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A B S T R A C T   

Solid-liquid Interface response function or the analysis of kinetic interfacial conditions under rapid solidification 
setting occupies a central role in solidification research. With the concepts of solute drag and solute trapping and 
on the base of irreversible thermodynamics, the calculation of kinetic interface condition phase diagram for 
binary alloys has been well established owing to the continuous growth model by Aziz et al. Motivated by the fast 
development of various additive manufacturing (AM) technologies, clear needs to extend the kinetic phase di
agram calculation towards multi-component alloy systems emerge to meet the challenges of processing 
parameter optimization encountered under those sub-rapid or rapid AM solidification conditions for new alloys. 
In this paper the irreversible thermodynamics analysis and the binary continuous growth model are reformulated 
into a form suitable for the coupling with the multi-component CALPHAD databases. Then the numerical solution 
to the CALPHAD-coupled multi-component model is described. The model and its numerical solution are verified 
by comparing its calculation results with those reported in literature for A-B hypothetical ideal solution phases, 
Ag–Cu and Al–Be alloys. The model predictive power is demonstrated by calculating the kinetic diagram of Al–Ti, 
Fe–Cr–Ni and Al–Cu–Mg–Si–Zn alloys. To illustrate one of the practical values of the proposed model, kinetic 
growth restriction factor is calculated from the predicted Al–Ti and Al–Cu–Mg–Si–Zn kinetic phase diagram. It is 
concluded that the proposed multi-component model and its numerical solution can calculate kinetic phase 
diagram of any multi-component alloys. Moreover, the proposed model can be used in evaluating solute effect for 
grain refinement under sub-rapid or rapid solidification conditions, which is great value to understand the so
lidification phenomenon in AM. The model is expected to be useful in many scenarios to guide the optimization 
of AM processing parameters and alloys design.   

1. Introduction 

When the interface separating a liquid (parent) and solid (product) 
phase moves at high velocity, solute drag and solute trapping cause its 
deviation from thermodynamic equilibrium [1–3]. The interface 
response to the fast interface migration or the analysis of kinetic inter
facial conditions occupies a central role in the study of solidification as 
well as solid state phase transformation. Kinetic interface condition 
phase diagrams are often referred for interpreting the formation of the 
solidification microstructure or optimization of processing parameters 
under sup-rapid and rapid solidification condition. While research ef
forts on this kinetic phase diagram calculation had guided the discov
eries of a rich spectrum of new metallic materials such as metallic glass, 
a revisit is to be made in this article to address the thermodynamic and 
kinetic factors in multi-component alloys that dictate the evolution of 

microstructure under the rapid cooling condition relevant to additive 
manufacturing, i.e., the cooling rates that reach up to 107 K/s [4–8]. 

The interface response function for phase transformation is built on 
irreversible thermodynamics [2]. As summarized by Hillert [3], there 
are two independent Gibbs energy dissipation process at the interface. 
The first one is for structural change, i.e., crystallization (in case of so
lidification) or lattice transforms (in case of solid-state phase trans
formation), and the second one is for compositional change, i.e., 
trans-interface diffusion. To identify the driving forces for the two pro
cesses and relations between the driving forces and their congruent 
fluxes, various models have been proposed, among which the contin
uous growth model by Aziz et al. [1] and linear kinetic relations by 
Hillert, Agren and Liu [3,9,10] have been widely used. The diffusive 
interface model, i.e. phase field method, have also been applied to study 
interface response [11–15] under rapid or sub-rapid solidification 
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conditions while the continuous growth model has been used to verify 
the numerical parameters in those diffusive interface models. Aziz’s 
model is predictive and insightful. Ludwig has attempted to find an 
analytical solution to the multi-component Aziz model, and concluded 
that for non-dilute binary and any arbitrary multi-component alloy 
systems it is not possible to yield an analytical expression for the 
interface temperature and velocity relation [16]. However numerical 
solution exists, and Aziz’s model remains to be extended for 
multi-component kinetic phase diagram calculation. The objective of 
this article is to propose such an extension. 

Aziz’s model is tightly linked to Hillert-Agren-Liu linear kinetic 
model for solid state phase transformation [3,9,10]. It is worth clarifying 
the differences between Aziz’s model and the linear kinetic model to put 
our multi-component extension attempt within the broader context of 
phase transformation. While Aziz’s continuous growth model [1] has the 
same approach as the linear kinetic model in correlating the phase 
transformation driving force and chemical potentials, they proposed 
different relations between driving forces and interface velocity. Aziz 
and his co-authors used the continuous growth mechanism, which had 
been used in relating the velocity in a single-component system to the 
driving force at an "atomically rough" interface [1,17]. The continuous 
growth model has the following form: 

v= v0

(

1 − exp
(

−
ΔGeff

RT

))

(1a)  

Where v0 is the maximum speed of crystal growth at infinite driving 
force, ΔGeff (defined to be positive here during solidification) is the 
effective free energy difference between liquid and solid, whose exact 
nature depends on how the solute drag is treated [17], R is gas constant 
and T is temperature. Eq. (1)a’s first order expansion at small driving 
forces is in the linear form used by the linear kinetic model, which is: 

v=
v0

RT
ΔGeff = MΔGeff (1b)  

in which M is mobility. 
Depending on the way ΔGeff is taken, as to be summarized in Model 

Description Section, Aziz’s model has two version: with and without 
solute drag [17]. As pointed out by Hillert, the model with solute drag 
has the same root as Hillert’s model [3]. However the one without solute 
drag seemed to be supported by the rapid solidification experiments [18, 
19] and have attracted more following research efforts in solidification 
research community [16,20,21]. Of course, different models produce 
different kinetic interface condition phase diagrams. It is experimental 
results that should be counted on to verify which drag mode produces 
the "correct" kinetic phase diagram. For the equation governing solute 
redistribution energy, Aziz and Hillert’s treatments also differ in a 
similar fashion. Approximately Aziz’s equation is in exponential form 
with its first order expansion being the linear form of Hillert’s model [3]. 

