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Reinforcement Learning (RL) controllers have proved to effectively tackle the dual
objectives of path following and collision avoidance. However, finding which RL
algorithm setup optimally trades off these two tasks is not necessarily easy. This work
proposes a methodology to explore this that leverages analyzing the performance and
task-specific behavioral characteristics for a range of RL algorithms applied to path-
following and collision-avoidance for underactuated surface vehicles in environments of
increasing complexity. Compared to the introduced RL algorithms, the results show that
the Proximal Policy Optimization (PPO) algorithm exhibits superior robustness to changes
in the environment complexity, the reward function, and when generalized to environments
with a considerable domain gap from the training environment. Whereas the proposed
reward function significantly improves the competing algorithms’ ability to solve the training
environment, an unexpected consequence of the dimensionality reduction in the sensor
suite, combined with the domain gap, is identified as the source of their impaired
generalization performance.
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1 INTRODUCTION

In recent years, the development and interest in autonomous shipping have increased significantly.
According to ICS (2020), shipping comprises around 90% of the world’s trade of goods. However, the
mode of transport is not entirely free from accidents. Miscommunication and failure in judgments
during navigation significantly contribute to the total number of accidents at sea caused by human
error (Sánchez-Beaskoetxea et al., 2021). While their analysis of maritime accident reports between
1975 and 2017 indicates that accidents attributed to human error have a declining trend, their findings
still show that the crew is responsible for 45.83% of all reported accidents at sea. Therefore, shifting the
liability of safe operation from the human to an autonomous controller has excellent potential for
improvements. With autonomy comes other challenges, but there is still a significant possibility to
improve overall safety for autonomous ships compared to human-operated ships (Hoem et al., 2019).
Autonomous ships can improve working conditions, lower damage-related and crew costs, and
improve the ship’s environmental performance (NFA, 2020). However, this requires vessels capable of
acting independently and handling unexpected changes in the environment on the fly.

The requirement for robustness and ability to handle challenging and potentially infinitely many
situations make developing an autonomous vessel extremely challenging. Autopilot design for path
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following is a well-known discipline (Fossen and Blanke, 2000;
Kim et al., 2015; Xiang et al., 2018) and has robust solutions using
traditional methods (Bibuli et al., 2009). Significant challenges
appear when we are to combine this with situational awareness
and obstacle avoidance. With such an ample space of possible
actions and strategies, explicitly programming the behavior is
near infeasible and far from practical. Lattice-based path planners
can robustly calculate kinematically feasible and collision-free
trajectories in a discretized state space, as shown for ground
vehicles in Cirillo (2017) and Ljungqvist et al. (2019). Such
planners can balance the trade-off between path following and
collision avoidance through reactive re-planning when new
obstacles occur on the trajectory. However, all traditional
approaches require are model-based, where the model
derivation can be both time and resource-intensive.
Fortunately, Reinforcement Learning (RL) (Sutton and Barto,
2018) is coming up as a promising alternative for autonomous
control without the need for a dynamics model. The RL agent
learns the end-to-end connection between observations and
actions through the principle of trial and error, which has
shown remarkable results in applications such as games (Silver
et al., 2016), robotics (Niroui et al., 2019), autonomous vehicles
(Kiran et al., 2021), process control (Nian et al., 2020), and
industrial automation (Weigold et al., 2021). The main
advantages of RL controllers are that they can be model-free,
operate with arbitrarily abstracted control inputs, tackle high-
dimensional state-spaces, and obviate the need for any explicit
programming of comprehensive rules yet still learn the control
law to fulfill the given objectives.

In the context of the current work, (Meyer et al., 2020b),
(Meyer, 2020a) have shown the feasibility of applying Proximal
Policy Optimization (PPO) RL algorithms to the dual-objective
problem of navigating an underactuated surface vessel along a
known path while avoiding collision with landmasses and
dynamic obstacles along the way. The observation space of the
RL agent is based on vessel guidance control theory and includes a
novel feasibility pooling technique for reducing the
dimensionality of a simulated high-density rangefinder suite
used for obstacle detection. The marine vessel itself is based
upon CyberShip II, as introduced in Section 2.1. After applying
the PPO algorithm in a stochastic, synthetic environment (Meyer,
2020a), found that the trained agent perfectly generalized to
multiple real-world scenarios simulating trafficked areas in the
Trondheim fjord, Norway.Meyer et al. (2020a) expands onMeyer
et al. (2020b) by hand-crafting a reward function that encourages
the RL agent to comply with the International Regulations for
Preventing Collisions at Sea (COLREGs) using the PPO
algorithm. Havenstrøm et al. (2021) applies a curriculum
learning technique with the PPO algorithm to control a 6-
DOF underactuated autonomous underwater vehicle (AUV),
gradually increasing the presence and severity of obstacles and
disturbances during the RL training process. Grando et al. (2021)
develops and compares two approaches based on the Deep
Deterministic Policy Gradient (DDPG) and Soft Actor-Critic
(SAC) RL algorithms, respectively, to navigate a simulated
quadrotor drone to a target position in 3D, including air-water
medium transitions. Overall, it is thus safe to say that the existing

works in the available scientific literature prove the potential of
RL in path following and collision avoidance with both stationary
and moving obstacles. However, the presented works consider
only a single (in one case two) RL algorithm to learn the control
law. Historically, RL algorithms have been selected based on
compatibility—e.g., discrete vs continuous state and action spaces
and full vs partial observability of the environment—whereas
modern RL algorithms are more generally applicable.
Consequently, it is non-trivial to determine which RL
algorithm is best suited for any given application.

Given the potential of model-free RL in autonomous control,
this paper attempts to answer some significant issues that the
existing literature has not yet answered to the best of our
knowledge. More precisely, this study attempts to answer the
following research questions:

• (Inter-comparison of different RL algorithms) how does
PPO compare against competitive state-of-the-art RL
algorithms?

• (Behavioral trade-offs between path following and collision
avoidance) can task-specific metrics provide more insight
into the learned policies?

• (Reward shaping in comparison to previous works) what is
the significance of the reward function’s role in balancing
between simultaneous multi-objective tasks?

The questions above are answered through multiple
simulations and analyses, which are explained later on.
Though the initial comparison may give the impression that
one algorithm has a significant advantage, the subsequent
analyses shed light on the importance of a particular
responsibility when setting up the problem formulation.

This article addresses the research questions through five
sections. Section 1, the current section, introduces the state-
of-the-art relative to RL in autonomous control, motivates its
potential in maritime applications, and presents the related work
that forms the basis for this project. With this basis, the research
questions hint toward the intended contribution of this work.
Section 2 describes the relevant theory in the fields of vessel
guidance and RL. Section 3 presents the simulation
environments, reward functions and specifies the RL
algorithms’ training configuration, evaluation, and comparison
against each other for the dual-task of path following and
collision avoidance. Section 4 shows the evaluation of the
trained RL agents in both the training and real-world
simulation environments. In addition to a general performance
comparison, an analysis of the agents’ task-specific behaviors
provides insight into how changing the reward function impacts
the agents’ trade-off between path following and collision
avoidance. Section 5 summarizes the findings in this project
and hints toward future work.

2 THEORY

This section gives an overview of the concepts required in the
study. The purpose is not to give a complete detail of the concepts;
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hence the descriptions are short. However, references to the
sources are provided when deemed necessary.

