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A B S T R A C T   

This work discloses an industrial multi-ton scale methodology implemented by a Romanian company (Explocom 
GK) to use bio-wastes to produce biochar, demonstrating a case of bio-economy circularity associated with 
economic growth. The pyrolysis process was able to produce ~20%w of high-quality biochar (550 m2/g) starting 
from forest-based and agricultural wastes. A fraction of ~60%w is converted into condensates, including wood 
vinegar, wood tar, alcohol, etc. that can be recovered and purified because of the large scale of the process. The 
energy contained in the volatile syngas produced (~20%w) is stored and used instead of fossil fuels for heating 
the pyrolysis reactor. Some of this syngas and wood vinegar can also be used to activate a fraction of the biochar 
into high-quality activated carbon (value of activated carbon/value of biochar >3, depending on the market and 
required properties). The transformation of a fraction of the produced biochar into activated carbon increases the 
overall profitability of the plant while manufacturing a product that does not use fossil fuels or chemicals for 
activation. This material locally produced can also reduce emissions from transport of activated carbons 
currently exported from other continents.   

1. Introduction 

Biochar is a carbon-rich material obtained from thermal conversion 
of biomass. Biochar is the same product as charcoal; the different ter
minology aims to differentiate its uses. While charcoal is commercial
ized for heating and cooking (being commonly associated to 
barbequing), biochar is suitable to retain carbon in soil, consequently 
eliminating CO2 from the troposphere (Das et al., 2020). Carbon 
retention can be improved further by using alkali metals (Nan et al., 
2020). Biochar is a soil ameliorant (bio-fertilizer) that can be used as a 
partial alternative, or combined, with conventional fertilizer (produced 
via usage of fossil fuels) and pesticides that are commonly used on 
several Mha of arable land (Kizito et al., 2019). 

Biochar can be produced from specific feedstock like logwoods, co
conut shells or short rotation crops (SRCs). In recent years, the “bio- 
waste” to biochar approach presents itself as an exceptional negative 
emissions technology providing multiple common goods like selective 
adsorbents at affordable cost (Jung et al., 2019). Biochar samples were 

produced from waste woods originated from forest-based industries, as 
well as from agriculture residues, such as straw, corn cob, pruning re
siduals from vineyard and orchards, solid bio-waste from municipal 
waste management activities, etc. and used in many different areas 
(Nanda et al., 2016; Wijitkosum and Jiwnok, 2019) like removal of 
heavy metals (Zhao et al., 2019). Some of the benefits of using 
bio-wastes for producing biochar are:  

(a) restoration of soil carbon and water conservation capacities 
(Cazotti Tanure et al., 2019),  

(b) increased crops yields (Kalus et al., 2019),  
(c) climate change mitigation (Wang et al., 2020b). 

These benefits are still lacking a holistic and coherent cross-sectoral 
policy approach to fully exploit the potential of biochar (Verde and 
Chiaramonti, 2021) and to maximize the environmental benefits of the 
different approaches. The IPCC declared that the use of biochar is an 
important strategic tool in the fight against global warming, stating 
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“biochar is the best option for atmospheric carbon sequestration” ( 
2018de Coninck and Revi,). The EC Green Deal confirmed this statement 
with the EU Regulation 2019/2164, declaring that biochar complies 
with the objective and principles of organic production in the EU’s 
agriculture sector (European Commission, 2008, European Commission, 
2020). Indeed, biochar comply with EU objectives of generating circular 
economy cycles from waste streams (Tagliaferro et al., 2020), even for 
streams that are difficult to treat like sewage sludges (Bolognesi et al., 
2021). 

In South-East Europe (SEE) countries, estimations suggest that there 
are over 30 Mton/year agricultural crops and solid residuals producing 
significant CO2 emissions, especially by landfilling which is still prac
ticed in non-EU countries (Wietschel et al., 2019). In Romania, the total 
agriculture biomass feedstock is estimated to be ~10 Mton/year, with 
an expected growth of 30% by 2030. Romania together with Bulgaria 
and Italy have the highest growth of agriculture biomass feedstock in 
Europe (Wietschel et al., 2019). 