Aziz and Kaplan [1] have demonstrated how the binary phase dia
gram can be calculated numerically, yet, the extension to 
multi-component alloys have not been made. With the linear kinetic 
laws between the driving energies for interface migration and tran
s-interface diffusion, Hillert has demonstrated how to construct the 
dissipated energies from the phase compositions with the molar Gibbs 
energy graphs of the parent and product phases for a binary alloy as 
illustrated in Fig. 4 of [3]. Of course, Hillert’s dissipated energies con
struction can produce phase compositions, i.e., the tie-line of a binary 
kinetic phase diagram, from given values of dissipated energies. For a 
binary alloy, Aziz and Boettiger have demonstrated that the kinetic 
phase diagram are analytically attainable with the assumptions of bi
nary dilute solution phases and straight-line solidus/liquidus [17]. The 
analytical solution is instructive and has even been applied to each so
lute in a multi-component alloy [22,23]. However, as concluded origi
nally by Aziz et al. in Ref. [17], the solution falls short when these 
idealistic assumptions are not met. As mentioned above, for non-dilute 

binary and any arbitrary multi-component alloy systems an analytical 
solution to Aziz model can not be obtained [15]. 

Aziz’s binary model is extendable toward multi-component alloys. 
On the other hand, given the rapid progress in the development of 
thermodynamic databases in the past several decades, it is justifiable to 
explore the coupling of the continuous growth model with those multi- 
component thermodynamic databases available in CALPHAD commu
nity. It would enable the generation of accurate kinetic interface con
dition phase diagrams for any alloy systems, which is of a great value for 
the understanding of thermodynamic and kinetic mechanisms that 
dictate the evolution of microstructure under additive manufacturing or 
any other rapid cooling or phase transformation conditions. The calcu
lation of the kinetic phase diagram would also enable the further 
extension of the numerical model built on local equilibrium assumption 
such as the ones reported in Refs. [24,25] or on quasi-equilibrium 
assumption used in phase field method [26], to non-equilibrium con
ditions by simply replacing the equilibrium phase diagram with the 
velocity-dependent phase diagram. Instead of setting the interfacial 
compositions, i.e., the boundary conditions for each solute diffusion 
equation in the bulk phases, with the data from the equilibrium phase 
diagram, the data from kinetic interface condition phase diagram are 
provided. The boundaries conditions would not be Dirichlet type as they 
are dependent on the unknown interface velocity, i.e., the derivatives of 
the solute composition field, and must be solved together with those 
diffusion equations. These numerical complexities are treatable with the 
existing numerical algorithm used to solve the moving boundary diffu
sion problem. In addition, the kinetic phase diagram calculation would 
provide steady state solutions to verify the non-equilibrium phase 
transformation models [21,27] that have taken into consideration both 
diffusion inside the interface and in the bulk phase. 

In this article we set out to extend Aziz’s continuous growth model to 
multi-component alloys and couple it with CALPHAD databases. We 
start with the reformulation of the continuous growth model into a form 
suitable for the coupling with CALPHAD databases. Then a numerical 
method for solving the CALPHAD-coupled model is described. The 
model is applied to ideal solution phases, Ag–Cu, Al–Be, Al–Ti alloys, 
Fe–Cr–Ni and Al–Cu–Mg–Si–Zn alloys. Some of the binary results are 
compared with the ones reported in the literature, and the rest serves as 
the demonstration of the model’s behaviour and potential values for the 
alloys relevant to additive manufacturing. 

2. Model description 

This section starts with a brief description of the driving force and 
chemical potential relations derived within the irreversible thermody
namic framework. Then it proceeds to reformulate the relations into the 
ones amiable to the coupling with multi-component CALPHAD data
bases. In Section 2.2, the various relations proposed by Aziz et el. be
tween the driving force and interface velocity are revisited to come up 
with a generic formulation for multi-component alloys. Finally, a nu
merical algorithm to solve the CALPHAD-coupled multi-component 
model is described in Section 2.3. 

2.1. The relations between driving forces and molar Gibbs energy for a 
multi-component alloy 

As originally reported by Baker and Cahn [2] and Aziz and Kaplan 
[1], according to irreversible thermodynamics, the following relations 
between chemical potentials and the molar driving free energy for so
lidification, ΔGDF, at a migrating solid-liquid interface can be written for 
a binary alloy consisting of component 1 and component 2: 

ΔGDF =
(
XS

1 Δμ1 +XS
2 Δμ2

)
(2a)  

Where Δμj = μL
j − μS

j is the chemical potential difference between the 
liquid and solid at the interface, XS

j the composition of component j (in 
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atomic fraction) in solid with the constraint of XS
1 + XS

2 = 1. ΔGDF is 
defined to be positive when solidification occurs. Note that all the 
driving energy terms depend on temperature and composition, and for 
clarity the independent variables of temperature and compositions are 
not explicitly written out. 

For n-component alloys, it is straightforward to write: 

ΔGDF =
∑n

j=1
XS

j Δμj (2b)  

∑n

j=1
XS

j = 1 (2c) 

Let us examine how ΔGDF is spent. For a binary alloy ΔGDF is 
consumed by two separate processes, one is for driving the interface 
migration (crystallization) and the other for solute redistribution be
tween component 2 and 1. Therefore, ΔGDF can be written as the sum of 
crystallization free energy and solute redistribution free energy: 

ΔGDF =ΔGC + ΔGD (3) 

From kinetic consideration ΔGC and ΔGD depend on the interface 
velocity, v, and this dependency is the topic of Section 2.2. In this sec
tion, we restrict ourselves to the thermodynamic relations between 
driving force and molar Gibbs energies (or chemical potentials) of the 
liquid and solid phase. According to irreversible thermodynamics: 

ΔGC =
(
XL

1 Δμ1 +XL
2 Δμ2

)
(4a)  

ΔGD =
(
XL

2 − XS
2

)
(Δμ1 − Δμ2) (4b)  

XL
1 +XL

2 = 1 (4c) 

