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There has been an emerging interest by financial institutions to develop advanced systems
that can help enhance their anti-money laundering (AML) programmes. In this study, we
present a self-organising map (SOM) based approach to predict which bank accounts are
possibly involved in money laundering cases, given their financial transaction histories. Our
method takes advantage of the competitive and adaptive properties of SOM to represent
the accounts in a lower-dimensional space. Subsequently, categorising the SOM and the
accounts into money laundering risk levels and proposing investigative strategies enables
us to measure the classification performance. Our results indicate that our framework is
well capable of identifying suspicious accounts already investigated by our partner bank,
using both proposed investigation strategies. We further validate our model by analysing
the performance when modifying different parameters in our dataset.
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1 INTRODUCTION

Money laundering represents a major challenge for governments and financial institutions
alike, as the flow of dirty money can hinder a state’s development, damage the reputation of
the financial system and motivate the generation of further crime (Kumar, 2012). Since
money laundering is an underground market, its true magnitude can never be precisely
determined. However, the most recent estimate of the laundered money worldwide considers
the sum of illicit transactions worldwide to account for 2–5% of the global GDP (Levi and
Reuter, 2006). In addition, financial institutions that fail to deploy satisfactory measures for
investigating and reporting suspicious cases, thus not sufficiently filing suspicious activity
reports, are subject to heavy fines and penalties by the authorities. Therefore, there has been
an increasing interest over the past decades to develop tools that aid in the combat against
money laundering.

The most common methods used by financial institutions for detecting and reporting suspicious
cases are rule-based systems. A rule-based system is a set of predefined rules gathered from a
knowledge base maintained by domain experts. Transactions that match the predefined conditions
trigger alerts, which prompt further investigations by bank compliance teams. A major drawback of
the rule-based systems is the generation of a significant volume of false positive alerts that are costly
in terms of time and resources needed to track down flagged cases (Gao, 2009). Those false positive
alarms are estimated to constitute more than 90% of the total alerts generated by the traditional rule-
based systems commonly adopted by banks (Breslow et al., 2017). Consequently, there has been an
increasing desire to develop more advanced tools for more precise detection of money laundering
transactions.
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In several studies, new frameworks and systems were
developed for identifying money laundering transactions or
accounts (Liu et al., 2008; Le-Khac et al., 2009; Lopez-Rojas
and Axelsson, 2012; Jun, 2006; Soltani et al., 2016). While
many of these works claim a good detection performance, they
often use synthetic data due to the limited availability of financial
transactional data. Therefore, the reliability of such methods was
not tested on real financial data, which might indicate that there
might be no practical use for such frameworks. In addition,
money laundering datasets are heavily characterised by a
significant class imbalance, where the number of normal
transactions tremendously exceeds the number of illicit
transactions. The class imbalance represents a major challenge
in the detection of suspicious transactions, and as a result, the
data is often either undersampled or oversampled to improve the
classification performance (Sudjianto et al., 2010). Another
significant challenge is the quality of the data and the labels
used. It is estimated that sum of money from the money
laundering cases investigated annually make up no more than
10% of the total amount laundered (Argentiero et al., 2008).
Therefore, while financial institutions may have labelled datasets
that indicate which transactions were investigated as suspicious, it
is highly likely that these labels represent only a fraction of the
total number of money laundering transactions that went
undetected.

Overall, the most prevalent limitation in AML literature is that
many of the proposed models are developed with the aim of
replacing human intervention (Chen et al., 2014). In essence,
these studies aim to detect money laundering transactions in a
binary classification setting. While machine learning based
automation is increasingly deemed as a valuable mean in AML
for tasks such as transaction monitoring (Turki et al., 2020) and
processing client information (Tiwari et al., 2020), a sensitive field
such as AML cannot solely rely on machine learning algorithms
to replace human expertise for reporting illegal transactions.
Instead, compliance teams have an obligation of providing
their reasoning when filing suspicious activity reports (Singh
and Lin, 2020). The requirement to include the explanation when
submitting suspected money laundering cases to the authorities
entails that the adoption of technologies in the finance
compliance sector ought to aid the decision making of case
investigators, rather than fully automating the money
laundering detection process.

In this work we aim to address these underlying gaps in
literature by proposing a SOM-based approach to assist in the
decision making process of compliance teams when investigating
bank accounts. A SOM is an unsupervised neural network that
maps a highly dimensional dataset into a lower-dimensional
representation (Kohonen, 2012). SOMs are commonly used in
clustering (Isa et al., 2009; Haga et al., 2015; Nilashi et al., 2020),
classification (Yorek et al., 2016; Jain et al., 2018) and
oversampling (Douzas and Bacao, 2017) applications. For its
notable success in these applications, we propose a SOM based
method for clustering and classifying bank accounts into risk
levels that can be further investigated by the bank. Consequently,
our implementation of SOM is a hybrid approach that combines
the strengths of unsupervised and supervised learning. In contrast

to traditional clustering techniques where the parameter selection
significantly impacts the grouping of observations, the number of
clusters in SOMs is dependent on the number of training
observations. The main parameters we introduce contribute to
the categorisation of the formed clusters, such that these
parameters can be tuned according to how strict or lenient the
decision makers preferences are. Moreover, unlike K-means
clustering, the dimension reduction in SOM helps in
visualising how the bank accounts are distributed across the
low-dimensional space, which can be used for further inferring
how the accounts are grouped together.

To this end, we develop a novel framework based on SOMs to
categorise the bank accounts in our dataset into different risk level
groups. First, the data is pre-processed and aggregated to group
the transactions by account. This is an important step since
grouping the data by accounts enables the model to capture
the historic financial patterns exhibited by the accounts. The most
important features in the dataset are selected and the dataset is
split into a training and test sets in a k-fold cross-validation
manner. We then select the SOM and its hyperparameters and
develop a categorisation technique for dividing the SOM neurons
and the accounts assigned to them into three risk level groups
based on the neurons’ properties. The model’s performance is
evaluated by proposing two investigation strategies using
different utilisations of the risk levels. Finally, we further
evaluate the classification performance of our model by
varying the number of selected features and the ratio of
suspicious accounts in the data.

