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A B S T R A C T

The external environmental conditions around a vessel are essential for efficient and safe
ship operation, among which the sea state is of key importance. Considering the ship as a
large wave buoy, the sea state can be estimated from motion responses without extra sensors
installed. This is a challenging task since the relationships between the waves and the ship
motions are hard to describe accurately. Machine learning approaches can learn these mapping
without an explicit model, which is promising for sea state estimation. Current machine learning
approaches represent the sea state as a set of categories or a number of wave parameters
while neglecting the 2D wave spectrum. This paper proposes a sea state estimation network
that estimates the 2D wave spectrum along with a discrimination network. The discrimination
network can detect and correct high-order inconsistencies of the spectrum. Simulation studies
are performed to show that the proposed method can provide wave spectrum estimation with
high accuracy.

1. Introduction

Environmental conditions are of key importance for efficient and safe ship operations. The external wave conditions are one of
the crucial factors affecting the dynamics of a vessel. The continuous sea state information around a ship are valuable for providing
onboard decision supports and operational guidance, including takeoff and landing of helicopters, crane operations. By incorporating
knowledge about sea states, the safety of the operations can be increased and even more efficient. Therefore, in-situ sea state
estimation is important for any type of decision support and system with high level of autonomy.

In oceanography, the general condition of the ocean with respect to wind waves and swell at a certain location is referred to
as the sea state. The waves are stochastic with time and it is almost impossible to evaluate on a wave-by-wave basis in the time
domain [1]. The ocean waves are considered to be a stochastic process and their statistical properties can be evaluated in the
frequency domain. Specifically, the potential and kinematic energies of stochastic waves are represented by the wave spectrum.

Nowadays, the primary tool for collecting accurate ocean wave statistics is floating wave buoys. However, They are not practical
for a vessel in maneuvering operation since they are fixed at a specific location. Meteorological satellite can also provide wave
statistics, but the resolution is often poor. The x-band wave radar provides in-situ wave spectrum, but it is expensive to install,
requires frequent calibration [2], and is yet only equipped on a limited number of vessels. Similar to the wave buoy, the motion
responses of a vessel reflect the sea state conditions and therefore a vessel can also be considered as a large wave buoy. The majority
of marine vessels today are equipped with sufficient sensors that measure the ship motion in 6 degrees of freedom. Therefore, a
vessel is essentially equipped with an environmental condition estimation system [3].
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Estimating the sea state based on ship motions has been a topic of interest in the literature. This task is challenging due to the
peration of the vessel, as well as the inaccurate relationship between waves and the ship motions. Ship responses, in principle,
re non-linearly related to wave excitation. Previous methods usually rely on the response amplitude operators (RAOs) to relate
he waves and the ship motions. RAOs are usually calculated by linearizing the results from strip theory or computational fluid
ynamics and therefore only valid for light and moderate sea states [4]. In addition, RAOs might need to be tuned with real-world
ata. Another possible solution is to treat the task as a supervised machine learning problem. The fundamental idea is to learn the
apping from measured ship motion responses to the actual sea state from historical data. The advantage of data-driven methods

s that it does not require specific knowledge of the vessels to discover the pattern between ship motions and sea states.
Sea state estimation with ship motion responses based on machine learning approaches is usually regarded as a classification

r regression task. The sea state is predefined as multiple categories [5] or represented by several integrated wave parameters [6],
.g., significant wave height and peak period. Pre-defining the sea state categories might be problematic since it is difficult to use
imited categories to cover all possible sea states. The resolution of the estimation results might also be too low for practical use. The
ntegrated wave parameters are a summary expression of the wave spectrum. These two methods, either classification or regression,
nly provide limited information on the sea state. Ideally, a 2D directional wave spectrum could be estimated to fully describe
he sea state. In addition, the 2D directional wave spectrum is fundamental for operational safety analysis such as extreme value
nalysis.