For an n-component alloy with component 1 being the major 
constitution of the alloy, the exchanges among non-major components 
are ignored. It should be noted that ignoring these changes are based on 
purely from statistical consideration, i.e., the chances at which solute 
atoms exchange with the major element atoms over the chances at 
which they exchange with other alloying elements is equal to their 
composition ratio, and small in dilute alloys or the alloys with a domi
nant major substitutional element. However, it shall be noted that these 
exchanges may become important and shall be considered in some 
multi-component alloys. With this simplification, ΔGDF is associated 
with n solute exchange processes between component j and 1 where j ≥
2: 

ΔGDF(v)=ΔGC(v) +
∑n

j=2
ΔGj

D(v) (5) 

ΔGC and ΔGD can be written as: 

ΔGC =
∑n

j=1
XL

j Δμj (6a)  

ΔGi
D =

(
XL

i − XS
i

)
(Δμ1 − Δμi) i ∈ (2, n) (6b)  

∑n

j=1
XL

j = 1 (6c) 

As mentioned earlier, the relationship between ΔGC and ΔGj
D to v will 

be discussed in Section 2.2. An extreme case is that both of ΔGC and ΔGj
D 

are zero when interface moves at negligible velocities, and it is trivial to 
see that the above equation degenerate to the well-known equal chem
ical potential conditions used for equilibrium phase diagram calcula
tion, i.e., Δμ1 = Δμ2 = … = Δμj = … = Δμn = 0. 

To reformulate Eq. (6) into a form amiable to the coupling with 
CALPHAD database, recall the following relations: 

GS
m =

(

1 −
∑n

j=2
XS

j

)

μS
1 +

∑n

j=2
XS

j μS
j (7a)  

GL
m =

(

1 −
∑n

j=2
XL

j

)

μL
1 +

∑n

j=2
XL

j μL
j (7b)  

(
∂GS

m

∂XS
j

)

T,XS
k

= μS
j − μS

1 (7c)  

(
∂GL

m

∂XL
j

)

T,XL
k

= μL
j − μL

1 (7d) 

The partial derivatives in Eq. (7c) and Eq. (7d) are with respect to 
solid and liquid phase composition j while the other independent vari
ables, namely T and the compositions of all alloying component other 
than j being held constant. 

With Eq. (7) Eq. (6) can be converted into the following form: 

ΔGC =GL
m − GS

m −
∑n

j=2

(
XL

j − XS
j

)
(

∂GS
m

∂XS
j

)

T,XS
k

(8a)  

ΔGi
D =

(
XL

i − XS
i

)
((

∂GS
m

∂XS
i

)

T,XS
k

−

(
∂GL

m

∂XL
i

)

T,XL
k

)

i ∈ (2, n) (8b) 

Rearrange Eq. (8), and substitute Eq. (8b) and Eq. (5) into Eq. (8a), 
the following form can be written: 

GS
m =GL

m +
∑n

j=2

(
XS

j − XL
j

)
(

∂GL
m

∂XL
j

)

T,XL
k

− ΔGDF(v) (9a)  

(
∂GS

m

∂XS
i

)

T,XS
k

=

(
∂GL

m

∂XL
i

)

T,XL
k

+
ΔGi

D

XL
i − XS

i
i ∈ (2, n) (9b) 

The differential form of Eq. (9) will be used to calculate kinetic 
interface condition phase diagram. 

The binary forms of Eq. (9a) and Eq. (9b) reflect Hillert’s molar Gibbs 
energy diagram for interfacial compositions (tie-line) construction 
(Fig. 4 of Ref. [3]). It is worth noting that although the naming 
convention used for the driving forces is only linked to solute drag 
model, Eq. (9) is valid for any drag mode, and it does not rely on any 
assumption on how the driving forces is related to interface velocity. 

Similar mathematical forms of Eq. (8) had been derived earlier to 
calculate Gibbs-Thomson phase diagram [28] and track multi-phase 
boundaries of general phase diagrams [29]. As demonstrated in 
Ref. [28], it is straightforward to include the curvature contribution in 
Eq. (9a) so that Gibbs-Thomson effect on interfacial conditions can be 
evaluated together with the kinetic contributions. The ability of handing 
curvature effect and kinetic effect concurrently is important in under
standing solidification microstructure formation and solid-state phase 
transformation. This is considered beyond the scope of this article and 
will be pursued in a future work. 

2.2. The relation between driving forces and interface velocity 

In this section, we will describe how the driving force term, i.e, ΔGC 

and ΔGj
D are related to interface velocity. First, we will revisit the 

continuous growth models with solute drag, without solute drag and 
mixed mode drag by Aziz et al. [1,17]. 

Aziz’s models are based on chemical rate theory. For the model 
without solute drag, the overall molar driving free energy is related to 
the velocity via: 

Q. Du et al.                                                                                                                                                                                                                                       



Calphad 76 (2022) 102365

4

ΔGDF = − RTln
(

1 −
v
v0

)

(10a)  

where v0 is the maximum speed of crystal growth at infinite driving 
force. Note that in this article the overall driving forces are defined as 
positive when solidification occur. According to Eq. (5), 

ΔGC =ΔGDF −
∑n

j=2
ΔGj

D(v)= − RT ln
(

1 −
v
v0

)

−
∑n

j=2
ΔGj

D(v) (10b) 

In the solute drag model, the crystallization energy is only one part of 
ΔGDF, i.e., ΔGC. The other part of ΔGDF is consumed in driving the solute- 
solvent redistribution reaction. It is ΔGC that is related to interface ve
locity via: 

ΔGC = − RTln
(

1 −
v
v0

)

(11) 

To unify the two versions of the CGM model, a drag parameter, β, has 
been defined by Aziz and Boettinger [17], so that 

ΔGDF(v)= − RT ln
(

1 −
v
v0

)

+ β
∑n

j=2
ΔGj

D(v) (12) 

Unity value of β is for the case that includes solute drag and zero 
value of β is for the case where no solute drag is present. As pointed out 
in Ref. [17], the physical meaning of the drag parameter is related to 
material compositions transferred across the interface. 

