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Abstract    

 This article addresses the random wave energy dissipation due to submerged aquatic vegetation 

plants in shallow water based on deep water wave conditions including estimation of wave damping. The 

motivation is to provide a simple engineering tool suitable to use when assessing random wave damping 

due to small patches of plants in shallow water. Examples of application for typical field conditions are 

provided. The present method versus common practice is discussed. A possible application of the 

outcome of this study is that it can be used as a parameterization of wave energy dissipation due to 

vegetation patches of limited size in operational estuarine and coastal circulation models. 
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1. Introduction    

 At shallow water depths in estuaries and coastal zones, the flow is induced by surface waves and 

currents. In general, coastlines are vulnerable due to the combined action of waves and currents and the 

effect of this on sediment transport and consequently on coastal erosion. Submerged vegetation 

represents a natural protection to estuaries and coastal zones, by modifying the hydrodynamics and 

sediment transport processes in comparison to locations without vegetation. Paul1 has recently addressed 

the role of seagrass for coastal protection, identifying that knowledge gaps exist regarding the support 

that seagrass can provide for sandy shorelines protection. The damping effect of vegetation on waves in 

an estuary was clearly documented by Nowacki et al.2; they found that the wave-induced seabed shear 

stress is about 15% less in the presence of vegetation, than the bed shear stress due to the higher waves 

which would be present with no vegetation. 

 In general, coastal flow circulation models are commonly used tools in coastal protection work, 

  

where the wave damping e.g. due to vegetation has to be represented, i.e. often in terms of a bulk drag 

 

 coefficient. However, at present there is no consensus on how this wave damping due to vegetation 

 

 shall be taken into account. Henry et al.3 gave a comprehensive and critical review of the available 

 

 drag coefficient formulations under wave conditions as well as a literature review up to that date (see 

 

 the references therein). More recent works, also addressing wave energy dissipation and containing 

 

 literature reviews, include those of Liu et al.4, Tinoco and Cuo5, Losada et al.6, Luhar and Nepf7, 

 

 Henderson et al.8, Nowacki et al.2, Paul1 and Maza et al.9.  The present work is supplementary to 

 

 Myrhaug10 who provided a simple analytical method on estimating random wave-driven drag forces on 
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 near bed vegetation in shallow water based on deep water wind statistics. 
 

 This paper is organized as follows. The Introduction is followed by Section 2, giving the general 

formulation of the wave energy dissipation including the wave-induced drag force formula used here in 

terms of a slightly revised version of the Sànchez–Gonzàlez et al.11 drag coefficient for submerged 

vegetation. Section 3 gives the wave energy dissipation for random waves in shallow water expressed in 

terms of the deep water wave amplitude spectrum including an estimate of wave damping. Section 4 

provides examples of results for a Pierson-Moskowitz wave amplitude spectrum by first demonstrating 

application of results (Section 4.1), and then comparing the present model predictions with one case from 

Mendez and Losada12 (Section 4.2). Section 5 discusses the present approach versus common practice. 

A summary is given in Section 6. Overall, the present formulation provides an estimation of wave energy 

dissipation due to a small vegetation patch based on solely offshore wave conditions. Because these 

parameters are usually easier to derive than the wave parameters at the coast, this approach offers a cost-

efficient method which should have the potential to be used as a parameterization in operational estuarine 

and coastal circulation models. 

 

2. General formulation 

 The drag force is the main component of the fluid forces acting on plants and is expressed in terms 

of a Morison-type equation when the sway motion of the vegetation as well as inertial forces are 

neglected (Mendez and Losada13). Furthermore, by neglecting the vertical force component, the fluid 

force is given by the horizontal component, and the horizontal time-varying force per unit volume 

exposed to regular waves is given as (Mendez and Losada13) 

 
1

( ) ( ) | ( ) |
2

DF t C bN u t u t=   (1) 
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Here ( )u t  is the undisturbed horizontal regular wave-induced velocity in the area with plants, t is the 

time,   is the water density, b is the plant width, i.e. corresponding to the plant area per unit height of 

each plant normal to ( )u t ,  N is the number of plants per unit horizontal area, and DC  is a bulk (i.e. 

depth-averaged) drag coefficient. Strictly, the correct calculation of ( )F t  demands that the relative 

velocity between fluid and plant is used rather than ( )u t ; however, Eq. (1) is also used for flexible plants 

by using other DC  expressions than for rigid plants.  