Taking the limitations of existing AML research and our
motivation for this work into consideration, we highlight our
contributions as follows:

1) We develop a framework that facilitates the investigation of
potential money laundering accounts despite the major class
imbalance between the normal and suspicious accounts in the
dataset. The SOM model maps the observations into a 2-
dimensional grid space, and in doing so, the technique
attempts to group the unlabelled observations with similar
transaction patterns together.

2) We contribute to the state of the art by introducing a system
that can well handle poorly labelled financial transaction data.
Since the training of our SOM grid does not rely on the
whether a given sample is suspicious or not, our method takes
into account the challenges of assigning the transactions with
their true labels by financial compliance teams. This is due to
the fact that money laundering transactions are often carried
out in a way that makes them difficult to distinguish from
normal transactions (Teichmann, 2020).

The remainder of this paper is divided as follows. In Section 3,
we review the existing literature on anti-money laundering and
self-organising maps. We describe our dataset and the
preprocessing method in Section 4. Section 5 discusses the
methodology which consists of feature selection, SOM
architecture and risk level categorisation. In Section 6, we
evaluate the performance of investigation strategies and
present the results of the training and test sets. The paper is
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concluded and motivations for future work are provided in
Section 7.

2 LITERATURE REVIEW

2.1 Anti-Money Laundering
Several existing studies on money laundering detection have been
focusing on data mining and supervised machine learning
techniques when the data provided contains the labels of the
previously identified transactions. (Liu et al., 2008) developed a
sequence matching algorithm to identify suspicious sequences in
an account’s history by comparing the similarities and differences
with other sequences in the data. Similarly, (Tang and Yin, 2005)
proposed a one-class SVM algorithm to identify suspicious and
unusual patterns while highlighting the speed and efficiency of
their method. (Jullum et al., 2020) trained an XGBoost supervised
model using financial transactional data for predicting whether
certain financial transactions should be reported, and
demonstrated that their method outperforms the existing
approach used by financial institutions. The detection of
suspicious transactions linked to terrorism financing was
implemented by (Rocha-Salazar et al., 2021) using real
datasets provided by a financial institution in Mexico, which
was found to reduce the number of false positives in comparison
to rule-based system flagging.

Meanwhile, unsupervised methods are employed when the
labels are unavailable or when using synthetic datasets. (Wang
and Dong, 2009) proposed a minimum spanning tree clustering
method to detect money laundering transactions using different
tree levels. In a study by (Chen et al., 2014), clustering of
transactions to identify the suspicious transactions grouped
together was carried out using an expectation maximisation
algorithm. A distance based clustering technique was
combined with a local outlier detection method to identify
suspicious transactions in a synthetic dataset (Gao, 2009).
(Paula et al., 2016) developed an unsupervised deep learning
algorithm based on an autoencoder to detect anomalous
transactions in Brazilian exports financial data.

In addition, several works follow AML approaches that focus
on identifying accounts and customers rather than transactions.
Social network analysis was used for identifying the roles and
responsibilities of criminals in money laundering networks
(Dreżewski et al., 2015), and for analysing overall group
properties of criminal networks (Savage et al., 2016).
Moreover, (Zhou et al., 2017) developed a statistical classifier
for the detection of suspicious accounts involved in illicit virtual
currency trade, while achieving a low rate of false positives in their
approach. While (Wang and Yang, 2007) implemented decision
trees based approach to determine the money laundering risk
levels of customers of a commercial bank, only the customers’
profiles were used to fit the model without taking into account
their transactional data.

In this work, we combine the benefits of supervised and
unsupervised learning to cluster and categorise our bank’s
clients into risk level groups. It is noteworthy to recognise that
in the works mentioned above, the low proportion of money

laundering transaction was mainly resolved by oversampling or
undersampling prior to the implementation of the methods. In
our work, we instead use datasets with several class ratios to
demonstrate that our approach is reasonably effective on both
heavily imbalanced datasets and balanced datasets. Additionally,
we present an adaptive approach that considers the level of
suspicion at an account level instead of analysing every
transaction individually. This is necessary, since a significant
proportion of money laundering transactions have very similar
characteristics to ordinary transactions. The consideration of an
account’s history in an aggregated manner allows the inclusion of
historic patterns that could be linked to money laundering
behaviour. Moreover, the aforementioned studies presented
models that were aimed to replace human expertise by
attempting to replicate their decisions, which is essentially
problematic due to the challenges with manually identifying
money laundering transactions. Instead, we propose a method
that ranks the suspicious level of accounts in order to assist
compliance teams at financial institutions with prioritising the
clients to further investigate.

Self-Organising Maps
A self-organising map is an unsupervised neural network that
maps amulti-dimensional dataset along a lower-dimensional grid
(Kohonen, 1990). Due to their structural properties, SOMs have
been widely implemented for different use-cases in various
industries. (Yorek et al., 2016) combined SOM with ward
clustering to classify living organisms into three distinguished
clusters. SOM for clustering was also used for classifying natural
language written texts into their respective document types
(Pacella et al., 2016). Furthermore, (Kiang et al., 2006) applied
SOM on telecommunication questionnaire responses in order to
cluster the respondents into several segments by using K-means
clustering. (Lacerda and Mello, 2013) presented a framework that
segments handwritten digits using SOM for accurate digit
recognition.

In addition to clustering, self-organising maps have been
increasingly employed for oversampling the minority class’s
observations when a class imbalance exists (Kim, 2007; Cai
et al., 2014; Douzas and Bacao, 2017). Whereas, (Zadeh
Shirazi et al., 2018) developed a framework using SOM and
complex-valued neural network for the diagnosis and
detection of breast cancer using a dataset consisting of five
features for hundreds of patients. Meanwhile, (Stephanakis
et al., 2019) proposed an extensive SOM-based hybrid method
that was used for anomaly detection in cloud computing
structures. (Barreto, 2007) established that unlike other
artificial neural network models, SOM-based models can be
used for time-series prediction whilst benefiting from SOM’s
interpretable results.