While ΔGDF and ΔGD are always larger than zero, ΔGC might be less 
than zero in the no drag model according to Eq. (10b). This is in conflict 
with the analysis made by Hillert [3] on the possible range of the 
product phase. Hillert’s analysis was built on the assumption that 
crystallization and trans-interface diffusion are internal processes so that 
their driving force must be positive to proceed spontaneously. This 
conflict has been reconciled by Gurtin and Voorhees [20], stating that 
the interface is not a close thermodynamic system but the one with 
external exchange of solute atoms via bulk diffusion from its adjacent 
layers in the two bulk phases. 

The relation of ΔGj
D to interface velocity is not dependent on the drag 

parameter. Within the framework of chemical rate theory, Aziz has 
proposed the following formulation to relate the trans-interdiffusion 
(solute drag) driving force with the interface velocity for binary alloys: 
(

XL
2 − XS

2

)
v

vD
=XS

2

(

1 − XL
2

)

− κeXL
2

(

1 − XS
2

)

(13a)  

κe

(

XL
2 ,XS

2 ,T
)

=
XL

1 XS
2

XS
1 XL

2
exp
(

−
ΔGD

RT
(
XL

2 − XS
2
)

)

(13b)  

where vD is diffusive speed at interface. vD is usually assumed to be 
scaled with the diffusivity in the liquid over an interatomic spacing; 
potentially vD is obtainable from molecular dynamics calculations as it 
has been done in Ref. [30]. Also Smith and Aziz reported their experi
mental efforts in quantifying the values for vD in various aluminum 

alloys [31], and their results will also be tested in our Results and dis
cussions Section. It should be emphasized that the CALPHAD database 
includes thermodynamic interactions among the alloying elements, but 
the kinetic equations assume no interactions among alloying elements as 
the exchange terms among alloying term in Eq. (5) are ignored. It is 
acknowledged these terms may become important and will be consid
ered for some multi-component alloys in our future study. 

Thus, for binary alloys 

ΔGD = − RT
(

XL
2 − XS

2

)

ln
(

1 −
(
XL

2 − XS
2

)

XL
1 XS

2

v
vD

)

(13c) 

For an n-ary alloy with the major component being component 1, κj
e, 

defined as partitioning parameter for component i, is related to ΔGi
D 

(

XL
i − XS

i

)
v

vi
D
=XS

i

(

1 − XL
i

)

− κeXL
i

(

1 − XS
i

)

(14a)  

κi
e

(

XL
i ,X

S
i , T
)

=
XL

1 XS
i

XS
1 XL

i
exp
(

−
ΔGi

D

RT
(
XL

i − XS
i
)

)

(14b) 

From Eqs. (14a) and (14b), the following equation can be derived for 
multi-component alloy: 

ΔGi
D = − RT

(

XL
i − XS

i

)

ln
(

1 −
(
XL

i − XS
i

)

(
1 − XL

i
)
XS

i

v
vi

D

)

(14c)  

2.3. Numerical solution of kinetic interface condition phase diagram 

The kinetic interface condition phase diagram is implicitly defined by 
Eq. (9), Eq. (12) and Eq. (14c). To get the explicit relations describing the 
kinetic phase diagrams, the numerical integration method, proposed by 
the authors for phase boundary tracking and Gibbs-Thomson phase di
agram calculation [28,29], is employed. 

The first step to solve these equations is to get their differential 
forms, which are:   

ΔGi
D,m is defined as ΔGi

D
XL

i − XS
i 

in the above equation. For the purpose of 

clarity, the independent variables being held constant in each partial 
derivative term of Eq. (15a) and Eq. (15b) are omitted. The partial de
rivatives of the liquid and solid phase molar Gibbs energies can be ob
tained from a CALPHAD database. In our implementation, TQ 
programing interface to Thermo-Calc™ software is used to get access to 
those derivatives. The partial derivatives of the driving energies with 
respect to temperature, composition and velocity can be derived from 
Eq. (12) and Eq. (14c), and they are listed in Appendix A. 

Eq. (15) can be used to calculate the so-called interface sluggishness, 
i.e., the derivative of the kinetic liquidus with respect to interface ve
locity. Apply Eq. (15) to a binary system, and set dXL

j = 0, one could get:   

(
∂GS

m

∂T
−

∂GL
m

∂T
+

∂ΔGDF

∂T
−
∑n

j=2

(
XS

j − XL
j

) ∂2GL
m

∂XL
j ∂T

)

dT +
∑n

j=2

(
∂GS

m

∂XS
j
−

∂GL
m

∂XL
j

)

dXS
j +

∑n

j=2

∂ΔGDF

∂XS
j

dXS
j

=
∑n

j=2

∑n

k=2

(
XS

j − XL
j

) ∂2GL
m

∂XL
j ∂XL

k
dXL

k −
∑n

j=2

∂ΔGDF

∂XL
j

dXL
j −

∂ΔGDF

∂v
dv (15a)  

∑n

j=2

∂2GS
m

∂XS
i ∂XS

j
dXS

j −
∂ΔGi

D,m

∂XS
i

dXS
i +

(
∂2GS

m

∂XS
i ∂T

−
∂2GL

m

∂XL
i ∂T

−
∂ΔGi

D,m

∂T

)

dT =
∑n

j=2

∂2GL
m

∂XL
i ∂XL

j
dXL

j +
∂ΔGi

D,m

∂XL
i

dXL
i +

∂ΔGi
D,m

∂v
dv i ∈ (2, n) (15b)   
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Again for the purpose of clarity, the independent variables being held 
constant in each partial derivative term of Eq. (16) are omitted. Eq. (16) 
is a general form of Eq. A.15 in Aziz and Boettinger’ article [17]. Applied 
to binary ideal solution phases and dilute limit assumption it would 
degenerate back to Eq. 2.23 in Ref. [17]. It is worthy noting that even Eq. 
(16) can not be analytically integrated, it gives some insights on the T− v 
relation sought by Ludwig in Ref. [16] for multi-component alloys. 

