
Technical-, Social- and Process Debt
in Large-Scale Agile: An Exploratory

Case-Study

Antonio Martini1(&), Viktoria Stray1,2(&), and Nils Brede Moe2(&)

1 Department of Informatics, University of Oslo, Oslo, Norway
{antonima,stray}@ifi.uio.no

2 SINTEF, Trondheim, Norway
nils.b.moe@sintef.no

Abstract. Large-scale agile projects bring inter-teams interaction challenges.
Teams need to be autonomous, but often crosscutting concerns affect many
teams. If the teams fail to collaborate on these concerns, the negative effects
might hinder agility in the medium and long term. In other words, the organi-
zation and the system accumulate debt, on which the teams pay a high interest.
Such debt must therefore be prioritized and “repaid” timely. We conducted a
case study with interviews, observations and document analysis. Via both team-
and large-scale retrospectives we investigated how teams coordinate and discuss
Technical-, Social- and Process Debts.

Keywords: Large-scale software development � Coordination practices �
Communication � Technical debt � Process debt � Social debt � Retrospective

1 Introduction

Large software companies strive to become more responsive in identifying and satis-
fying their customers’ needs. One strategy for increasing responsiveness is the intro-
duction of autonomous teams and agile software development [14]. However, when
many agile teams are working towards the same goal in a Large-Scale Agile
(LSA) project, a lot of coordination and management effort is required [13]. If each of
the autonomous team in LSA setting works independently, team development pro-
cesses and technical solutions would ultimately differ and may be highly disconnected
from one another. Further, a high level of team autonomy and a need for constant
delivering value to the customer, can lead to sub-optimal processes that might have
short-term benefits, but generates a negative impact for the organization in the medium-
long term. Examples of negative impact can be duplicated work, misunderstandings
and integration problems.

In recent literature, a financial metaphor has been successfully used to describe such
phenomena: aiming for short-term goals is equivalent to taking a debt, and the addi-
tional negative impact paid in the medium-long term is considered the interest that is
paid on such debt. Although the metaphor has been used to describe prevalently
technical issues (hence the term Technical Debt [4]), the debt metaphor has been used

© The Author(s) 2019
R. Hoda (Ed.): XP 2019 Workshops, LNBIP 364, pp. 112–119, 2019.
https://doi.org/10.1007/978-3-030-30126-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30126-2_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30126-2_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30126-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-30126-2_14

to describe other kinds of sub-optimal solutions, for example related to the social
structure of the development community (Social Debt [16]) or to the development
processes (Process Debt [1, 8]). However, how different types of Debt are identified
and managed in LSA, is still an open question.

As an example, let us take what is called Architectural Debt: in LSA, system cross-
cutting concerns (e.g. maintainability, usability and performance) and the consequent
technical solutions, need to be envisioned at a higher level than from a single team
perspective. As an example, if the concerns are not well separated in the system (which
represents the Architectural Debt), several teams might find themselves working on the
same shared component. Changing the same component in parallel, hinders the teams;
they have to coordinate, merge conflicts and share the responsibility of the component.
This, in the end, either creates a lot of overhead for the teams or causes the component
quality to degrade, making future changes problematic (these effects are the interest
paid on the debt). Communication is key to avoid these problems and might not happen
if not supported by practices shared across the teams.

Recent literature in LSA has provided a better understanding on how teams
coordinate; Dingsøyr et al. [5] describe 14 mechanisms for inter-team coordination in
large-scale software projects. They found that coordination of work between teams
influences teams’ internal processes and how each team makes decisions. Nyrud and
Stray [11] identified 11 coordination mechanisms in a large-scale agile project and
found retrospective meetings to be important for continuous improvement of the inter-
team coordination mechanisms. Further, managers need to be sensitive to the coordi-
nation needs as they change over time in large programs [10].

However, to the best of our knowledge, there are no related studies addressing the
challenge of balancing the management of technical-, social- and Process Debt in LSA.
We aimed to understand which types of debt that require inter-team coordination in
LSA by answering the following research question:

RQ: What types of debt are elicited and discussed on team level and inter-team
level in a large-scale agile project?

2 Technical-, Social- and Process Debt

Different types of debts have been researched. However, Technical Debt (TD) is the
one for which the most literature is available. The definition of TD is [2]:

“ […]a collection of design or implementation constructs that are expedient in the short term,
but set up a technical context that can make future changes more costly or impossible. […]”.

Different types of TD have been identified. The most common ones are [8]:

• Code Debt, which is related to sub-optimal code solutions. For example, not
declaring a variable that later requires manually changing all the instances in the
code.

