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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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In discrete manufacturing the variation in process parameters and duration is often large. Common data storage and analytics systems primarily 
store data in univariate time series, and when analysing machine components of strongly varying lifetime and behaviour this causes a challenge. 
This paper presents a data structure and an analysis method for outlier detection which intends to deal with this challenge, as an alternative to 
predictive maintenance which often requires more data with higher quality than what is available. A case study in aluminium extrusion billet 
manufacturing is used to demonstrate the approach, predominantly detecting anomalies at the end of a critical component's lifetime. 
 
© 2021 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System 

 Keywords: Anomaly Detection, Predictive Maintenance; Discrete Manufacturing; Big Data Analytics; Adaptive Self-learning Systems 

 
1. Introduction 

Today, production areas within a manufacturing company 
may well continuously collect thousands of data variables from 
a large variety of machines performing incoherent processes 
where faults and breakdowns occur sporadically. �e 
availability of various sensors is increasing, and lifecycle 
management of machinery is increasingly offered by 
equipment suppliers [1]. Based on this level of data availability 
predictive maintenance (PdM) has been a popular research field 
for the last few decades with the goal to ensure machine 
function and avoid breakdowns by making predictions of 
features based on those variables [2]. However, such 
predictions are difficult and require a large amount of precise 
data, as well as an accurate model describing the relevant 
process and possible failure modes which is often laborious to 
obtain. �e same is valid for estimations of remaining useful 
life for an asset or component [3]. For certain applications and 
machinery, like continuously running pumps with stable load 
and other boundary conditions, typically found in process 
manufacturing, such approaches are indeed viable. In addition 

to boundary condition stability, the number of possible failure 
modes and mechanisms should be low, a high amount of 
historical sensor data should be available with adequate quality, 
along plenty of failure logs well documented by detailed 
predefined forms [4, 5]. For more complex processes, however, 
typically involving discrete manufacturing and where perhaps 
none of the previously mentioned requirements are met, PdM 
is not likely to be the best way to ensure machine function and 
avoid failure. �e multitude of relevant physical interactions of 
a complex manufacturing process is too big and predominantly 
unknown �erefore, based on the amount of data available in a 
given use case, it may not be possible to obtain an overview of 
possible failure modes and mechanisms necessary to define 
relevant features to predict. Furthermore, it may even not be 
feasible or possible to measure additional variables that those 
features would need to be based on. Similarly, simulation 
models coupled with the actual system, as a digital twin, can be 
a viable approach [6], but also this is difficult to achieve in 
many cases and should have a high threshold for application. 

On the other hand, a discrete manufacturing process which 
seems incompatible with PdM could well be supervised by the 
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application of anomaly or outlier detection in available data. In 
this paper we present a method based on outlier detection that 
can be automated and applied across a variety of discrete 
manufacturing processes to avoid loss of function, unwanted 
behaviour, and breakdowns, without ad-hoc modelling and a 
minimum of adaption. �e method is based on univariate 
statistics and a data-driven description of normal behaviour, as 
opposed to model-based methods. �e main compromise with 
such a supervision method is the absence of causality 
interpretation. �e main benefits, however, are applicability 
without detailed historical logs or process-specific models or 
adaption, and transferability between a variety of processes. 

�e method described in this paper is intended to be applied 
on discrete manufacturing processes where: 
• all possible failure modes and their various failure 

mechanisms are not fully mapped 
• which specific features that can be used to predict these 

failure mechanisms are unknown. 
• complete and detailed logs describing incidents or failures 

based on predefined forms are not available 

1.1. State of the art 

Typically, maintenance management strategies are grouped 
into the following three categories with various complexity [7]. 

Run-to-Failure (R2F) maintenance is characterized by only 
performing maintenance when a loss of function or failure is 
detected. Typically, but depending on the manufacturing 
processes and set-up, the cost of interventions and associated 
downtime after failure are usually higher with R2F than with 
the two following categories. 

Preventive Maintenance (PvM) means performing 
maintenance according to a planned schedule based on time or 
number of process iterations. �is is also referred to as 
scheduled maintenance. With PvM machine failures are 
sometimes prevented, but also unnecessary maintenance is 
performed. 

Predictive Maintenance (PdM), also referred to as 
Condition-Based Maintenance [8], uses predictions or 
estimates of process features that can be linked to the health 
status of a piece of equipment [2, 9]. PdM systems enable 
detection of failures or loss of function ahead in time. Similarly, 
to PvM, this can also lead to unnecessary maintenance. 
Prediction tools in PdM use historical data together with ad hoc 
defined health models, maps of possible failure modes and 
mechanisms, statistical inference methods, and engineering 
approaches. Usually, large amounts of accurate data 
accompanied with detailed metadata and logs of earlier 
incidents are required to successfully implement PdM, and this 
is a limiting factor for its application. 