Eq. (15) is the key to our numerical solution of the CALPHAD- 
coupled multi-component continuous growth model. The equation re
lates the increments of temperature and XS

i to any small increments of XL
i 

and interface velocity. It is used to track the evolution of liquidus and 
solid phase composition with liquid phase composition/interface ve
locity. For illustrative purposes, the solution procedure for a domain 
bounded by the left bottom conner (XL

2
min

,XL
3

min
,vmin = 0) and the right 

top conner (XL
2

max
,XL

3
max

,vmax) is described step by step as the following:  

1. Start from the left bottom conner, where equilibrium (zero interface 
velocity) liquidus and solid phase compositions are known and set as 

the initial values for the following integration process. Set the inte
gration direction along XL

2 as positive (toward the direction to XL
2

max).  
2. Move at a small step along XL

2 from the current point while keeping 
XL

3 composition and velocity constant and calculate the increments of 
kinetic liquidus and solid phase composition according to Eq. (15). 
The integration methods such as Runge-Kutta method or the nu
merical continuation method described in Ref. [32] can be used here 
to achieve higher numerical efficiency.  

3. Test if the right bound of XL
2

max (or in the case with a negative 
integration direction, the left bound of XL

2
min) has been reached. If so, 

reverse the integration direction along XL
2 and go to Step 4, otherwise 

go to Step 2.  
4. Test if the current XL

3 value is larger than XL
3

max. If so, go to step 5. 
Otherwise move at a small step along XL

3 while keep XL
2 and velocity 

constant and calculate the kinetic liquidus and solid phase compo
sition according to Eq. (15), then go to step 2.  

5. Test if the current value v is larger than vmax. If so, the whole domain 
has been swept, and the calculation stops. Otherwise move at a small 

Fig. 1. Kinetic interface condition phase diagram for ideal solution liquid and solid at various v/v_D ratios; (a) no solute drag mode; (b) solute drag mode; (c) v/v_D 
= 1 with different drag modes. Solid line: kinetic liquidus. Dot-dashed line: kinetic solidus. Please note that the kinetic liquidus and solidus curves for v/v_D = 70 (the 
two green curves) in each figure are superposed on each other. The grey curves in Fig. 1a and b are reproduced from the curves (v/v_D = 1) of Fig. 4a and b of 
Reference [1]. 
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)
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(
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m

∂XS
2 ∂XS

2
−

∂ΔG2
D,m
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2

)
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(
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m
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2
−

∂GL
m

∂XL
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)(
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m
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2 ∂T −
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m
∂XL
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−
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)(
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m
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2
) ∂2GL

m
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2 ∂T

) (16)   
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step along v while keeping the liquid compositions (both XL
2 and XL

3) 
constant and calculate the kinetic liquidus and solid phase compo
sition according to Eq. (15), then go back to step 2. 

One can refer to Ref. [28] for a graphical presentation of this 
integration-based numerical method when it was used for a similar 
numerical problem, i.e., the calculation of Gibbs-Thomson phase 
diagram. 

3. Results and discussions 

In this Section, the model behaviour is verified by its application to 
the hypothetical A-B ideal solution phases, Ag–Cu and Al–Be alloys. The 
model’s practical values and ability of handling multi-component alloys 
are demonstrated by its applications to Al–Ti, Fe–Cr–Ni and 
Al–Cu–Mg–Si–Zn alloys. The application of the proposed model to ad
ditive manufacturing is demonstrated by calculating growth restriction 
factors from the predicted Al–Ti and Al–Cu–Mg–Si–Zn kinetic phase 
diagrams. 

3.1. The application of ideal solid solution phases 

The first application is to a hypothetical A-B system in which the 
liquid and solid are ideal solutions. For the purpose of model verifica
tion, all the materials parameters are set the same as the ones used in 
Ref. [1], i.e., the melting point for pure A and pure B are 1700 K and 100 
K respectively, the molar entropy of fusion 10.1 J/(K∙mol) and 9.0 
J/(K∙mol) respectively and v0

vD 
is set as 100. Fig. 1 shows the kinetic 

liquidus and solidus calculated by our model under different drag modes 
together with equilibrium liquidus and solidus. The red curves, obtained 
at v

vD
= 1 under no drag mode in Fig. 1a, are in agreement with the grey 

curves obtained under the same conditions by Aziz et al. in Ref. [1]. The 
same observation can also be made for the red curves in Fig. 1b obtained 
at v

vD
= 1 with solute drag mode. It verifies our implementation of the 

reformulated continuous growth model. Fig. 1a and b also show, in 
green curves, the kinetic liquidus and solidus at v

vD
= 70. As expected, 

the liquidus and solidus curves drops well below their equilibrium 
counterparts and collapse together. Fig. 1c compares the kinetic liquidus 
and solidus obtained by different drag modes. The red curve of kinetic 

Fig. 2. The dependency of partition coefficient, (a), and liquidus slope, (b) on interface velocity under different drag modes for A- 6 at% B alloy. The analytical 
solution derived under no drag mode is also plotted. 
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liquidus and solidus, obtained with the drag parameter of 0.5, lies in 
between their blue counterparts, which is obtained with the no-drag 
mode, and the green counterparts, which is obtained with the full 
drag mode. Fig. 1c reveals the important influences of drag parameters 
on the shape of kinetic phase diagram. 

It is useful to compare the kinetic partition coefficient, kv, and liq
uidus slope, mv, calculated under different drag modes and by analytical 
solution [17]. Fig. 2 shows the results for A- 6 at% B alloy. Clearly the 
drag mode does not influence the dependency of kv on interface velocity. 
It is due to that kv is mostly determined by Eq. (14c), which has been 
used by all the three drag modes shown in Fig. 2a. The drag mode 
significantly influences the dependency of mv on interface velocity when 
v
vD 

is less than 10, but the three modes tend to give the same mv value 

when v
vD 

is larger than 15. The analytical solution to kv and mv with the 
no-drag mode, obtained under dilute ideal solution limit by Aziz et al. in 
Ref. [17], is presented in Fig. 2 with black solid lines. It is interesting to 
notice that the analytical solution to kv is almost identical to the nu
merical solution, while the analytical mv starts to deviate from the nu
merical solution when v

vD 
is large than 4. As the analytical solution was 

derived from the assumption of ideal solid solution phases, the 
discrepancy observed in Fig. 2b between the numerical and analytical 
results would be larger for the real alloys whose thermodynamics are 
often described by more complicated thermodynamic models including 
the contributions of sublattices and excess energies etc. 

