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Purpose: Meningiomas are the most common type of primary brain tumor, accounting

for ∼30% of all brain tumors. A substantial number of these tumors are never

surgically removed but rather monitored over time. Automatic and precise meningioma

segmentation is, therefore, beneficial to enable reliable growth estimation and

patient-specific treatment planning.

Methods: In this study, we propose the inclusion of attention mechanisms on top

of a U-Net architecture used as backbone: (i) Attention-gated U-Net (AGUNet) and (ii)

Dual Attention U-Net (DAUNet), using a three-dimensional (3D) magnetic resonance

imaging (MRI) volume as input. Attention has the potential to leverage the global context

and identify features’ relationships across the entire volume. To limit spatial resolution

degradation and loss of detail inherent to encoder–decoder architectures, we studied

the impact of multi-scale input and deep supervision components. The proposed

architectures are trainable end-to-end and each concept can be seamlessly disabled

for ablation studies.

Results: The validation studies were performed using a five-fold cross-validation

over 600 T1-weighted MRI volumes from St. Olavs Hospital, Trondheim University

Hospital, Norway. Models were evaluated based on segmentation, detection, and speed

performances, and results are reported patient-wise after averaging across all folds. For

the best-performing architecture, an average Dice score of 81.6% was reached for an

F1-score of 95.6%. With an almost perfect precision of 98%, meningiomas smaller than

3ml were occasionally missed hence reaching an overall recall of 93%.

Conclusion: Leveraging global context from a 3D MRI volume provided the best

performances, even if the native volume resolution could not be processed directly due

to current GPU memory limitations. Overall, near-perfect detection was achieved for

meningiomas larger than 3ml, which is relevant for clinical use. In the future, the use

of multi-scale designs and refinement networks should be further investigated. A larger

number of cases with meningiomas below 3ml might also be needed to improve the

performance for the smallest tumors.
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1. INTRODUCTION

Primary brain tumors, characterized by an uncontrolled growth
and division of cells, can be grouped into two main categories:
gliomas and meningiomas. Gliomas represent the highest
mortality rate (1) while meningiomas account for one-third of
all operated central nervous system tumors (2). The prevalence
rate of meningiomas in the general population undergoing 1.5
T non-enhanced magnetic resonance imaging (MRI) scans is
0.9% (3). Recently, the increase in incidence is presumably due
to higher detection rates from a widespread use of MRI in
the general population (4). Many meningiomas are encountered
as incidental findings on neuroimaging, but never surgically
removed. According to the EANO consensus guidelines (5),
asymptomatic patients can be managed through observation
only. An annual MRI follow-up of benign meningiomas (i.e.,
WHO grade I) is recommended, then biennal after 5 years.
Surgery is then usually indicated if a follow-up shows tumor
growth. Today, growth assessment in a clinical setting is
routinely based on eyeballing or crude measures of tumor
diameters (6). Manual segmentation by radiologists is time
consuming, tedious, and subject to intra-/inter-rater variations
difficult to characterize (7) and is therefore rarely done
in clinical routine. Systematic and consistent brain tumor
segmentation and measurements through (semi-)automatic
methods are consequently of utmost importance. From accurate
tumor growth measurement and future growth estimation,
patient-specific follow-up plans could potentially be enabled.
Moreover, assessing the growth pattern on individual level
may be informative with respect to treatment indication, as
a majority may exhibit a self-limiting growth pattern (8).
Finally, segmentation is key for assessing treatment response
after radiotherapy or surgery. For medical imaging, MRI
represents the gold standard due to its non-invasiveness
and widespread availability. A contrast-enhanced T1-weighted
sequence is most often favored, rendering the tumor border more
easily distinguishable (5). Alternatively, the fluid-attenuated
inversion recovery (FLAIR) sequence can complement the
diagnosis. Effects of fluids on the image are nullified, enabling
a better visualization of edema regions. Nevertheless, inherent
downsides can be associated with MRI acquisitions such as
intensity inhomogeneity (9), variations from the use of different
acquisition scanners (10), or variations in the acquisitions (e.g.,
field-of-view, slice thickness, or resolution). In T1-weightedMRI,
meningiomas are often sharply circumscribed with a strong
contrast enhancement, making them clear to identify. However,
small meningiomas might resemble other contrast-enhanced
structures such as blood vessels, hindering the detection task. In
order to alleviate radiologists’ burden to annotate large contrast-
enhanced meningiomas, while at the same time to help detecting
smaller and unusual meningiomas, automatic segmentation
methods are paramount.

In recent years, automatic and end-to-end semantic
segmentation has known considerable improvements through
the development of fully convolutional neural network
architectures (FCNs) (11–13). By restoring the feature map
of the last deconvolution layer to the size of the initial input

sample, predictions can be generated for each voxel. While
such architectures provide near radiologist-level performances
on some medical image analysis tasks (14, 15), multi-stage
cascading induces a loss of local information leading to excessive
and redundant low-level features. The most effective solution
to boost the segmentation performance is to combine local and
global information to preserve consistency in the feature maps.
However, 3D medical volumes are typically too sizable to fit on
GPU memory at their original resolution, and the number of
parameters for the corresponding model would be considerable.
Different trade-offs have been investigated such as splitting
the 3D volume into a series of patches or slabs by which some
global context can be leveraged while good local information
is retained (16). Capturing the entire global context from a
full 3D volume is important for a model to understand the
spatial relationships between the different anatomical structures.
Aggregating multi-scale contexts and using various dilated
convolutions and pooling operations can be a solution (17, 18).
Instead, capturing richer global information through enlarged
kernels (19) or fusing semantic features at different levels (20)
can cope with information loss but are unable to leverage overall
relationships between structures. To address shortcomings from
feature maps consistency and loss of information when using
multi-stage cascading architectures, attention mechanisms have
been utilized with great success (21–23). Attention modules can
be seamlessly coupled with regular FCN architectures for end-to-
end training, with the benefit of letting the model learn to focus
on the segmentation targets without significant computational
overhead. Optimally coupled with each deconvolution block,
attention can be designed to capture features’ dependencies
spatially, channel-wise, or across any other dimension (21).
Alternatively, multiple models operating on different input
shapes or focusing on different aspects during training can

be fused as a post-processing step, called an ensemble, to
generate the final prediction map (24). Global context and local

refinement can virtually be obtained separately at the cost of

longer training and inference time, and higher model complexity.