The market uptake capacity for biochar in agriculture sector in SEE is 

estimated over 60,000 ton/year (Masek et al., 2019). According to the 
international market research prognosis, the Compound Annual Growth 
Rate (CAGR) of biochar production will be 16,45% and this growth will 
continue until 2030 in the EU and EFTA countries (Ohra-aho et al., 
2020). 

The mismatch between the availability of residues and the required 
amount of biochar allows us to think about the possibility to extend the 
range of products from bio-wastes. In this regard, the production of high- 
performance activated carbon from biochar offers an extraordinary 
platform that is considered as a bio-innovator technology for many in
dustrial branches like in remediation applications (Wang et al., 2020) 
with proven benefits in different and diverse countries, like Tanzania 
(Hansson et al., 2021). In Romania (~20 million inhabitants), the esti
mated market demand for activated carbon is 35–40 kt per year, with a 
market increase of ~10% per year (Nutriman project, 2021). 

Activated carbon is a very flexible product with applications in 
multiple and very diverse economic and social sectors. Moreover, a 
variety of composite materials using activated carbon can be obtained 

Table 1 
Specific markets, applications and benefits of activated carbon and biochar.  

Product Market Sub-sector Grade/Specs Main benefits and use examples 

Biochar Agriculture Crop growth Low-middle range quality, granulated powdered, 
surface area lower than 500 m2/g 

Soil stabilizer, CO2 sequestration, increase soil permeability and 
porosity (Das et al., 2020), increase water retention, stabilize soil 
contamination (Wang et al., 2020), and reduce erosion, accelerate 
humus formation (Latawiek et al., 2017). 
Facilitate livestock feeding (Hwang et al., 2018;  
Sánchez-Monedero et al., 2019) and management of manure (Man 
et al., 2021; Schmidt et al., 2019). 

Livestock breeding 

Activated 
carbon 

Food and 
beverages 

Sweeteners Mid-range quality activated carbon, surface area 
>700 m2/g with microporous surface 

Elimination of organic odors (Bertone et al., 2018). 
Ultrapure water production, cleaning (Narzari et al., 2015) and 
washing in the production lines. 

Beverages 
Soft drinks 
Tobacco 

Chemicals Oil & gas Granular activated carbon, Middle-high range 
quality activated carbons, surface area >800 m2/ 
g with microporous surface 

Filtration systems (Razmi et al., 2019), cleaning and washing 
processes, decoloration (Rawat and Singh, 2018), removal of 
contaminants like humic acids (Shankar et al., 2017), 
chlorobenzenes (Zhang et al., 2018), erythromycins (Muter et al., 
2019), organic compounds and VOCs (Xiang et al., 2020; Rajabi 
et al., 2021; Zhang et al., 2021), BTEX (Sung et al., 2021), CODs ( 
Khurshid et al., 2021), etc. 
Removal of inorganic vapors and acid gases (Di Stasi et al., 2019) 
and heavy metals (Gupta et al., 2020). Use as catalysts/catalyst 
carrier (Adarsh et al., 2020). 

Painting, coatings 
Gas activation 
Refineries 
High-added value 

Metallurgy Metal recovery Granular activated carbon in most cases. Meso 
and micropores, depending on application 

Metal extraction (Zhou et al., 2021), metal finishing, purification 
of electroplating solutions (Wang et al., 2020; Biswas et al., 2020). 
Discharge of metal ions (Zhang et al., 2020). Removal of selected 
metal cations (Lin et al., 2020) and inorganic vapors (Amusat et al., 
2021). 

Metal production 

Water 
treatment 

Drinking water All kind of ranges depending on application. 
Shape tailored to application. Cost-efficient and 
environmentally friendly materials. 

Filtration systems (Jayakumar et al., 2021; Kang et al., 2019), 
cleaning and washing processes (Xie et al., 2015; Lam et al., 2020), 
selective adsorption of contaminants (organic and inorganic) in 
liquid phase (Zhang et al., 2019; Bandara et al., 2020; Yi et al., 
2020) and gas phase (Xiang et al., 2020), wastewater treatment ( 
Enaime et al., 2020; Qambrani et al., 2017). 

Wastewater 
management 
Environmental 
remediation 
Waste, ballast, mine 
and landfill 

Defense Collective protection High quality product, shape, surface and surface 
chemistry tailored. 

Use in collective air filters in shelters and vehicles for chemical 
warfare (Qian et al., 2020). Gas masks and respirators (Won-In 
et al., 2019, 2020). 