2.1 Vessel Guidance and Control
Ironically, though the RL algorithms applied in this work are
considered model-free, a dynamics model of the vessel and its
surrounding domain is necessary for training the RL agents in
simulation compared to a direct real-world application. As the
current state-of-the-art RL algorithms are generally too sample-
inefficient and unpredictable during training, a direct application
approach is infeasible. However, the well-researched theory in
ship maneuvering has established that the symbolic
representation of the dynamics of surface vessels is
independent of the ship itself. It follows that the symbolic
representation of the dynamics in full-scale is equivalent to
that of a small-scale replica, and their distinctions lie in the
numerical parameter values. The successful demonstration of an
RL controller navigating the CyberShip II model in Meyer et al.
(2020b) implies that the RL algorithms can navigate full-scale
vessels.

CyberShip II is a 1:70 scale replica of a supply ship whose non-
linear dynamics model was identified experimentally by Skjetne
et al. (2004). As a fully actuated ship, it comes equipped with three
actuators: propellers and rudders aft and a bow thruster fore. In
theory, independent and simultaneous acceleration in each
degree of freedom allows it to navigate any trajectory in its
state space. However, at high speeds, the bow thruster
becomes less efficient, and the ship becomes underactuated
(Sørensen et al., 2017). Disabling the bow thruster input
reduces the dimensionality of the action space while retaining
sufficient and continuous control. The resulting control input,
f � [Tu,Tr]T , consists of the aft propellers’ thrust, Tu, and the
rudder moment in yaw, Tr. With the control interface established,
we introduce essential concepts in maritime guidance. These will
later form the basis for the RL agent’s perception of its
environment; the more informative navigation states we can
engineer, the better the RL agent will learn a control law for
the vessel.

2.1.1 Coordinate Frames
Coordinate frames are necessary for describing the vessel’s
position and dynamics relative to a reference on Earth. The
North-East-Down (NED) reference frame, {n} � (xn, yn, zn),
forms a tangent plane to the Earth’s surface. Intuitively, the
positive direction of the x, y, and z axes point north, east, and
down, respectively. The origin of the body frame, {b} � (xb, yb, zb),
is fixed to the vessel’s position in {n}, and the xb and yb axes align
with the ship’s longitudinal and transversal heading. Hence, the
z-axis points down to complete the right-hand system.

2.1.2 State Variables
Using the established reference and body frames, the generalized
coordinates, η � [xn, yn,ψ]T , describe the vessel’s position and
yaw angle relative to {n}. The angle between the xn and xb axes
defines the ship’s yaw angle, ψ. Correspondingly, ν � [u,v,r]T,
describes the translational and angular velocities, where u, v, and r
are the surge velocity, sway velocity, and yaw rate, respectively.

2.1.3 Navigation
Path following is a natural control problem for marine vessels. Let
pd(ω) � [xd(ω), yd(ω)] describe a parameterized path, where xd(ω)
and yd(ω) are given in the NED frame. Then, pd(�ω) describes the
point on the path that minimizes the Euclidean distance to the
vessel, where

�ω � arg min
ω

(xn − xd(ω))2 + (yn − yd(ω))2,

which locally optimal solution can be calculated with the
Newton-Raphson method using the previous estimate of �ω as
the initial guess. It follows that the Cross-Track Error (CTE)
between the path and the current position,

ϵ � [xn, yn]T − pd(�ω)
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣, (1)

is a useful measurement for evaluating how far the vessel deviates
from its path.

The look-ahead reference point, pd(�ω + ΔLA), defines the point
at a fixed distance, ΔLA, further along the path. This point is
expressed as pd � [xd(ω), yd(ω)]

T where xd(ω) and yd(ω) are
given in the NED frame. It follows that the change in heading
needed to navigate towards the look-ahead point, or heading
error, is defined by

~ψ � atan2
yd(�ω + ΔLA) − yn

xd(�ω + ΔLA) − xn
( ) − ψ. (2)

The path angle, cp, relative to the NED frame can be
parameterized by ω, such that

cp(�ω) � atan2 yp′(�ω), xp′(�ω)( ),
where xp′ and yp′ are the first-order path derivatives. Finally, the
look-ahead heading error

~ψLA � cp �ω + ΔLA( ) − ψ (3)

defines the difference between the path angle at the look-ahead
point and the current heading.

2.2 Reinforcement Learning
RL is one of the three major classes of machine learning
frameworks in which an agent learns a policy to optimally react
to its environment through trial and error, given only a scalar
reward signal as feedback. This framework is advantageous in
control problems where hand-crafting a control law is intractable
or if a dynamics model is unobtainable. The RL problem describes
as an optimization problemwhere the optimal solution is the policy
whose parameters maximize the expected reward from acting in
the environment (Sutton and Barto, 2018). The optimal set of
parameters, θ*, can be expressed as:

θ* � argmax
θ

Eτ∼πθ(τ) ∑
t

r(st , at)⎡⎣ ⎤⎦, (4)

where θ is the policy parameters, τ is the trajectory described by
the set of states and actions, {s1, a1, . . . , sT, aT}, πθ(τ) is the
trajectory distribution given by θ, and r(st, at) is the reward signal
returned from the environment.
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In the state-of-the-art, RL algorithms adopt methods from
deep learning by utilizing neural networks to parameterize the RL
policy, a practice that is called Deep Reinforcement Learning
(DRL). As a sufficiently sized neural network may approximate
any continuous function (Nielsen, 2015), these models are
compatible with high-dimensional non-linear state spaces and
thus suitable for complex decision-making policies. This work
compares a set of the most commonly used, state-of-the-art,
model-free RL algorithms. As the field of RL is advancing rapidly,
there exist newer bleeding-edge algorithms than those presented
in this work; such algorithms still have pending software
implementations in trusted open-source software libraries.
This study focuses on the evaluation and comparison of
established algorithms rather than implementing the bleeding-
edge. Thus, we summarize the relevant algorithms and try to
unify the notation as much as possible.

2.2.1 Reward Functions
All model-free RL algorithms aim to maximize the expected
reward, as reward maximization lies at the core of the RL
objective. Although Eq. 4 considers the total sum of rewards
in expectation, it is common to scale down distant rewards by a
discount factor, ct−t′ ∈ (0, 1], t > t′ ≥ 0, to adjust how greedy the
optimal policy should be. One can consider the reward function
as an implicit representation of the optimal policy and the
discount factor as an induced “fear of death.” To clarify the
latter, attributing high discounts to distant future (t≫ t′) rewards
implies that there is a risk that the agent may never reach that
future state and should, instead, focus on the less discounted near
future rewards.

However, reward signals seldom manifest naturally in the real
world. It is, in most cases, necessary to manually design a reward
function to encourage the desired optimal policy. Sparse rewards,
i.e., presenting the agent with a reward only at each episode’s
termination, induce the least amount of bias in the optimal policy.
However, such sparsity can result in slow or non-convergent
training in environments with long time horizons or challenging
exploration.

In contrast, dense rewards provide the agent a reward at each
time step in the environment, significantly improving the
learning rate. To implement a dense reward function, the
designer must have sufficient domain knowledge to shape
relevant information in the environment into rewards.
Consequently, dense rewards inject bias into the agent because
the designer imposes a pre-existing notion of how the trained
agent should act, whereas sparse rewards let the agent discover
the optimal strategy itself.

2.2.2 Off-Policy RL Algorithms
Off-policy RL algorithms discern between the current policy and
the behavioral policy. The current policy is considered an
estimate of the globally optimal policy given the collected
transitions, (st, at, rt, st+1), while the behavioral policy dictates
how the agent acts in its environment. Transitions are collected
into a replay buffer by the behavioral policy interacting with the
environment. The replay buffer then acts as a non-parametric
model of the dynamics in the environment. Decoupling the

behavioral policy from the update rule enables off-policy
algorithms to decorrelate sampled transitions from different
behavioral policies for updating the current estimate of the
global optimum.