However, ensembling has not always shown to produce better
overall segmentation performance compared to a single model’s

use (25).
The Multimodal Brain Tumor Image Segmentation (BraTS)

challenge dataset represents a cornerstone in the field of brain

tumor segmentation. Featuring only patients with high-/low-
grade gliomas, it fostered the development of many methods in

the community (26). At first, and due to memory limitations,

the task of brain tumor segmentation has been approached

in 2D where each axial image (i.e., slice) from the original

3D MRI volume was processed sequentially. Havaei et al.

hinted at the benefits from combining the immediate local

neighborhood and a larger context such as the overall position
in the brain. Local and global information were fused within a
two-pathway convolutional neural network (CNN) with multi-
modal inputs (27). Recurrent neural networks, using image
patches and slices along the three different acquisition planes (i.e.,
axial, coronal, and sagittal), were alternatively investigated (28).
The predictions from the different CNNs were fused using a
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voting-based strategy. Other methods relying on image or patch-
based strategies have also been proposed to deal with large MRI
volumes in an efficient way (29–31). Features obtained from
image patches or through a slabbing process (i.e., using a set
of slices) will inherently contain limited global information. As
such, methods based upon these conducts will generally achieve
lower performance than methods leveraging features extracted
from the entire 3D volume. Simple 3D CNN architectures (32,
33), multi-scale approaches (34, 35), and ensembling of multiple
CNNs (24) have hence been explored. Better segmentation
performance, increased robustness toward hyperparameters, and
improved capability to generalize were exhibited. However, the
stacking strategy inherent to ensembling leads to longer andmore
cumbersome procedures for training and inference. The potential
from efficiently computing meaningful features from a whole 3D
MRI volume remains yet to be fully explored.

Outside the scope of the BraTS challenge dataset, the
meningioma segmentation task has been scarcely investigated. A
multi-modal (T1c, T2f) and multi-class (core tumor and edema)
segmentation has been attempted using traditional machine
learning methods (e.g., SVM) (7). Unfortunately, the validation
studies have been carried out on a dataset of only 15 patients,
making it difficult to fully assess the ability to generalize. The
DeepMedic architecture and framework (34), operating patch-
wise in 3D, has been investigated by Laukamp et al. on their
ownmulti-modal dataset (36, 37). A combination of T1-weighted
contrast-enhanced and FLAIR sequences was used as input
for the segmentation of contrast-enhancing tumor volume and
total lesion including surrounding edema. The limited validation
group of 56 patients and the need for a second 3D fully
connected network in post-processing to remove false positives
were legitimate disadvantages. In our previous work, leveraging
a whole MRI volume, rather than slab-wise, has shown to boost
the overall segmentation performance (38). However, using a
regular 3D U-Net or multi-scale architecture still resulted in the
loss of information in the encoding path which remained to be
addressed. To summarize, recurring identified limitations from
previous meningioma segmentation studies include the relatively
minimal datasets used with at most 126 patients for an average
meningioma volume of 31.5ml. In addition, the lack of advanced
validation studies to prove generalization, and the common
pitfalls from slab/patch-wise methods or inefficient architectures
for capturing large-scale relationships were identified. While
relying on multiple modalities as input is of interest, the sole
use of T1-weighted MRI presents the benefit of being the bare
minimum to open for clinical use in a screening context or at the
outpatient clinic.

In this paper, we focus on reducing the information loss for
encoder–decoder architectures using combinations of attention,
multi-scale, and deep supervision schemes. In addition, we chose
to rely on T1-weighted MRI volumes only as input to maximize
the potential for use in clinical settings. Our contributions
are as follows: (i) the investigation of architectures able to
better understand global context, (ii) validation studies focusing
on meningioma volumes for clinical and diagnostic use, and
(iii) online availability for our trained models along with the
inference script.

2. METHODS

2.1. Related Work
Typically, semantic features are extracted along the encoding
path for encoder–decoder architectures. The field-of-view is
progressively enlarged via strided convolutions or pooling
operations, hence provoking some loss of detail. In the
decoding path, extracted features are exploited to solve the
task at hand (i.e., classification, segmentation). At the end
of the encoding path, the feature maps are the richest in
global relationships. Yet, limited spatial details are preserved
due to cascaded convolutions and nonlinearities. In order to
recover fine-grained details, symmetrical architectures (e.g., U-
Net) propagate feature maps across corresponding encoder
and decoder at the same level, also known as long skip
connections. In general, efficient architectures optimally use
global and contextual information from high-level features
and border information from low-level features to resolve
small details (39). Attention mechanisms focus on identifying
salient image regions to amplify their influence. By filtering
away irrelevant and potentially confusing information from
other regions, the prediction become more contextualized (40).
Hard attention, stochastic and non-differentiable, relies on
sampling-based training making optimizing models more
difficult. Soft attention, probabilistic and amenable to training
by backpropagation, can be by contrast seamlessly integrated
into current CNN architectures. Numerous tasks have benefited
from attention, such as text understanding and semantic
segmentation (41–43).

In a main body of work, a single attention gating is performed
at every level along the decoding path. Attention feature maps
are often concatenated with the feature maps from the long
skip connection (22, 44). Nevertheless, propagation of the
lowest-level feature maps in an upward fashion with short
skip connection has also been investigated (45). In a second
body of work, authors have investigated the computation of
specific attention feature maps to focus on position, channel,
or class dependencies. Fu et al. (21) presented a dual attention
network for scene segmentation where position and channel
attention modules were computed at the bottom of a ResNet
encoding path. The generation of the final probability map,
right after and without a matching decoding path, is detrimental
to the spatial segmentation quality. Following the same idea,
Mou et al. (46) added a complete ResNet decoding path after
position and channel attention computation, improving the
spatial reconstruction. Attempts have been made to include
dual attention modules at every stage of a ResNet architecture,
either from the skip connection feature maps from the encoder
path (23), or in the decoder path after concatenation with
the feature maps from the previous level (47). To deal with
the substantial number of parameters and prevent training
hurdles (e.g., overfitting, slow convergence), additional steps
are required. The use of dilated convolutions, or the addition
of a significant dropout over the attention feature maps, has
been proposed. Finally, other hybrid attention schemes have
been explored, for example in the context of aerial image
segmentation with concepts such as class channel attention to
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exploit dependencies between classes and generate class affinity
maps (48).