Individual protection  

Nuclear 
energy 

Radioactive isotopes High quality product against sulphur, chlorine, 
dioxide ammonia, high surface area 
(microporous) 

Passive capture filters impregnated with iodine (Suorsa et al., 
2020; Deitz, 2021), decontamination of nuclear power stations ( 
El-Magied et al., 2017). Tailoring of chemistry can be adapted to 
relative humidity (Mahmoud et al., 2018). 

Air treatment Industrial treatment Granular and shaped activated carbon. 
Microporous and surface treated. 

Applications in conventional or hybrid filters. Control of acid gases 
(Borhan et al., 2015) and mercury removal (Sung et al., 2019;  
Sajjadi et al., 2018). 

Environmental 
purification 

Health Personal protection, 
respiratory, apparel 

Powdered and granulated activated carbon, high 
quality high surface area (microporous) 

Treatment of drug overdose (Gao et al., 2018) and poisoning ( 
Bozorg et al., 2020). Filtration systems for water and air ( 
Macias-García et al., 2019) and purification of precursor materials 
(Fröhlich et al., 2019). 

Pharma APIs Powder and granular with high quality. 
Microporous and surface treated. 

Remove pollutants (Delgado et al., 2019), high COD removal ( 
Rocha et al., 2020). Drawing out toxins and remove impurities, 
skin care (Singh, 2021). 

Cosmetics 

Construction Road construction Microporous powdered activated carbon Mercury tolerant materials, remove VOCs from asphalt (Zhou 
et al., 2020).  
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by via patented technology with high-cost effectiveness (Liu et al., 
2014). Some examples of the diverse uses and markets of biochar and 
activated carbons are listed in Table 1. The widespread use of activated 
carbon in so many large economic sectors result in a total market of 
several billion dollars per year, with a continuous worldwide growth 
rate higher than 10% (MarketWatch, 2021; Markets&Markets, 2021). 

Despite the advantageous conditions for production of activated 
carbons from bio-wastes, most of the activated carbon used in Europe is 
imported. Indeed in SEE countries there are no producers of biochar 
(Nordic Biochar Network, 2021) and production of activated carbons 
using raw materials derived from fossil fuels cover less than 10% of the 
internal market. The possibility to implement sustainable production 
that involves valorization of bio-wastes to biochar while also trans
forming a fraction of this into activated carbon for the local markets, is 
an interesting combination of attractive business opportunity and 
environmentally friendly manufacturing. 

This work presents the manufacturing route that a family-owned 
company located in Romania has developed to implement a circular 
economy vision, converting industrial and bio-wastes into a range of 
products. This work shows the necessary steps for an efficient produc
tion, describe the range and quantities of products and discuss the 
necessary steps to integrate energy saving in those operations. 

2. Efficient production route for bio-wastes conversion to 
carbon-rich products 

There are at least two possible ways to produce activated carbon 
from lignocellulosic materials: partial combustion or pyrolysis, followed 
by chemical or physical activation steps to increase microporosity and 
surface area (Salgado et al., 2018). Physical activation demand high 
temperatures and mild oxidant in the gas (water or CO2) to open the 
porosity of the carbons. Using chemical activation, lower temperatures 
are used (for shorter times) due to the action of selected chemicals (i.e: 
phosphoric acid or sodium/potassium hydroxides or zinc chloride) for 
opening a porous structure (Tomczyk et al., 2020). When using partial 
combustion, the amount of activated carbon produced is proportional to 
the “burn-off” of the original material. The “burn-off” is the ratio be
tween the weight of the initial material and the amount of activated 
carbon produced (Sajjadi et al., 2018). 

If a pyrolysis process is used to generate biochar as an intermediate 
material, more chemical reactions take place and part of the carbon 
material is transformed to other products instead of being converted to 
carbon oxides. Although biochar is the main pyrolysis product, other 
volatile products and condensates are also recovered (Bhatt, 2014), 
making this process very attractive not only in terms of energy and 
recovered weight, but also to extend the range of valuable products 
obtained (Liang et al., 2021). The main constituents of wood are fiber, 
hemicelluloses, and lignin. These components are acknowledged to 
show a high multifaceted configuration in cell wall (Bledzki and Gassan, 
1999). The proportion of fibers and lignin vary from one specie to the 
other and consequently, the ratio and properties of the different prod
ucts will depend on the initial material used. 