2.2.3 Deep Deterministic Policy Gradient
The Deep Deterministic Policy Gradient (DDPG) algorithm
(Lillicrap et al., 2019) combines Q-learning (Watkins and
Dayan, 1992), Deterministic Policy Gradient (DPG)
algorithms (Silver et al., 2014), and Deep Q-Networks
(DQN) (Mnih et al., 2015) to create a model-free, off-policy,
actor-critic RL algorithm that can apply deep neural networks’
universal approximation property to control problems with
continuous action spaces.

DDPG maintains two sets of model parameters. The primary
network consists of an actor, πθ(st), that deterministically maps
the state, st, to an action, at, and a critic,Q(st, at), that evaluates the
state-action pair (st, at). The target network contains slowly
interpolated versions of the actor and critic, denoted πθ′(st)
and Q′(st, at), respectively. Specifically, the update rule is θ′ ←
τθ + (1 − τ)θ′, where 0 < τ ≪ 1. These targets dampen the
instability caused by the moving target problem, inherited from
the original Bellmann equation, which updates the Q-function
using bootstrapped targets from Q itself. A fixed-size, last in first
out, replay buffer is used to store and decorrelate the samples and
enable the algorithm to utilize its off-policy properties.
Minibatches of transitions, (si, ai, ri, si+1), are uniformly
sampled from the replay buffer when updating the networks’
parameters.

DDPG defines its behavioral policy as

πθ′(st) � πθ(st) +N OU ,

where the noise, N OU , is sampled from an Ornstein-Uhlenbeck
process. Alternatively, (Plappert et al., 2018) empirically shows
that adding noise directly to the policy parameters results in more
consistent exploration and a richer set of behaviors.

2.2.4 Twin Delayed DDPG
The Twin Delayed DDPG (TD3) algorithm introduces a set
of modifications to the DDPG algorithm to improve its
baseline performance. Fujimoto et al. (2018) identifies
that actor-critic RL algorithms that are based upon DPG
inherit specific weaknesses in value-based RL methods. First,
they show that the overestimation bias in Q-learning is
present in DDPG and suggest a clipped variant of Double
Q-learning to negate it. Independent twin Q-functions,
Qθ1,Qθ2, are trained in parallel and evaluated as an
aggregated ensemble where the output is defined as the
minimum value generated between the corresponding
target Q-functions, Qθ1′ ,Qθ2′ , i.e.,

y � r + cmin
i�1,2

Qθi′ (s′, πϕ(s′)).

Both twins then use the same output, y, in their update rule.
Second Fujimoto et al. (2018), shows that the moving target

problem leads to accumulating residual temporal difference error
in the value estimates of deep function approximators and
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consequently suggests that frequent updates of the policy and
target networks lead to divergent behavior. Reducing the
frequency for updating the policy and target networks allows
the critic to minimize its error before the targets are updated,
which reduces the amount of variance induced by this error
propagating through to the policy. In practice, the modification
only requires delaying the policy and target network updates,
such that they are updated once for every fixed number, d, of
updates to the critic.

Finally Fujimoto et al. (2018), suggests target policy smoothing
as a regularization strategy for deep value learning to reduce
variance induced by overfitting inaccuracies in the value estimate
of deterministic policies. Instead of calculating the target value for
a single action, target policy smoothing bootstraps value-
estimates with a small amount of noise added to the action:

y � r + cQθ′ s′, πϕ′(s′) + ϵ( ),
ϵ ∼ clip N (0, σ),−c, c( ),

The noise, ϵ, is clipped within the constant interval, [−c, c], to
keep the perturbed action close to the original action. This
modification intends to lead the algorithm to attribute a
higher value to actions that are robust to noise, which
consequently results in safer policies in stochastic
environments with failure cases.

2.2.5 Soft Actor-Critic
Soft Actor-Critic (SAC) (Haarnoja et al., 2017) is a maximum-
entropy, (soft) actor-critic, off-policy, model-free RL algorithm
derived from soft policy iteration. This strategy introduces an
entropy maximization term to the original RL objective (i.e., Eq.
4). Balancing the maximization of the reward and the entropy
encourages the resulting policy to succeed at its task while acting
as randomly as possible. This aids exploration even in the late
phases of training, where other RL algorithms often converge to a
sub-optimal solution due to the lack of exploration. Introducing
the entropy term to the RL objective results in the following
definition of the optimal policy parameters:

θ* � argmax
θ

Eτ∼πθ(τ) ∑
t

r(st , at) + αH πθ(·|st)( )⎡⎣ ⎤⎦,
where the temperature scaling term, α, determines the relative
importance of the entropy term, H(πθ(·|st)), against the reward
signal. Balancing this trade-off makes SAC particularly sensitive
to reward scaling. However, Haarnoja et al. (2019) solves this by
automatically regulating the temperature scaling term within an
additional constrained entropy maximization problem that
ensures that the policy’s entropy is larger than a lower bound.
Revised versions of the SAC algorithm incorporate the clipped
twin Q-function modification introduced in TD3 to mitigate the
overestimation bias.

2.2.6 On-Policy Algorithms
In contrast to off-policy RL algorithms, the current and
behavioral policies are one and the same in on-policy RL
algorithms. Therefore, the update rule expects data sampled
from the current policy; updating the policy deprecates the

existing sample of transitions, and new samples must be
collected using the newest policy. Therefore, on-policy
methods are generally less sample-efficient than off-policy
methods, though they are more stable in return.

2.2.7 Policy Gradient Methods
By deriving a cost estimator from Eq. 4, J(θ) � Eτ∼πθ(τ)[r(τ)], and
differentiating it, ∇θJ(θ) � Eτ∼πθ(τ)[∇θ logπθ(τ)r(τ)], we obtain
the most basic policy gradient suitable for stochastic gradient
descent. Modern algorithms have found more efficient policy
gradients that have significantly reduced variance and sensitivity
to reward scaling. Most state-of-the-art policy gradients utilize
the Advantage estimator, Aπ, which evaluates how good an action
is compared to the average action in that state. Formally, the
Advantage describes the difference between the expected reward-
to-go, Qπ(st, at), and the value estimate, Vπ(st):

Aπ(st , at) � Qπ(st , at) − Vπ(st),
Qπ(st , at) � ∑T

t′�t
Eπθ[r(st′ , at′ )|st , at],

Vπ(st) � Eat ∼ πθ(at |st )[Q(st , at)].
Instead of learning individual representations for Q and V, it is
common to use the approximation Qπ(st, at) ≈ r(st, at) + Vπ(st+1),
such that the discounted Advantage can be estimated using only
the value function:

Aπ(st , at) ≈ r(st , at) + cVπ(st+1) − Vπ(st),
where c is the discount factor.