To compensate for the loss of detail inherent to consecutive
pooling operations, new architecture designs or layers have been
proposed. In order to preserve details in the encoding path,
various multi-scale attempts have been made, such as infusing
down-sampled version of the input volume in each encoder
block (44). Alternatively, the receptive fields can be enlarged
using atrous convolutions and pyramid spatial pooling (17,
39). Lastly, the feature maps from each encoder block can be
concatenated, and the created multi-scale feature maps used
for guiding in an upward skip connection fashion (47). In the
latter case, complementary low-level information and high-level
semantics are encoded jointly in a more powerful representation.
Conversely, intermediate feature maps generated at each level
of an encoder–decoder architecture can be leveraged instead of
computing the loss simply from the last decoder step, commonly
referred to as deep supervision (DS). The rationale is that
the feature maps from hidden layers of a deep network can
serve as a proxy to improve the overall segmentation quality
and sensitivity of the model, while alleviating the problem of
vanishing gradients (49). The final loss is computed as a weighted
average between the losses from each level whereby each can
contribute equally (44), or with weights defined as trainable
parameters. Intermediate losses can be computed separately from
the raw feature maps and the attention feature maps, before
tallying the final loss across all levels (47). In general, the
combination of multi-resolution and deep supervision has shown
to improve convergence (i.e., better optimum and faster solving)
for inverse problems (50).

2.2. Dataset
In a previous study (38), we introduced a dataset of 698
Gd-enhanced T1-weighted MRI volumes acquired on 1.5 T
and 3T scanners in the catchment region of the Department
of Neurosurgery at St. Olavs hospital, Trondheim University
Hospital, Norway. In this study, we kept the 600 high-resolution
MRI volumes having a maximum spacing of 2mm , leaving aside
the remaining 98 volumes. Of those 600 patients, 276 underwent
surgery to resect the meningioma, while the remaining 324
were followed at the outpatient clinic. In the dataset, MRI
volume dimensions covered [240; 512] × [224; 512] × [18; 290]
voxels and the voxel sizes ranged between [0.47; 1.05] ×

[0.47; 1.05] × [0.60; 2.00]mm3. The volumes of the surgically
resected meningiomas were on average larger (30.92± 33.10ml),
compared to the untreated meningiomas followed at the
outpatient clinic (7.62±13.67ml). Overall, meningioma volumes
ranged between [0.07, 167.99]ml for an average value of 18.33 ±
27.20ml.

2.3. Architecture Design
In this work, we opted for a U-Net architecture as
backbone, which we set to five levels and used filter sizes of
[16, 32, 128, 256, 256] for each level, respectively. Our first
proposed architecture, named AGUNet and illustrated in
Figure 1, integrates an attention-gated mechanism to U-Net.
Our second architecture, named DAUNet and illustrated in

Figure 2, integrates a dual attention module to U-Net. In
addition, both architectures are combining multi-scale input
and deep supervision support. For viewing purposes and clarity,
we chose to display our proposed architectures with only three
levels. The proposed design is modular whereby the backbone
can be changed (e.g., U-Net, ResNet) and each main module (i.e.,
multi-scale input, attention mechanism, and deep supervision)
can be toggled. Such design enables seamless end-to-end training
while providing unbiased and comparable results. The specifics
of each module are presented in the following subsections.

2.3.1. Attention Mechanisms

In our first architecture, attention gates were incorporated
to each decoder step of the architecture to highlight salient
features passing through the skip connections, as described
previously (22). Attention gating is performed before the
concatenation operation in order to merge only relevant
activations. Performing gating from features extracted at a
coarser scale allows for the disambiguation of irrelevant
responses in skip connections. At each decoder level, the feature
maps from the previous level (i.e., coarser scale) are first
resampled to match the shape of the skip connection feature
maps, using a transpose convolution operation with a 3 × 3 × 3
kernel size (cf. green block in Figure 1). Inside the attention
gate (cf. yellow block in Figure 1), the upsampled feature maps
(denoted as g) and the feature maps from the skip connection
(denoted as xl) are processed to generate the gating signal. Then,
the signal is applied to xl in order to generate the gated feature
maps for the current level x̂l. Linear transformations without
spatial support (i.e., 1 × 1 × 1 convolutions) are performed
to limit the computational complexity and number of trainable
parameters, similarly to non-local blocks (51). We chose to
include an attention gate on the lowest-level feature maps (i.e.,
first skip connection) even though limited benefits are expected
since the input data tend to not be represented in a high-enough
dimensional space (40).

As second architecture, a dual attention scheme with position
and channel attention modules was integrated to the U-
Net architecture. Due to GPU-memory limitations and to
reduce the computational complexity, the attention feature
maps are only computed once at the end of the encoding
path rather than at every decoder level. The position attention
module, or spatial attention module, encodes a wider range
of contextual information into local features to enhance their
representation capability. The channel attention module exploits
inter-dependencies between channel maps to emphasize inter-
dependent feature maps and improve the feature representation
of specific semantics, as presented by Fu et al. (21). For training
efficiency, a spatial dropout operation with a rate of 0.5 and linear
transformations are performed on the raw attention feature
maps, generating the final Attention Feature Maps (AFMs). In
a variant, named DAGUNet, the attention feature maps are
propagated upward and concatenated at each decoder level to
guide the computation of feature maps at the higher levels (cf.
green arrow in Figure 2). Transferring the bottom attention
feature maps requires less trainable parameters overall than
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FIGURE 1 | Illustration of the Attention-Gated U-Net (AGUNet), with multi-scale input and deep supervision. The representation features three levels for viewing

purposes, but five levels have been used in the studies.

computing the dual attention blocks at every decoder step, while
still benefiting from them.

2.3.2. Multi-Scale and Deep Supervision

For our multi-scale approach, we opted to exploit down-sampled
versions of the initial network input, at every level in the encoding
path, by performing consecutive average pooling operations with

a 3 × 3 × 3 kernel size. Each down-sampled volume is then
concatenated to the feature maps coming from the previous
encoding level, before generating the feature maps for the current
level, in order to preserve spatial details. For our deep supervision
scheme, the ground truth volume is recursively down-sampled to
match the size of the feature maps at each corresponding decoder
level, where an intermediate loss Lx is computed. The final loss,
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FIGURE 2 | Illustration of the Dual Attention U-Net (DAUNet), with multi-scale input, deep supervision, and the same Conv3D block as described in the first

architecture. The representation features three levels for viewing purposes, but five levels have been used in the studies.

represented as LTot in Figure 1, is the weighted sum from all
intermediate losses. In this study, we did not set the weights as
trainable parameters, not to favor the feature maps from any
level, and kept a uniform weighting strategy.

2.4. Training Strategies
The MRI volumes were all preprocessed using the following
steps: (i) resampling to an isotropic spacing of 1mm3 using

spline interpolation order 1 from NiBabel1, (ii) clipping tightly
around the patient’s head, (iii) volume resizing to 128 ×

128 × 144 voxels using spline interpolation order 1, and
(iv) normalizing intensities to the range [0, 1]. A typical
data augmentation approach was favored, where the following
transforms were applied to each input sample with a probability
of 50%: horizontal and vertical flipping, random rotation in the

1https://github.com/nipy/nibabel.
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range [−20, 20]◦, translation up to 10% of the axis dimension,
zoom between [80, 120]% in the axial plane.