One of the possible ways to implement an advanced pyrolysis con
version is already in utilization in a family-owned company in Romania 
(Explocom GK). A scheme with the fundamental steps necessary for an 
efficient industrial production is shown in Fig. 1. A brief description of 
the steps follows:  

1. Preparation of material: receive, store and prepare the biomass 
for drying.  

2. Fill the retorts: biomass is placed in the reactors where the pre- 
drying process will be done  

3. Pre-drying process: heat the reactor to a temperature between 70 
and 110 ◦C for ~24 h. 

4. Fill the pyrolysis furnace: place the retorts with dried input ma
terial in the pyrolysis furnace.  

5. Pyrolysis process: the pyrolysis furnace is heated to a temperature 
varying between 450 and 850 ◦C for a period between 6 and 8 h. 
Heating is done by the recovered gases from previous retorts. 
Excess of combustible gases can be conducted to a CHP unit or 
used for other purposes.  

6. Removal of retorts: empty the pyrolysis furnace using automated 
crane equipment.  

7. Cooling the retorts: cooling down the retorts can be done by a 
forced chiller or by natural cooling. It is possible to recover sig
nificant amount of energy in this step.  

8. Discharging: process that encompass the mechanical steps 
necessary to download the retorts. 

Fig. 1. Material flow of an industrial production of biochar/activated carbon by pyrolysis of sustainable raw materials also showing the additional products obtained 
from the pyrolysis process. 
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9. Storing: step where the biochar is stored or reintroduced in a 
vessel for biochar activation process. The activation process in 
this SME can be done by chemical process (wood vinegar pene
tration) or by heat treatment (hot water steam), according to 
proprietary technology (Geza, 2013).  

10. Product upgrading and finishing: prepare the products according 
to specifics from the different end-costumers. The biochar and 
activated carbon products can be produced in different physical 
forms, such as granulated, powdered, pelletized or in form of 
briquettes or pills.  

11. Packaging: pack the products for different markets according to 
preferences of the costumers while also complying with re
quirements from specific regulatory agencies.  

12. Storage: Before commercialization, the product should be stored 
for a minimum period of one day and up to several months.  

13. Transport and delivery to the costumers.  
14. Activation of biochar to activated carbon: a part of the biochar is 

derived to be chemically activated. In terms of energy utilization, 
it is better that the material is extracted from step 6, but in case of 
need to cover market oscillations it can also be taken from steps 8 
or 9. 

The numbers in Fig. 1 represent the different steps of production 
described above. Note that steps 10–13 are predominantly of commer
cial nature and can vary depending on product needs. Steps 1–9 involve 
utilization of human resources, heavy machinery or energy utilization/ 
integration. Step 14 (activation) should be tailored to meet the final 
product specifications. 

The material flow presented in Fig. 1 shows the necessary steps to 
produce biochar and subsequently activated carbon. As mentioned 
before, one of the benefits from the pyrolysis process is that multiple 
products are obtained. The flow of other products extracted from the 
pyrolysis furnace is also shown in Fig. 1. These products can be cate
gorized as:  

1. Syngases, which are varying during the pyrolysis process, depending 
on temperature and other parameters (CO2, CO, CH4, H2, Hydro
carbons, etc.)  

2. Wood tar (with various constituents)  
3. Wood vinegar: acetic acid, wood spirit, soluble tar  
4. Biochar as final product or as a precursor to activated carbon  
5. Ashes 

The gaseous fuels can be valorized for heat and power generation, in 
a combined heat and power (CHP) plant. In most cases the produced 
heat is reutilized in pre-treatment (drying of input biomass materials) 
process, but it can also be used in local district heating system or to cover 
the energy demand of the facility. Additional heat can be obtained by 
implementation of heat recovery steps. The green power generated from 

the producer gases can be used in off-grid system or can be fed into the 
national power grid. Such action depends on specific cost assessment 
and must comply the local legislation and technical parameters. 