Fig. 3. Kinetic interface condition phase diagram for Ag–Cu alloys; (a) no solute drag mode at v/v_D = 0.01; (b) solute drag mode at v/v_D = 0.3; The grey lines in 
Fig. 3a and b are reproduced from the curves of Fig. 5a and Fig. 6b of Reference [1]. 
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3.2. Kinetic interface condition phase diagram of Ag–Cu, Al–Be and 
Al–Ti alloys 

In this Section, the extended model is applied to various binary 
system with the purposes of model verification and behaviour demon
stration. The first two applications are to Ag–Cu and Al–Be alloys, for 
which, kinetic phase diagrams have been calculated in Refs. [1,17]. The 
thermodynamic parameters in our calculations for these two alloys are 
set the same as the ones used in Refs. [1,17]. They are compiled into 

CALPHAD database files and provide as supplementary data to this 
paper. The thermodynamic parameters for Al–Ti are taken from com
mercial TTAL7 database. v0

vD 
is set as 100 for Ag–Cu and 1000 for Al–Be as 

in Refs. [1,17], and v0
vD 

is set as 100 for Al–Ti. 
The red and green curves of Fig. 3a and Fig. 3b show the kinetic 

liquidus and solidus calculated under no drag mode at v
vD

= 0.01 and 
under drag mode at v

vD
= 0.3 respectively for Ag–Cu alloys. The grey dot- 

dashed curves in the background are the one obtained under the same 
conditions by Aziz et al. [1]. The grey dashed curves are the equilibrium 

Fig. 4. The dependency of kinetic liquidus temperature on interface velocity obtained by the no-drag mode, (a), and solute drag mode, (b), at the liquid phase 
composition of Al-1at%Be, Al-5 at%Be and Al-10 at%Be. The grey lines in Fig. 4a and b are reproduced from the curves calculated by Aziz et al. with the same input 
parameters in Ref. [16]. 
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solidus and liquidus, and they are presented to highlight their significant 
differences from the kinetic ones. Clearly the complicate shapes of the 
kinetic solidus and liquidus are well reproduced by our proposed model, 
which servers as a strong verification of our model and its 
implementation. 

The red, green and blues curves in Fig. 4 show the dependency of 
kinetic liquidus temperature on interface velocity for three liquid phase 
compositions: Al-1 at% Be, Al-5 at% Be and Al-10 at% Be respectively. 
Fig. 4a is the results obtained under no-drag mode, while Fig. 4b under 
solute drag mode. The grey curves in Fig. 4a and b are reproduced from 
the curves calculated by Aziz et al. with the same input parameters [17]. 
They are overlapping with the corresponding curves calculated by our 
model. This is the last case study to verify our model. The rest of case 
studies is to demonstrate its behaviour and practical values. 

Fig. 5 is the simulation results obtained with CALPHAD database for 
Al-0.05 at% Ti alloy. It serves as the demonstration of the model 
behaviour for a technologically important alloy. In Fig. 5a the calculated 
kinetic partition coefficient, kv, and liquidus slope, mv, are plotted with 

discontinuous lines and solid lines, respectively. Clearly drag mode has 
little influence on kinetic coefficient, but significant influence on kinetic 
liquid slope. This observation echoes the ones with the ideal solid so
lution case study. 

Fig. 5b plots growth restriction factor, Q, which is defined by the 
following equation: 

Q=C0m(k − 1) (17)  

Where C0 is alloy composition, m liquid slope and k partition coefficient. 
Growth restriction factor has been used successfully as an indicator 

for the effect of alloying component on grain refinement [33,34], and 
recently growth restriction factor has been discussed within the context 
of additive manufacturing [7,35]. Titanium is known as having a strong 
grain growth restrictor, and small amount of Ti solute to aluminum melt 
leads to significant grain size reduction in aluminum alloys under 
"normal" solidification conditions [36]. With the calculation of kinetic 
phase diagram, we now can calculate kinetic growth restriction factor to 
reveal how the effect of Ti on grain refinement under the condition of 

Fig. 5. The dependency of partition coefficient and liquidus slope, (a), and growth restriction factor, (b), on interface velocity under no drag and dray mode of Al- 
0.05 at%Ti alloy. 
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the solid-liquid interface moving at different velocities. Fig. 5b present 
the dependence of growth restriction factor on interface velocity. 
Growth restriction factor, being very large at zero velocity, drop quickly 
with the increase of interface velocity. This decrease is due to both the 
approach of k to unity and the drop of liquidus slope as seen in Fig. 5a. 
Drag mode also influences this dependency with no drag mode having 
slightly less influences on growth restriction factor at the mediate range 
of interface velocity. Growth restriction factor approaches to zero when 
interface velocity is high as the result of kinetic partition coefficient 
being close to unity. This application demonstrates one of the practical 
values of kinetic phase diagram calculation, and in Section 3.4 kinetic 
growth restriction factors for a multi-component AM alloy will be 
calculated to shed light on the effects of each solute on grain refinement 
under AM solidification conditions. 

3.3. Kinetic interface condition phase diagram of Fe–Cr–Ni alloys 

In this section the multi-component model is applied to Fe–Cr–Ni 

alloys to demonstrate the model ability of handling complex shapes of 
multi-component kinetic phase diagrams. As shown in Fig. 6, the shape 
of equilibrium liquidus and solidus for this system is far from linear 
straight line, and therefore could provide stringent test to the model and 
its numerical solution method. The thermodynamic input parameters for 
this application are based on the ".tdb" file format CALPHAD database 
file provided in CALPHAD software PANDAT™ example book, and can 
be found in supplementary data of this paper. For this ternary alloy, 
there are two diffusive interface speed for the two alloying components, 
vCr

D and vNi
D , and these two input parameters are arbitrarily set the same 

as v0
vCr

D
= v0

vNi
D
= v0

vD
= 100. Of course, when it comes to compare with 

experimentally measured kinetic phase diagrams, it is very important to 
know the dependency of diffusive interface speed on the temperature for 
each solute. 