All models were trained from scratch using the Adam
optimizer with an initial learning rate of 10−3 and training
was stopped after 30 consecutive epochs without validation
loss improvement. The main loss function used was the class-
average Dice loss, excluding the background. Additionally,
we experimented with the Focal Tversky Loss (FTL), where
the Tversky similarity index helps balance false positive and
false negative predictions more flexibly. The focal aspect
increases the contribution of hard training examples in the loss
computation (44). We used α = 0.7 and β = 0.3 for the Tversky
index to minimize false negative predictions, and γ = 2.0 as focal
parameter. Unless specified otherwise, all models were saved
based on theminimumoverall validation loss, which corresponds
to LTot if deep supervision is enabled.

Given the sizable memory footprint, all models were trained
using two samples in a batch. In order to improve generalization,
we used the concept of accumulated gradients to effectively
increase the batch size. Mini-batches up to 32 elements have
shown to produce better models (52). For a specified number
of accumulated gradient steps (n), each batch is run sequentially
using the samemodel weights for calculating the gradients.When
the n steps are performed, the accumulated sum of gradients from
each step amounts to the same gradients as if computed over the
larger batch size, ensuring that the model weights are properly
updated. For our studies, we chose to perform 16 steps, enabling
us to use a batch size of 32.

3. VALIDATION STUDIES

In this work, we focus primarily on optimizing segmentation and
detection performance. In parallel, runtime capabilities, potential
for diagnostic purposes, and clinical use are investigated. A five-
fold cross-validation approach was followed whereby at every
iteration three-folds were used for training, one for validation,
and one for testing. Each fold was populated in order to exhibit
a similar meningioma volume distribution, as described in our
previous study (38).

For quantifying the performance, we used: (i) the Dice score,
(ii) the F1-score, and (iii) the training/inference speed. The Dice
score is used to assess the quality of the segmentation pixel-wise,
between the manual ground truth (GT) and the output of the
trained model (Pred), and is reported in %. The F1-score assesses
the harmonic average of recall and precision instance-wise, and
is reported in %. In the case of multifocal meningiomas, each
foci is considered as a separate instance. Finally, the training
speed is reported in hours, while the inference speed and the
total processing speed to generate results for a new MRI volume
are reported in seconds. For the segmentation task, the Dice
score is computed between the ground truth and a binary
representation of the probability map generated by a trained
model. The binary representation is computed for ten different
equally spaced probability thresholds (PT), in the range [0, 1]. A
connected components approach, coupled to a pairing strategy,
was employed to compute the recall and precision values. Such

step is mandatory for the minority of multifocal meningiomas,
but also to separate the correct prediction over a meningioma
from the false positives per patient, enabling to also report the
true positive Dice (Dice-TP). Pooled estimates, computed from
each fold’s results, are computed for each measurement (53), and
reported with mean and standard deviation.

3.1. Ablation Study
Comparison of segmentation performances using various
combinations of the methodological components introduced in
section 2. The name given to each experiment is a concatenation
of components’ abbreviations. The architectures to choose from
are as follows: regular U-Net (UNet), attention-gated U-Net
(AGUNet), dual attention U-Net (DAUNet), and dual attention
guided U-Net (DAGUNet), combined with multi-scale input
(MS), deep supervision (DS), and the use of accumulated
gradients (AG). If not specified otherwise, the Dice loss function
is used and the best model is selected based on the total loss LTot.
Usage of the focal Tversky loss is indicated by the TFL tag, while
saving the best model based on the loss from the upper level is
indicated by the Top tag.

3.2. Segmentation and Detection
Performances Study
A comparison is performed between the best trained model for
each of the main designs: slab-wise U-Net (UNet-Slabs) and
PLS-Net studied previously (38), full volume U-Net (UNet-FV)
and the best method identified in the ablation study (Ours).
All models were compared using the exact same methodology
considering only the probability threshold PT, without any
consideration toward the absolute size or relative overlap of the
meningioma candidates. In addition, the nnU-Net approach (54)
has been selected to serve as external baseline. The optimal
preprocessing steps were determined automatically from the
dataset using the nnU-Net framework. A spacing of 0.93 ×

0.93× 1.0mm was selected for a median MRI volume resolution
of 267 × 265 × 162 voxels, leading to the selection of the 3D
full resolution U-Net configuration. All models were trained
for 1,000 epochs, using the joint Dice and cross-entropy loss
function, operating over patches of 160 × 160 × 96 voxels. The
model prediction heatmaps were taken before post-processing.

3.3. Volume-Based Performances Analysis
To study the potential for clinical use in the hospital or outpatient
clinic, performances are analyzed over different meningioma
groups based on volume. Limitations such as challenging
meningiomas and potential outliers are also described.

3.4. Speed Performances Study
For the different experiments considered in the first two
validation studies, a deeper analysis around speed is conducted.
The model complexity as total number of parameters and the
training behavior as s.epoch−1 (in seconds), best epoch, and total
training time (in hours), are first considered. The pure inference
speed is reported when using GPU and CPU (in s). Finally, the
total elapsed time required to generate predictions for a new
patient is reported as processing time (in s), obtained with GPU
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support. The operations required to prepare the data to be sent
through the network, to initialize the environment, to load the
trained model, and to reconstruct the probability map in the
referential space of the original volume are accounted for. The
experiment has been repeated 10 consecutive times over the same
MRI volume for each model, using a representative sample of
256× 256× 192 voxels with 1.0× 1.0× 1.0mm spacing.

4. RESULTS

Models were trained across different machines using either an
NVIDIA Quadro P5000 (16 GB) or a Tesla P100 PCIe (16
GB) dedicated GPU and regular hard drives. For inference and
processing speed computation, an Intel Xeon @3.70 GHz (6
cores) CPU and an NVIDIA Quadro P5000 GPU were used.
Implementation was done in Python 3.6 using TensorFlow
v1.13.1, Cuda 10.0, and the Imgaug Python library for the
data augmentation methods (55). Due to randomness during
weight initialization and optimization, a fixed seed was set to
make comparisons between experiments fair and reproducible.
Trained models and inference code are made publically available
at https://github.com/dbouget/mri_brain_tumor_segmentation.