Furthermore, SOMs have also been explored in the financial
domain. In a study by (Du Jardin and Séverin, 2011), SOM was
used to forecast the financial models of companies over extended
periods of time and demonstrated a better prediction accuracy
than traditional methods. SOMs were also employed for
predicting bankruptcy by analysing financial records of several
companies (Kiviluoto, 1998). Meanwhile, (Hsu, 2011) presented a
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hybrid approach using self-organising maps and genetic
programming for predicting stock closing prices. In our work,
we draw inspiration from such studies to demonstrate the
capability of a SOM-based model in identifying potential
money launderers, in contrast to the traditional supervised
learning methods which rely heavily on the assigned labels for
classification. The employment of SOM in our study stems from
the need for grouping of accounts with similar transactional
attributes together, in order for the investigators to able to
make sense of these clusters. The clustering is followed by the
categorisation of the lower dimensional grid to assign a risk level
for every client in our dataset which are subsequently used for
measuring the performance of the proposed investigation
strategies.

3 DATA

In this work, we use the financial transactional data provided
to us by our partner bank, DNB, the largest financial group
in Norway. The data made available to us for this study
represents a fraction of the total financial transactions
handled by the bank between January 2014 and December
2016, with the bank clients as the main party and either bank
clients or external accounts as the second party. The data has
already been labelled by the bank, such that a class label
exists for each transaction as to whether the transaction is
normal or suspicious. In this context, suspicious
transactions are not the alerts generated by the rule-based
system, but are the more serious cases which were carefully
investigated by the DNB’s compliance team as potential
money laundering cases - most of which were reported to
the financial authorities. Subsequently, the labels in our
dataset do not reveal whether the suspicious cases were
indeed money laundering cases, since these decisions are
made separately by the financial authorities and their
outcome is not made available to us in the provided
dataset. To this end, we treat every transaction that was
thoroughly investigated by the compliance team at the bank
as a suspicious transaction.

3.1 Aggregation
In practice, it is almost impossible to make a decision purely
based on transaction features of an individual transaction when
investigating a particular case. Investigators often look at history
of the party involved to observe if there are any underlying
patterns or changes in a client’s financial activity (Singh and
Best, 2019). In this work, we relatively follow the investigators’
approach by aggregating the financial transactions data on the
accounts. The original transactional dataset consists of a
combination of categorical, numerical and mixed type features.
We refine the dataset to eliminate the redundant and duplicate
features. The outline of the refined dataset is presented in Table 1.

The only identifier variable we select is the account number of
the first party for every transaction in the dataset. To aggregate
the data by account, we first apply one-hot encoding to the
categorical variables. This increases the number of categorical
variables from 9 variables to 681 variables. During the process of
aggregation, these categorical variables are converted to the
frequency of occurrence of every one-hot encoded feature for
every account’s transaction history between 2014 and 2016. The
final feature is the binary label feature that indicates whether an
account had a transaction that was investigated as a potential
money laundering transaction. For accounts without any
suspicious cases, all the transactional data was used in the
aggregation process. Accounts that were involved in suspicious
transaction had their data aggregated from their first transaction
until the last suspicious transaction. This was done for two
reasons. First, in some cases banks allow their customers to
carry on with their financial activity while an investigation is
pending. Second, for suspicious customers we are mainly
interested in the transactions that led to the investigations,
therefore, we are not concerned with the transaction activity
that took place afterwards.

3.2 Dataset Size
When aggregating by accounts, we decide to eliminate bank
accounts with more than 50,000 transactions over a 3 year
period from the data. This is supported by the fact that
accounts used by large corporations are quite distinct from the
majority of personal and corporate accounts. As such, outlying

TABLE 1 | Dataset attributes prior to aggregation.

Attribute type Number of attributes Attribute names Unique categories

Identifier 1 Account number
Date 1 Transaction date
Numerical 1 Transaction amount
Categorical 9 CreditDebitCode 2

TransTypeID 29
TransMethodID 21
TransactionChannelID 28
TextCode 84
ProductCode 292
CurrencyCodeOrig 112
SourceSystemOrg 110
SourceSystemFetch 3

Binary 1 Class label
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behaviour was removed to maintain the focus on the classification
of bank accounts of customers with average account usage.

The ratio of money laundering transactions is tremendously
low compared to the normal transactions. As our partner bank,
DNB, would not like to disclose the true ratio of suspicious clients
in the dataset, we set the ratio of suspicious accounts in the dataset
at % 10 of the total accounts in our baseline model. A subset of the
suspicious accounts from our data is chosen such that 1,141
suspicious accounts are represented in the dataset. The remaining
10,269 accounts in the baseline model are ordinary accounts that
were not investigated for money laundering by the bank.

3.3 Preprocessing
Additional features are generated in order to embed a
combination of the most significant attributes for every
account. For every observation we engineer a total of 17
features, which include attributes such as the average number
of daily credited transactions, average amount per transaction
and the cumulative sum of debited transaction. The engineered
features are first normalised by taking the natural logarithm of
their values +1. We then normalise all the engineered features in

order for the values to fall in the [0,1] scale. Therefore, after
dropping the date and the identifier attributes, all the features in
the preprocessed dataset become in the [0,1] range, as the one-hot
encoded ratios features are already within the same scale.We then
drop all the single-valued features for all the 11,410 observations.
Subsequently, we end up with 522 features after dropping all the
non-unique features.

3.4 Training and Test Sets
We divide our baseline dataset which consists of 11,410 accounts
and 522 features into training and test sets. In the split, we use a
80/20 training/test set ratio in a 5-fold cross-validation.
Additionally, we ensure the ratio of suspicious customers is
exactly 10% in both the training and test sets. The labels are
initially removed from both the training and test sets and are
reattached afterwards for evaluation. Later in our work, we
measure the performance of our method using the mean value
of the classification metrics of the 5-fold cross-validations, and
a confusion matrix obtained by adding the predicted and
actual labels of the test samples from all the cross-
validation runs.

FIGURE 1 | Architecture of the SOM money laundering classification framework.
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4 METHODOLOGY

In our work, we implement a 4-stage approach in order to predict
whether every bank client in our dataset might be involved in a
money laundering case or not. We use the preprocessed dataset
described in Section 4 for fitting and evaluating the presented
model. Figure 1 depicts an overview of the stages of our proposed
method.

4.1 Feature Selection
We use an ensemble of feature selection algorithms in order to
select the most significant features of the training set contributing
to the label of the observations. This is important, as the
dimensionality of the dataset can be reduced by discarding the
noisy and redundant variables (Guyon et al., 2008). Five feature
selection algorithms are implemented on the dataset which rank
the features according to their importance. Since the feature
selection algorithms rank the features differently, we use an
ensemble of the feature selectors. The ensemble computes the
average ranking of every feature from the five feature selection
methods, and subsequently, the features are ranked according to
their mean rankings.