         The wave energy dissipation due to plants is obtained as the time-average over one wave period T 

of the work done by the drag force:  

 
0

1
( ) ( )

T

DE F t u t dt
T

=    (2) 

Then, for ( ) sinu t U t=  where U is the amplitude of the horizontal velocity during the regular wave 

cycle with the angular wave frequency 2 / T = , the result of combining Eqs. (1) and (2) gives 

                                                                  32

3
D DE C bN U


=                                                              (3)        

         Although based on some strong assumptions, Eq. (1) is often used as an estimation of the forces on 

vegetation thanks to its simple formulation (e.g. van Rooijen et al.14; Vuik et al.15). The drag force 

depends on the mechanisms of plant-flow interaction covering a wide range of flow regimes and its 

estimation is difficult; to this date no consistent theory or formulae exist including these mechanisms. In 

the present work the DC  formula proposed by Sànchez-Gonzàlez et al.11 is adopted, which can be 

approximated by 

 , ( , ) (15.2, 1)d

DC cKC c d= = −   (4) 
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Here, c and d are coefficients originally given as ( , ) (22.9, 1.09)c d = −  and valid in the range 15 < KC < 

425. However, as shown in Fig.1, Eq. (4) is a good representation of the original formula and estimated 

by a least root-mean-square fit to the original formula. The original formula was obtained as a best fit to 

flume test results of regular and irregular waves over submerged artificial flexible seagrass, and 

/KC UT b=  is the Keulegan-Carpenter number. For linear waves in shallow water, U is independent of 

the vertical coordinate z and given by /U a kh= , where a is the linear wave amplitude, h is the water 

depth, and k is the wave number determined from the shallow water dispersion relationship as 

/k gh= . By using these relationships and substituting Eq. (4) (i.e. using c = 15.2, d = -1) in Eq. (3), 

the wave energy dissipation in regular waves in shallow water becomes 

 2

2

2

1

3

D
D

E g
e a

h
cb N






 =   (5) 

         

3.    Wave energy dissipation for random waves in shallow water 

 The wave energy dissipation for an individual wave component with amplitude na  and angular 

wave frequency n  at a shallow water depth h is given for regular waves in Eq. (5) as 

 
2

Dn n n

g
e a

h
=   (6) 

Now 2 2 ( , )n na S h =   where 
2( , ) ( / 2 ) ( )S h h g S  =  is the wave amplitude spectrum in shallow 

water (Massel16, Section 7.3), ( )S  is the deep water wave amplitude spectrum, and   is a constant 

separation between frequencies. It should be noted that no energy is lost in this transformation from deep 

to shallow water. Thus, substituting  2

na   in Eq. (6), it follows for an infinite number of wave frequencies 

that the wave energy dissipation is        
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 3

3

0

1
( )

2
De S d m  



= =   (7) 

where 3m  is the third spectral moment of ( )S  , and the spectral moments for deep water waves are 

defined as 
0

( ) ; 0,1,2,n

nm S d n  


= = −−−− . Then, it follows from Eqs. (5) and (7) that 

 2

32

1

3
DE cb N m


=   (8) 

which is known for given wave conditions in deep water. 

        The damping of random waves in shallow water due to a patch containing N stands per unit area 

with a height h  can be estimated by the change in wave energy flux caused by energy dissipation as  

                                                                  ( )h gh D

d
E c E h

dx
= −                                                              (9) 

where x is the horizontal coordinate, 21

8
h s hE g H=   is the wave energy in shallow water, s hH  is the 

significant wave height in shallow water, and ghc gh=  is the group velocity in shallow water (see 

Appendix 1). Substitution in Eq. (9) and integrating over the patch length L (i.e. from x = 0 to x = L) 

yields the significant wave height s hLH  at x = L when the significant wave height 0s hH  at x = 0 is known: 

                                                        

1/2
2

2

0 32

8

3
s hL s h

cb N h
H H m L

g gh

 
= −  
 

                                               (10) 

       It should be noted that the results are valid if the Ursell number in shallow water, 
R h sU , is smaller 

than 0.5, i.e. (see Eq. (18) in Appendix 1) 

 

2.5

2.25
0.062 0.5

s p

Rhs

H T
U

h
=    (11) 
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where sH  is the significant wave height in deep water, and 
pT  is the spectral peak period. Thus, the  

 results for given values of sH  and pT  are valid for the water depth h consistent with Eq. (11), and  

for the deep water wave steepness 0.04ps   (see Eq. (23) in Appendix 1). 