Fig. 6 plots the composition–temperature isopleths of an Fe–Cr–Ni 
kinetic interface condition phase diagram under two different drag 
modes. The liquid phase Ni composition is fixed at 1 at%, and Cr ranges 
from 0 to 95 at%. The kinetic liquidus and solidus at v

vD
= 1 and v

vD
= 10 

Fig. 6. The composition–temperature isopleth of an Fe–Cr–Ni kinetic interface condition phase diagram at various v/v_D ratios; the liquid phase Ni composition is 
fixed at 1 at% and Cr composition ranges from 0 at% to 95 at%; (a) no solute drag mode; (b) solute drag mode. Solid line: kinetic liquidus. Dot-dashed line: ki
netic solidus. 
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are presented together with the equilibrium liquidus and solidus (blue 
curves) in Fig. 6a and b. At v

vD
= 1 for Cr composition less than 30 at% the 

kinetic liquidus and solidus (the red curves in Fig. 6a and b) exhibit little 
deviation from their equilibrium counterparts. The deviation becomes 
more and more noticeable when Cr composition is higher 30 at%. The 
kinetic liquidus and solidus are closer than their equilibrium 

counterparts are. Drag mode certainly influences how kinetic liquids and 
solidus change. By contrasting Fig. 6a and b, one can see that the kinetic 
liquidus deviates more from the equilibrium liquidus under drag mode 
than no-drag mode. At v

vD
= 10, the kinetic liquidus drops more than 25K 

below the equilibrium liquidus, and it also collapses into the kinetic 
solidus. At this high interface velocity, drag mode has insignificant 

Fig. 7. The ratios of Cu, Mg and Zn diffusivities over Si diffusivity in liquid phase.  

Fig. 8. The composition–temperature isopleth of an Al–Cu–Mg–Si–Zn kinetic interface condition phase diagram at various v/v_D ratios; the Cu, Mg, Zn compositions 
in liquid phase are fixed at 0.73 at% (2.8 wt%),2.88 at% (2.48 wt%), 2.81 at% (6.52 wt%) respectively while Si ranges from 0 at% to 4.1 at% (4 wt%); (a) no solute 
drag mode; (b) solute drag mode; (c) mixed mode drag with the drag parameter set to 0.5. Solid line: kinetic liquidus. Dot-dashed line: kinetic solidus. 
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influences on the shape of the kinetic liquidus and solidus. 

3.4. Kinetic interface condition phase diagram of Al–Cu–Mg–Si–Zn alloys 
and growth restriction factor 

The application to Al–Cu–Mg–Si–Zn quinary alloy system is 

presented in this section. This purpose of this application is two-folded. 
It is not only to demonstrate the model’s ability to handle multi- 
component alloys, but also one of the practical values of multi- 
component kinetic phase diagram calculation. It has been observed 
recently from additive manufacturing experiments that adding Si can 
improve the printability of Al–Cu–Mg–Zn (AA7075) alloys [37,38]. One 

Fig. 9. The dependency of growth restriction factor on interface velocity under no drag mode, (a), and drag mode, (b), of an Al-0.73 at%Cu-2.88 at%Mg-4.1 at%Si- 
2.81 at%-Zn alloy. The ratios of Cu, Mg and Zn interface diffusive speeds over Si speed is calculated according to these elements diffusivities values in liquid phase. 
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hypothesis to explain this improvement caused by Si modification is its 
grain refinement effect [37,38]. The proposed model can calculate ki
netic growth restriction factor as demonstrated in Fig. 5, and it will be 
applied here to evaluate Si effect on grain refinement under the 
fast-cooling condition encountered during AM. 

The thermodynamic input parameters for this application are taken 
from TTAL7 CALPHAD database. For this quinary alloy, there are four 
diffusive interface speed for the four alloying components, vCu

D , vMg
D , vSi

D 
and vZn

D . The value of diffusive interface speed, as mentioned Section 2.2, 
can be calculated from interface diffusivities and interatomic spacing in 
Ref. [17], i.e., for solute j, 

vj
D =

Dj

λ
(18)  

Where Dj is the diffusivity inside the interface of element j, and λ is 
interatomic spacing. In principle, Dj and λ are obtainable from first 
principle and molecular dynamics calculations. However, such a 
calculation for the four alloying components is not included in this 
manuscript, and will be included in our future work. Instead following 
the approach adopted by Aziz and Boettiger in Ref. [17], the magnitude 
of Dj are estimated from the diffusivity in the parent (liquid) phase. With 
the liquid diffusivities data provided in Ref. [39], the ratios of the 
interface diffusive speed of Cu, Mg and Zn over the one of Si are plotted 
in Fig. 7. Among the three alloying components, Cu diffuses the fastest 
while Zn has the similar diffusivity as Si. Mg’s diffusivity is about 1.5 
times the one of Si. The other input parameter, v0, is set to be 100vSi

D . 
Fig. 8 plots the composition–temperature isopleths of an 

Al–Cu–Mg–Si–Zn kinetic interface condition phase diagram under three 

Fig. 10. The dependency of growth restriction factor on interface velocity under no drag mode, (a), and drag mode, (b), of an Al-0.73 at%Cu-2.88 at%Mg-4.1 at%Si- 
2.81 at%-Zn alloy. The interface diffusive speeds for the four alloying components are set artificially as identical. 
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different drag modes. The liquid phase Cu, Mg, Zn compositions are 
fixed at 0.73 at% (2.8 wt%),2.88 at% (2.48 wt%), 2.81 at% (6.52 wt%) 
respectively while Si ranges from 0 at% to 4.1 at% (4 wt%). These range 
covers the experimental composition matrix reported in Ref. [38]. The 
kinetic liquidus and solidus at v

vSi
D
= 1 and v

vSi
D
= 100 are presented 

together with the equilibrium liquidus and solidus in Fig. 8a, b and c. At 
v

vSi
D
= 1 the kinetic liquidus slope becomes steeper, and the liquidus and 

solidus are closer than their equilibrium counterparts are. Drag mode 
certainly influences the extent at which liquids slope change, and 
no-drag mode has the least influence. At v

vSi
D
= 100, the kinetic liquidus 

drops more than 50 K below the equilibrium liquidus, and it collapses 
into the kinetic solidus. At this high interface velocity, drag mode has an 
insignificant influence on the shape of the kinetic liquidus and solidus. 