4.1. Ablation Study
Pixel-wise segmentation and patient-wise detection
performances for the different architectural designs considered
are summarized in Table 1. The first row provides baseline
results using the backbone architecture only. The greatest impact
comes from the deep supervision component increasing the
Dice score by about 5% and the F1-score by 2.5% between
experiments (ii) and (iii). From the multi-scale input approach,
<1% improvement for the same metrics is reported, as can be
seen between experiments (iii) and (iv). It is worth mentioning
that models trained using deep supervision produce comparable
results whether saved based on the best total loss or the best loss
from the upper level only [cf. experiments (v) and (vi)]. The
use of attention modules does not further improve the results

[cf. experiments (i) and (ii)]. Similarly, no added value has been
recorded when using a more complex dual attention scheme [cf.
experiments (v) and (x)]. A similar conclusion can be drawn for
the use of the accumulated gradients strategy, degrading slightly
the overall segmentation performances, for a reduction in
standard deviation across detection results [cf. experiments (iv)
and (v)]. While the implementation seems correct, identifying
the best batch size is difficult and heavily dependant on the
dataset size and diversity. However, for our second architecture
with dual attention, propagating the attention feature maps
upward seems to be beneficial. A increase of 1–2% across the
different measurements is reported when compared to no
propagation [cf. experiments (viii) and (x)]. The attempt to use
the Focal Tversky loss was not conclusive as all metrics score
lower in experiment (vii) compared to experiment (v).

Overall, we consider the best-performing model to be
obtained by experiment (iv), reaching the highest scores for all
but one metric. As we do favor detection performances over
pixel-wise segmentation accuracy, our AGUNet-MS-DS model is
also reaching the highest F1-score with 95.58%. In the rest of the
paper, we refer to AGUNet-MS-DS [experiment (iv)] as ours.

4.2. Segmentation and Detection
Performances Study
For the four different training concepts considered, segmentation
performances have been reported in Table 2. The UNet-Slabs
approach yields surprisingly competitive recall performances
with only a 2% shortfall compared to our best-performing
method. However, the generation of a larger amount of false
positives per patient is an inherent limitation of slabbing 3D
volume. The 20% difference in precision between the same two
approaches is a clear testimony. While the PLS-Net architecture
drastically increases the precision from leveraging a full 3D
volume, its shallow architecture is not able to compete in
terms of overall pixel-wise segmentation or recall performances.
Nevertheless, it indicates howwell global spatial relationships can
be modeled and how beneficial it can be for a 3D segmentation

TABLE 1 | Performances obtained by component ablation, averaged over the five-folds. The components are as follows: regular U-Net (UNet), attention-gated U-Net

(AGUNet), dual attention U-Net (DAUNet), dual attention guided U-Net (DAGUNet), multi-scale input (MS), deep supervision (DS), and the use of accumulated

gradients (AG).

Experiment PT Dice Dice-TP F1 Recall Precision

(i) UNet-FV 0.5 76.91± 28.98 84.77± 16.22 93.19± 01.70 90.70± 01.90 95.86± 02.28

(ii) AGUNet-AG 0.4 75.14± 30.38 84.21± 16.57 92.15± 01.74 89.21± 02.38 95.35± 02.37

(iii) AGUNet-DS-AG 0.4 80.72± 24.98 86.79± 12.19 94.73± 00.76 93.02± 02.01 96.63± 02.95

(iv) AGUNet-MS-DS 0.4 81.64 ± 25.33 87.69 ± 12.12 95.58 ± 02.24 93.03± 04.13 98.39 ± 01.43

(v) AGUNet-MS-DS-AG 0.4 79.49± 26.38 87.02± 11.59 94.23± 00.88 91.69± 01.73 96.93± 01.04

(vi) AGUNet-MS-DS-AG-Top 0.5 79.89± 26.52 86.64± 13.75 94.53± 08.23 92.19± 02.21 97.07± 01.67

(vii) AGUNet-MS-DS-AG-FTL 0.7 74.27± 30.29 84.21± 14.47 91.27± 01.50 88.20± 02.96 94.66± 01.94

(viii) DAUNet-MS-DS-AG 0.5 78.43± 27.56 85.92± 13.73 92.99± 02.76 91.19± 04.71 95.04± 02.89

(ix) DAGUNet-MS-DS 0.4 81.54± 24.95 87.15± 13.34 95.24± 01.33 93.52 ± 02.39 97.06± 00.83

(x) DAGUNet-MS-DS-AG 0.4 80.74± 24.89 86.79± 12.00 94.78± 00.99 93.03± 01.91 96.63± 00.76

Bold values are used to highlight the best results within each column.
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TABLE 2 | Segmentation and detection performances obtained with the four main designs considered and the nnU-Net baseline, averaged over the five-folds.

Experiment PT Dice Dice-TP F1 Recall Precision

UNet-Slabs 0.6 74.41± 29.04 81.72± 18.19 82.74± 02.65 91.04± 03.87 75.91± 02.89

PLS-Net 0.5 71.69± 33.41 83.46± 17.96 89.87± 01.79 85.88± 03.02 94.31± 01.03

UNet-FV 0.5 76.91± 28.98 84.77± 16.22 93.19± 01.70 90.70± 01.90 95.86± 02.28

Ours 0.4 81.64± 25.33 87.69 ± 12.12 95.58 ± 02.24 93.03± 04.13 98.39 ± 01.43

nnUNet – 83.55 ± 21.69 86.28± 7.30 86.20± 1.37 96.83 ± 1.21 77.71± 2.16

The first two designs were introduced and detailed in our previous study (38). Bold values are used to highlight the best results within each column.

task. The simple U-Net architecture over an entire 3D volume
(UNet-FV), building upon the strengths of UNet-Slabs and PLS-
Net, boosts performances in every aspect. Employing advanced
mechanisms such as attention, deep supervision, or multi-scale
input provides slight improvements in detection performances,
going from an F1-score of 93.2 up to 95.6%. Yet, the highest
benefit can be witnessed for the pixel-wise segmentation task,
with an overall Dice score reaching 81.64%, up by almost 5%.
Both the UNet-Slabs and nnU-Net approaches share similarities
in their designs whereby subdivisions of the original MRI
volumes are used. As such, both approaches obtain precision
performance below 80%, far beneath the 98% from our approach.
However, from its use of MRI volumes at a high resolution and
internal design optimized for the dataset, the nnU-Net approach
reaches the best recall performance with 96.83%. Finally, and
as indicated by the Dice-TP scores, both nnU-Net and our best
approach are performing similar pixel-wise segmentation for
identified meningiomas.