In such a context, this work aims to build a machine learning model for estimating the 2D directional wave spectrum using
hip motion responses. The proposed model follows the generative adversarial networks [7] architecture. Two separate deep
onvolutional neural networks, an estimation network, and a discrimination network are established. The estimation network uses
he ship motion as input and estimates 2D wave spectrum. The discrimination network tries to classify the 2D wave spectrum as real
r fake. In this way, an adaptive loss is learned and unrealistic wave spectrum will not be tolerated. Simulation studies show that
he proposed method can provide estimates of wave spectrum based on ship motions. To the best of our knowledge, it is the first
ime that an adversarial network is used in sea state estimation. The main contributions of this paper are highlighted as follows:

• A novel model is developed to estimate the 2D directional wave spectrum using the measured ship motion responses. It can
estimate a wide range of sea state conditions.

• Extensive simulation studies are performed to validate the proposed method and comparison with model-based method is
made.

• The proposed model performs well in estimating different types of spectra and is robust regarding noisy measurements.

The remainder of this paper is organized as follows: A literature review on sea state estimation using ship motion responses is
iven in Section 2. The proposed adversarial neural network is introduced in Section 3. The experimental setup and experiment are
iscussed in Section 4. Section 5 concludes the paper.

. Literature review

Estimating the sea state information based on the motion responses has been investigated in the literature. Previous works differ
n whether the estimation problem is formulated in the frequency domain or time domain. In the frequency domain solution, the
ime series motion responses are first transformed into the frequency domain through fast Fourier transform or autocorrelation
nalysis. The RAOs are used to relate the wave spectrum to the motion spectrum. To obtain the wave spectrum, the fundamental
dea is to minimize the difference between the measured ship spectrum and the calculated ship spectrum [8]. A wave spectra,
.g., JONSWAP, Bretschneider with the 𝑐𝑜𝑠2𝑠 spreading model, can be assumed. In this way, a nonlinear optimization process is

formed, the wave parameters in the hypothetical wave spectrum can be obtained through optimization techniques [6,9]. This method
is computationally intensive and may not converge since the objective function is nonlinear and non-convex. A non-parametric
approach, in which the wave spectrum is represented in a discrete frequency-directional domain, can also be applied. The problem
is an ill-posed problem and therefore different kinds of prior are used, e.g., the smoothness of wave spectrum [10,11] and the
sparsity of wave spectrum [11]. These methods can be extended to ships with forward speed by incorporating the Doppler shift
function [10]. The effectiveness of this method is shown with a container ship [12].

For the time domain solution, the focus is on real-time sea state updates obtained from continuous response measurements. A
framework based on the Kalman filter is established [13,14], in which an irregular wave represented as a number of regular waves.
In the Kalman filter framework, the amplitude and frequency of the regular waves are treated as states. The waves are considered
constant between two discrete time intervals. A similar second-order nonlinear observer is developed to estimate the frequency of
wave [15]. In addition, the optimization can be performed directly in the time domain [16]. However, the latter two approaches
can only estimate a single sinusoid wave.

The above methods are model-based approaches that require a model to relate the wave and the ship motion. Machine learning is
another solution that learns that mapping from measured ship motion responses to the sea state. The sea states are usually predefined
into various categories [5,17] or represented as several integrated wave parameters [18,19] depending on whether this task is
formulated as a classification task or a regression task. Various machine learning models, e.g., multi-layer perceptron, Gaussian
process, deep learning models, have been utilized. However, these methods cannot provide a detailed 2D wave spectrum that is
usually required in practical applications. [20] estimated the 2D wave spectrum using convolutional neural network. The problem
is still considered as a regression problem. They estimated 8 parameters of the Ochi–Hubble-type spectrum from the neural network,
and then reconstructed the 2D wave spectrum. In this paper, no specific form of wave spectrum is assumed. The focus of this paper
is to bridge the gap by developing a machine learning model that estimates the 2D wave spectrum directly without assuming the
structure of wave spectrum.
2
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Fig. 1. Schematic illustration of the proposed model for 2D directional wave spectrum estimation using ship motion responses.

3. Methodology

The proposed method consists of two separate networks, as outlined in Fig. 1. The inputs are the cross spectrum of the ship
motion. The cross spectrum is normalized and then fed into the estimation network to be converted into a 2D wave spectrum.
In this paper, no specific form of wave spectrum is assumed, and the output 2D wave spectrum from the estimation network is
represented as a 36 by 100 matrix. In other words, there are 36 discrete directions and 100 discrete frequencies. The discrimination
network takes a 2D wave spectrum as input and distinguishes whether it is generated from the estimation network or is the actual
wave spectrum. In the training phase, the estimation network tries to generate a realistic wave spectrum while the discrimination
network tries to distinguish it. In this way, the two networks are improved together and the high-order statistics of the output
wave spectrum are penalized to force the estimation network to provide continuous and realistic results. At inference time, the
discrimination network is omitted, and the estimation network is used to output the estimated 2D wave spectrum from ship motion
responses.