4.1.1 L2 Regularisation
Regularisation is a technique used in machine learning to increase
the training error in order to improve the generalisation on
unseen data by preventing the overfitting of data. In L2
regularisation, also known as ridge regularisation, a loss
function is computed using the weight coefficients of features
and a bias term. The weights are updated using gradient descent
optimisation to minimise the loss function. Since the labels are
binary, the error function is also the log loss function used in
logistic regression to predict the labels. When the regularisation
converges, the features with greater weights are considered as the
more important ones in the dataset.

4.1.2 Gini Impurity
The Gini impurity for feature importance is computed using the
random forest classifier (Breiman, 2001). A random forest is an
ensemble of decision trees, where each tree is a set of nodes and
leaves. In classification problems, a given node in a decision tree is
characterised by a feature with a certain threshold to decide how
to split the dataset into two sets based on how the observations
over and below the feature threshold are attributed to the
different classes. The Gini impurity for each feature calculates
the importance as the sum over the number of splits among the
trees comprising the feature, proportionally to the number of
samples the feature splits.

4.1.3 ANOVA F-Score
Analysis of Variance, ANOVA, is a univariate F-test that
compares the mean of a feature between two or more label
classes. The univariance property implies that the means and
variances for a single feature against the target class are computed
at a given time. The null hypothesis is that a feature’s population
means is the same for all the different labels. The method is
commonly used as a statistical feature selection to measure how

well individual features in a dataset can contribute to the target
class labels.

4.1.4 Fisher Score
The Fisher score is a similarity-based feature selection method that
computes the feature importance, and is typically used in binary
classification applications (Hart et al., 2001). The algorithm works
by calculating the Laplacian matrix for a given feature using the
local affinity and the global affinity matrices for all the observations
and their labels. The Fisher score is then calculated using the
inverse of the Laplacian score generated from the Laplacian matrix.
Higher scores are awarded to features that well separate instances
of different classes from each other, while drawing the observations
of the same class closer together.

4.1.5 FCBF
Fast Correlation-Based Filter Solution, FCBF, is a mutlivariate
feature selection technique developed by (Yu and Liu, 2003) that
calculates the importance of features by estimating the
interdependencies between them. The dependencies between a
set of features can be calculated using a Symmetrical Uncertainty
(SU) value based on information gain and entropy measures. In
this fast feature selection approach, features which are given a
higher score, implying more importance, are those which are
highly correlated to the class labels, but are less correlated to other
features.

4.2 Self-Organising Map
A SOM is an unsupervised neural network algorithm developed
by (Kohonen, 1990), where a high dimension dataset is typically
mapped into a two dimensional representation arranged in either
a rectangular or a hexagonal topology. Extensions to the
traditional SOM include the time-adaptive self-organising map
(Shah-Hosseini and Safabakhsh, 2003), which is a dynamic
implementation of SOM that updates the learning parameters
as more datapoints are added or modified over a period of time.
However, due to the scarcity of observations and the class
imbalance in our dataset, we implement a framework based on
the traditional SOM instead of the time-adaptive self-organising
maps. After selecting only the most relevant features in the
dataset as highlighted in Section 5.1, the training labels are
detached from the dataset, such that the training of the SOM
model is carried out without the class labels.

4.2.1 SOM Description
The SOM consists of two layers: the prototype input layer and the
output layer. The number of neurons in the output layer are
determined by selecting the respective dimension parameters
when creating the SOM. Each neuron is represented by a
high-dimensional vector in the input layer, where the
dimension size of each prototype vector is equivalent to the
number of features in the data. The training of the SOM
algorithm is implemented by the steps described below:

1 Initialisation
The weights of the input prototype vector is initialised. This is
done by either assigning the weights randomly, sampling
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observations from the data as the weights or by using linear
methods such as the first two principal components of the
principal component analysis for assigning the initial weights
to the prototype vector.

2 Choosing a Random Sample
An observation from the dataset is chosen at random for training
the weights of the SOM layers.

3 Matching
The best matching unit (BMU) is found by computing the
Euclidean distance between the observation and the prototype
vectors corresponding to the neurons in the output space. The
prototype vector that is the closest to the observation, denoted by
the minimum distance, will assign its neuron in the outer layer as
the BMU. This is described by:

‖ xj −mc ‖ � mini ‖ xj −mi ‖ (1)

where xj is the observation vector, c is the index of the BMU,mc is
the prototype vector of the BMU, i is the number of neurons, and
mi is the prototype vector corresponding to neuron i.

4 Neighbourhood Calculation
The neighbouring neurons of the BMU are determined. In the
first stages of the training, the neurons are relatively close to each
other. The distance between neurons increases over time, thus the
number of neighbours decreases.

5 Weight Updating
In this stage, the BMU is rewarded by closely matching the
observation vector. Neighbouring neurons are also matched to
the observation sample, but to a lesser extent. The SOM update
rule for the prototype vector i is:

mi(t + 1) � mi(t) + α(t) hci (xj(t) −mi(t)) (2)

where t is the time step, α is the learning rate at time t, and hci is
the neighbourhood function. The learning rate parameter is
selected when choosing the model hyperparameters and fall
within the [0,1] range. The neighbourhood function weights
the neighbourhood kernel around the BMU in the output map
and is usually in the form of a Gaussian function. The
neighbourhood function at a given time step can be calculated as:

hci(t) � exp −‖ rc − ri‖2
2σ2(t)( ) (3)

where rc is the position vector of the BMU neuron, ri is the
position vector of the other neurons in the SOM output map, and
σ(t) is the neighbourhood spread radius function at time t.

6 Iteration
Steps 2–5 are repeated based on the number of iterations specified
before training the SOM algorithm.

4.2.2 SOM Hyperparameter Selection
The dimensions of the SOM grids are selected according to
5

���
Ntr

√
rule proposed by (Vesanto and Alhoniemi, 2000),

where Ntr is the number of training observation samples used
for SOM training. The dataset used in the baseline model consists
of 11,410 observations, 80% of which are used in each cross-
validation training, hence 9,128 samples. This gives us 5

����
9128

√ �
477.70 neurons. Applying the square root and rounding to closest
integer gives us 22 neurons in each dimension, thus, a 22 × 22
SOM grid for the baseline model.

