parallel Processing,
pp. 520-529, Pittsburgh, PA, USA, 2012.

[4] R. Agrawal, T. Imielinski, and A. N. Swami, “Database mining:
a performance perspective,” IEEE Transactions on Knowledge
and Data Engineering, vol. 5, no. 6, pp. 914-925, 1993.

[5] A.Belhadi, Y. Djenouri, J. C. W. Lin, and A. Cano, “A general-
purpose distributed pattern mining system,” Applied Intelli-
gence, vol. 50, no. 9, pp. 2647-2662, 2020.

[6] G. Grahne and J. Zhu, “Fast algorithms for frequent itemset
mining using FP-trees,” IEEE Transactions on Knowledge
and Data Engineering, vol. 17, no. 10, pp. 1347-1362, 2005.

[7] R. U.Kiran, A. Anirudh, C. Saideep, M. Toyoda, P. K. Reddy,
and M. Kitsuregawa, “Finding periodic-frequent patterns in
temporal databases using periodic summaries,” Data Science
and Pattern Recognition, vol. 3, no. 2, pp. 24-46, 2019.

S

[8] H.Si,]. Zhou, Z. Chen et al., “Association rules mining among

interests and applications for users on social networks,” IEEE

Access, vol. 7, pp. 116014-116026, 2019.

U. Yun, H. Ryang, and K. H. Ryu, “High utility itemset mining

with techniques for reducing overestimated utilities and prun-

ing candidates,” Expert Systems with Applications, vol. 41,

no. 8, pp. 3861-3878, 2014.

[10] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns
without candidate generation: a frequent-pattern tree

9

—

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

(25]

11

approach,” Data Mining and Knowledge Discovery, vol. 8,
no. 1, pp. 53-87, 2004.

R. Chan, Q. Yang, and Y. D. Shen, “Mining high utility item-
sets,” in IEEE International Conference on Data Mining,
pp. 19-26, Melbourne, FL, USA, 2003.

W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, V. Tseng,
and P. S. Yu, “A survey of utility-oriented pattern mining,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 33, pp. 1306-1327, 2021.

R. Gunawan, E. Winarko, and R. Pulungan, “A BPSO-based
method for high-utility itemset mining without minimum util-
ity threshold,” Knowledge-Based Systems, vol. 190, article
105164, 2020.

Y. Liu, W. Liao, and A. N. Choudhary, “A two-phase algorithm
for fast discovery of high utility itemsets,” in Advances in
Knowledge Discovery and Data Mining. PAKDD 2005, T. B.
Ho, D. Cheung, and H. Liu, Eds., vol. 3518 of Lecture Notes
in Computer Science, pp. 689-695, Springer, Berlin, Heidel-
berg, 2005.

M. Liu and J. Qu, “Mining high utility itemsets without candi-
date generation,” in ACM International Conference on Infor-
mation and Knowledge Management, pp. 55-64, Maui, HI,
USA, 2012.

H. Yao, H. J. Hamilton, and C. J. Butz, “A foundational
approach to mining itemset utilities from databases,” in STAM
International Conference on Data Mining, pp. 482-486, Lake
Buena Vista, Florida, US, 2004.

V.S. Tseng, B. Shie, C. Wu, and P. S. Yu, “Efficient algorithms
for mining high utility itemsets from transactional databases,”
IEEE Transactions Knowledge and Data Engineering, vol. 25,
no. 8, pp. 1772-1786, 2013.

J. C. W. Lin, T. Hong, and W. Lu, “An effective tree structure
for mining high utility itemsets,” Expert Systems with Applica-
tions, vol. 38, no. 6, pp. 7419-7424, 2011.

P. Fournier-Viger, C. W. Wu, S. Zida, and V. S. Tseng, “FHM:
faster high-utility itemset mining using estimated utility co-
occurrence pruning,” in Foundations of Intelligent Systems.
ISMIS 2014, T. Andreasen, H. Christiansen, J. C. Cubero,
and Z. W. Ra$, Eds., vol. 8502 of Lecture Notes in Computer
Science, pp. 83-92, Springer, Cham, 2014.

J. Liu, K. Wang, and B. C. M. Fung, “Direct discovery of high
utility itemsets without candidate generation,” in 2012 IEEE
12th International Conference on Data Mining, pp. 984-989,
Brussels, Belgium, 2012.

C. Yin, S. Zhang, J. Wang, and N. N. Xiong, “Anomaly detec-
tion based on convolutional recurrent autoencoder for IoT
time series,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 21, no. 14, pp. 15626-15634, 2020.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Efficient
mining of association rules using closed itemset lattices,” Infor-
mation Systems, vol. 24, no. 1, pp. 25-46, 1999.

C. Lucchese, S. Orlando, and R. Perego, “Fast and memory effi-
cient mining of frequent closed itemsets,” IEEE Transactions on
Knowledge and Data Engineering, vol. 18, no. 1, pp. 21-36, 2006.
B. Vo, L. T. T. Nguyen, N. Bui, T. D. D. Nguyen, V. N. Huynh,
and T. P. Hong, “An efficient method for mining closed poten-
tial high-utility itemsets,” IEEE Access, vol. 8, pp. 31813-
31822, 2020.