Visual comparisons are provided in Figure 3 between the
four methods and nnU-Net baseline for six different patients,
one per row. Those meningiomas were hand-picked because of
their locations in uncommon regions of the brain or their small
volumes. For the patients featured in the first two rows, false
positive segmentations can be seen over contrast-enhanced blood
vessel regions for the UNet-Slabs and nnU-Net approaches,
not existing with our best approach. The patient featured in
the third and fourth rows are representative for challenging
meningiomas with a volume < 3ml. In such cases, only nnU-
Net and our best approach can reach reasonable Dice scores. A
better pixel-wise quality can be expected from nnU-Net using
a higher resolution input volume (cf. third row), which has to
be weighed against its higher false positive rate compared to our
AGUNet architecture (cf. fourth row). For the last two patients
displayed, the meningioma s are almost completely outside the
brain and have grown between the eye sockets or up the back
of the nose, location relatively rare and under-represented in
our dataset. From their design bringing more focus to local
intensity gradients and less on overall brain location, both the
UNet-slabs and nnU-Net approaches fare better. The use of
more global information with the UNet-FV approach reduces
prediction probabilities further away from the brain. Lastly, the
use of attention mechanisms with our best approach lowers
significantly the Dice score, up to a third of the nnU-Net results
(cf. last row). Even though the impact of attention mechanisms
could not be overall witnessed from the values reported in

Table 1, the results on those two patients represent a perfect
exemplification. While such meningiomas are found with our
best approach, attention mechanisms seem to have learned to
limit the predictions within the brain or its outskirts. The positive
impact of attention mechanisms is then the increased specificity
and better disambiguation between tumor tissue and other
contrast-enhancing structures. With our AGUNet architecture
almost no false positives are generated compared to nnU-Net. As
illustrated in the first row of Figure 4, feature maps benefiting
from attention are not responding on other contrast-enhancing
structures, in opposition to feature maps from the UNet-FV
architecture. In the second row, a higher and more selective
response can be seen over the meniningioma location with
our AGUNet architecture. For the UNet-FV architecture, the
response is on average higher across the brain region and less
specific to the meningioma location. From the training examples,
as not many meningiomas in our dataset are outgrowing this far
from the brain , it remains to be seen if a larger collection would
improve the attention feature maps.

4.3. Volume-Based Performances Analysis
Based on tumor volume, the meningiomas from our dataset were
grouped into ten equally populated bins and Dice performances
for each bin are reported using a box plot, as shown in
Figure 5. The average Dice score for the largest meningiomas,
with a volume of at least 17.5ml, has not changed much
across the different methods considered and hovers above 90%.
However, the number of undetected or poorly segmented large
meningiomas is lessened with our best method, as can be seen
by the reduced number of dots outside the whiskers of each
box plot. With our best approach, we reach an overall recall
of 93%, which increases to 98% considering only meningiomas
larger than 3ml. We have identified 11 undetected cases with
a volume larger than 3ml, and two examples are provided in
the second row of Figure 6. Both a non-enhancing intraosseus
meningioma (to the left) and a partly calcified meningioma (to
the right) are featured. All 11 cases are exhibiting some extent
of contrast impediment compared to typical contrast-enhancing
meningiomas (cf. first row of Figure 6), which explains why our
network struggles. Considering that the average meningioma in
an hospital setting has a volume of 30.92ml and the performances
on meningiomas larger than 3ml, our proposed approach
appears suitable and relevant.

The most significant results of our best approach can be
observed for meningiomas smaller than 3ml, where the average
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FIGURE 3 | Prediction examples for meningiomas with uncommon shapes, locations, or small volumes. One patient is featured per row and the overall raw Dice is

reported in white.

Dice scores has been clearly improved. Starting from an average
Dice of 46% and recall of 62.7% with PLS-Net, our best approach
reaches an average Dice of 63.3% and recall of 78.9%. From
its design and the use of MRI volumes at a high resolution,

the nnU-Net approach has reached a Dice of 71.5% and
a recall of 91% on this specific category. The difference is
especially striking for meningiomas with a volume < 1ml,
but for overall worse results considering larger meningiomas.
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FIGURE 4 | Illustration of the effect of attention mechanisms on two feature maps from the last decoder level, between AGUNet (Ours) and UNet-FV architectures.

Each row features a different slice along the coronal view of the same patient. Feature maps values are scaled in the range [0, 1], with blue to red as corresponding

color code.

FIGURE 5 | Segmentation performances for the four main designs represented with box plots. Ten equally populated bins, based on tumor volumes, have been used

to group the meningiomas.
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FIGURE 6 | Segmentation examples showing side-by-side the axial, coronal, and sagittal views respectively, where the automatic segmentation is shown in red and

the manual annotation is shown in green. The top row illustrates two properly segmented meningiomas with to the right a meningioma adjacent to the enhancing

superior sagittal sinus and falx. The middle row shows to the left a non-enhancing meningioma exhibiting intraosseus growth and hyperostosis, and to the right a

partly calcified, partly enhancing meningioma. The bottom row illustrates two meningiomas, with a volume smaller than 3ml, left undetected.

In Figure 6, two representative meningiomas smaller than 3ml
and left unsegmented by all methods are illustrated in the
third row. Locations around brain borders (e.g., eye socket
or brainstem) and close to larger blood vessels are especially
challenging. In addition, using down-sampled MRI volumes
with limited spatial resolution reduces such meningiomas to a
very limited number of voxels the model can compute features
from. Incidental findings of meningiomas’ first appearance,
when below 3ml, remains challenging and unreliable for broad
clinical use. However, patients followed at the outpatient clinic
have developed meningiomas of 7.62ml on average, suggesting
potential benefit from automatic segmentation using our models.

4.4. Speed Performances Study
The model complexity, training convergence aspects, inference
speed, and processing speed are reported in Table 3. Multiple
GPUs with slightly different specifications (e.g., memory clock
speed and bandwidth) were used for training, and other CPU-
demanding algorithms were episodically ran concurrently. As
a result, the speeds per epoch and total train time reported
cannot be directly and objectively compared but orders of
magnitude are nonetheless relevant to consider. The PLS-Net
architecture is converging in less than 100 epochs, the fastest
of all investigated designs. Even with the smallest number of
total parameters, its complex operations result in a total training
time about three times longer than any full volume U-Net design
for worse segmentation performances due to its shallowness
[cf. experiments (ii) and (iii)]. Training in a slab-wise fashion
inherently increases the number of training samples which
considerably lengthen the elapsed time per epoch by a ten-
fold compared to the fastest iterating design [cf. experiments (i)

and (iii)]. However, the convergence behavior is not impacted
as about 120 epochs are necessary, which is on-par with the
various full volume designs such as experiment (vii). It is worth
noting that while using accumulated gradients does not improve
overall segmentation and detection performances, the models
converge faster thanks to a better generalization from seeing
more samples at every epoch [cf. experiments (vi) and (vii)]. The
combination of complex architectural designs and accumulated
gradients enables convergence in about 110 epochs at best, which
is equivalent to a more than reasonable total training time of 18 h.
One must trade carefully between model complexity and dataset
size to prevent overfitting or similar convergence hurdles. The
use of full volume inputs, the relatively small dataset size, and
the quickly increasing total number of model parameters with
advanced designs are complex to balance.