We choose a hexagonal topology for the SOM grid
implementation since each non-edge neuron is surrounded by
six neurons, rather than four neighbouring neurons commonly
computed in the rectangular topology. In addition, we choose a
Gaussian function for updating the neurons’ prototype weights
since the Gaussian function allows all the neurons to be updated,
not just the ones in close proximity to the BMU. For the learning
rate and the neighbourhood spread radius function, we tune these
hyperparameters on the training set prior to training the SOMs by
calculating the quantisation error of the grid over a range of
values for the two parameters. Since we train our model using 5-
fold cross validations, we train five different SOMs, each with its
unique learning rate and neighbourhood spread parameters
based on the quantisation error generated from the training
data in every cross-validation run.

4.3 Categorisation
Following the model training, the neurons in the SOM grid are
categorised into three risk levels based on their distance from
neurons in the neighbourhood, which we refer to as the inter-
neural distance, and their suspicious ratio composition. For a
given neuron, the inter-neural distance is the normalised sum of
Euclidean distances between the neuron’s weight vector, mi from
Eq. 2, and its neighbouring weight vectors when the model
converges. Neurons with larger inter-neural distances are well
separated from their neighbours, and therefore have more
distinct properties. On the other hand, neurons with lower
inter-neural distances have similar properties to their
neighbouring neurons. Since the inter-neural distances of all
SOM neurons fall in the [0,1] range, we divide this scale into
five equally sized segments, P1, . . ., P5 for categorising the
neuron’s risk levels:

P1 � [0, 0.2) � {di ∈ P1 | 0≤ di < 0.2}
P2 � [0.2, 0.4) � {di ∈ P2 | 0.2≤ di < 0.4}
P3 � [0.4, 0.6) � {di ∈ P3 | 0.4≤ di < 0.6}
P4 � [0.6, 0.8) � {di ∈ P4 | 0.6≤ di < 0.8}
P5 � [0.8, 1] � {di ∈ P5 | 0.8≤ di ≤ 1}

(4)

where di is the inter-neural distance of neuron i.
As discussed earlier, each training observation is assigned to its

BMU. The suspicious composition of a SOM neuron is the
proportion of suspicious observations from the total number
of observation assigned to them following the reattachment of
labels after training. This indicates that neurons with a high
suspicious composition tend to mainly comprise suspicious
observations, hence can be seen as highly suspicious neurons
themselves. Meanwhile, neurons with a low suspicious
composition are treated as nodes that mainly encapsulate
normal accounts. In contrast to the inter-neural distance, we
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divide the suspicious composition [0,1] range into three
segments, Q1, Q2, Q3, that vary in size. The segments are
defined as follows:

Q1 � [0, z) � {ki ∈ Q1 | 0≤ ki < z}
Q2 � [z, z + β) � {ki ∈ Q2 | z≤ ki < z + β}
Q3 � [z + β, 1] � {ki ∈ Q3 | z + β≤ ki ≤ 1}

(5)

where z is the ratio of suspicious accounts in our dataset, ki is the
suspicious composition of neuron i, and β is the boundary
threshold. In principle, the boundary threshold, β, can take the
form of any value within [0,1]. However, we set β � 0.25 in our
SOM implementation to ensure the neurons in Q2 have a
comparable representation, similar to neurons in segments Q1

and Q3.
The inter-neural distance segments and suspicious

composition segments are used for constructing the neuron
categorisation matrix, such that every neuron belongs to a risk
level. We establish that neurons with large inter-neural distances
and large suspicious compositions are very likely attributed to
observations that pose a high risk for money laundering.
Meanwhile, neurons that are in close proximity to their
neighbours and generally have a smaller proportion of
suspicious accounts are unlikely to encapsulate suspicious
observations. Nodes with intermediate inter-neural distance
and suspicious composition values are considered as medium-
risk nodes. Our risk level categorisation of neurons based on the
inter-neural distance and suspicious composition is
demonstrated in Figure 2.

4.4 Strategy Selection
Samples are the given the same risk level as their best matching
neuron. In this way, we can observe how the samples are

distributed along the risk categorisation matrix, just like the
SOM neurons. Therefore, a given observation can either
belong to the low-risk, medium-risk or high-risk money
laundering category. Since we have three risk level categories,
and two target class labels: normal or suspicious, we propose two
strategies to embed the risk categories into the binary labels of the
accounts. These two strategies represent the different approaches
that can be adopted by the banks or financial institutions in order
to prioritise the investigation of accounts over a period of time
based on the desired considerations of the risk groups. This is also
instrumental for evaluating the performance of our model and
highlighting the differences between the two approaches. The
proposed two strategies are:

• Safe Strategy: Medium-risk and high-risk accounts are
classified as suspicious.

• Fast Strategy: Only high-risk accounts are classified as
suspicious.

In the safe strategy, the accounts that were categorised in the
medium-risk and high-risk groups are considered as
potentially suspicious and are to be investigated as such. In
this strategy, banks are willing to act safely by investigating the
transaction patterns of accounts falling in the medium and
high risk groups. In contrast, in the fast strategy banks
prioritise only the accounts in the high risk group for
investigations. This can decrease the volume of accounts to
be investigated and the amount of time spent investigating
them. We therefore use both strategies for evaluating the
performance of our model, while comparing the metrics of
both approaches.

5 RESULTS

We implement our model in Python using the Minisom library
(Vettigli, 2021) to generate the self-organising maps and using the
SKLearn library (Pedregosa et al., 2011) to evaluate the
performance of our proposed method. In this section, we
present the results produced after the implementation of the
baseline model, and we further evaluate the model’s performance
when experimenting with our dataset’s structure.

5.1 Baseline Model
In the baseline model, 11,410 accounts are split into a 80/20
training/test split in a 5-fold cross-validation. The ratio of
suspicious accounts in the dataset is 10%, and the same ratio
is maintained in the training and test cross-validation sets. In
every cross-validation run we use the ensemble of feature
selectors on the training set to select the top 25 ranked
features generated from the five feature selectors in our dataset
and discard the remaining features. The most important features
from the training set are also selected for test data in the cross-
validations prior to evaluation. This implies that a different set of
features is generated for the training and test sets during
every run.