T. Wei, B. Wang, Y. Zhang, K. Hu, Y. Yao, and H. Liu,
“FCHUIM: efficient frequent and closed high-utility itemsets
mining,” IEEE Access, vol. 8, pp. 109928-109939, 2020.

https://doi.org/10.1007/978-3-319-46131-1_8
https://doi.org/10.1007/978-3-319-46131-1_8

12

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

V. S. Tseng, C. W. Wu, P. Fournier-Viger, and P. S. Yu, “Effi-
cient algorithms for mining the concise and lossless represen-
tation of high utility itemsets,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 3, pp. 726-739,
2015.

C. W. Wu, P. Fournier-Viger, J. Y. Gu, and V. S. Tseng, “Min-
ing closed+ high utility itemsets without candidate genera-
tion,” in 2015 Conference on Technologies and Applications of
Artificial Intelligence (TAAI), pp. 187-194, Tainan, Taiwan,
2015.

T. L. Dam, K. Li, P. Fournier-Viger, and Q. H. Duong, “CLS-
Miner: efficient and effective closed high-utility itemset min-
ing,” Frontiers of Computer Science, vol. 13, no. 2, pp. 357-
381, 2019.

Y. C. Lin, C. W. Wy, and V. S. Tseng, “Mining high utility
itemsets in big data,” in Advances in Knowledge Discovery
and Data Mining. PAKDD 2015, T. Cao, E. P. Lim, Z. H. Zhou,
T.B. Ho, D. Cheung, and H. Motoda, Eds., vol. 9078 of Lecture
Notes in Computer Science, pp. 649-661, Springer, Cham,
2015.

J. Dean and S. Ghemawat, “MapReduce,” Communications of
the ACM, vol. 51, no. 1, pp. 107-113, 2008.

M.Y. Lin, P. Y. Lee, and S. C. Hsueh, “Apriori-based frequent
itemset mining algorithms on MapReduce,” in The Interna-
tional Conference on Ubiquitous Information Management
and Communication, pp. 1-8, Kuala Lumpur, Malaysia, 2012.

J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control,
and Artificial Intelligence, MIT Press, 1992.

K. Elbaz, S. L. Shen, A. Zhou, D. J. Yuan, and Y. S. Xu, “Opti-
mization of EPB shield performance with adaptive neuro-
fuzzy inference system and genetic algorithm,” Applied Sci-
ences, vol. 9, no. 4, pp. 780-797, 2019.

R. Guha, M. Ghosh, S. Kapri et al., “Deluge based genetic algo-
rithm for feature selection,” Evolutionary Intelligence, vol. 14,
pp. 357-367, 2021.

H. R. Qodmanan, M. Nasiri, and B. Minaei-Bidgoli, “Multi
objective association rule mining with genetic algorithm with-
out specifying minimum support and minimum confidence,”
Expert Systems with Applications, vol. 38, no. 1, pp. 288-298,
2011.

S. Kannimuthu and K. Premalatha, “Discovery of high utility
itemsets using genetic algorithm with ranked mutation,”
Applied Artificial Intelligence, vol. 28, no. 4, pp. 337-359, 2014.

W. Song and C. Huang, “Mining high average-utility itemsets
based on particle swarm optimization,” Data Science and Pat-
tern Recognition, vol. 4, no. 2, pp. 19-32, 2020.

S. Zida, P. Fournier-Viger, J. C. W. Lin, C. W. Wy, and V. S.
Tseng, “EFIM: a fast and memory efficient algorithm for
high-utility itemset mining,” Knowledge and Information Sys-
tems, vol. 51, no. 2, pp- 595-625, 2017.

G. Srivastava, J. C. W. Lin, M. Pirouz, Y. Li, and U. Yun, “A
pre-large weighted-fusion system of sensed high-utility pat-
terns,” IEEE Sensors Journal, 2021.

C. Zhang, G. Almpanidis, W. Wang, and C. Liu, “An empirical
evaluation of high utility itemset mining algorithms,” Expert
Systems with Applications, vol. 101, pp. 91-115, 2018.

P. Franti and S. Sieranoja, “How much can k-means be
improved by using better initialization and repeats?,” Pattern
Recognition, vol. 93, pp- 95-112, 2019.

(42]

(43]

Wireless Communications and Mobile Computing

E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu,
“DBSCAN revisited, revisited,” ACM Transactions on Data-
base Systems, vol. 42, no. 3, pp. 1-21, 2017.

P. Fournier-Viger, J. C. W. Lin, A. Gomariz et al., “The SPMF
open-source data mining library version 2,” in Machine Learn-
ing and Knowledge Discovery in Databases. ECML PKDD 2016,
B. Berendt, Ed., vol. 9853 of Lecture Notes in Computer Sci-

ence, pp. 36-40, Springer, Cham, 2016.

	Mining Profitable and Concise Patterns in Large-Scale Internet of Things Environments
	1. Introduction
	2. Related Work
	2.1. MapReduce Framework
	2.2. Evolutionary Computation
	2.3. High-Utility Itemset Mining (HUIM)

	3. Preliminary and Problem Statement
	4. The Developed GA-Based MapReduce Model for CHUIM
	4.1. Exploration
	4.2. Exploitation
	4.3. Integration

	5. Experimental Evaluation
	5.1. Quality of Clustering
	5.2. Memory Usage
	5.3. Scalability
	5.4. Clustering Quality vs. Pattern Mining Accuracy

	6. Conclusion and Discussion
	Data Availability
	Conflicts of Interest
	Acknowledgments