Valuable byproducts can be obtained from the condensable fraction 
of the gas extracted from the pyrolysis furnace. These additional prod
ucts increase the weight efficiency of this approach for manufacturing 
carbon-rich materials. The condensate is an aqueous mixture of pyro
ligneous acids and wood tar. At the scale of industrial production there is 
possibility to produce pyroligneous acids, wood oils, wood tar, and al
cohols in a recoverable manner. In most cases, the main customers of 
these products are the chemical and fuel industries. A summary of the 
markets and economy sectors from the additional products obtained by 
the pyrolysis process are given in Table 2. 

3. Product distribution at industrial scale 

The concepts shown have already been implemented in a small- 
medium enterprise (SME) in Romania. Explocom GK is a private, 
family-owned company in Romania that is producing charcoal, biochar 
and other derived products. The company developed its own patented 
using the cascading approach shown in Fig. 1. Their production capacity 
is currently being upgraded for accepting approximately 112.000 tons of 
raw material per year, in up to 48 retorts. 

The process starts with the preparation of the input material, namely 
with pre-drying of the solid biomass achieving 15–20% moisture content 
in a dedicated and specialized facility installed for this purpose. To 
prepare 100.000 atro-tonne input material, it is necessary to have at 
least 25% more available raw material due to water losses. “Atro-tonne” 
is a unit that denotes one ton of the dry material (wood/logwood) at zero 
moisture content. Under regular conditions, the solid biomass materials 
can have 40–50%–15% moisture content, depending on their origin. 
Fresh wood by-products from sawn-mills, logging process etc. have the 
higher moisture content (up to 50%), while straw, corn stalk, corn cob, 
sunflower husks after harvesting, or in other cases in agriculture have a 
smaller moisture content (18%). 

In the production flow, around 22% of the total raw material be
comes biochar. If all the biochar is transformed into activated carbon, 
the weight of the final product will decrease to less than 20% or less, 
depending on the desired final properties of the product. 

At the temperature of the pyrolysis furnace, many products are ob
tained as gases. If those gases are condensed, two types of products can 
be separated. The volatile products after condensation (producer gases) 
are going to be valorized as synthesis gases for CHP or for a boiler, 
producing heat and power. For every ton of pyrolysis feedstock, 200 kg 
of syngases are produced containing approximately 600 kW of thermal 
energy. This gas is recycled in the plant to avoid using fossil fuels like 
natural gas (or additional wood) for heating the retorts. Regarding en
ergy utilization, the input of external energy used for the production is 
around 150 kW for every ton of biochar produced. Only 10% of this 

Table 2 
Specific markets, applications and benefits of other products obtained from pyrolysis of biomass when producing biochar.  

Product Market Sectors Sub-Sectors Product grade Main Benefits 

Wood Vinegar Agriculture Pesticide production Organic Fertilizer and Pesticide Organic fertilizer and pesticide 
Chemistry industry Paint and Coating industry Sub-component Bio-based component 
Food Industry Meat Production Sub-component Ingredients 
Activated Carbon production Activated Carbon production Sub-component Chemical process in activation of carbons 

Crude Alcohol Biofuel production: Bioethanol Ethanol production Sub-component Raw material/constituent fluid 
Chemistry Various sub-sectors Sub-component Raw material/constituent fluid 

Wood Vinegar Marine application Ship construction and rope production  Organic caulking and insulation material 
Construction Wooden house sector Main component Organic caulking and insulation material 
Furniture Industry Furniture sector Main component Organic caulking and insulation material 

Wood Tar Oil Chemistry Bio-based Industry Sub-component Organic material 
Cosmetics Organic beauty industry Sub-component Organic material 
Construction Building Restoration and Maintenance Main component Organic caulking and insulation material 
Furniture Industry Furniture Restoration and Maintenance Main component Organic caulking and insulation material 
Health & Pharma Pills and Therapy Sub-component Organic material  
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energy is used in the pyrolysis reactor, to lift and put town the retorts 
and the rest of the energy is for the rest of the operations like biochar 
granulation, briquetting, etc. In the eventuality that more thermal en
ergy is required for pre-drying and pre-heating, a fraction of the pro
duced ethanol and crude vinegar can be used. 

The condensates, such as heavy tar and distillate, will be later 
divided into oils and acid water. The other branch of condensates 
become pyroligneous acids, wood vinegar, alcohol after distillation and 
acetate liquor after evaporation and drying. The production flow is 
presented in Fig. 2. 