FIGURE 2 | SOM neurons risk categorisation matrix.
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5.1.1 Training Set Analysis
To provide an insight on the performance of our method on the
baseline training set, we present the training results of our fifth
cross-validation run. In this manner, the SOM plot and the
neurons distribution along the risk categorisation matrix from
one of the iterations can be visualised. Figure 3 demonstrates the
unsupervised SOM generated from the training set with 25
selected features.

It can be observed from the plot in Figure 3 that suspicious
accounts, marked with red crosses in the plot, appear to
accumulate towards the upper right side of the SOM. This is
not exclusive to suspicious accounts, as other normal accounts
can be seen attributed to the same neurons as the suspicious
accounts. We can also observe how few suspicious observations
are scattered around the grid. A distinct boundary that consists of
neurons with large distances from each other can also be
visualised from the self-organising map. These neurons have a
large inter-neural distance, and they appear to divide the map
into several regions. It can also be observed how a large region
under the boundary on the lower left side is entirely composed of
normal accounts. This can give an intuition that the some of the
normal accounts have features that significantly separates them
from suspicious accounts and other normal accounts. It is worth
noting that the positioning of accounts, thus markers, vary

between the training cross-validation runs since the training
observations and the initialised weight vectors are changed.
Nevertheless, the main properties of the SOM such as the
dense suspicious regions and the partitions created by high
inter-neural distance nodes are maintained throughout the
cross-validations.

The SOM plot of the fifth cross-validation is used for
categorising the neurons along the neurons risk categorisation
matrix depicted in Figure 2. Since the baseline dataset comprises
a 10% suspicious observations ratio, we use z � 0.10 for Eq. 5 to

FIGURE 3 | The self-organising map plot after training. Dark grey cells in the plot represent neurons that are further away from their neighbouring neurons, while the
light grey or white cells are those that are in close proximity to their neighbours. Darker intensity markers of either the red crosses or green circles indicate the attribution of
many observations of the same class to a given neuron.

TABLE 2 | Fifth-fold cross-validation SOM neurons inter-neural distances against
their suspicious accounts composition.

Inter-neural distance Suspicious composition Total

0–9.99% 10–34.99% 35+%

<0.20 98 7 7 112
0.20–0.39 154 40 40 234
0.40–0.59 80 6 18 104
0.60–0.79 26 2 1 29
≥0.80 5 0 0 5
Total 363 55 66 484
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calculate the boundaries of the suspicious composition segments:
Q1 � [0, 0.1),Q2 � [0.1, 0.35) andQ3 � [0.35, 1]. Subsequently, the
neurons distribution along the risk categorisation matrix is
provided in Table 2.

From Table 2, it can be noted how the vast majority of the
neurons have an inter-neural distance of less than 0.6. This
implies that most neurons are in close vicinity to their
neighbours, the only exception being the dark grey nodes in
the SOM grid in Figure 3. Moreover, most neurons tend to have a
suspicious composition of less than 10%. This is reasonable, given
that the ratio of suspicious accounts in our dataset is 10%.
Categorising the risk level of neurons according to the matrix
in Figure 2 reveals that 365 neurons are low-risk neurons, 60
neurons are medium-risk and 59 neurons are high-risk. Given
that observations are matched with the neurons in the SOM grid,
we further present the distribution of training accounts in the
categorisation matrix in Table 3.

Similar to the neurons distributions, it can be observed in
Table 3 how the majority accounts were attributed to neurons
with low inter-neural distances and low suspicious compositions.
We can see, however, that the majority of suspicious accounts
were assigned to neurons with a large suspicious compositions. In
other words, suspicious observations tend to be grouped together
by the same neurons. Using this information, the risk grouping of
training accounts is demonstrated in Table 4.

It can be evident from Table 3 how the training samples in the
cross-validation run were categorised into the low, medium and
high risk levels. We can see that while most of the non-suspicious
accounts belonged to the low-risk group, 90 suspicious
observations were misclassified as low-risk. In addition, the
number of accounts in the low-risk category is significantly
greater than total number of accounts in the medium and

high-risk categories, which are comparable in size. The
suspicious accounts, however, tend to be more concentrated in
the high-risk category.

5.1.2 Test Set Analysis
To evaluate the performance of our model on the test data, we
combine the results from all five cross-validations, such that every
sample in our dataset is used only once for testing. As such, we
can represent the test data distribution on the risk categorisation
matrix and the risk level grouping in Tables 5, 6 respectively.

From Table 5 we can notice how the testing accounts are
spread across the risk categorisation matrix. Similar to the
training samples distribution, most of the accounts were
assigned to BMUs with a low suspicious composition. An
interesting observation, however, is that many accounts in the
cross-validation test sets were assigned to neurons with inter-
neural distances between 0.4 and 0.59, compared to the total
training samples under the same inter-neural distance in Table 3.
This entails that the SOM model performs a slightly different
matching between samples and neurons when the model is
learning from the input, compared to when the test data is
applied to the trained model. The risk levels of the test
accounts after all five cross-validations in Table 6 appear
similar to the risk grouping of training accounts from Table 4.
Most of the suspicious accounts were categorised as high-risk,
while evidently smaller populations were assigned with low and
medium-risk categories.

Our evaluation of the model relies on the investigation
strategies proposed in Section 5.4, since we formulated three
risk levels for the binary class labels in our dataset. We recall that
in the safe strategy, the medium and high-risk accounts are
classified as suspicious, whereas, the fast strategy only
considers the high-risk accounts as suspicious. On that basis,
we use the risk level categorisation of the test observations to
construct a confusion matrix for the safe strategy and a confusion
matrix for the fast strategy represented in Tables 7, 8,
respectively.

As it can be seen from the confusion matrices, the majority of
the accounts that were classified as low-risk are in fact normal
accounts. The difference between both strategies is more evident
when looking at the number of false positives and the number of
false negatives. The safe strategy is more conservative and detects
more suspicious accounts. The drawback, however, is that 1,663
normal accounts were incorrectly classified as suspicious. In the

TABLE 3 | The distribution of the fifth-fold cross-validation training accounts along the risk categorisation matrix. Notation of the numbers is: all accounts (suspicious
accounts).