Direct usage of anomaly or outlier detection systems, 
without connection to specific failure modes, is typically not 
regarded as part of any of the three maintenance strategies 
above. Anomaly detection in manufacturing systems has been 
a popular research field in the past decade, similarly to PdM, 
especially regarding usage of machine learning techniques [1, 
10-13]. �ere seems to be a focus on applying such techniques 
in order to detect complex patterns on one side, as well as to 

cope with high dimensionality and insignificant variables. �is 
article serves as a simpler alternative to such approaches. 

2. �eory – outliers and anomalies 

�is article is related to detecting anomalies in 
manufacturing data in the form of simple statistical outliers. 

Frank E. Grubbs [14] described a statistical outlier as an 
observation that "appears to deviate markedly from other 
members of the sample in which it occurs".  In this perspective, 
it is of interest to define such observations as either "an extreme 
manifestation of the random variability inherent in the data", in 
which case the observation can be regarded as valid, or as "a 
result of gross deviation from prescribed experimental 
procedure or an error in calculating or recording the numerical 
value", in which case the observation should be disregarded 
since it does not represent a correct measurement of the 
investigated statistic. 

Similarly, according to Charu C. Aggarwal [15], we can 
distinguish between outliers as either noise or as a "special kind 
of outlier that is of interest to an analyst". In the following, an 
outlier is regarded as a data point deviating statistically from 
the rest of the dataset seen as a statistical population of 
independent measurements. In this perspective, any attribute of 
the data point is not considered, such as its order or time stamp. 
An anomaly, on the other hand, is regarded as a data point 
deviating from an expectation based on a certain model of the 
dependency of one or more attributes of the data point, such as 
its time stamp. 

�e described differentiation between outliers and 
anomalies is visualised by an example in Fig. 1, showing a 
small data set generated by the authors for this purpose. Here, 
each data point represents a measured value that has an attribute 
value x (which could for instance be a time stamp.) In this 
sense, the marked anomalous data point is not an outlier as 
measured, but it can become an outlier in a specific context, 
i.e., when an expected mean from a model (in this example sin 
2πx) based on the attribute x is subtracted from the dataset. �e 
red lines show the mean and ±3 standard deviations to the 
mean. 
 

Fig. 1. An example of an anomaly in the form of a significant deviation from a 
model-based expectation (top left) and an outlier in the form of a statistically 
deviating data point with zero dimensionality (bottom right). 
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3. Method 

�e proposed method is based on converting process cycle 
timeseries into a feature table where one row represents a single 
completed process cycle, and the columns contain a set of 
features describing each cycle independently of its duration. 
�is reorientation is commonly referenced to as feature 
extraction [16]. Furthermore, feature selection is applied in 
order to detect anomalies among the described process cycles 
as statistical outliers. �e method is meant for processes or 
equipment where a given critical component is subject to an 
R2F or PvM repair or replacement strategy, and data quality is 
not sufficient to successfully implement PdM, by linking 
process cycles with the age of that critical component. In this 
perspective, the goal of the anomaly detection is to alert the 
manufacturing operations team to evaluate the process in more 
detail and decide if an early maintenance intervention should 
be carried out. �e method is based on the assumption that a 
statistics-based description in the process cycle domain via 
features will yield more accurate predictions than similar 
models formed in the time domain. 

3.1. Data integrity 

�e input to a feature extraction pre-processing as described 
above is raw data in the form of a time series. �ere are 
typically three causes of anomalies in such raw data, whereas 
only one of them is of interest: 
• Human interaction or intervention of the production 

process 
• Data logging system failure 
• Actual process discrepancies 

Naturally, only the latter type is of interest for process 
analysis. In order to make actual anomalies prominent, it is 
important to ensure integrity of the data. �e best way to do this 
in the case of discrete manufacturing processes is to avoid 
univariate continuous time series of logged sensor or run-time 
variables [17]. Oppositely, ensuring a column-based and 
process cycle-ordered formatting will ensure that logged 
process parameter values, metadata and measured process 
variables are aligned with each other, and therefore unwanted 
anomalies due to actions such as aborted process cycles are 
much easier to detect. In addition to ensuring integrity, this also 
greatly reduces the needed time for data cleaning and pre-
processing. As a minimum, a cycle counter or process 
parameter indicating active process should be part of the 
dataset, so that data stemming from active process can be 
correctly filtered out. 