 It should also be noted that Eq. (4) is valid for /KC UT b=  in the range 15 to 425. As shown in  

Appendix 1, the Keulegan-Carpenter number can also be defined for random waves in shallow water, 

s hKC , i.e. (see Eq. (22) in Appendix 1) 

 ; 15 425
sh p

sh sh

U T
KC KC

b
=     (12) 

where 
s hU  is the wave-induced velocity given in Eq. (21). 

           The present model is a so-called point model, i.e. depending on the local wave parameters 

regardless of the history of the waves as they propagate from deep to shallow water. Further aspects of 

this model will be discussed in Section 5. 

 

4. Examples of results for a PM spectrum 

The Pierson-Moskowitz (PM) wave amplitude spectrum with the mean wind speed at the 10 m elevation 

above the sea surface, 𝑈10 , as the parameter is applied as the deep water wave amplitude spectrum. One 

should notice that the PM spectrum is valid for fully developed wind waves, but as a compromise between 

simplicity and accuracy it is adopted here to demonstrate how a standard wave amplitude spectrum can 

be used analytically. Some further comments are provided in Section 5. According to Tucker and Pitt17  

the PM spectrum is 𝑆(𝜔) = 𝐴𝜔−5 𝑒𝑥𝑝( − 𝐵𝜔−4) where the spectral  moments for 𝑛 < 4  are 𝑚𝑛 =

0.25𝐴𝐵𝑛/4−1𝛤(1 − 𝑛/4), 𝛤 is the gamma function, 𝐴 = 𝛼𝑔2, 𝛼 = 0.0081, 𝐵 = 1.25𝜔𝑝
4, 𝜔𝑝 = 2𝜋/𝑇𝑝  

is the spectral peak  frequency corresponding to the spectral peak period 𝑇𝑝. Then it follows that 𝑚3 =
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0.25𝛼𝑔21.25−0.5𝜔𝑝
−1𝛤(0.25), which combined with 𝑇𝑝 = 0.785𝑈10 and 𝛤(0.25) = 3.6256  gives 

𝑚3 = 0.101 𝑇𝑝 = 0.0793𝑈10 (m2/s3). Substitution of this in Eq. (10) with 15.2c = yields 

                                                       

1/2
2

2

0 0.0135shL sh p

b N h
H H T L

h

 
= − 
 

                                                      (13) 

It also follows that 2 2

0 104 0.04 0.0246s pH m T U= = =  , and thus, / 5p sT H =  for all combinations of 

sH and pT  in a PM spectrum. 

 

4.1     Example 1 

 This example is included to demonstrate the application of the results for some typical field 

conditions with spectral peak period 11.8spT =  and significant wave height in deep water 5.6msH =  

(i.e. 10 15U = m/s) as an example. Then it follows that: 

 Spectral wave steepness from Eq. (23), 0.026 0.04ps =       

  Water depth from Eq. (19), 13.2mh   . Thus, 15mh =  as an example, which gives: 

  Shallow water Ursell number from Eq. (11) (or Eq. (18)), 0.38 0.5RhsU =   

  Wave energy dissipation, 
DE h ,  from Eq. (8) (with c = 15.2) for 31027 kg/m = , b = 0.1 m , 

1mh = and 1N =  (i.e. per plant), 6.3DE h W =   

   Significant wave height in shallow water from Eq. (20),  4.9ms hH =   

   Shallow water wave-induced velocity from Eq. (21), 2.0m/ss hU =   
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   Shallow water Keulegan-Carpenter number from Eq. (22) with b = 0.1 m, 236s hKC = , i.e. in the         

validity range of the formula. 

        Next, consider a patch with N = 100 plants/m2, L = 100 m and 
0 4.9ms hH = . Then, substitution in 

Eq. (13) gives 

                                             

1/2
2

2 0.1 100 1
4.9 0.0135 11.8 100 4.5m

15
shLH

  
= −  = 
 

                       (14) 

i.e. the significant wave height is reduced by 8.2 %. 