Inter-neural distance Suspicious composition Total

0–9.99% 10–34.99% 35+%

<0.20 3122 (27) 119 (21) 158 (111) 3399 (159)
0.20–0.39 2973 (29) 602 (109) 647 (418) 4222 (556)
0.40–0.59 855 (9) 65 (11) 233 (164) 1,153 (184)
0.60–0.79 265 (4) 52 (7) 4 (2) 321 (13)
≥0.80 33 (0) 0 (0) 0 (0) 33 (0)
Total 7248 (69) 838 (148) 1,042 (695) 9,128 (912)

TABLE 4 | Risk categorisation of the fifth-fold cross-validation training
observations.

Risk category All accounts Suspicious accounts

Low 7334 90
Medium 910 238
High 884 584
Total 9,128 912
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fast strategy only 632 accounts were misclassified as suspicious,
which is a drastic improvement in terms of reducing the number
of false positives. However, this comes at the cost of obtaining
more than twice the number of false negatives of the safe strategy.
Table 9 presents the classification metrics for both strategies
using the output of the confusion matrices.

It can observed from Table 9 how the performance metrics
differ for both strategies. The accuracy score is higher for the fast

strategy, which is reflected by the large number of correctly
classified normal accounts, or true negatives. The elimination
of the medium-risk category in the fast strategy also improved the
precision score for the fast strategy since the medium-risk
category contained a substantial amount of normal
observations. The precision scores for both strategies is
nevertheless still low as several normal accounts have
transactional features which are similar to suspicious accounts.
As expected, the safe strategy has a better recall score than the fast
risk investigation strategy. Classifying the accounts in the
medium-risk category as suspicious enabled the detection of
more suspicious accounts, thus the higher recall score for the
safe strategy in comparison with the fast strategy. The calculated
F1-score asserted equal weights to the recall and precision scores.
Therefore, a greater F1-score is obtained by the fast strategy.
Meanwhile, the receiver operating characteristic area under curve
(AUC) scores are comparable for both approaches, but slightly
higher for the safe strategy as a result of the increased rate of the
true positive classification on various thresholds.

From the classification metrics, the precision-recall trade-off
can be very well observed. A more conservative classification
based on risk categories enables the detection of more suspicious
accounts. However, this comes at the expense of investigating a
larger number of normal accounts. The fast strategy is concerned
with reducing the number of normal accounts to be investigated.
However, this leads to missing out on some of the suspicious
accounts that were categorised earlier in the medium-risk group.
The F1-score can be tuned according to preference, if any, over
the rate of false positives and the rate of false negatives.

5.2 Experimental Results
In principle, financial transaction datasets are heavily
characterised by class imbalance where abnormal activity
represents a small fraction of all transactions. As such, further
experiments were carried out to analyse the model’s performance
when changing the dataset’s structure. More precisely, it is
interesting to study how the model behaves when tuning the
ratio of suspicious accounts in our dataset. We run models on
datasets with a suspicious class size of 5, 10, 20, and 50% of the
total accounts in the datasets. To implement this, we select 500
suspicious observations to be used in all the experiments and
modify the number of normal accounts according to the selected
class ratios. Moreover, the number of selected features are tuned
when training the SOMs, to investigate the impact of the number

TABLE 5 | The distribution of test accounts along the risk categorisation matrix. Notation of the numbers is: all accounts (suspicious accounts).

Inter-neural distance Suspicious composition Total

0–9.99% 10–34.99% 35+%

<0.20 2379 (33) 94 (9) 72 (43) 2545 (85)
0.20–0.39 2809 (46) 513 (78) 407 (247) 3729 (371)
0.40–0.59 2548 (64) 513 (83) 534 (324) 3595 (471)
0.60–0.79 940 (12) 174 (37) 238 (128) 1,352 (177)
≥0.80 123 (5) 11 (2) 55 (30) 189 (37)
Total 8799 (160) 1,305 (209) 1,306 (772) 11,410 (1,141)

TABLE 6 | Risk categorisation of test observations.

Risk category All accounts Suspicious accounts

Low 8770 164
Medium 1,395 246
High 1,245 731
Total 11,410 1,141

TABLE 7 | Safe strategy confusion matrix.

Predicted

Normal Suspicious

Actual Normal 8606 1,663
Suspicious 164 977

TABLE 8 | Fast strategy confusion matrix.

Predicted

Normal Suspicious

Actual Normal 9,637 632
Suspicious 405 736

TABLE 9 | Classification performance metrics for the safe and fast strategies.

Strategy Accuracy Precision Recall F1-score AUC

Safe 0.8399 0.3728 0.8562 0.5188 0.8472
Fast 0.9091 0.5480 0.6451 0.5897 0.7918
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of features on the model’s ability to correctly classify the
observations.

Given the two proposed investigation strategies, we identify
the most important metrics for evaluating the performance as the
recall score and the precision score. Although the F1-score is a
useful metric for combining the recall and the precision
performances, we instead use the recall and precision scores to
assess to what extent the investigation strategies are capable of
achieving their objective. Similar to the baseline model, every
experiment was run in 5-fold cross-validations and the mean

values of the recall and precision scores were calculated. These are
presented in Tables 10, 11.

Table 10 shows the recall scores for the safe and the fast
strategies when varying the number of features and the ratio of
suspicious accounts in the dataset. The highest classification recall
scores for both strategies are usually achieved when selecting the
most important 25 or 50 variables. The ratio of suspicious
accounts had a low impact on the recall score of the safe
strategy and a moderate impact on the fast strategy. Similar to
the baseline model, the safe strategy was better at reducing the
number of false negatives, hence the higher recall scores of the
strategy.

In Table 11, the change of the precision scores as the model
parameters are varied can be observed. Selecting the best 25
features generally improved the strategies’ ability to reduce the
number of false positives. Unlike the recall scores, however,
reducing the class imbalance appears to significantly enhance
the precision scores for both strategies. This is expected since we
maintained the same number of suspicious accounts while
increasing the number of normal accounts when reducing the
ratio of suspicious accounts, due to the scarcity of suspicious
accounts in the dataset provided to us. As such, an increasing
number of normal observations was attributed to SOM neurons
in the high risk category when a low suspicious accounts ratio was
used in the dataset.

