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Abstract: Digital twins, virtual representations of real-life physical objects or processes, are becoming
widely used in many different industrial sectors. One of the main uses of digital twins is predictive
maintenance, and these technologies are being adapted to various new applications and datatypes in
many industrial processes. The aim of this study was to propose a methodology to generate synthetic
vibration data using a digital twin model and a predictive maintenance workflow, consisting of
preprocessing, feature engineering, and classification model training, to classify faulty and healthy
vibration data for state estimation. To assess the success of the proposed workflow, the mentioned
steps were applied to a publicly available vibration dataset and the synthetic data from the digital
twin, using five different state-of-the-art classification algorithms. For several of the classification
algorithms, the accuracy result for the classification of healthy and faulty data achieved on the public
dataset reached approximately 86%, and on the synthetic data, approximately 98%. These results
showed the great potential for the proposed methodology, and future work in the area.

Keywords: predictive maintenance; digital twin; vibration data

1. Introduction

With the accelerated utilization of machine learning techniques in the context of
industrial processes, predictive maintenance (PdM) has become a prominent research
interest [1,2]. In an industrial context, the main goal of PdM is to optimize the maintenance
schedule by predicting failures in machineries and processes. Such a process will result in
reductions in unplanned downtimes of machinery, and fatal breakdowns [1,2]. Unplanned
downtime can result in substantial losses for companies. Thus, it is crucial to reduce system
downtime for the manufacturing industry. PdM reduces unnecessary maintenance, which
further increases the machine’s life, considering that every maintenance operation causes
downtime [3]. Another advantage of PdM is cost minimization, including minimizing fatal
breakdowns and reducing the replacement of key components, which is closely related to
the previously mentioned benefits [4]. Predictive maintenance may reduce maintenance
costs by 25–35%, eliminate downtimes by 70–75%, reduce downtime by 35–45%, and
increase productivity by 25–35% [1,2].

Aivaliotis et al. [5] investigated PdM for manufacturing resources by utilizing
physics-based simulation models and the Digital Twin (DT) concept. In large industrial
sectors, DT’s capability to predict the future performance of processes is seen as highly
valuable [6,7]. Werner et. al. [8] suggested a holistic PdM strategy, employing a hybrid
approach combining data and physics-based modeling to estimate remaining useful
life [8]. In addition, in [9,10], an assessment of the application of machine learning
techniques and ontologies in the context of PdM reported the application areas such
as fault diagnosis, fault prediction, anomaly detection, time to failure, and remaining
useful life estimation, which refer to the various stages of PdM.
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The number of publications on the application of machine learning for PdM has
increased dramatically [11]. A major challenge in developing and implementing a PdM
procedure based on machine learning is data quality; quality training data are essential
when building an ML-based predictive maintenance pipeline. It is difficult to obtain failure
data of sufficient quality and in sufficient quantity. This is particularly true when the
machine is new and without historical data. This current work involves exploration of the
generation of synthetic data from physics-based models to create failure data. Vibration is
the mostly studied measurement for PdM in manufacturing Table 5 in [11].

This paper validates the proposed approach and demonstrates its application to the
COGNITWIN project use case pilot on Spiral Welded Machinery (SWP) in the steel pipe
industry. In this industry, machinery is generally very large-scale, thus making it difficult
to track conditions and monitor health, which are crucial for product quality and process
safety. Under the COGNITWIN project scope, the hybrid digital twin was developed
for the production process of Spiral Welded Steel Pipe machinery (SWP). Improving the
operational performance of the production process is targeted by predicting and identifying
the optimal operating parameters, based on both historical and real-time data and first-
order physical models.

Synthetic data generation for predictive maintenance purposes is a developing con-
cept drawing attention from various industrial sectors; thus, there have been many recent
studies in this topic. For instance, in [12], there was a discussion of several different data
generation approaches for use in predictive maintenance, including synthetic data genera-
tion based on a virtual simulation model or based on a simplified real-life physical model.
However, for data generation, the authors suggested using, rather than a digital twin, a
real-life simplified physical model of the system from which they actively measure data
with placed sensors. In contrast, in this study, the synthetic data generation was heavily
dependent on the digital twin model of the motor and gearbox; the data are the output of
the virtual simulations conducted on this model. Several studies have recommended using
virtual models for synthetic data generation (such as [5,13]). Most studies on predictive
maintenance (especially on vibration data) found in a literature search have explained
predictive maintenance workflow conceptually, rather than explicitly describing the steps
of the workflow. In this study, we presented a complete workflow for the application of
predictive maintenance for vibration signals. Steps in the proposed workflow are special-
ized to vibration data but can also be used to experiment with signals that have similar
periodic characteristics (needed because of the proposed extracted condition indicators that
belong in the frequency domain) and transient responses (needed because of the proposed
pre-processing step), such as sinusoidal electrical circuits. Studies that have integrated
deep learning structures (such as RNNs and LSTMs) into data-driven prognostic meth-
ods include [14], which explored transfer learning for remaining useful life predictions,
and [15], which proposed adaptive time-series prediction for prognostics of lithium-ion
batteries. Unlike these two papers, deep learning structures were not implemented in
this study, as it was experimentally determined that other state-of-the-art classification
algorithms functioned with acceptable accuracy for the experiments. However, it should
be noted that deep learning structures are also compatible with the proposed algorithm.