2.2.8 Proximal Policy Optimization
The Proximal Policy Optimization (PPO) algorithm (Schulman
et al., 2017) simplifies the computationally expensive constraint
calculations and second-order approximations in the Trust
Region Policy Optimization (TRPO) algorithm (Schulman
et al., 2015). The result is a model-free, on-policy, actor-critic
RL algorithm similar to TRPO in stability and performance,
easier to implement in code, and faster to execute. Common
for both is that they optimize a policy improvement objective.
Formally, the objective is to maximize the expected value of the
discounted Advantage of the old policy, πθ, under the trajectory
distribution of the new policy, πθ′:

J(θ′) − J(θ) � Eτ∼π
θ′ (τ) ∑

t

ctAπθ(st , at)⎡⎣ ⎤⎦,
which is guaranteed to improve the policy between updates,
but it is intractable in this form. In TRPO, (Schulman et al.,
2015) proposes a surrogate objective using importance
sampling to relax the inner expectation over actions and
shows that the outer expectation over the state marginal
can be relaxed as long as the updated policy remains “close”
to the current policy. This closeness is estimated using the
second-order Taylor expansion of the KL-divergence between
the policies’ state marginal distributions and used to constrain
the optimization problem in the TRPO algorithm by regulating
the learning rate.
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Schulman et al. (2017) proposes a relaxation of TRPO’s
constrained optimization. By simply clipping the importance
sampling term in the surrogate Advantage function to be close to
unity, PPO prevents the policy update from diverging far from the
previous policy. Alternatively, another variant of PPO applies dual
gradient descent, adjusting the Lagrangian multiplier for the KL-
divergence in reaction to a breach of the constraint. Although these
modifications both allow the algorithm to break the constraint
momentarily, PPO performs better in general than TRPO while
having a significantly lower computational complexity.

3 METHODOLOGY

This section outlines the application of the RL algorithms
presented in Section 2.2 to the simulation environments
developed by Meyer et al. (2020b), Meyer et al. (2020a). We
keep the naming convention of their original environment,
MovingObstaclesNoRules, for consistency. Meyer et al.
(2020a) demonstrates that PPO can solve the training
environment and generalize to the simulated real-world
environments with a 100% success rate. PPO will therefore
act as a benchmark to compare against the competing
algorithms: DDPG, TD3, and SAC. The following section
describes the simulation environment, software, and
hardware setup and how the different algorithms are
evaluated and compared.

3.1 Simulation Environments
All environments used in this paper model calm ocean
surfaces containing obstacles and paths, generated at
random. At the start of the path, a surface vessel is
initialized with a random heading. The vessel dynamics
use the CyberShip II model parameters, whose 3-DOF
surface model and accompanying assumptions are outlined
in Meyer et al. (2020b). In each episode, the agent’s primary
objective is to navigate the vessel along the path from start to
end, while its secondary objective is to avoid the landmasses
and other marine vessels obstructing its path as it goes.
Episodes terminate when.

• the vessel is less than 50 m from the goal,
• the vessel’s progress along the path exceeds 99%,
• the vessel has collided,
• the agent has spent more than 10000 time-steps, or
• the cumulative reward becomes less than −2000.

A preliminary inspection led to the consideration that each
competing RL algorithm performs poorly in the original
MovingObstaclesNoRules training environment. To find why
the algorithms struggle, we establish a set of training
environments whose complexities range from trivial to original.

We first consider two primary design elements that influence
the environments’ complexity: the path curvature and the
number, and placement, of static and dynamic obstacles that
obstruct the path. Five additional simulation environments are
created based on augmenting the complexity of the original. We

let the first environment consist of a straight line with no
obstacles to serve as the trivial case and increment the
complexity, as described in Figure 1. The final and most
complex training environment corresponds then to the
original training environment defined in Meyer et al. (2020b).
By distributing the task complexity across different training
environments, starting at the trivial case, we aim to find the
cut-off when there is a substantial difference in performance
between the RL algorithms.

If the algorithms achieve similar performance in the most
complex environment, three simulated real-world
environments (Figure 2) will capture their ability to
generalize to previously unseen and realistic scenarios.
These environments are based on active routes in the
Trondheim Fjord: we simulate the movement of the
dynamic obstacles as dictated by historical AIS data and
reconstruct the landmasses using terrain elevation data. The
Trondheim environment consists thus of a straight path,
unobstructed by landmasses but includes crossing traffic
near the goal. The Agdenes environment consists of a
curved path, unobstructed by landmasses but includes
significant head-on and overtaking traffic along the path.
The Sorbuoya environment consists of a curved path,
heavily obstructed by landmasses, and includes head-on
traffic in a narrow straight near the goal.

3.1.1 Observation and Action Spaces
To learn a policy that optimizes the reward function, the RL
agent must observe a partial representation of the environment
that is rich enough to capture its most essential dynamics. The
observation vector emitted from the environment is
the concatenation of navigation and perception states. In
the context of this paper, navigation refers to states that
describe the vessel’s position, velocity, and orientation
relative to the path, and perception refers to the
rangefinder’s measured obstacle distances and obstacle
velocities relative to the body frame. Table 1 describes the
specific construction of the observation vector, where the
definitions correspond to the vessel guidance theory in
Section 2.1, and the FeasibilityPooling function is defined in
(Meyer et al., 2020b). To influence its environment, the RL
agent interfaces the two continuous actuators on the vessel as
described in Section 2.1: the propeller thrust, Tu, and the
rudder moment in yaw, Tr.

3.1.2 Reward Function
Despite the episodic and goal-conditioned nature of the
simulation environment, sparse rewards are assumed infeasible
due to the long time-horizon and the high number of possible
failure cases per episode. Initially, we apply the dense reward
function as implemented in Meyer (2020b). Equation. (5)
specifies the reward function’s construction, and Table 2
describes its parameters.

r(t) � rtotal, if rtotal ≥ 0
2rtotal, if rtotal < 0

{ (5)
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FIGURE 1 | Instances of each training environment used to evaluate the applicability of different RL algorithms on the dual task of path following and collision
avoidance. Before defining the path, the start and goal positions are initialized at random but with a fixed distance (8000m) apart. Env0, the trivial case, contains only a
straight path. Env1 creates a curved path. Env2 inherits Env0 and places 4 static obstacles randomly along the path. Env3 inherits the properties of Env2 and adds 17
dynamic obstacles with random headings, sizes, and velocities around the path. Env4 inherits Env3 and adds curvature to the path. Finally,
MovingObstaclesNoRules increases the number of static obstacles from 4 to 11 and scatters them randomly on and around the path; this represents the original training
environment as defined in Meyer et al. (2020b).

FIGURE 2 | Snapshots of the three simulated real-world environments. Here, the paths and the landmasses are fixed for each instance of the environment, though
each instance samples a random subset of the historical AIS data to create the dynamic obstacles. Thus, the dynamic obstacles are initialized with an initial position and
velocity as shown with the black arrows and will follow the trajectories shown with the red dashed lines. As in the training environments, the agent’s goal is to safely
navigate the vessel along the path from the starting position to the goal.
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r(t)total �
rcollision, if collision

λr(t)path + (1 − λ)r(t)colav + rexists, otherwise

⎧⎨⎩
rcollision � −(1 − λ)rcoll

r(t)colav � −
∑N

i�1
1

1 + cθ|θi|
Sr exp(cv max(0, viy) − cxxi)

∑N

i�1
1

1 + cθ|θi|

r(t)path � u(t)

2Umax
cos~ψ(t) + cr( ) exp(−cϵ|ϵ(t)|) + cr( ) − c2r

rexists � −λ(2αr + 1)
Based on the findings from the initial comparison, the reward
function (Eq. 5) is reshaped to reduce its complexity while
retaining enough information to guide the RL agent towards the
desired policy. Since the reward is calculated at each time step, it is
desirable to reduce its computational complexity. First, we remove
the negative multiplier that scales the reward only if it is less than

zero. Second, the RL agent receives a penalty both when colliding
and being in the vicinity of obstacles. However, the vessel can
arguably have a good trajectory while being close to obstacles. The
critic network should learn to associate states where the vessel is
close to an obstacle as lower-valued states through the collision
penalty alone. Adding the penalty for closeness may accelerate this
association, but it may also lead to a policy that is overly risk-avert
early in training. Thus, we remove the rcolav term entirely from the
reward function. Additionally, we decrease the collision penalty to
rcoll � −1000, as the previous value of rcoll � −10000 can
overshadow the penalty for deviating from the primary task of
path following. Finally, we simplify the rpath term to:

r(t)path �
u(t)