• Architectural Debt is regarded as sub-optimal solutions with respect to an ideal
architecture. For example, a monolithic architecture with many dependencies across

Technical-, Social- and Process Debt in Large-Scale Agile 113

modules requires teams to change the code in many places for any change. This
might require more time to deliver features and might introduce bugs.

• Test Debt is regarded as lack or sub-optimal tests. For example, low code coverage
or the lack of structured and automated tests can be considered test debts.

• Documentation Debt is the lack or sub-optimal documentation. An example could
be the lack of description on how APIs work, which hinders developers when
correctly accessing modules, components or services across the system.

• Infrastructure Debt is related to sub-optimal solutions in the development envi-
ronment. For example, buggy knowledge management tools.

Other types of debt (non-technical) have also been identified in literature as causing
negative impact, namely Social Debt and Process Debt.

As for Social Debt, it is referred to as “the presence of sub-optimality in the
development community, which causes a negative effect” [16]. An example of Social
Debt is the lack of proper communication among key parts of the organizations (e.g.
between development and operations). Another example is having an architecture team
that is disconnected from the team and therefore might suggest architectural solutions
that are not realistic, as they do not take into consideration details and requirements
elicited during implementation.

On the other hand, Process Debt is mentioned as a type of debt that needs to be
managed [1, 8], but there exists no current definition for it. We therefore use our own
operational definition based on the ones reported for the other types of debt. We define
Process Debt as “a sub-optimal activity or process that might have short-term benefits,
but generates a negative impact in the medium-long term”. An example of Process
Debt might be that teams conduct stand-up meetings where the focus is reporting status
so that the leader knows what is going on [15]. The short-term benefit is that the team
members satisfy their leader’s need for knowing project status. However, a long-term
negative impact is that the meeting centers around reporting and not about sharing
knowledge and solving dependencies which is more valuable in the medium-long term.
Another example is a large-scale project having the presence of many meetings to
coordinate, which might seem important for solving dependencies, but disrupts the
development work compromising the project efficiency [3, 15].

3 Research Methodology

Since the goal of this research was to explore and provide insight into the phenomenon
of both technical and non-Technical Debt in LSA, we designed a case study [18] to
observe the various types of debt in practice. We chose a large-scale project that
develops a new platform supporting public transportation as our case. The project has
thirteen development teams ranging between five and fourteen team members working
towards the same products.

Understanding the design or implementation constructs that are expedient in the
short term, but that can make future changes more costly or impossible is a complex
problem. There is a need to understand challenges and improvement suggestions
together with what is working well. Further, there is a need to get many stakeholders of

114 A. Martini et al.

the LSA project together as no one in an LSA project has the full overview of the
situation. Also, the teams need to discuss issues that (potentially) negatively impact one
or more teams and involve more than one team (inter-teams) such as shared
components.

Conducting retrospective meetings is an important and popular practice in agile
software development [17], and applied both on team-level and in large-scale agile [6].
The meetings are utilized for improving the way of working, and participants often
discuss past challenges and how to overcome them to work better together in the future
[7]. Therefore, we chose retrospectives as the primary source of our data collection for
studying our research question. We chose to study team-level retrospectives (see
Fig. 1) and a large-scale retrospective. Additionally, we conducted two informal group
interviews to prepare for the retrospective sessions. All the six reports from the
meetings were imported into NVivo. We analyzed the meetings by categorizing the
reported issues into the different type of debts described in the background section.

• Team Retrospectives: In November 2017 we facilitated a retrospective meeting in
Team Alpha (see Fig. 1). This retrospective meeting had eight team members
present. We also collected four reports from their previous retrospective meetings.
These reports included what had been reported as positive and negative issues in
addition to action items (often with a person responsible for following up the item).
These retrospectives had been held between December 2016 and September 2017.

• Large-Scale Retrospective: We facilitated a retrospective meeting with project
leaders, product owners and the team leaders in the LSA project; 13 people in total.
The focus in this retrospective was on a large delivery they had been working on
from May to November 2nd, 2017. To elicit the relevant problems we chose to use
an exercise where participants discuss issues that need to be dropped, added, kept or
improved (DAKI) [12]. This exercise uses four quadrants where participants can

Fig. 1. Issues discussed during one of the team retrospectives using DAKI

Technical-, Social- and Process Debt in Large-Scale Agile 115

place issues and is good to use when there is a high number of participants and
issues. We then facilitated a discussion of the most urgent items by using the
technique Lean Coffee [9] (Table 1).

4 Results

We observed which different types of debt were discussed in team retrospectives
compared to a large-scale retrospective. This would tell us if some types of debts seem
to be more team issues (and would not require coordination) rather than inter-team
issues.