3.1. Channel-wise normalization

Since the input for the proposed network is the cross-spectrum of the ship motion, the cross-spectrum is assigned into different
channels to form multi-channel 1D inputs. The inputs are then normalized to the range [0, 1] with respect to its channel. Specifically,
each channel (each component of the cross-spectrum) maintains its statistics and it is normalized individually.

3.2. Data augmentation with noise

Data augmentation is a technique for improving the robustness and training of neural networks. The idea is to simulate various
expected variations in the datasets by manipulating the training samples. Since the inputs for the proposed estimation network is a
spectral representation of the motion responses, the augmented spectral signal is formulated as follow:

𝑃𝑛 = 𝑃 + 𝑃 ⊙ 𝛼

𝛼 ∼  (0, 𝜎2)

𝜎 ∼  (0, 0.1)

(1)

where 𝑃𝑛 and 𝑃 are the augmented and original spectrum, respectively. ⊙ is the element-wise Hadamard product.  denotes the
normal distribution while  denotes the uniform distribution. In this approach, the original spectrum is augmented randomly in
each training epoch since the noise level 𝜎2 is drawn from a distribution. The noise added also depends on the value of the spectrum.
Fig. 2 shows two examples of the augmented spectrum.

3.3. Network architectures

Estimation network. The proposed estimation network follows an encoder–decoder structure. In the network, the input is passed
through a series of 1D convolution layers that progressively downsample, to a bottleneck layer, then the process is reversed, and
upsampling is achieved by a series of transposed 2D convolution layers. In this way, the network takes the 1D data as inputs and
3
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Fig. 2. Examples of augmentation on the spectral inputs.

in this network since it provides better performance in many applications. For the output layers, the Sigmoid activation function is
applied.

Discrimination network. The discrimination network follows a convolutional neural network structure, in which the modules
in the form of convolution-BatchNorm-LeakyReLu are used. The LeakyReLu activation function is used since it can stabilize the
training [22].

Details of the architectures of the estimation network and discrimination network are presented in Appendix.

3.4. Adversarial training

A hybrid loss which is a weighted sum of two terms is used. The first is the mean square error that encourages the estimation
model to predict the wave spectrum. The second loss term is based on the adversarial convolutional network. This loss term is large
if the adversarial network can discriminate the output of the estimation network from the actual wave spectrum. The aim of the
adversarial term is to penalize mismatches in the high-order spectral power value statistics, e.g., the power value of wave spectrum
should be smooth in the near region, which is not accessible by the mean square loss function.

Given a training ship motion responses 𝑥 and a corresponding wave spectrum 𝑦, the estimator 𝐸 and the discriminator 𝐷 would
be competed in a two-player min–max optimization routine:

Min
𝐸

Max
𝐷

(𝐸,𝐷) = 𝑚𝑠𝑒 (𝐸(𝑥), 𝑦) − 𝜆[𝑏𝑐𝑒(𝐷(𝑦), 1) + 𝑏𝑐𝑒(𝐷(𝐸(𝑥)), 0)] (2)

where 𝑚𝑠𝑒 is the mean square loss, 𝑚𝑠𝑒(𝑧̂, 𝑧) = |𝑧̂ − 𝑧|2. 𝑏𝑐𝑒 is the binary cross-entropy loss, 𝑏𝑐𝑒(𝑧̂, 𝑧) = −𝑧 log 𝑧̂− (1 − 𝑧) log(1 − 𝑧̂).
𝜆 is a hyperparameter to balance these two different losses.