Umax︸�︷︷�︸
Speed term

· 1 + cos(~ψ(t))
2︸�����︷︷�����︸

Heading term

· 1
|ϵ(t)| + 1︸���︷︷���︸
CTE term

(6)

Equation. (6) is well-behaved, has no hyperparameters, and all
terms are bounded between 0 and 1. When the vessel is perfectly
adhering to the path, moving at full speed, and in the right

direction, then r(t)path � 1. Setting the existence penalty rexists � 1

makes zero the best possible reward in an episode. The proposed
reward function can thus be described as:

r(t) � rcoll, if collision
r(t)path − rexists, otherwise{ (7)

3.2 Performance Evaluation
A trivial way to evaluate the algorithms is to compare their average
accumulated reward, as reward maximization is at the core of each
algorithm, and they share the same reward function. However, this
will not provide much insight into the different behaviors that the
agents may elicit. Instead, to develop understanding, we capture
task-specific metrics from each episode, such as progress,
collisions, time consumption, and cross-track error.

To find reasonable evaluation criteria, we first break down the
RL agent’s task and analyze what is considered a success. From a
logical perspective, the vessel’s task is to reach a destination with a
fixed displacement from the start by navigating along a randomly
curved path, while static obstacles are distributed on and around

TABLE 1 | RL agent’s observation vector at each time step t (Meyer et al., 2020a). The FeasibilityPooling algorithm calculates the maximum reachable distance in a given
sector for the rangefinder suite. Obstacle velocities are relative to the body frame rotated such that the longitudinal axis is parallel to the centerline of the given sector and
describe the velocity of the closest obstacle in that sector. Static obstacles assume a relative velocity of zero.

Feature Definition

Navigation Surge velocity u(t)

Sway velocity v(t)

Yaw rate r(t)

Cross-track error ϵ(t) (Eq. 1)
Heading error ~ψ(t) (Eq. 2)
Look-ahead heading error ~ψ

(t)
LA (Eq. 3)

Perception Obstacle closeness, first sector 1 − 1
Sr
FeasibilityPooling(x � {x1 , . . . , xd})

«

Obstacle closeness, last sector 1 − 1
Sr
FeasibilityPooling(x � {xN−d , . . . , xN})

Obstacle velocity, first sector [vx,1, vy,1]
«

Obstacle velocity, last sector [vx,N, vy,N]

TABLE 2 | Description of parameters in the initial reward function. The vessel’s
maximum speed is denoted in decameters per second (1 dam � 10 m).

Scaling parameter Interpretation Value

cϵ Cross-track error scaling 5.0
cθ Sensor angle scaling 10.0
cx Obstacle distance scaling 0.1
αr Zero-reward relative speed 0.05
rcoll Collision reward -10000
cr Constant multiplier 1.0
λ Objective trade-off coefficient 0.5

Sensor parameter

Umax Vessel’s maximum speed 1.0 dam/s
N Number of sensors 180
θi Angle of sensor i −π + 2π

N i
d Number of sensor sectors 9
Sr Sensor range 1.5 km
ΔLA Look-ahead distance 3 km
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the path after the path’s creation. Additionally, dynamic objects
(i.e., other vessels), each with random size and velocity, move
around in the environment.

What are then the most important factors to consider? For
instance, a vessel that never collides yet never reaches its
destination is useless, though a vessel that adheres to the path
but collides a few times has room for improvement. Given this
intuition, we nowmove to discuss which metrics can differentiate
between the trained RL agents and how to interpret them, in a per
point fashion:

• Can the vessel consistently navigate from the starting
point to the goal?

This can be measured by calculating the agent’s progress along
the path, averaged over multiple rollouts in each environment.
Progress is calculated as a percentage value by dividing the arc
length between the starting position and pd(�ω) (Section 2.1.3) by
the total length of the path. An ideal agent will achieve an average
progress score of 99 − 100%, whereas a lower score indicates that
the agent either collides, gets stuck, or fails to follow the path.
These failure modes are not captured by the progress score alone,
thus necessitating additional task-specific metrics.

• Does the vessel collide? If so, how often?

An ideal agent will never collide. The collision rate (number of
collisions per navigation task) is a decisive measure for the agents’
collision avoidance performance. Finding the collision rate is a
simple matter of counting the number of collisions and dividing
by the number of episodes. In the performance evaluation, the
collision avoidance metric is defined as 100 p (1 − C), where C ∈ [0,
1] is the collision rate of the agent. Thus, the collision avoidance
scores 100 and 0% correspond to the collision rates 0 and 100%,
respectively.

• How well can the vessel adhere to its path?

Considering that obstacles may obstruct the given path,
sacrificing path adherence for collision avoidance is crucial for
the agent to reach the goal. However, excessively avoidant
behavior may result in significant deviations from the path or
even total ignorance of the path-following task. On the other
end, excessive path adherence may prevent the agent from taking
the necessary detour around an obstruction. Section 2.1.3
introduced CTE as the minimum distance between the path and
the vessel. Path adherence is calculated by normalizing the agents’
average CTE in a data-driven fashion and scaling them to a
percentage value. This mapping of the CTE enables plotting the
performance metrics on a common axis, whereas the CTE alone is
an unbounded measure. Therefore, we say that a path adherence of
100 and 0% correspond to the minimum and maximum CTE
achieved by any agent, respectively.

• How much time does the agent spend on an episode?

The time consumption (simulation steps) per episode measures
whether the agent canmake quick decisions, navigate at high speeds,

and take the shortest deviating path, in contrast to navigating far
away before heading towards the goal. This metric can differentiate
between agents with similar progress scores by identifying agents
that get stuck or fail to reach the goal by consistently exceeding the
maximum number of time steps per episode. Thus, the time
efficiency score is a percentage value, where 100 and 0%
correspond to agents spending zero time steps and 10,000 time
steps on average, respectively. Note, however, that agents with high
collision rates may yield an artificially low time consumption.

The next step towards understanding how the environment
complexity affects the performance indexes above for the various
algorithms is to test the trained RL agents in their training
environment and simulated real-world environments. We
calculate metrics as averages over 100 episodes for each
environment and for each algorithm to get statistically
significant results. While the average progress metric primarily
evaluates whether the agents solve the environment, the other
metrics help differentiate among algorithms that perform similarly
in the average progress sense. For the sake of brevity, in the
following, we say that if the average progress exceeds 95%, the
agent is said to have “solved” the training environment.

3.3 Simulation Software and
Hyperparameters
Using the setup described above, we train four RL agents using the
PPO, DDPG, TD3, and SAC algorithms as implemented in the
Stable-Baselines Python library (Hill et al., 2018). All algorithms
are executed on an AMD Ryzen 939,00X 12-core CPU and trained
for a total of 1.5 million time steps each. The length of each
simulation step is 1.0 s. Since the RL algorithms implemented by
Stable-Baselines have varying parallelization capabilities, we do not
compare the algorithms’ wall-time consumption.

For the sake of making this work repeatable by other authors,
we summarize the non-default hyperparameters applied to the
algorithms in Table 3. The remaining hyperparameters are left as
their default values as defined by Stable-Baselines’ documentation
(v2.9.0). SAC is the only RL algorithm that is applied using only
the default hyperparameters. The source code used for executing
the simulations is publicly available (Larsen, 2021).