We therefore report such comparison by counting the number of issues for each
type of debt in Table 2. First, we outline the difference between Process, Social Debt
and overall Technical Debt. Then, we show the number of issues related to the sub-
types of Technical Debt. We omit Code Debt, as we did not find any Code Debt issue
discussed.

We report, in Table 3, the issues that were discussed in both team retrospectives
and LS retrospectives, as well as some of the issues that were instead discussed only on
a team level. This would show the difference between which issues were autonomously
addressed and which ones required coordination. Below the table, we list the only two
issues that were brought up during the large-scale session only (related to Test Debt).

Table 1. Data collection

Data Explanation Number

Informal group
interviews

Questions about the teams, how they were working, the
roles and their retrospective meetings

2

Retrospective
reports
Retrospective
meeting in one team
Large-scale
retrospective

We collected reports from Team Alpha
We facilitated a retrospective in Team Alpha
We facilitated a retrospective meeting with representatives
from teams in the LSA project

4
1
1

Table 2. Number of issues discussed in team and large-scale retrospectives

Debt type Team retrospectives Large-scale retrospectives

Process debt 24 17
Social debt 37 15
Technical debt 26 11
Architecture debt 6 2
Documentation debt 7 2
Infrastructure debt 7 2
Test debt 6 5

116 A. Martini et al.

5 Discussion and Limitations

The aim of this work was to understand which types of debt that require inter-team
coordination in LSA by answering the following research question: What types of debt
are elicited and discussed on team level and inter-team level in a large-scale agile
project?

Table 3. Issues that were discussed by teams only and issues that were re-proposed for inter-
team discussion and coordination

Debt type Re-proposed at inter-team level Team retrospectives only

Architecture
debt

• Unstable APIs (teams
modifying often)

• Unclear module responsibilities
(more structure needed)

• Deployment issues

Documentation
debt

• Need for spread the
documentation across teams

• Documentation issues for specific
modules

Infrastructure
debt

• Problems related to Jira and its
usage for stories and epics

• Issues related to a specific
knowledge management tool used
by the team

Test debt* • More automated tests
• More test follow-up

• Test coverage
• Specific test structure

Process debt • Have more demo sessions
• More and better structured
planning

• More meetings preparation and
effectiveness (too many
people)

• Specific release event not well
executed

• More pair-programming
• Agile definition (e.g. sprint
definition)

• Issues related to a specific team
process (e.g. team planning)

Social debt • Team autonomy
• Involvement and
synchronization with
leadership

• Sync with POs, PMs, etc
• Information and knowledge
across teams

• Common goals
• Communication and
involvement of UX developers

• Slack usage and content
• Team specific roles (e.g. specific
module testing responsibility)

• Team specific competences (e.g. UX,
design)

*Test Debt issues that were discussed on Large-Scale Retrospectives only:
• Better definition for acceptance criteria for tests
• Better end-to-end tests

Technical-, Social- and Process Debt in Large-Scale Agile 117

5.1 What Types of Debt Are Elicited and Discussed on Team Level
and Inter-Team Level in a Large-Scale Agile Project?

This study provides an initial source of evidence on the concepts of Technical-, Social
and Process Debt, and that inter-team coordination is required to tackle the various
types of debt. First, we found that many of the Process Debt issues were re-proposed in
the inter-team discussions, which implies that Process Debt needs coordination to be
solved, potentially even more than other types of debt. Second, teams discuss heavily
Social Debt issues in team retrospectives, and part of the issues are discussed again in
large agile retrospectives, especially related to team autonomy, leadership and com-
munication across teams. Third, Technical Debt is discussed in team retrospectives, but
only part of it is re-proposed for inter-team discussion.

We did not find Code Debt discussed in retrospectives at all. As for Architecture,
Documentation, and Infrastructure, inter-team coordination seems to be necessary
when it comes to APIs, documentation used across the teams and the usage of the tools
that are used by more teams.

We found a special case related to Test Debt, as some issues were re-proposed
(automation, structure), while others were discussed only on a team level. In addition,
some of the Test Debt-related issues (e.g. related to acceptance criteria, end-to-end
tests) were discussed only on an inter-team level: it seems that such issues were elicited
thanks to the joint discussion among teams.

5.2 Limitations and Future Work

In this paper, we used retrospectives to answer our research question. However, other
sources of data, for example from other forms of communication, should be analyzed to
complement the findings. For example, it could be that architectural issues are dis-
cussed in meetings that are more technical rather than in retrospectives. Furthermore,
more cases should be analyzed to understand if the results are similar in other large-
scale agile projects or if the studied project was a special case.

Acknowledgements. This work was partially supported by the Research Council of Norway
through grant 267704 and by the companies Kantega, Knowit, Storebrand and Sbanken.