 

4.2     Example 2 

This example provides a comparison between the present predictions and a case from Mendez and 

Losada12, who presented a model using potential flow and an eigenfunction expansion considering 

regular and irregular incidental waves on a vegetation field taking into account vegetation motion. The 

model results show very good agreement with existing experimental data for regular and irregular waves. 

Here the results presented in Fig. 5(c) in Mendez and Losada12 are used to compare with. In terms of the 

present notation their results correspond to the following shallow water random wave conditions:  

1.05pk h = , h = 10 m, 
0 2.8ms hH = , N = 15 stands/m2 , b = 0.1 m , 0.7 mh = , L = 100 m. Thus, this 

corresponds to 2 / ( ) 6.0p pT k h gh s= = . Substitution in Eq. (13) gives 

                                       

1/2
2

2 0.1 15 0.7
2.8 0.0135 6.0 100 2.3m

10
shLH

  
= −  = 
 

                       (15) 

i.e. corresponding to a significant wave height reduction of 18 %, while the reduction given in Mendez 

and Losada12, Fig. 5(c) is 19 %, i.e. a priori the agreement appears to be excellent. However, a closer 

inspection of the results using the conditions in Appendix 1 yields: 4.1msH = (Eq. (20)), 0.073ps = (Eq. 
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(23)),  0.126R h sU =  (Eq. (18)), 84s hKC =  (Eqs. (21) and (22)). Moreover,  / 6 / 4.1 3p sT H = = , i.e. 

smaller than 5 for a PM spectrum. Thus, although 0.5Rh sU   and 15 425s hKC  , the deep water wave 

conditions correspond to a steeper sea state than strictly required, i.e. 0.073 > 0.04. However, despite this 

inconsistency the results are physically sound and reasonable, and should therefore support and justify 

the method. Detailed field and/or experimental datasets on random wave dissipation over submerged 

vegetation are still scarce and the comparison of this approach against new datasets (out of the scope of 

this technical note) would be required to confirm the results presented here.  

 

5. Discussion  

 This section provides further aspects of the present point model as well as some comments on this 

approach versus a procedure which commonly is used. For calculating the random wave energy 

dissipation and the resulting wave damping due to submerged aquatic plants in shallow water, common 

practice would be to start with available data on joint statistics of sH  and pT   (or other characteristic 

wave periods); preferably within directional sectors at a nearby location offshore (in deep water). The 

next step would be to apply an appropriate wave simulation model including effects of dissipation such 

as bottom friction and wave breaking, to obtain the joint statistics of sH  and pT  at the shallow water 

site; then finally to use this as input for calculating the wave energy dissipation and wave damping. In 

general this practice would also include shallow water regions exposed to sea states with combined wind 

waves and swell waves from different directions. Here an alternative is presented providing a simple 

analytical method which can be used to make assessment of the random wave energy dissipation and 

wave damping du to vegetation from given values of sH  and pT , exemplified by including results using 

the PM deep water wave amplitude spectrum  representing wind waves. The transition from deep water 

to the shallow water site is assumed to be smooth, neglecting wave energy dissipation effects over 
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changing bed conditions with varying shallow water depths. The feature of a point model also implies 

that the dependence on the spatial coordinates is discarded; it only depends on the local water depth and 

the local wave conditions via the transformed deep water wave spectrum for long-crested waves in terms 

of the sea state parameters sH  and pT . Consequently, several aspects affecting the assessment of the 

wave energy dissipation due to vegetation are neglected, i.e.: that the wave field is inhomogeneous; from 

where the waves are coming and the location of the assessment point; return flows from dissipation 

effects which in turn will affect the local wave spectrum, the DC  coefficient, and the velocity field ( )u t

. However, the point model enables analytical estimates of the wave energy dissipation and wave 

damping due to plants from vegetated patch of a limited size, which are appropriate for making quick 

estimates. Then, these estimates can be used to compare with more complete computationally demanding 

methods. Under field conditions such an easily accessible and simple tool might also be useful as there 

is usually limited time and access to computational resources. Although the presented results are based 

on a specific drag coefficient formula and the PM deep water wave amplitude spectrum, the method can 

also be applied for other drag coefficient formulations, other deep water wave amplitude spectra 

including directional spreading effects, or joint distributions of sea state wave parameters. However, in 

such cases numerical calculations are probably required. It is important, however, to assess the accuracy 

of this approach versus common practice, which is only possible to quantify by comparing with such 

methods over a wide parameter range, also including a sensitivity analysis of the results regarding the 

assumptions considered, but this is beyond the scope of this article. 