4 RESULTS AND DISCUSSION

4.1 Comparing the RL Algorithms in
Environments of Increasing Complexity
As the preliminary investigation revealed that the off-policy
algorithms struggle to solve the original training environment,
this initial experiment attempts to find the point of failure for
these algorithms. One agent is trained for each algorithm and
environment (Figure 1) and tested accordingly. For instance, the
PPO agent trained in Env0 gets evaluated in Env0 only. Though the
training statistics would give a similar indication, the agents’
exploration strategies are typically suppressed in testing, making
thembehave greedily to exploit their estimation of the optimal policy.

To start this discussion, consider Figure 3, which compares
the average progression of each algorithm in each environment.
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These results show that the PPO agents consistently solve each of
their training environments regardless of the complexity. In
contrast, the other algorithms are only capable of solving the
trivial ones. In other words, once obstacles appear in Env2, none
of the remaining algorithms manage to adopt policies with a
reasonable trade-off between path following and obstacle
avoidance. Though it is clear that the presence of obstacles is
a common factor, the abrupt and volatile progress scores found

for the off-policy RL algorithms imply that this metric alone does
not capture a behavioral degradation as the complexity increases.

To further investigate the different behaviors of the learned
policies, Figure 4 illustrates the task-specific metrics for each
algorithm in each environment. As mentioned in Section 3.2,
the path adherence metric maps the normalized CTEs to a
percentage value in a data-driven fashion. DDPG produced the
minimum CTE (3.7m in Env0), and SAC produced the maximum

TABLE 3 | Non-default hyperparameters for each RL algorithm.

Hyperparameter Description Value

Proximal Policy Optimization (PPO)

n_steps Number of steps to run for each env per update 1024
nminibatches Number of training minibatches per update 32
lam Bias vs variance trade-off factor for GAE (λ) 0.98
gamma Discount factor (c) 0.999
learning_rate Learning rate 2e-4

Deep Deterministic Policy Gradient (DDPG)

memory_limit Size of replay buffer 1,000,000
normalize_obs Whether agent observations are normalized True
gamma Discount factor 0.98
actor_lr Learning rate for actor network 0.00156
critic_lr Learning rate for critic network 0.00156
batch_size Size of the batch for learning the policy 256
action_noise Action noise type and magnitude OrnsteinUhlenbeck

(μ � [0, 0], σ � [0.5, 0.5])

Twin Delayed DDPG (TD3)

buffer_size Size of replay buffer 1,000,000
train_freq Update the model every n steps 1000
gradient_steps Gradient updates after each step 1000
learning_starts Steps before learning starts 10000
action_noise Action noise type and magnitude N (μ � 0, σ � 0.1)

Soft Actor Critic (SAC)

None All hyperparameters are default N/A

FIGURE 3 | Average progress for all algorithms plotted vs environments of increasing complexity. Each agent is individually trained and tested in their respective
environments, e.g., agents trained in Env0 are tested only in Env0. All the algorithms except PPO yield significantly reduced performance once static obstacles are
introduced in Env2. Though neither off-policy algorithm exceeds 50% average progress, their results vary significantly among the environments.
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CTE (6091.6m in Env4). Thus, the path adherence scores shown in
Figure 4 are calculated as 100 − 100* CTE−3.7

6091.6−3.7. The agents’
behaviors are visually indistinguishable in Env0 and Env1,
independently of the algorithm, likely because they find policies
close to the optimal solution. Note that the PPO algorithm is
producing agents that behave consistently across all environments.
In Env2, both DDPG and SAC exceed the maximum number of
time steps per episode on average, which, considering their near-
perfect path adherence and collision avoidance, implies that the
agents never deviate from the path and come to a standstill when
encountering an obstacle. TD3 achieves similar performance in

path adherence and collision avoidance but spends more than half
of its time budget on average.

As intuition may suggest, the results also show that dynamic
obstacles, introduced in Env3, clearly affect the agents’ path
adherence scores; moreover, the simulations highlight a
similar relationship between time efficiency and path
progress as for Env2. In fact, there exists a consistent
correlation between the path progress scores in Figure 3
and the time efficiency scores in Figure 4. In contrast, all
algorithms yield near-perfect collision avoidance scores
regardless of their agents’ ability to progress along the path.

FIGURE 4 | Performance analysis of task-specific metrics across the training environments. The indistinguishable behaviors in the trivial environments rule out
critical software implementation faults for the added RL algorithms. Whereas the agents’ capacity for collision avoidance remains near-perfect across all scenarios, the
time efficiency drops significantly for the off-policy algorithms in Env2 and subsequent training environments.
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This particular consistency in behavior may suggest that the
collision avoidance mechanisms included in the problem
formulations have the most influence in shaping all the
various final policies learned by the algorithms.

Figure 5 shows a randomly sampled trajectory for each RL
algorithm tested in the MovingObstaclesNoRules environment.
The PPO agent reaches the goal by loosely following the path;
DDPG halts after passing the first obstacle; TD3 remains inert at
the starting point; SAC explores wildly while moving in the
general direction of the goal.

Figure 6 shows a random sample of the agents’ paths taken in
Env2. PPO is the only agent that circumvents the obstacles and
reaches the goal, whereas Both DDPG and SAC stop moving
when they encounter an obstacle, and TD3 remains inert at the
starting point. Neither agent collides; the off-policy algorithms
rather choose to remain still and wait for 10,000 time steps until
the episode ends.

Although there is a possibility of inadequate hyperparameter
tuning, the unwavering collision avoidance scores in Figure 4

might indicate that the reward function is over-engineered for
this behavior in particular. Aggregating the penalties for collisions
and obstacle closeness may discourage the agents from assuming
any policy that allows the vessel to be in the vicinity of an obstacle.
Agents might therefore ignore their primary task: following the
path and reaching the goal. For off-policy RL algorithms, in
particular, these considerations imply that the replay buffer
hardly ever contains any transitions close to the finish, such
that the critic never learns that the agent can collect better
rewards by balancing the collision avoidance and path
following tasks. Ultimately, this may be a testament to PPO’s
strong exploration strategy and robust trust-region-based policy
update strategy.

To discuss PPO in more detail later on, consider that the
corresponding agent trained in MovingObstaclesNoRules is
tested in the simulated real-world environments (Figure 2) to
act as a reference. As expected, Figure 7 illustrates that the PPO
agent generalizes well and exhibits graceful degradation in
collision avoidance.

FIGURE 5 | Sample trajectories for the different RL agents in the MovingObstaclesNoRules environment. Black dashed line: path to follow; red dashed line: path
taken by the vessel. The environment was generated and sampled equally for all algorithms by setting the random seed to zero and sampling the first episode.

Frontiers in Robotics and AI | www.frontiersin.org September 2021 | Volume 8 | Article 73811312

Larsen et al. DRL Algorithms for ASV

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


FIGURE 6 | Sample trajectories for the different RL agents in the Env2 environment. Black dashed line: path to follow; red, dashed line: path taken by the vessel. The
environment was generated and sampled equally for all algorithms by setting the random seed to zero and sampling the first episode.