An example of raw data as a continuous time series is shown 
in Fig. 2, taken from the industrial use case described in section 
4. �e example shows data covering two process cycles, but 
also the time in between cycles. �e largest signal values are in 
sequence state 1, where the process is idle, and therefore 
presumably irrelevant to the function of the component. When 
only data from active process is interesting for analysis, the 
presence of this process sequence parameter in the dataset is 
crucial for a correct pre-processing of the data. 

Whether or not a laborious effort is necessary to obtain data 
where anomalies can be expected to be due to actual process 

discrepancies, the following description of the method assumes 
that such a set of raw data is available, constituting separate (or 
separable) process cycles. Additionally, replacement or 
maintenance actions on the critical component must be visible 
in the data, but the reason for the replacement or maintenance 
can be unknown. 

3.2. Feature extraction 

Extracting features from raw data and preparing the dataset 
for the proposed method can be summarized by the following 
steps: 
• For each relevant variable or parameter in the dataset, 

define a list of numerical features that together would 
describe that variable's time series for a given process 
cycle. Typical features would be statistical descriptors of 
the values within the entire cycle or separate process 
sequences (if each cycle is constituted of a number of 
separate process sequences), analysis results based on a 
simple regression method over the cycle, and descriptors 
based on sliding windows within one or more sequences or 
the entire cycle. 

• Be sure to align the set of variables and features with 
available domain knowledge, understanding of process 
quality, and avoid strongly interdependent features and 
statistical deficits such as homoscedasticity, 
autocorrelation, and multicollinearity. 

• Now iterating through separate process cycles, and then 
trough relevant variables and parameters, calculate each of 
the defined features and store the results in a table with 
columns according to the list of features and one row per 
production cycle. 

• For each process cycle, calculate the following three 
additional features:  
○ �e counter C ∈ ℕ equal to the number of completed 

process cycles since the critical component was 
replaced or maintained. 

○ �e maximum value Cmax of C for the relevant 
component lifetime. 

○ �e relative component age c = C/Cmax.  
�is way process cycles are intended to be compared based 

on the age c of the critical component, as opposed to e.g., 
temporal proximity. 

Fig. 2. An example of discrete manufacturing process data in the form of a 
measured variable and a process sequence parameter which reflects the 
sequential states of the process as an integer value. 
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3.3. Statistical description of normal behaviour 

�e proposed method for detecting anomalies in the 
acquired feature table is based on defining normal behaviour by 
fitting feature values to a univariate probability distribution. 
Specifically, rows where 0.1 < c < 0.95 are regarded as 
examples of normal behaviour. For each feature, all values 
from this sub-set are taken as independent measurements and 
fitted to a selected type of probability distribution (e.g., the 
Gaussian distribution). �e relative component age thresholds 
of 0.1 and 0.95 for normal behaviour are meant to rule out 
slightly abnormal behaviour in the first period after 
replacement or maintenance of the critical component, and to 
rule out feature values that may change due to significant 
deterioration, respectively. 

3.4. Feature selection and anomaly detection 

Given the set of univariate probability distributions and a 
corresponding significance level describing expected or normal 
behaviour of each feature, the proposed method is to define 
criteria for automatic feature selection. �en, based on a 
selected sub-set of features, anomaly detection can be applied 
in the form of statistical outlier detection based on said 
significance level. Two types of such criteria are suggested, 
where features are selected  
• such that the feature sub-set covers detected outliers in 

component lifetimes that ended in a failure, corresponding 
to a supervised (or semi-supervised) approach. 

• based on ordering all features by the proportion of detected 
outliers to normal process cycles at the end of the 
component lifetime (e.g., where c > 0.95), corresponding 
to an unsupervised approach.  
Both approaches of feature selection enable automatic 

adaption of the proposed method to new datasets. In the case of 
labelled data, the significance level can be determined e.g. by 
maximizing the Fβ-score of the yielded prediction [18, 19]. 
When applied on unlabelled data, however, the significance 
level must be set based on relevance to process control system, 
domain knowledge, or simply tuned according to a desired 
frequency of anomalies in the dataset. 

4. Results and analysis 

4.1. Method applied in industrial use case 

�e method described has been applied on a real dataset 
from an aluminium extrusion billet casting process. �e studied 
critical component, maintained using a PvM policy, is a 
rotating component that is part of a machine through which the 
liquid metal flows. �e studied process and dataset are well 
suited for the proposed anomaly detection approach as it shows 
complex mechanisms and relations, has high noise intensity, 
and lacks a detailed log of incidents. �e approach was also 
preferred in this industrial use case due to its transferability to 
other processes. 