Furthermore, we used the Welch’s t-test (Welch, 1947) to
investigate to what extent are the classification scores of the same
strategy statistically significant when modifying the class ratios.
To easily interpret the results of the significance test, we only used
the scores of the experiments involving 25 selected features. In
addition, we computed the statistical significance of a given
strategy at once, since it is already expected that the strategies
behave differently, thus, are already statistically significant. The

TABLE 10 | Classification rate recall scores.

Suspicious
ratio
(%)

Safe strategy Fast strategy

Number of Features Number of Features

10 25 50 100 All 10 25 50 100 All

5 0.790 0.802 0.778 0.824 0.826 0.368 0.594 0.516 0.464 0.432
10 0.836 0.840 0.850 0.818 0.828 0.660 0.624 0.610 0.580 0.530
20 0.832 0.826 0.856 0.838 0.822 0.680 0.714 0.644 0.584 0.596
50 0.792 0.830 0.842 0.840 0.864 0.606 0.644 0.582 0.692 0.738

TABLE 11 | Classification rate precision scores.

Suspicious
ratio
(%)

Safe strategy Fast strategy

Number of Features Number of Features

10 25 50 100 All 10 25 50 100 All

5 0.228 0.257 0.238 0.190 0.160 0.402 0.467 0.445 0.297 0.262
10 0.391 0.392 0.355 0.323 0.314 0.564 0.553 0.544 0.437 0.436
20 0.530 0.557 0.560 0.520 0.528 0.670 0.661 0.669 0.608 0.630
50 0.793 0.814 0.819 0.819 0.804 0.849 0.860 0.837 0.831 0.845

TABLE 12 | Recall scores’ p-values between different suspicious ratios.

Suspicious ratio
(%)

Safe strategy Fast strategy

Suspicious Ratio Suspicious Ratio

10% 20% 50% 10% 20% 50%

5 0.299 0.549 0.457 0.587 0.059 0.378
10 0.564 0.609 0.049 0.609
20 0.879 0.114

TABLE 13 | Precision scores’ p-values between different suspicious ratios.

Suspicious ratio
(%)

Safe strategy Fast strategy

Suspicious Ratio Suspicious Ratio

10% 20% 50% 10% 20% 50%

5 0.000 0.000 0.000 0.024 0.000 0.000
10 0.000 0.000 0.007 0.000
20 0.000 0.000
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p-values of the significance tests for the recall and precision scores
are shown in Tables 12, 13.

It is evident from Table 12 that the recall scores of the safe
strategy are not statistically significant as they are all greater
than 0.05: the conventional p-value threshold of 5%. In the
fast strategy, the recall scores are also statistically
insignificant, with the exception being a suspicious ratio of
10% against 20%. Therefore, it can be inferred that varying
the class ratio has a minimal impact on the ratio of false
negatives of both strategies. In contrast, Table 13 reveals how
the class imbalance greatly affects the change in the ratio of
false positive classifications. Observing the outstandingly low
p-values when comparing the class ratios demonstrate that
the classification of normal accounts tend to improve when
the dataset is characterised by a lower class imbalance. Hence,
the significance test results indicate that our model produces
a consistent classification of the suspicious accounts, while
the increasing misclassification of normal accounts when
reducing the proportion of suspicious accounts is
inevitable due to the increased number of observations in
our dataset.

6 CONCLUSION

In this work, we presented a method using self-organising maps
to identify and detect suspicious accounts. In contrast to the
other studies presented in the literature, we developed a model
that detects money laundering activity in an imbalanced
dataset while demonstrating robustness against the
inadequately labelled data. The poor labelling is a general
problem in money laundering datasets which stems from
the fact that a remarkable proportion of money laundering
transactions are undetected by conventional rule-based alert
systems. Therefore, developing models based on supervised
methods is not practical, as the class labels in transactional
datasets do not necessarily capture the ground truths regarding
whether a transaction was carried for funneling dirty money or
not. To this end, we developed a framework based on SOMs to
categorise the bank accounts in our dataset into three risk level
groups. Our approach is adaptive, as we used the risk levels to
propose two investigations strategies which can be employed
by financial compliance teams in order to prioritise the
investigation of suspicious accounts.

Evaluating the model demonstrated that self-organising maps
tend to group the suspicious accounts together on the SOM
grid, despite not reading the labels. The two proposed
strategies allowed us to more evidently observe the false-
negatives, false-positives dilemma that indeed exists in anti-
money laundering practices. We highlight that our model
presents a novel contribution to the literature by
demonstrating its capability in detecting the majority of
suspicious cases when choosing a safe investigation
strategy, and reasonably reducing the number of false
alerts when employing a less conservative strategy. In
addition, unlike the classical black-box machine learning
methods, SOMs enable the visualisation of samples along a

low dimensional grid such that it is possible to observe the
clusters of the grid and potentially categorise the accounts
into more groups.

We note that while our framework presented a good detection
of suspicious bank clients, our study is not without its
limitations. First, the efficiency of the model drops when
the there is a significant class imbalance in the dataset. The
risk categorisation of our SOM is a semi-supervised task
since we introduce a threshold based on the suspicious
accounts ratio in the data. Consequently, while the model
succeeds in clustering the suspicious observations together,
many normal accounts are also attributed to these suspicious
clusters, hence more time and resources spent on false alerts.
Contrarily, some of the suspicious accounts are also
classified as normal, which carries a much higher cost for
financial institutions for failing to report suspicious activity.
Secondly, due to the scarcity of suspected money laundering
accounts, we used the binary labels to combine all suspicious
accounts together. In practice, suspected money launderers
are investigated differently based on a range of factors:
corporate or individual accounts, daily or savings
accounts, local or international transactions.

Future extensions to this work can include embedding more
features such as account type, previous bankruptcies and account
creation date, which might contribute to more distinction
between normal and money laundering activity. In addition,
we aim to obtain more data in order to use SOM for
generating more clusters that can strengthen the
understanding of the various underlying financial criminal
behaviours. As a potential extension to this work, we plan to
explore the impact of combining alternative unsupervised
approaches such as growing neural gas (Fritzke et al., 1995)
with supervised learning models for investigating money
laundering accounts. Another promising direction for future
works is incorporating tools commonly used in information
retrieval systems such as the HITS algorithm (Kleinberg et al.,
2011) for ranking the bank accounts based on suspicion level,
which can help in prioritising the order by which clients are
investigated.
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