FIGURE 7 | Evaluating the PPO agent trained in MovingObstaclesNoRules by testing it in simulated real-world environments for later reference.
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4.2 Performance Comparison After Reward
Shaping
After training the agents in the MovingObstaclesNoRules
environment using the simplified reward function in Eq. 7,
each agent is evaluated in both the training environment and
the real-world simulation environments. Figure 8 shows sampled
test trajectories from the training environment, and Figure 9
shows the average progress made for each agent. Compared to the
previous results (Figure 3), the off-policy RL algorithms show a
significant improvement in path progression. In particular, the
DDPG and TD3 agents’ average progress increases from near-
zero to 84% and 90%, respectively. These improvements are
reflected in the sample trajectories, where all algorithms
exhibit improved path adherence. Even PPO exhibits visibly
improved path adherence in this scenario compared to its
previous trajectory in Figure 5. Despite these improvements,
neither of the off-policy RL algorithms meet the pre-specified
minimum criteria of 95% average progress and are therefore not
considered to have sufficiently solved the training environment.

Testing the agents in the simulated real-world environments
shows that most algorithms generalize well by maintaining
their achieved level of performance in the training
environment. However, their scores decline significantly in the
Sorbuoya environment. DDPG is an exception considering its
performance drop in the Agdenes environment while emerging as
the best performer in Sorbuoya. Following the behavioral
analysis, Section 4.3 provides an in-depth discussion of this
impaired generalization performance.

PPO’s scores suffered slightly overall, though most notably in
the Sorbuoya environment. Considering that all hyperparameters
remain unchanged from the previous setup, it is not surprising to
observe a slight reduction in PPO’s performance. RL algorithms
are indeed notoriously sensitive to changes in hyperparameters,
which must be tuned specifically to the relevant problem setting.
Moreover, tuning the hyperparameters for the other RL
algorithms may at least theoretically raise their performance to
match, or even surpass, PPO. Despite this theoretical possibility,
no attempt to tune the algorithms was made due to a lack of a
systematic approach to finding optimal hyperparameters.

FIGURE 8 | Sample trajectories from the different RL agents acting in the MovingObstaclesNoRules environment. The agents shown was trained using the
simplified reward function. Black dashed line: path to follow; red dashed line: path taken by the vessel. The environment was generated and sampled equally for all
algorithms by setting the random seed to zero and using the result from the initial episode.
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Analyzing these agents’ path following and obstacle avoidance
behaviors are of particular interest due to the intentionally
omitted closeness penalty in this iteration of the reward
function. Figure 10 shows the task-specific performances in
the training and real-world environments. Again, the path
adherence scores are mapped to a percentage value using the
minimum CTE (52.2m, PPO in MovingObstaclesNoRules) and
the maximum CTE (1868.5m, TD3 in Trondheim): 100 −
100* CTE−52.2

1868.5−52.2.
Whereas Figure 9 shows that all algorithms achieve somewhat

similar progress scores in MovingObstaclesNoRules, the
behavioral analysis (Figure 10) reveals PPO’s superior path
adherence capability without sacrificing collision avoidance or
time efficiency. Since this environment contains both static and
dynamic obstacles, perfect path adherence is impossible. In
contrast, the Trondheim has few obstructions other than the
crossing traffic, making perfect path adherence possible. While
the algorithms still perform similarly in path progress, PPO
significantly outranks the competing algorithms in path
adherence. On the opposite end, the near-minimum time
efficiency and path adherence of TD3 indicates that it never
actually reaches the goal at all. Considering the accompanying
near-perfect collision avoidance performance and that the end of
the path in Trondheim is close to land, the TD3 agent likely
prevents itself from reaching the goal due to a higher affinity
towards collision avoidance. Figure 11 highlights this behavior.

In the Agdenes environment, DDPG struggles with obstacle
avoidance, which is reflected in its progress score in Figure 9,
though its path adherence is on par with TD3 and SAC. Its time
efficiency score is artificially high due to the collision rate. PPO,
TD3, and SAC show well-rounded behaviors, though PPO
outperforms them on all accounts by approximately 10%.
Sorbuoya, as the most challenging real-world scenario, brings
out the most deviation in collision avoidance abilities.
Interestingly, PPO is now the worst performer in this category
and follows close after DDPG as the new best performer in
average progress. Ultimately, none of the RL algorithms
introduced to compete against PPO sufficiently solved the

synthetic training environment using either reward function.
The following section discusses possible reasons why the
changes in the reward function facilitate better results in
training for a broader range of RL algorithms, yet they
produce agents with significantly reduced generalization
performance compared to the previous one.

4.3 Implications of the Differences in
Learned Policies
Compared to the previous reward function, the new iteration of
the reward function is sparser by nature; thus, agents need to
collide more before fully comprehending the risks involved when
acting around obstacles. Therefore, the agents’ underdeveloped
collision avoidance strategies could result from sparsifying the
reward function without increasing training time. As for path
following, it is clear that the off-policy agents are uninhibited by
excessive risk-aversion and correctly prioritize their tasks,
i.e., they now primarily focus on path following and learn to
improve that skill via collision avoidance as a secondary priority.
Ultimately, the task priorities are better balanced, though the
speed of convergence appears to be reduced. However, these
results warrant a thorough inspection of the relevant underlying
mechanics in the environments.

Intuitively, one might think that Sorbuoya is the closest
environment to the training environment. However, there is a
particular reason why this is not the case. Recall that Trondheim
serves as the trivial case, where the challenges consist only of a
goal near land and some crossing traffic that may or may not
interfere with the vessel. Agdenes spices things up slightly by
introducing head-on traffic, inevitably navigating within the
vessel’s sensor suite range. Otherwise, the path remains
unobstructed by landmasses, and the goal is far from land.
Sorbuoya, similar to the training environment, has an
extensively obstructed path and modest traffic overall. Thus,
intuitively, the agents should manage to navigate between the
islands but perhaps run into trouble in the narrow straight with
head-on traffic. However, there is a significant scaling-based

FIGURE 9 | Path progression performance comparison between RL algorithms in training and real-world simulation environments using the simplified reward
function. Compared to the previous reward function, the off-policy RL algorithms show a drastic increase in performance. In contrast, PPO now performs considerably
worse in the Sorbuoya environment, yet maintains its performance in the other testing environments and is still the best performer overall.
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domain gap between the training and testing environments.
Whereas obstacles in the training environment are Poisson
distributed with a mean radius of 300 m, Sorbuoya contains
islands down to approximately 30–50 m in diameter. Similarly,
the widths of the synthetic dynamic vessels are Poisson
distributed with a mean of 100m, whereas the size of the real
vessels are defined from their overall lengths found in the AIS
data, ranging from 19 m (ship: Multi Innovator) to 299.7 m (ship:
Golden Horizon), and the mean ship length is 59.6 m.
Consequently, obstacles in Trondheim, Agdenes, and Sorbuoya
are tiny in comparison to the training environment.

To understand the implications of this domain gap, we
underline the signal processing applied to the vessel’s sensor
suite. The RL agent relies on its observation space to detect and
react to obstacles near the vessel. Recall that the perception vector
(Table 1) contains, for each sector, a measure of obstacle
closeness, i.e., the maximum reachable distance, as well as the
relative velocity of the nearest dynamic obstacle (if any). The

significantly smaller obstacles in the simulated real-world
environments must be proportionally closer to the vessel
before the FeasibilityPooling algorithm reduces the perceived
maximum reachable distance in the corresponding sector,
compared to the training environment. Therefore, the
perception vector will produce sudden jumps in sector
closeness; when a small obstacle is close enough to block a
sector, then that sector’s maximum reachable distance jumps
from Sr to the distance to the obstacle. The vessel may start an
evasive maneuver, only to experience that the obstacle disappears
from its perception when in the intersection of two sectors.
Following the central assumption that the dynamics follow a
Markov Decision Process (MDP) and the fact that the applied
neural network architecture does not accommodate temporal
aspects of the environment (not using recurrent neural networks
or temporally stacked instances of observations), the agent will
subsequently act as if the obstacle was never there. In other words,
the vessel is oblivious of smaller obstacles until they are very close

FIGURE 10 | Performance analysis of task-specific metrics across simulation environments. These results provide insight into the agents’ trade-off between the
path following and collision avoidance tasks. Their behaviors are similarly well-rounded in MovingObstaclesNoRules, and the discrepancies start to show when the
agents are generalized to real-world environments.
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compared to the ones in the training environment. At medium
range, they may pop in and out of existence. Though velocity
observations are part of the observation vector, apparently, this
only applies to the closest dynamic obstacle in each sector, and
static obstacles assume a zero relative velocity. As a result, static
obstacles can be imperceptible within the range of the sensor (Sr).
Whereas dynamic obstacles within sensor range may be invisible
in terms of distance, the agent can perceive whether there is a
vessel somewhere in that sector.