The training of the estimation model minimizes the mean square error loss while at the same time trying to fool the discriminator
model. The objective function of the estimation model is:

𝐸 = 𝑚𝑠𝑒 (𝐸(𝑥), 𝑦) − 𝜆𝑏𝑐𝑒(𝐷(𝐸(𝑥)), 0) (3)

In practice, the term −𝑏𝑐𝑒(𝐷(𝑥,𝐸(𝑥)), 0) is replaced by +𝑏𝑐𝑒(𝐷(𝑥,𝐸(𝑥)), 1) [7]. This means that the probability that the
adversarial model predicts the estimated wave spectrum to be the actual one is maximized, instead of minimizing the probability
that the adversarial model predicts the estimated wave spectrum to be synthetic.

For the adversarial model, only the binary classification loss is related. Therefore, training the adversarial model is equal to
minimizing the following objective function:

𝐷 = 𝑏𝑐𝑒(𝐷(𝑦), 1) + 𝑏𝑐𝑒(𝐷(𝐸(𝑥)), 0) (4)

3.5. Implementation details

The proposed model is implemented in Pytorch. To optimize the proposed network, we alternate between one gradient descent
step on 𝐸, then one step on 𝐷. The Adam solver [23] with minibatch is used to minimize the objective function for 𝐸 and 𝐷. The
minibatch size is set as 256 in the training procedure. For the estimation network 𝐸, a learning rate of 1×10−4 with 𝑙2 regularization
term of 1×10−3 is used. For the discriminating network 𝐷, a learning rate of 1×10−5 with 𝑙2 regularization term of 1×10−3 is used.
The hyperparameter 𝜆 is set as 0.01 to balance the losses.

4. Experimental setup

4.1. Data

The wave spectrum-ship motion pairs are generated from simulations. In the simulations, a double-peak wave spectrum [24]
is adopted since it covers a wide range of possible spectrum shapes and it models both the wind waves and the swell waves. The
4
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Table 1
Sampling range for the wave spectrum parameters (𝑖 = 1, 2).
𝐻𝑠,𝑖 𝜔𝑚,𝑖 𝜃𝑚,𝑖 𝑠 𝜆𝑖
[0.5, 4] [(1/8)𝜋, (2/5)𝜋] [0, 2𝜋] [1, 26] [0.8, 1.5]

directional wave spectrum is given by:

𝐸𝑔(𝜔, 𝜃) =
1
4

2
∑

𝑖=1

(

((4𝜆𝑖 + 1)∕4)𝜔4
𝑚,𝑖

)𝜆𝑖

𝛤 (𝜆𝑖)

𝐻2
𝑠,𝑖

𝜔4𝜆𝑖+1
𝐴(𝑠𝑖) × cos2𝑠𝑖 (

𝜃 − 𝜃𝑚,𝑖
2

) exp[−
4𝜆𝑖 + 1

4
(
𝜔𝑚,𝑖

𝜔
)4] (5)

where 𝐻𝑠 is the significant wave height, 𝜃𝑚 is the mean wave direction and 𝜔𝑚 is the model angular frequency. 𝑠 and 𝜆 are two
shape parameters. 𝛤 denotes the Gamma function. The function 𝐴(𝑠) is defined as:

𝐴(𝑠) =
22𝑠−1𝛤 2(𝑠 + 1)
𝜋𝛤 (2𝑠 + 1)

(6)

Note that the above wave spectrum model 𝐸𝑔(𝜔, 𝜃) is only used to generate the simulation data for this study and will not be
used in our estimation network model. NTNU’s research vessel R/V Gunnerus with a length between perpendiculars of 28.9 m, a
breadth of 9.6 m, and a draught of 2.7 m is used as the example vessel [25]. The complex-valued response amplitude operators
(RAOs) of the vessel are obtained from ShipX [26]. The ship motion cross-spectra is then calculated as:

𝑆𝑖𝑗 (𝜔) = ∫

𝜋

−𝜋
𝛷𝑖(𝜔, 𝜃)𝛷𝑗 (𝜔, 𝜃)𝐸𝑔(𝜔, 𝜃)𝑑𝜃 (7)

where 𝛷(𝜔, 𝜃) is the complex-value transfer function and 𝛷(𝜔, 𝜃) is its complex conjugate.
In this study, the wave spectrum is discretized into a 36 × 100 grid after generating from Eq. (5), where 36 different headings