4. Environmental and economic benefits of the existing 
production route 

The process of production of biochar, activated carbon and addi
tional bio-products presented here has multiple advantages. From the 
environmental point of view, this process can valorize agriculture bio- 
based products and bio-wastes from forest-based industries. According 
to Ahmed (2016), the main drivers to become a considerable input 
feedstock in activated carbon production are: availability for extended 
periods and available volumes, proximity, price, transportation, clean
liness and homogeneity of the raw material (Anwar et al., 2014). The 
geographical location of the company, close to the Eastern Carpathian 
Mountains in Romania is a fundamental advantage because there are 
large volumes of by-products from forest-based factories; a large ma
jority of the raw material (wood wastes, corncob, straw, etc.) comes 
from locations <100 km. 

The wide availability and the environmentally friendly nature of the 
resources used are also important incentives (Bhat et al., 2020). It is also 
worth to mention that the Joint Research Center of the European 
Commission stated that the greater part of the biomass from wood area 
collected in the EU countries is demeaning natural environments and 
wrecking the climate goals (Camia et al., 2020). Harvesting wood only 
for bioenergy production is no longer considered as renewable energy 
and such practice is undermining the greenhouse gas reduction goals. 
Indeed, wood harvesting for production of bioenergy will probably 
reduce the European carbon stocks and necessitate supplementary 
remedial activities to mitigate emissions in other economic segments to 
achieve climate targets (Frietsche et al., 2020). 

This approach offers many profitable business opportunities. The 
biochar offers several benefits for agriculture sector, the original source 
of the raw material, making this approach entirely circular and sus
tainable. The main benefits of biochar products are: improvement on soil 
permeability and porosity, increase the water retention capacities, 

reduce soil erosions, stabilize and limit the soil contamination, support 
the micro-organisms and accelerate the humus formation process. The 
better soil structure will have the capabilities for water absorption and 
for an increased water storage (Ding et al., 2016), although some reports 
indicate lack of evidence for such enhanced properties (Holt et al., 
2020). 

Biochar products can be used as bio-fertilizers for soil upgrading, 
reducing the demand of synthetic fertilizers and at the same time acting 
as CO2 sequestration materials (Won-In et al., 2020). Agricultural fer
tilizers used in disproportionate manners can act as polluters, signifi
cantly enhancing the eutrophication process at water reservoirs means 
heavy issues in many places due to lack of water treatment or inadequate 
water treatment processes (Wimalawansa and Wimalawansa, 2015). 

Together with the environmental benefits, the valorization of the 
biomass waste materials into valuable and sustainable products, also 
contributes to support a local economy, particularly regarding the 
generation of new jobs in rural areas (Stegman et al., 2020). An 
important economic benefit is that the waste from above-mentioned 
streams can be considered as feedstock and can render additional in
come for the farmers (Yahya et al., 2018) for applications that they may 
have close to their facilities like dye removal applications (Hammeed 
and Daud, 2008). 

While the presented approach highlights the production of biochar, 
there are important economic considerations to be made about this 
production route. While biochar can have a market price of 350–500 
EUR/ton (Holt et al., 2020), the other liquid products have a higher 
market price: i.e. wood tar & ethanol ~1000 EUR/ton. Since their 
overall production in weight is much higher than charcoal, the bulk 
income in sales comes from marketing the entire set of products. 

For cases of market need and mostly because of the energy efficiency 
achieved in this plant where there is available syngas, one possibility is 
to upgrade biochar to activated carbon. The market price of activated 
carbon is wide, depending on the final market. For drinking water pu
rification, the market price is ~1200 EUR/ton while in applications like 
pharma industry, it can reach up to 10000 EUR/ton. If a high quality 
product can be produced with available energy, the profitability can be 
over 15%. 

5. Product quality control and commercial driven approach 

The circular bio-economy approach given above will not be indus
trially interesting if the products do not have a verifiable high quality. 
The European Biochar Certificate (EBC) has been elaborated to act as a 
tool to verify reliable quality standards for such products. Currently, the 

Fig. 2. Flowchart and product distribution of a pyrolysis process for production of sustainable activated carbon and bio-based products.  
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(The European Biochar Certificate, 2021) is a voluntary manufacturing 
norm in Europe. 