With these considerations in mind, the closeness penalty in
Eq. 5 likely plays a larger role than just accelerating the agent’s
understanding of the collision risks. The closeness penalty, in
effect, drives the agent to adopt a policy that maximizes the
distance to any obstacle while following the path. This behavioral
aspect would provoke stronger reactions to obstacles suddenly
appearing in the vicinity than the corresponding behavior
encouraged by the proposed reward function that penalizes
collisions only. Therefore, the closeness penalty makes the RL
agent more robust against the blind spots in its perception, which
is reflected in PPO’s higher generalization performance before the
reward shaping (Section 4.1). In summary, it is likely that the
combination of the domain gap, the perceptual blind spots, and
the relaxed and sparser reward function ultimately leads to a
more challenging generalization problem for the RL agent than
previously anticipated.

5 CONCLUSION AND FUTURE WORK

We provided an inter-comparison between common state-of-
the-art RL algorithms applied to a continuous control problem
in which the balancing between two independent tasks of

path following and collision avoidance is critical for
achieving good performance. Though the initial comparison
gave the impression that the PPO algorithm had a significant
advantage over DDPG, TD3, and SAC, the subsequent
behavioral analyses shed light on the designer’s role in
implicitly influencing the optimal policy through the
construction of the reward function. An iteration of reward
shaping attempted to balance the rewards and penalties
given for the path following and collision avoidance tasks.
Although the second generation of off-policy RL agents
performed significantly better in the training environment
and exhibited more well-rounded behavioral characteristics,
removing the closeness penalties uncovered a potential
issue with the established observation space given to the RL
agents.

The main conclusions from the current study can be itemized
as follows

• The primary purpose of this paper was to benchmark the
applicability of competing state-of-the-art RL algorithms on
the dual task of path following and collision avoidance. To
do so, we challenged the performance of PPO in a
continuous control problem, for which it was known to
solve, with three off-policy RL algorithms. Comparing the
average progress of each trained agent resulted in PPO
significantly outperforming the competitors.

• Comparing the RL agents using their progress scores alone
was insufficient to understand why the off-policy algorithms
struggled to solve their training environment. The task-
specific analyses helped to highlight the key aspects of the
agents’ behavior that negatively impacted their
performance. In particular, all agents exhibited near-

FIGURE 11 | Trajectories from evaluating the RL agents in each real-world simulation environment were sampled from the first episode using a fixed random seed
(zero). Therefore, the generated traffic is equivalent between each algorithm, allowing the trajectories to be overlaid and color-coded to minimize the number of subplots.
Checkmarks highlight whether the agents reach the goal state in the environment. PPO, DDPG, and SAC succeeded in both Trondheim and Agdenes. TD3 failed in all
scenarios, and all algorithms failed in Sorbuoya. In Trondheim, PPO is consistently following the path from start to end. SAC exhibits some drifting to the east, but its
trajectory is significantly less erratic than DDPG and TD3. It seems that both DDPG and TD3 avoid a crossing vessel and return to the path after the interaction. DDPG
eventually reaches the goal, whereas TD3 appears too collision-avert to approach the coast and reach the goal. In Agdenes, PPO maintains the trajectory closest to the
path, DDPG crosses the traffic and ends up maneuvering a lot to avoid collisions, TD3 collides almost instantly with a tiny vessel, and SAC generally keeps a steady
course but struggles to navigate around the opening of the fjord before succeeding. In Sorbuoya, PPO and DDPG progress slightly further than TD3 and SAC, who travel
back and forth looking for an entry. However, neither agent manages to find a path through the densely packed islands.
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perfect collision avoidance performance regardless of their
ability to progress along the path in any environment.
However, this exaggerated affinity toward collision
avoidance prevented the off-policy RL algorithms from
performing their primary path following task in the
environment.

• The behavioral analysis inspired scrutinizing the role of the
reward function in balancing the affinity between the path
following and collision avoidance tasks. An iteration of
reward shaping without penalties for obstacle closeness
yielded a significant improvement in average progress
and well-rounded task-specific metrics for the off-policy
RL algorithms. Though their generalization performance
exhibited an initially graceful degradation in performance,
an unexpected consequence of the rangefinder’s
dimensionality reduction algorithm, combined with the
domain gap between the training and real-world
environments, is identified as the most likely source for
their impaired generalization performance. Although PPO
suffered from a slightly degraded generalization
performance, it emerged again as the best performing
algorithm.

Although the current paper demonstrated the potential of
RL-based approaches for addressing the complex dual
objective of path following and collision avoidance, several
shortcomings still need to be addressed. The first one stems
from the fact that one of the advantages of RL-based
approaches is that they can be model-free; however, in this
work, we had to use a model because the training was
conducted in a purely synthetic environment. This setup is
necessary when implementing the current black-box
approaches, as the RL agents can only learn collision
aversion through directly experiencing the consequences of
colliding. Training like this directly on a real-world system is
both excessively costly and time-consuming, besides risky. To
address this issue, one can utilize the concepts of predictive
safety filters (Wabersich and Zeilinger, 2021), enabling the
transfer of the techniques presented in this paper into real-
world applications through the explicit consideration of state
and input constraints. Another shortcoming of the work is that
the effects of wind, waves, and currents were completely
ignored. This, in combination with the surface model
assumption, comprises a significant domain gap between
the simulated and real settings. Consequently, the
controllers obtained in this work are unlikely to transfer
well to a physical CyberShip II model set to cross the
Trondheim fjord. However, implementing these effects is
not seen as a major challenge, as demonstrated in

Havenstrøm et al. (2021) in the case of ocean current
disturbances on RL-controlled autonomous underwater
vehicles with six degrees of freedom. Lastly, the lack of
interpretability and explainability of neural network policies
need to be addressed before the proposed approach can be
considered an alternative to traditional controllers. Symbolic
regression, which has been used to discover hidden physics
from data (Vaddireddy et al., 2020), can potentially convert the
trained policies into human-interpretable control laws.
Although these challenges currently prevent us from truly
utilizing the model-free property of RL controllers, they can
be addressed and solved in simulation and guide the RL
framework towards being safe and robust when applied to
physical applications.

The field of RL is advancing quickly, and novel algorithms
have emerged after SAC (being the youngest algorithm in this
set). However, the bleeding-edge RL algorithms have not yet been
implemented in user-friendly open-source Python libraries and
benchmarked against well-established algorithms. While it would
be desirable to include bleeding-edge algorithms, this work
focuses on evaluating RL algorithms with robust and user-
friendly software implementations. Historically, modern RL
algorithms are becoming increasingly applicable to a broader
range of problem settings, and their performance is increasing
proportionally. Thus, future RL algorithms will inevitably prove
to outperform any of the ones considered in this work.
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