ith interval of 10◦ and 100 angular frequencies from 0.2 rad∕s to 3 rad∕s is considered. It is equal to the output wave spectrum shape
from our estimation network, and therefore validation can be easily performed. Three corresponding ship motions, sway velocity,
pitch, heave, are used. This results in 9 power spectra (6 real part and 3 imaginary part) and therefore the size of response spectrum
is 9 × 100. The used wave spectrum consists of 10 parameters [𝐻𝑠,1, 𝜔𝑚,1, 𝜃𝑚,1, 𝑠1, 𝜆1,𝐻𝑠,2, 𝜔𝑚,2, 𝜃𝑚,2, 𝑠2, 𝜆2]. These parameters are
ampled randomly to generate 1000 different wave spectrum, the sampling range is described in Table 1. Note that 𝑠 is an integer.
he corresponding ship motion cross spectrum is then calculated, forming a dataset with 1000 wave spectrum-ship motion pairs.
he dataset is then divided into 500 as training set and the rest 500 as test set. The reason why 500 samples are used in the test
et is because these samples can cover the wave space of interest.

.2. Time series generation

Ship motions, in principle, are measured in the time domain. To generate time series of ship motions under a specific wave
pectrum, we follow the procedure in [27]. The time-domain ship motion response 𝑅(𝑡) can be expressed as follow:

𝑅(𝑡) =
𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
𝑎𝑚𝑛|𝛷(𝜔𝑚, 𝜃𝑛)| cos

(

𝜔𝑚 + 𝜖𝑚𝑛
)

𝑎𝑚𝑛 =
√

2𝐸(𝜔𝑚, 𝜃𝑛)𝛥𝜔𝑚𝛥𝜃𝑛

𝜖𝑚𝑛 = arctan
(

ℑ[𝛷(𝜔𝑚, 𝜃𝑛)]
ℜ[𝛷(𝜔𝑚, 𝜃𝑛)]

)

(8)

where 𝑀 is the discrete number of wave frequencies and 𝑁 is the discrete number of headings. 𝜙 denotes the complex transfer
function and 𝐸 is the wave spectrum. 𝛥𝜔𝑚 and 𝛥𝜃𝑛 are the increments of the discrete wave frequencies and the discrete headings.
It is noteworthy that for an equidistant frequency discretization, the time series response 𝑅(𝑡) will repeat itself after a period of
2𝜋∕𝛥𝜔. A simple way to handle this problem is to use non-equidistant frequency discretization:

𝜔𝑖+1 = 𝜔𝑖 + 𝑐 ⋅ 𝑝𝑖 (9)

where 𝑐 is a small factor and it is chosen as 0.01 while 𝑝𝑖 is a stochastic variable with values between 0 and 1. We generate 1800 s
long time series responses for sway velocity, pitch, and heave.

To simulate the noisy measurements, Gaussian white noise is then added to the time series motion response. The signal-to-noise
ratio (SNR) is used in this study to measure the noise level. The SNR is defined in Eq. (10), where 𝜎𝑠𝑖𝑔𝑛𝑎𝑙 and 𝜎𝑛𝑜𝑖𝑠𝑒 is the standard
deviation of the measured motion response and noise, respectively.

𝑆𝑁𝑅 =
𝜎2𝑠𝑖𝑔𝑛𝑎𝑙
𝜎2𝑛𝑜𝑖𝑠𝑒

(10)
5
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Fig. 3. Distribution of the integrated wave parameters in the generated dataset.

Fig. 4. A sample from the generated dataset. The left upper graph is the 2D wave spectrum and its integrated wave parameters. The right upper graphs are
the cross spectrum of motion responses. The lower three graphs are the time series data of these three ship motions.

4.3. Integrated wave parameters

The overall outcome of the proposed model is given by a directional wave spectrum 𝐸(𝜔, 𝜃). For comparison, the integrated
wave parameters are then evaluated. The spectral moment of order 𝑛 is defined as [28]:

𝑚𝑛 = ∬ 𝜔𝑛𝐸(𝜔, 𝜃)𝑑𝜔𝑑𝜃 (11)

Thus, the significant wave height 𝐻𝑠 and the mean wave period 𝑇𝑚 can be calculated as follows:

𝐻𝑠 = 4
√

𝑚0

𝑇𝑚 = 𝑚−1∕𝑚0
(12)

The mean wave direction 𝐷𝑚 and the mean directional spread 𝜎𝑠 is given by:

𝐷𝑚 = arctan(𝑑∕𝑐)

𝜎𝑠 =
(

2 − 2
𝑚0

√

𝑑2 + 𝑐2
)0.5 (13)

where 𝑑 and 𝑐 are defined as:

𝑑 = ∬ 𝐸(𝜔, 𝜃) sin 𝜃𝑑𝜔𝑑𝜃

𝑐 = 𝐸(𝜔, 𝜃) cos 𝜃𝑑𝜔𝑑𝜃
(14)
6
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Table 2
MAE of different methods on the test set.