References

1. Alves, N.S.R., et al.: Towards an ontology of terms on technical debt. In: 2014 Sixth
International Workshop on Managing Technical Debt, pp. 1–7 (2014). https://doi.org/10.
1109/MTD.2014.9

2. Avgeriou, P., et al.: Managing technical debt in software engineering (dagstuhl seminar
16162). In: Dagstuhl Reports. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

3. Bass, J.M.: Scrum master activities: process tailoring in large enterprise projects. In: 2014
IEEE 9th International Conference on Global Software Engineering, pp. 6–15. IEEE (2014)

4. Cunningham, W.: The WyCash portfolio management system. In: ACM SIGPLAN OOPS
Messenger, pp. 29–30. ACM (1992)

118 A. Martini et al.

http://dx.doi.org/10.1109/MTD.2014.9
http://dx.doi.org/10.1109/MTD.2014.9

5. Dingsøyr, T., et al.: Exploring software development at the very large-scale: a revelatory
case study and research agenda for agile method adaptation. Empirical Softw. Eng. 23(1),
490–520 (2018)

6. Dingsøyr, T., Mikalsen, M., Solem, A., Vestues, K.: Learning in the large - an exploratory
study of retrospectives in large-scale agile development. In: Garbajosa, J., Wang, X., Aguiar,
A. (eds.) XP 2018. LNBIP, vol. 314, pp. 191–198. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-91602-6_13

7. Kniberg, H.: Scrum and XP from the Trenches. Lulu. com (2015)
8. Li, Z., et al.: A systematic mapping study on technical debt and its management. J. Syst.

Soft. 101, 193–220 (2015). https://doi.org/10.1016/j.jss.2014.12.027
9. Österberg, M., Esni, B., Rabiee, S., Majkowska, Z.: Spotify Retro kit (2017)
10. Moe, N.B., et al.: To schedule or not to schedule? an investigation of meetings as an inter-

team coordination mechanism in large-scale agile software development. IJISPM 6(3), 45–
59 (2018)

11. Nyrud, H., Stray, V.: Inter-team coordination mechanisms in large-scale agile. In:
Proceedings of the XP2017 Scientific Workshops, pp. 1–6. ACM Press (2017). https://
doi.org/10.1145/3120459.3120476

12. Caroli, P., Caetano, T.: Fun retrospectives: activities and ideas for making agile
retrospectives more engaging. http://www.caroli.org/product/fun-retrospectives-activities-
and-ideas-for-making-agile-retrospectives-more-engaging/

13. Petersen, K., Wohlin, C.: The effect of moving from a plan-driven to an incremental software
development approach with agile practices. Empirical Softw. Eng. 15(6), 654–693 (2010)

14. Stray, V., et al.: Autonomous agile teams: challenges and future directions for research. In:
19th International Conference on Agile Software Development: Companion, XP 2018.
ACM, New York (2018). https://doi.org/10.1145/3234152.3234182

15. Stray, V., et al.: Daily stand-up meetings: start breaking the rules. IEEE Software. (2018).
https://doi.org/10.1109/MS.2018.2875988

16. Tamburri, D.A., et al.: What is social debt in software engineering? In: 2013 6th
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), pp. 93–96. IEEE (2013)

17. Version One: 12th State of Agile Report. https://www.infoq.com/news/2018/04/state-of-
agile-published

18. Yin, R.K.: Case Study Research: Design and Methods. Sage, Thousand Oaks (2009)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Technical-, Social- and Process Debt in Large-Scale Agile 119

http://dx.doi.org/10.1007/978-3-319-91602-6_13
http://dx.doi.org/10.1007/978-3-319-91602-6_13
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1145/3120459.3120476
http://dx.doi.org/10.1145/3120459.3120476
http://www.caroli.org/product/fun-retrospectives-activities-and-ideas-for-making-agile-retrospectives-more-engaging/
http://www.caroli.org/product/fun-retrospectives-activities-and-ideas-for-making-agile-retrospectives-more-engaging/
http://dx.doi.org/10.1145/3234152.3234182
http://dx.doi.org/10.1109/MS.2018.2875988
https://www.infoq.com/news/2018/04/state-of-agile-published
https://www.infoq.com/news/2018/04/state-of-agile-published
http://creativecommons.org/licenses/by/4.0/

	Technical-, Social- and Process Debt in Large-Scale Agile: An Exploratory Case-Study
	Abstract
	1 Introduction
	2 Technical-, Social- and Process Debt
	3 Research Methodology
	4 Results
	5 Discussion and Limitations
	5.1 What Types of Debt Are Elicited and Discussed on Team Level and Inter-Team Level in a Large-Scale Agile Project?
	5.2 Limitations and Future Work

	Acknowledgements
	References