 

6. Summary   

 A simple analytical method for estimating random wave energy dissipation and wave damping due 

to submerged aquatic vegetation in shallow water using deep water wave conditions is provided. The 

wave energy dissipation is based on a drag force formula for submerged artificial flexible seagrass 
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adopting a slightly revised version of the Sànches-Gonzàles et al.11 drag coefficient in terms of the 

Keulegan-Carpenter number. This formulation of wave energy dissipation is applied for random waves 

by transformation of deep water waves to shallow water. The wave energy dissipation and wave damping 

due to plants in shallow water are then obtained expressed in terms of the third spectral moment of the 

deep water wave amplitude spectrum. Results are exemplified for sea states described by the PM deep 

water wave amplitude spectrum representing wind waves. An example gives favorable results compared 

with one case from Mendez and Losada12 based on their model results. The present method versus 

common practice is also discussed. Although simple, the present approach should represent a useful tool 

for the assessment of random wave energy dissipation and wave damping due to small submerged 

vegetation patches in shallow waters of estuaries and coastal regions. The present formulation may also 

have the potential to serve as a useful parameterization of wave energy dissipation due to vegetation 

patches of limited size, which can be used in operational estuarine and coastal circulation models. 

 

Appendix 1 

 For harmonic waves in finite water depth the Ursell number is defined as (Dean and Dalrymple18) 

3/ ( )RU ka kh= . In general, RU   gives the ratio between the nonlinearity of the waves in terms of the 

wave steepness ka, and the dispersive properties of the waves in terms of kh.  Linear waves are valid for 

0.5RU    and the deep water wave steepness  2/ (( / 2 ) ) 0.04s H g T=   (Hedges19), where the index 

  refers to deep water. 

 Furthermore, for linear harmonic waves propagating over a gently sloping flat bottom approaching 

a straight coastline at normal incidence, the wave amplitude is found by using that the energy flux is 

constant (Dean and Dalrymple18), i.e. 
2 constantga c = , where ( / 2) (1 2 / sinh 2 )gc c kh kh= +  is the group 

velocity, and /c k=   is the phase velocity. Using deep water as a reference ( a a=  and /c k = ), 
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the wave amplitude a in shallow water ( 1)kh   (using
2 = gk   in deep water, k gh =   in shallow 

water, and that constant = ) is 

 
1/2

1

(2 )

a

a kh

=   (16) 

Substitution of 2 / ( )k T gh= , / 2a H =   where H  is the deep water height, gives the Ursell 

number in shallow water as 

 
2.5

2.25
0.062Rh

H T
U

h

=   (17) 

By replacing H  with sH  and T with pT  , the Ursell number for a sea state is defined as 

 

2.5

2.25
0.062

s p

Rhs

H T
U

h
=   (18) 

Thus, Eq. (18) is the Ursell number in shallow water depth h in terms of the deep water sea state 

parameters sH   and pT , which is valid for 0.5Rh sU  , and consequently the results are valid for 

                                                                    
5/2 4/9(0.124 )s ph H T                                                         (19) 

 Similarly, by replacing a  with / 2h s ha H= ,  a   with / 2sH   and T  with pT , Eq. (16) gives the 

significant wave height s hH  in shallow water as 

 

1/2

2

ps
s h

TH g
H

h

 
=   

 
  (20) 

 The Keulegan-Carpenter number in shallow water representing random waves can also be defined. 

For shallow water linear waves the horizontal wave-induced velocity amplitude is (Dean and 
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Dalrymple18) 1/2( / )U a g h= . Thus, by replacing a with  / 2h s ha H= , the corresponding wave-induced 

velocity becomes 

 1/2( )
2

s h

s h

H g
U

h
=   (21) 

Similarly, /KC UT b=   is re-arranged to s hKC   for random waves in shallow water, i.e. 

 
s h p

s h

U T
KC

b
=   (22) 

which is taken to be valid for 15 425s hKC  . 

         Moreover, the wave steepness in deep water expressed in terms of the sea state parameters is 

                                                                           
2

2

s
p

p

H
s

g
T



=                                                                 (23) 

which should satisfy that  0.04ps  . 
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Figure caption  

Fig. 1   CD  versus KC for two (c, d) sets. 
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