Methods Pixel Integrated wave parameters

𝐻𝑠 (m) 𝑇𝑚 (s) 𝐷𝑚 (◦) 𝜎𝑠
WBA 0.033 0.606 0.573 12.88 0.234
Proposed w/o AT 0.043 1.265 0.952 18.80 0.353
Proposed w AT 0.018 0.239 0.361 13.95 0.153

The mean directional spread 𝜎𝑠 is a parameter representing the spread of the spectrum. Specifically, 𝜎𝑠 decreases as the shape
parameter 𝑠 increase in the cos2s spreading function. The smaller the 𝜎𝑠, the directional spread is broader. The wave spreads equally
in all directions when 𝜎𝑠 is close to 1.4.

4.4. Description on the generated data

Fig. 3 shows the distribution of the integrated wave parameters of the generated dataset. The significant wave height 𝐻𝑠 ranges
from around 0.7 m to 5.3 m. The mean wave period 𝑇𝑚 is around 2 s to 14 s while the mean directional spread 𝜎𝑠 is around 0.2 to
1.4. The mean wave direction 𝐷𝑚 is distributed uniformly from 0◦ to 360◦. This dataset covers a wide range of sea states that the
vessel might encounter in the real world.

Fig. 4 presents a sample from the dataset. The sea state is described as a 2D wave spectrum. The integrated wave parameters 𝐻𝑠,
𝑇𝑚, 𝐷𝑚, 𝜎𝑠 are the summation of the 2D wave spectrum. The cross spectrum of motion responses as well as the time series of the
ship motion is presented. In the cross spectrum, the subscripts 1, 2, 3 denotes sway velocity, pitch, heave, respectively. The cross
spectrum of motion responses will be used as the input and the target is to estimate the 2D wave spectrum.

4.5. Evaluation metrics

To evaluate and compare the performance of the proposed model, the mean absolute error (MAE) is used:

𝑀𝐴𝐸 = 1
𝑘

𝑘
∑

𝑖=1
|𝑦̂𝑖 − 𝑦𝑖| (15)

where 𝑘 is the number of samples, 𝑦̂ and 𝑦 is the estimated and actual value, respectively. In this paper, the MAE of the
iscrete wave spectrum and the MAE of the integrated wave parameters are evaluated. For abbreviation, the MAE of the wave
pectrum is referred to as the pixel error in the rest of the paper. For mean wave direction, Eq. (15) is modified into 𝑀𝐴𝐸 =
1
𝑘
∑𝑘

𝑖=1 min
(

|𝑦̂𝑖 − 𝑦𝑖|, 360 − |𝑦̂𝑖 − 𝑦𝑖|
)

to consider that 0◦ and 360◦ are the same.

5. Experimental results

In this section, the performance of the proposed method will be evaluated. Two baseline models are implemented for comparison:

• Bayesian wave buoy analogy method: This method is a model-based method for directional wave spectrum estimation using
ship motion responses. The wave spectrum is represented in a discrete frequency-directional domain. The fundamental idea
is to minimize the difference between the measured and the calculated spectrum. However, this forms an ill-posed inverse
problem, and therefore smooth prior is introduced to solve the problem in the Bayesian framework. In this paper, a two
hyperparameters method [29] is used. The two hyperparameters are responsible for the smooth prior of wave spectrum in the
discrete frequency and discrete direction, respectively. Details of this method is described in [29].

• Neural network model without adversarial training: This model is the estimation network proposed in this paper. The
discriminator network is neglected by setting the hyperparameter 𝜆 as 0. This model is implemented to show the effect of
adversarial training.

In the following, the Bayesian wave buoy analogy method is denoted as ‘‘WBA’’, the neural network model without adversarial
training is denoted as ‘‘Proposed w/o AT’’, and the proposed neural network model with adversarial training is denoted as ‘‘Proposed
w AT’’.