�e starting point for analysis was raw data in form of 
continuous univariate time series split timewise in durations of 
one month. Based on domain knowledge, one measured 

variable and two process parameters were chosen for the 
analysis, namely measured torque, an hour counter for the 
critical component (indicating replacements) and a process 
sequence parameter (integer). �e data was combined by a full 
outer join and forward fill, and due to the data format and 
missing process cycle ordering, manual work was then 
conducted to extract valid time series of data corresponding to 
actual process cycles. Finally, series of process cycles were 
extracted according to replacement of the critical component. 
Incident logs were made available for the case study, but they 
were inconsistent and mostly uninformative being based on 
free text entry. �e result was a semi-labelled dataset consisting 
of 74 maintenance cycles, of which 2 ended with a known 
component failure, and covering a total of 15 317 process 
cycles. It is known that more than the two mentioned 
maintenance cycles ended with component failure, but due to 
insufficient log consistency and quality it is not known which 
of the other 72 cycles it was. 

A set of 140 descriptive features were defined based on 
simple statistical analysis, such as minimum, maximum, mean 
and variance, and linear regression results like slope and 
regression error, based on 10 discrete windows within each 
sequence. Feature extraction was conducted and the three 
features c, C and Cmax described in section 3.2 were added to 
the table. Normal behaviour was defined as described in section 
3.3 by use of Gaussian distributions. Supervised feature 
selection was done by selecting features containing outliers 
within the two specific component lifetimes with known 
failure. �is process is visualized in Fig. 3 for one of those two 
lifetimes. �is resulted in a subset of 10 features. Furthermore, 
the threshold for outlier detection was set simply according to 
the resulting number of outliers detected based on the selected 
features. As a result of low normality of the data a threshold of 
six standard deviations was chosen, resulting in a total of 69 
anomalies among the mentioned total of 15 317 process cycles. 

4.2. Detected anomalies 

Outlying feature values were detected across the entire 
dataset, and the originating rows were then classified as 
anomalous process cycles. Due to the partial labelling of the 
dataset, descriptors like accuracy, precision or recall cannot be 
computed. However, the results can be evaluated in terms of 

Fig. 3. A component lifetime of Cmax = 131 process cycles where 10 features 
fi indicate one or more outlying cycles. �e mean μi and standard deviation σi 
of feature i were based on occurrences where 0.1 ≤ c ≤ 0.95. 
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frequency of detected anomalies as a function of component 
lifetime. Specifically, 36 out of 802 process cycles (4.5%) with 
c > 95% were classified as anomalous. �ese anomalies can be 
argued to be reasonable since a component replacement would 
reduce the component lifetime by less than 5% and potentially 
avoid failure. At the same time, 33 out of 14 515 process cycles 
(0.2%) with c ≤ 95% were classified as anomalous. �ese can 
be regarded as false positives occurring amid the component 
lifetime. A histogram showing the frequency of the 69 detected 
anomalous process cycles as a function of c is shown in Fig. 4. 
�ese 69 process cycles cover 24 out of 74 maintenance cycles 
(32%). 

5. Discussion 

�e frequency of anomalies is approximately 20 times 
higher for c > 95% compared to c ≤ 95%. �is shows that the 
selected set of features to some extent contain information that 
characterize the end of the critical component's lifetime. In 
other words, the results above confirm that the given industrial 
case and dataset are applicable to the proposed method, and that 
it may serve as an alternative to PdM in cases where the quality 
of data and incident logs are insufficient. An important 
difference between the proposed approach and PdM would be 
that in the former, it is not attempted to estimate or predict the 
remaining useful life or health status of the component 
repeatedly during a portion of its lifetime, but instead it is 
evaluated whether each production cycle is anomalous as a 
possible indication that the remaining useful life may be short, 
and the cost of a maintenance intervention is low. By applying 
anomaly detection in the process cycle domain, as opposed to 
the domain of pure date and time, the relative age of a critical 
component has been considered in a simple data driven 
description of normal behaviour, and the resulting detected 
anomalies are mainly occurring at the end of the critical 
component's lifetime. 

6. Further work 

Additional insight end experience with transferability of this 
method to different industry cases would be valuable. 
Specifically, the method should be tested on real datasets to see 
if it would detect intentionally introduced anomalies. Also, 
further work with the method itself would be of interest, such 

as evaluating alternative feature selection approaches to the 
ones described in section 3.4, as well as other possible methods 
for setting the significance level described in the same section. 
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Fig. 4. An overview of the 69 detected anomalous process cycles in intervals 
of relative component age c. 