Regarding inference, doubling the number of parameters
within a similar architecture does not alter the speed as can be
seen between experiments (iv) and (ix). Yet, only the shallow
architecture from PLS-Net can go below the second. When
running experiment (ix) on CPU, the inference speed reaches
on average 8.66 ± 0.09 s, slightly more than doubled compared
to GPU usage. The largest gap between CPU and GPU usage
happens when running experiment (ii). With regard to the
total processing time for a new patient’s MRI volume, around
15 s are necessary to provide segmentation predictions using a
GPU, which would be fast enough not to hinder day-to-day
clinical practice. Interestingly, and when considering computers
deprived of high-end GPUs, the processing time on CPU remains
similar with 15.39 ± 0.15 s for experiment (ix). When running
inference on GPU for only one patient, the environment has to
be initialized at first and the model loaded, making it speed-wise

Frontiers in Radiology | www.frontiersin.org 12 September 2021 | Volume 1 | Article 711514

https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/radiology#articles


Bouget et al. Meningioma Segmentation in T1-Weighted MRI

TABLE 3 | Model complexity, training convergence, and runtime performances for the different architecture designs studied, averaged across the five-folds.

Experiment No. of params (M) s.epoch−1 (s) Best epoch Train time (h) Inference (s) Processing (s)

(i) UNet-Slabs (38) 14.75 4, 103± 313 120± 40 160.2± 44.3 3.74± 0.03 15.53± 0.16

(ii) PLS-Net (38) 0.25 1, 944± 47 91± 23 62.6± 12.5 0.92± 0.01 10.95± 0.05

(iii) UNet-FV 5.89 374± 4.7 171± 24 21.0± 02.5 2.03± 0.04 12.12± 0.08

(iv) AGUNet-AG 16.41 437± 3.6 138± 28 20.5± 03.5 3.88± 0.04 13.84± 0.13

(v) AGUNet-DS-AG 16.41 434± 3.4 149± 27 21.7± 03.3 3.59± 0.06 14.13± 0.21

(vi) AGUNet-MS-DS 18.66 472± 3.5 160± 78 25.0± 10.3 3.69± 0.04 14.35± 0.15

(vii) AGUNet-MS-DS-AG 18.66 508± 8.1 120± 29 21.4± 04.1 3.71± 0.04 14.46± 0.22

(viii) DAUNet-MS-DS-AG 25.72 434± 3.3 118± 52 18.0± 06.2 3.13± 0.04 13.85± 0.17

(ix) DAGUNet-MS-DS-AG 30.96 476± 3.3 112± 14 18.9± 01.9 3.32± 0.06 16.13± 0.28

All values in the table are reported with GPU support. Models trained with the nnU-Net architecture are made of 25.25M parameters.

comparable with pure CPU usage. The serious bottlenecks when
using computers with average specifications could be the RAM
availability and the CPU parameters (e.g., frequency or number
of cores).

5. DISCUSSION

In this study, we investigated different deep learning architectures
and designs for segmenting meningiomas in T1-weighted
MRI volumes, relying on attention mechanisms and global
relationships. Slab-wise and patch-wise approaches, poorly
benefiting from global information, ostensibly struggle to reach
high F1 scores due to the generation of many false positives.
Locally, all hyperintense structures appear quite similar to
one another. Directly leveraging an entire 3D volume, even
with simple architectures such as U-Net, has the clear benefit
of dramatically reducing the number of false positives per
patient. Having access to global context and spatial relationships
across the whole brain helps the model to better discriminate
between contrast-enhanced meningiomas and bright anatomical
structures (e.g., blood vessels). Interestingly, an improved
modeling of spatial relationships has close to no positive effect
on the pixel-wise segmentation quality. Actually, the lack of
satisfactory spatial resolution from the use of a down-sampled
input volume can prove to be detrimental. In order to
boost recall performance as high as possible, especially on
small meningiomas, an efficient use of high-resolution network
inputs is necessary as proven by the nnU-Net approach. A
joint generation of better global context features, preservation
of local information, and leveraging of MRI volumes at
their native resolution is key to push performances higher.
Alternatively, performing some extent of ensembling could bear
potential. The strengths from each approach could be built
upon while inhibiting limitations regarding precision and pixel-
wise segmentation accuracy. However, improved segmentation
performance would come at the expense of speed performance
and additional complexity. In addition, increasing the amount
of models in the ensemble will linearly increase the training and
inference computation time.

By extending a regular U-Net backbone architecture with
various designs, we managed to further improve segmentation
and detection performances. However, the only noticeable

and clear contribution seems to come from the use of deep
supervision. Setting trainable weights in the loss function to
let the model learn how to best balance the loss from the
probability map at each decoder level has not been attempted
in this study. We hypothesize overweighting the coarse feature
maps might favor recall while overweighting the fine feature
maps would favor pixel-wise segmentation, and believe further
investigation is of interest. Not supported by numbers, the effect
of attention schemes has been qualitatively observed whereby
predictions appear to be restricted to the brain itself or its close
boundaries. From training examples, the model learned global
spatial relationships to define some no-prediction zones where
meningiomas are unlikely to occur. While such observations
warrant a proper behavior from the use of attention schemes, a
greater variability in the training samples to feature meningiomas
in all possible location might also be implied. Conversely, having
witnessed some extent of brain-clipping effect using attention
mechanisms can be considered as an indication for unsuitability
toward meningioma segmentation. Given the possibility for
meningiomas to potentially grow outward from every border of
the brain, heavier preprocessing such as brain-masking used for
glioma segmentation is inadvisable here as it would clip away
parts of the tumor. The use of multi-scale inputs also brought
limited visible improvement, but the training samples fed to
our architectures were already down-sampled from the original
3D MR volumes, starting the training with a degraded spatial
resolution. For the time being, training our best architecture with
the native MRI volume resolution is too challenging because
of memory limitation on even high-end GPUs due to the
sizable memory footprint. Nonetheless, working with down-
sampled input volumes seems like the best trade-off solution
as both recall and precision are favored. Detecting each and
every meningioma accurately is critical as the actual pixel-wise
segmentation task is more than often eased by the relatively
good contrast and non-diffuse aspect of such tumors. Overall,
the total amount of trainable parameters for a model should
be considered when assessing performances. Architectures with
deeper or wider designs are more prone to outperforming
lightweight architectures.