5.1. Experiment with perfect response spectrum

In this part, the perfect measured response cross spectrum is used for validation. Fig. 5 presents the estimated directional wave
spectrum from three random samples in the test set. The colors of values larger than the color bar upper limits remain the same
as that of the upper limit. It is shown that the Bayesian WBA method provides a similar shape of the spectrum as the actual ones
but the values are less accurate. The reason is that the performance of this method depends on the two hyperparameters and the
initial guess of the wave spectrum. In this paper, several combinations of hyperparameters and initial guesses are used to yield the
7
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Fig. 5. Examples of contour plots of the estimated directional wave spectrum based on perfect motion spectrum.

Fig. 6. Actual and estimated integrated wave parameters for perfect response spectrum.

the wave spectrum. Even though the shape of the estimated wave spectrum is similar to the actual wave spectrum, it has high total
wave energy. The model with adversarial training better enforces the spatial consistency of the wave spectrum. It also smooths and
strengthens the high energy density area of the wave spectrum.

Table 2 summarizes the overall performance in terms of MAE. Compared with the neural network model without adversarial
training, the error of the WBA method in terms of pixel-level and integrated wave parameters is relatively low. By incorporating
adversarial training, these errors are reduced significantly. In this comparison, our model with adversarial training has the smallest
error.

Fig. 6 shows the correlation between the actual and estimated integrated wave parameters of the test data. The black line denotes
that the estimated parameter is equal to the actual one. It is observed that both methods provides relatively accurate results. The
WBA tends to provide lower estimated 𝐻𝑠 than the actual one and it is not that accurate for 𝜎. The proposed method with adversarial
training provides more accurate estimation in terms of 𝐻𝑠 and 𝜎. However, the proposed network have low variability in terms of
estimating 𝑇 and 𝐷 for most samples, some of which are quite different from actual estimates.
8

𝑚 𝑚



Marine Structures 83 (2022) 103159P. Han et al.
Fig. 7. Examples of contour plots of the estimated directional wave spectrum for JONSWAP-type wave spectrum.

Fig. 8. MAE of the integrated wave parameters for the JONSWAP and Torsethaugen wave spectrum.

Fig. 9. Actual and estimated integrated wave parameters for JONSWAP and Torsethaugen spectrum (proposed w AT).

5.2. Generalization to JONSWAP-type wave spectrum

As presented in Section 4.1, the training data is generated through a double Pierson–Moskowitz type wave spectrum. This type
of spectrum might not cover the possible wave spectrum. Therefore, the zero-shot learning ability of this model to other types of
wave spectrum is investigated.

In this part, the generalization ability of the model is evaluated with the JONSWAP-type wave spectrum. The JONSWAP type
spectrum has a more pronounced peak in the spectrum than the Pierson–Moskowitz (PM) type wave spectrum. The JONSWAP wave
spectrum and the Torsethaugen wave spectrum (a double peak JONSWAP-type spectrum) are used to generate two extra test sets
with 100 samples, respectively. The trained model is then used to estimate the 2D wave spectrum. Fig. 7 shows the estimated 2D
9
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Fig. 10. Examples of contour plots of the estimated directional wave spectrum with different SNR levels.

Fig. 11. MAE of the integrated wave parameters for the motion responses under different SNR levels.

wave spectrum from two examples in the two extra test sets, respectively. The proposed model presents a less narrow spectrum
than the actual one, which might be due to the Pierson–Moskowitz type wave spectrum used in the training data. Nonetheless, the
proposed model still provides a reasonable estimate.

Fig. 8 summarizes the MAE of 𝐻𝑠, 𝑇𝑚, 𝐷𝑚, 𝜎 for the JONSWAP and Torsethaugen wave spectrum. The proposed model achieves
the lowest deviation among these three methods. It demonstrates that the proposed model successfully captures the relation between
ship motion and wave spectrum, therefore, it is able to estimate the type of wave spectrum not present in the training data.