Fig. 9a and b show, with solid lines, the dependency of growth re
striction factor of all the four alloying components (Si, Mg, Zn and Cu) 
on interface velocity under no-drag mode and drag mode, respectively. 
To highlight the relative weight of Si to other alloying components, the 
ratio of Si growth restriction factor over the other three components also 
are plotted in Fig. 9 with discontinuous curves. Si growth restriction 
factor is 23.5 K at zero interface velocity, which is 5.7, 2.6 and 3.4 times 
the growth restriction factor of Cu, Mg and Si as seen from the discon
tinuous curves from Fig. 9a and b. Si effect on grain refinement under 
"non-rapid" condition is significant evidenced by its large growth re
striction factor value. Under no-drag mode, although growth restriction 
factor of all the solutes decreases, the ratio of Si over the other solutes 
increases, indicating that Si becomes even more important than all the 
other components for grain refinement under rapid or sub-rapid solidi
fication conditions. Under solute drag mode, growth restriction factors 
of all the solutes exhibit a quick increase before dropping with the in
crease of interface velocity. Again, the ratios of Si over the other solutes 
increase with the increase of interface velocity highlighting the impor
tant role of Si for grain refinement. The calculated growth restriction 
factors curves are in consistency with the experimental observation of 
the pronounced effect of Si on grain refinement during additive 
manufacturing [37,38]. 

It should be mentioned that the approximation made with this 
analysis here is the diffusive interface speeds, vCu

D , vMg
D , vSi

D and vZn
D are 

estimated from the diffusivities in the liquid phase. To test the sensitivity 
of the calculation results on these parameters vales, a simulation with 
constant and identical interface diffusive speed for all alloying compo
nents is performed. With these new input parameters, the predicted GRF 
curves of Mg and Cu, shown in Fig. 10, deviate from their corresponding 
ones in Fig. 9; noticeably the curve of GRF Cu cross the one of GRF Zn in 
Fig. 9 while no such cross is observed in Fig. 10. The values of relative 
interface speed at which Cu and Mg GRF curves attains their maximum 
values are different from their corresponding ones in Fig. 9, and they are 
shifted leftwards. The predicted GRF curves of Zn and Si in Fig. 10 are 
very close to their corresponding ones in Fig. 9. However, clearly the 
trend observed in Fig. 9 does not change, i.e., with the increase of 
interface velocity, the ratio of Si growth restriction factor over the other 
solutes increases. Si is still predicted to be the more important than all 
the other components for grain refinement under rapid or sub-rapid 
solidification conditions. 

We also run the simulations with the diffusive interface speeds, vCu
D ,

vMg
D , vSi

D and vZn
D calculated by the empirical formula proposed by Smith 

and Aziz for various aluminum alloys in Ref. [31]. The formula can be 
approximated written as in the following form: 

vD∝ k− 0.6 (19) 

With a constant partition coefficient for each solute, estimated from 
our CALPHAD database, i.e. 0.14 for Cu, 0.3 for Mg, 0.11 for Si and 0.41 
for Zn, the calculated ratios are 0.86, 0.54 and 0.45 respectively. A new 
simulation with these ratios is performed, and its results still verify the 
profound effects of Si. For clarity reasons, the results are not included. 

The sensitivity study of the calculation results on v0 value also have 
been conducted. Simulations with v0

vSi
D 

ratio of 50, 150 and 1000 are 

performed, and it is confirmed that the said Si effect is presented in all 
these simulations. For clarity reasons, the calculated GRF curves are not 
presented here. 

4. Summary and conclusions 

In this paper we have reformulated the binary continuous growth 
models into a form suitable for the coupling with the CALPHAD data
bases of multi-component alloy systems. A numerical solution to the 
CALPHAD-coupled multi-component model is described. The model and 
its numerical solution are verified by the case studies with ideal solution 
phases, Ag–Cu and Al–Be alloy. The model predictive power and prac
tical values are demonstrated by the case studies with Al–Ti, Fe–Cr–Ni 
and Al–Cu–Mg–Si–Zn alloys. It is expected that the proposed framework 
is applicable to solid state phase transformation in which the linear ki
netic laws prevail. The interface-velocity dependent partition coefficient 
and liquid slope calculated in this paper is ready to be integrated into a 
columnar equiaxed transition model to predict grain morphology 
formed under directional rapid solidification condition. 

The work raises some research questions to be addressed in the 
future. One interesting one is to explore how the drag parameter, β, 
depends on interface velocity and the diffusion in the bulk. As proposed 
in Ref. [20], there is a major difference between the behavior of the 
interface at low and high velocities, and the multi-component model can 
be extended to incorporate a velocity-dependent drag parameter. The 
second one is whether the kinetic interface phase diagram calculation is 
equivalent to the minimization of some forms of Gibbs energy function. 
There have been some research activities relating the calculation of 
interfacial interface conditions with thermodynamic extremum princi
ple [40–43], and it is worth exploring how to use the extremum principle 
when the kinetic law is not linear but exponential as in the continuous 
growth model. The third one is computational study of the kinetic input 
parameters to the proposed model such as interface diffusive speed. 
Such a study would enable accurate calculation of kinetic phase diagram 
with the proposed model, thus release the great potential of thermo
dynamic database for AM alloy design and processing parameter 
optimization. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.calphad.2021.102365. 

Appendix 

Appendix A. the derivatives of driving energies 

From Eq. (12), the partial derivatives of the overall molar driving energy ΔGDF can be written bellow: 
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Before calculating the derivatives of Eq. (14c), the following definition is made: 
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The derivatives of the molar driving force, ΔGi
D,m is listed below: 
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Therefore, the derivatives of the solute redistribution driving energy can be written below: 
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Note that these derivatives are derived with the simplification that v0 and vi
D are constant. It is straightforward to calculate the derivatives when 

they are dependent on temperature or composition. 
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