To this day, the dataset featured in this study is the
largest used for the task of meningioma segmentation and
includes a wider range of tumor characteristics (e.g., volume
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and location). The joint effect of the proposed architectures
coupled to the diverse dataset improves over the state-of-the-
art results for meningiomas. The current segmentation and
detection performances are exhibiting a satisfactory potential
for clinical use either as a tool for surgical planning or growth
estimation. Automatic measurements regarding the tumor aspect
(i.e., volume, short-axis) and location (i.e., brain hemisphere
and lobe) can be automatically generated. An average Dice
score above 90% was reached for meningiomas bigger than
3ml, when the average volume for patients having undergone
surgery is 30.92ml. For meningiomas with a volume below 3ml,
somewhat worse performances were obtained. Detection of early
meningiomas appears to be feasible but further improvements
are needed for real and trustworthy use. As the average volume
from patients followed at the outpatient clinic is 7.62ml, the
current performances open for automatic and systematic growth
computation during follow-up over time. In addition, inter-
/intra-observer variability would be lessened, as well as time
consumption for clinicians. By providing an open access
to our trained models and inference scripts, other research
groups should have an easier time to put together their own
annotated datasets. In turn, new studies on the task of pixel-
wise meningioma segmentation or more clinically oriented could
be fostered.

The utmost challenging task remains the detection of tiny
meningiomas exhibiting visual similarities with blood vessels,
sometimes placed side-by-side or overlapping with them. The
smallest meningiomas are also featured in a wider range of
location (e.g., along the brainstem), and their total volume is only
represented by a handful of voxels given the initial volume down-
sampling. To address shortcomings from the latter, a finer down-
sampling would help retain a superior spatial resolution but
finding the proper balance between memory requirement and a
prominent risk of overfitting would be challenging. Furthermore,
broadening the dataset with additional samples featuring small
meningiomas in a vaster range of locations might help the
trained models generalize better. Alternatively, the use of other
MR sequences such as FLAIR could help better distinguish
between tumor and vessels. However, a larger panel of MR
sequences might not be available at all time and processing
only T1-weighted volumes makes our approach more generic
and easier to use. Lastly, improving the architecture to make a
better use of features available at the different input scales might
be considered.

To allow for exact comparison with the results from our
previous study (38), the dataset was not altered after the
identification of outliers where meningiomas would not show
with proper contrast, and which could be considered to be
excluded from future studies. Discarding the 98 T1-weighted
MRI volumes with a slice thickness > 2.0mm from the original
dataset was a study choice. For diagnosis, only 3DMR scans with
a slice thickness up to 2mm are holding relevant information for
visual inspection. In a previous study (38), similar performances
were obtained whether the low-resolution MRI volumes were
included in the training set or not, not impeding the ability of
a network to be efficiently trained. Finally, forcing an intense
image-stretching during preprocessing to reach the 1.0mm3

spacing leads to heavy blurring, which is detrimental for features

computation and interferes in the details preservation and feature
maps quality improvement of the architectures. Different or
adaptive preprocessing approaches would need to be further
investigated. As it stands, the 11 outliers out of 600 volumes
are additional noise during training and are a hindrance for the
training process. By excluding them during validation, we would
virtually reach 100% recall with our best-performing model for
meningiomas bigger than 3ml. In the validation studies, we chose
to only rely on the threshold value PT, applied over the prediction
map, to report the segmentation performance results. With the
different full volume approaches, an almost perfect precision
and high Dice scores were obtained. As a consequence, using
an additional detection threshold was not deemed necessary,
whereby a true positive is acknowledged only if the Dice score
is above the given threshold. Only few meningiomas have poor
pixel segmentation and extent coverage (i.e., Dice score below
50%), while the near-perfect precision ascertains the detection to
be at least part of a meningioma.

Even with sophisticated architectures and heavier designs,
models are extremely fast to train and are converging in under
20 h. Using an entire 3D volume as input compared to a slabbing
strategy also speeds up training as less training samples are
processed during each epoch. In addition, generalization schemes
such as accumulated gradients help the model converge faster
and reach a better optimum as can be seen by the reduction
in standard deviation for the segmentation and detection
measurements. Interestingly, the inference speed is not heavily
impacted by large variations in model complexity and these two
parameters do not linearly correlate. Our dual attention guided
architecture has 100 times more parameters than the shallow
PLS-Net architecture. Yet, the inference speed is only multiplied
by 3 reaching at most 3.7 s which is still fast enough and relevant
for clinical use. The biggest hurdle for deployment in hospitals
would be the large variability in hardware from low/mid-end
computers and where shallower architectures like PLS-Net could
thrive. The current disparity in performances, around 6% F1-
score difference, remains too high for such consideration at the
moment and further investigation in that direction is warranted.

In the future, the focus should be on improving the
segmentation performance for meningiomas with a volume
under 3ml. A new round of data collection should be performed,
especially from the outpatient clinic were such meningiomas are
more heavily represented. Conjointly, experiments using multi-
scale concepts introduced in section 2.1 should be carried out.
By computing features across a wider range of scales, more
global knowledge could be gained, without deteriorating the
pixel-wise segmentation quality. Blood vessels represent themain
source of confusion for the models, since looking very similar
to the smallest meningiomas. A separate way to handle blood
vessels might then be of interest to perform disambiguation from
tumors, or to refine the segmentation. However, no dataset exists
for the task and the time required to manually segment blood
vessels is prohibitive. Finally, the use of advanced loss functions
to refine the segmentation around the tumors’ edges is appealing.
The Dice coefficient as loss function is unable to capture all
tumor’s aspects and favors large main tumors at the detriment
of off-sites. A combined loss function including surface-distance
metrics or instance-wise metrics should be further investigated.
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6. CONCLUSION

In this paper, we pushed forward the investigations around
spatial relationships and global context for the task of
meningioma segmentation in T1-weighted MRI volumes.
Integrated into a regular U-Net backbone, we experimented
with concepts such as attention mechanisms, multi-scale
input, and deep supervision. Improved segmentation and
detection performances have been demonstrated when
moving from slab-wise to more sophisticated and complex
approaches leveraging the entire 3D volume. Almost perfect
detection results for clinically relevant meningiomas were
obtained. On the other hand, the smallest meningiomas,
with a volume below 3ml, remained challenging given the
limited spatial resolution and limited number of voxels
to compute features from. In future work, special care
should be brought toward the training dataset, as in many
applications the bottleneck for improving performances lies
in the data diversity more than the method’s design (56).
Nevertheless, smarter handling of multi-scale features should
be investigated, such as spatial pyramid pooling, to better
leverage the raw spatial resolution. Alternative loss function
designs, using adaptive weighting or new concepts, might
also improve the pixel-wise segmentation, especially around
tumor borders.
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