Fig. 9 shows that correlation of actual and estimated integrated wave parameters from JONSWAP and Torsethaugen wave
spectrum. It is shown than the proposed model provides accurate estimation in terms of 𝐻𝑠, 𝑇𝑚, and 𝐷𝑚 for both wave spectrum.
However, the model gives higher 𝜎 than the actual one. The reason might be that for the training data samples a broader range of
directional spreading functions than the test data here. Specifically, the 𝑠 parameter in the cos2s spreading function is sampled in
the range of [1, 26] for the training data while [5, 26] for the JONSWAP-type spectrum, which results in a smaller range of 𝜎. The
model cannot adjust to the distribution shift since it is in zero-shot setting.

5.3. Effect of noisy ship motion measurement

Ship motions are measured in the time domain. In order to use the proposed approach, the ship motion in the time domain
must be transformed into the frequency domain through cross spectrum analysis. The cross spectrum analysis typically is performed
through fast Fourier transform or multivariate autoregressive modeling, which would inevitably introduce a certain deviation from
the actual motion response spectrum. In addition, noise in the measured ship motion would introduce a certain degree of error. In
this section, the effect of cross spectrum analysis and the noises in ship motion on the estimated results will be evaluated. The cross
spectrum analysis in this paper is performed through the Welch method. White noise is added and four different SNR levels, 10, 5,
10
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Fig. A.1. Architectures of the estimation and discrimination network.

, 1, are investigated. For simplification, the time series ship motion without noise added is denoted as ‘‘SNR=+∞’’. In ‘‘SNR=+∞’’,
only the effect of cross spectrum analysis is included.

Fig. 10 presents an example of an estimated 2D wave spectrum under different SNR levels. From the estimates for the perfect
response spectrum and SNR=+∞, the power value and spectral shape are changed due to the cross spectrum analysis. As the SNR
level decreases, the quality of the estimates, usually but not definitely, also decreases. In general, the estimated 2D wave spectrum
is relatively close to the actual wave spectrum.

Fig. 11 compares the MAE of integrated wave parameters in WBA and the proposed model under different SNR levels. The
proposed model is less sensitive to noise than the WBA. The WBA method shows low error in 𝐷𝑚 while the proposed model has low
rror in 𝐻𝑠, 𝑇𝑚 and 𝜎.

. Conclusion

Estimating the sea state based on the measured ship motion response is a complicated and arduous task. Previous machine
earning approaches cannot capture the directional wave spectrum. This paper presents an estimation network and discriminant
etwork based on convolutional neural networks. The high-order inconsistencies of the wave spectrum from the estimation network
re penalized by the estimation network, thereby forcing the estimation network to produce accurate and realistic results. Simulation
tudies show that the proposed model guarantees the smoothness of the wave spectrum and provides accurate estimation results. The
11
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generalizability of the method is demonstrated by estimating the JONSWAP-type spectrum that is not in the training set. Comparison
with the model-based Bayesian WBA approach indicates that the proposed model is more robust to measurement noises.

Nonetheless, the proposed method suffers from the typical drawback of the machine learning model, e.g., a large amount of
ata is required. The necessity of collecting wave spectrum makes it even harder to collect in real-world scenarios. In addition, the
raining of adversarial networks might be unstable and requires careful tuning. Future works will focus on transferring the model
rained in simulated environments to the real world, as well as including the vessels with advancing speeds.

RediT authorship contribution statement

Peihua Han: Conceptualization, Methodology, Investigation, Software. Guoyuan Li: Resources, Supervision. Stian Skjong:
Resources, Supervision. Houxiang Zhang: Project administration, Funding acquisition, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by a grant from the Research Council of Norway through the Knowledge-Building Project for industry
‘‘Digital Twins For Vessel Life Cycle Service’’ (Project nr. 280703) and a grant from the Research Council of Norway through the
IKTPLUSS Project ‘‘Remote Control Centre for Autonomous Ship Support’’ (Project nr: 309323).

Appendix. Network architectures

The estimation network and discrimination network architectures used in this case are detailed in Fig. A.1(a) and Fig. A.1(b),
respectively. Convolutional layers are denoted as ‘‘Conv’’ while transposed convolutional layers are denoted as ‘‘TranConv’’. The
right of the figure suggests the signal dimension in terms of ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙. For instance, the inputs for the estimation
etwork are 9 components of the 1D motion spectrum (1 × 100 × 9) and the output is the 2D wave spectrum (36 × 100 × 1).
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