EBC standards are set at different levels, aiming to increase the 
quality level (up to the best of scientific knowledge) and to support the 
professionals and biochar producers to prevent any danger from health 
and environment point of views under the utilization of biochar prod
ucts (The European Biochar Certificate, 2021). The Ithaka Institute from 
Switzerland issued guidelines to establish an evaluation instrument 
based on the newest scientific results and practical experiences which 
are accepted within EU and EEA countries, respecting the EU fertilizer 
regulations or carbon-sink regulations published in EU Circular Econ
omy Package (European Comm., 2021). 

The aim of these guiding principles is to provide the basis and 
guarantee the control of biochar manufacturing processes and excel
lence on investigated, with authorization, economically feasible and 
practically valid methods. End-consumers of activated carbon with the 
ECB can benefit from clear and confirmable checking and quality 
guarantee. 

The results for different materials performed at Eurofins laboratory 
(Germany) resulted in the DIN EN ISO/IEC 17025:2005 certificate under 
the DAakks German Accreditation System for Testing (Eurofins, 2020). 
The analyses are reported as supplementary information and report 
properties on structural and textural properties of the samples tested as 
well as the presence of metals, salts and organic molecules. Two prod
ucts from Explocom GK (activated biochar and wood vinegar) have 
received in 2019 the European Biochar Certificate (Annex 5) from Eu
ropean Chemicals Agency ECHA. Those certifications validate the 
quality of the products obtained with processes applying principles of 
circular bio-economy. The results of the products from Eurofins labo
ratory and the Biochar certificate are presented in the Supplementary 
Information. 

This communication wants to highlight the pathway that a family- 
owned company has taken to turn its operation profitable and sustain
able at the same time. Important steps for improving the operation of the 
plant in terms of sustainability are:  

- Modernize all steps that are critical to energy consumption.  
- Develop a smart system for syngas management and storage 
- Use automatic equipment in critical operations will improve reli

ability and also energy integration. 

Using the approach presented in this work, the local company 
(Explocom GK) was able to create up to 50 direct jobs for local families, 
and also resulting in 20 indirect jobs at the regional level. At the heart of 
the successful implementation of environmentally friendly processes is 
just the same way of thinking that drove successful stories of 
manufacturing before: strong knowledge of the processes that lead to 
possession of own technology and a clear vision of the desired pathway 
in middle and long term. The “only” difference with a traditional success 
story is that when sustainability is involved in the long-term goals, the 
environment is a clear winner. Indeed, there are plenty of possibilities to 
implement concepts of circular bio-economy to transform diverse mar
kets into sustainable production with adequate quality and profitable 
margins. 

6. Conclusions 

Activated carbon and biochar are important products that serves 
several sectors of our economy. A sustainable production of these 
carbon-rich materials can contribute to reduce emissions of carbon di
oxide. If the source materials are from industrial wastes of agriculture 
and the products are used for agricultural purposes, a bull bio-circularity 
principle is possible. 

A clear methodology for industrial production of biochar and acti
vated carbon via pyrolysis of agricultural and forest-based industrial 
wastes has been presented. This methodology can produce biochar as 

main product and also render a comprehensive set of “by-products” like 
wood vinegar, alcohol, acetate of lime and wood tar. The efficient en
ergy integration in the plant allows recycling of syngases to heat the 
pyrolysis reactor avoiding use of fossil fuels or external raw materials 
and can also provide energy to convert part of the biochar into activated 
carbon, enhancing the profitability of the plant. 

This route does not only use sustainable materials as a starting point, 
but it also expands the weight profitability of the process and converts 
the carbon in the source material into valuable products. The method
ology presented and the product distribution for industrial production is 
being performed at the scale of 100 kt of incoming material processed 
per year. 

Based on market demand, a significant increase activated carbon 
production is expected. The route shown here demonstrates that if this 
commodity is produced using forest residues, a sustainable 
manufacturing is possible. New energy-efficient machines and equip
ment with heat integration for this sector can contribute in achieving 
further increase in energy efficiency. 

The present manufacturing practice case shown here is an example of 
how to deploy circular bio-economy principles at industrial level while 
at the same time creating and activating local and regional supply value 
chains. To multiply such sustainable practice examples, a strategic 
deployment agenda is needed for local and regional entities. Since the 
resource-emitting areas for bioeconomy developments and production 
activities are the forest-reach regions, rural and coastal areas, it is 
possible that specific regions will experience social and economic 
renaissance. 
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