Overall, the main objective of this study was to propose a viable means of generating
synthetic vibration data for healthy and faulty conditions and to create a viable methodol-
ogy for predictive maintenance of these vibration signals. Although predictive maintenance
and digital twin concepts have been investigated in many studies, very few specifically
target vibration signals, and prior work on the subject has been found to be lacking details
regarding the proposed algorithms. Thus, the proposal of a novel and complete workflow
for periodic signals would be useful and beneficial for numerous areas of industry using
such data, which reflects the essential motivation for this paper. The contributions of this
paper can be listed as follows:
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• A method for building a digital twin model (of a motor and gearbox circuit specif-
ically in this study) and generating synthetic healthy and faulty data using this
model is proposed.

• A predictive maintenance algorithm to estimate the current state of the machine/digital
twin is presented for all types of periodic signal (vibration data specifically in this
study), and steps of this algorithm are described in detail to ensure reproducibility.
The proposed predictive maintenance algorithm can work with both synthetic data
and suitable real-life data.

• A publicly accessible vibration dataset and digital twin model-generated synthetic data
were used to test the classification accuracy of the proposed predictive maintenance
algorithm, in terms of correctly classifying healthy and faulty data.

The remainder of the paper is organized as follows: Section 2 explains the methodology
followed. Section 3 presents the results and discusses them. Section 4 concludes the study
and introduces opportunities for future research.

2. Methodology

The methodology of this study can be described under three main sections: creating the
digital model, constructing the predictive maintenance workflow, and testing the predictive
maintenance algorithm. In this section, the methodology of the study is explained.

2.1. Creating the Digital Twin Model

The first step in the methodology is creating the digital twin model for use throughout
the study. In this step, the aim was to build a high-fidelity physical model of the real-life
physical object or system under focus. The three main parts of this step are modeling the
behavior of the individual components, modeling the behavior of the overall system (collec-
tion of components), and finally, modeling the sensors and fine-tuning the parameters [5],
as shown in Figure 1 below.

Figure 1. Modeling step—first step of the methodology.

The system modeled consists of a motor and gearbox. The circuit includes components
from electrical, thermal, rotational motion, and translational motion domains. The system
represents the motor circuit of the main driver of a metal sheet roller machine. Two main
base components of the model are the universal (electrical and mechanical components)
motor, driven by a DC voltage source, and the gearbox, which reduces the rotation of
the motor. The DC-driven universal motor of the circuit is designed based on electrical
(Kirchhoff’s voltage law) and mechanical (Newton’s second law of motion) equations. The
two governing equations of the motor are v = Ri + L di

dt + ve (Kirchhoff’s voltage law),
where v is the input voltage, R is the motor resistance, i is the motor current, L is the motor
inductance, and ve is the back electromotive force, and Te = TL + Bω + JL

dω
dt (Newton’s

law), where Te is the electromotive torque, TL is the load torque, JL is the total inertia, ω is
the angular velocity, and B is the angular friction. The two equations are connected by the
relationship between electromotive force and angular velocity (ve = Kvω, where Kv is the
back electromotive force constant), as well the relationship between the torque and current
(Te = Kti, where Kt is the torque constant). Figure 2 below shows a simple physics-based
schematic of a DC-driven universal motor [16].
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Figure 2. Physics-based schematic of a DC-driven universal motor.

However, as stated, this study was focused on investigating the vibration signals.
Thus, one of the key parts of the model is the vibration signal created by the subsystem
that transforms the total rotational displacement at the output of the motor and gearbox
to translational motion via masses and springs. The vibration signal is measured from
the spring-damper chain found in this subsystem. The thermal domain components are
temperature sensors, which can monitor the heat exchange between the motor and the
environment. All measurements are gathered by respective sensors placed in the model
(electrical sensors, thermal sensors, translational motion sensors, and rotational motion
sensors). The main technical challenge in the model creation step was obtaining a reliable
and accurate vibration output signal compatible with the digital twin model. With the
initial version of the twin model, adding a subsystem that directly generates a vibration
signal failed to yield desired results due to the operation mechanisms of the existing
fault models. To ensure a satisfactory vibration output, the digital model was renovated,
and several obsolete fault models and sensors were removed and replaced by new fault
subsystems, as well as a subsystem to generate a vibration signal, creating more accurate
vibrations from the digital twin. Another challenge was to find a suitable consistency
tolerance for the solver configuration of the model. The default value for the consistency
tolerance (10−8) provided by Simulink caused some simulations to raise error flags, and
the interruption of the whole simulation process, due to calculational insensitivities of
the motor current signals. This consistency tolerance was alleviated to 10−6 to eliminate
false error flags and obtain a smoother simulation process. The digital twin model was
constructed in MATLAB Simulink, and all simulations/data generation and gathering
related to the twin model were carried out in MATLAB. Figure 3 below shows the digital
twin model created in MATLAB Simulink.

Fault modeling is a key part of a digital twin model used in predictive mainte-
nance [17]. In this study, the main emphasis of the model was also the fault modeling. Two
fault types were investigated and modeled in this study: gearbox tooth faults and vibration
sensor errors. The tooth fault was modeled by inserting an undesired faulty torque at a
fixed position (an error in a fixed tooth) in the turn of the gearbox shaft. A value of this
disturbance torque of 0I indicates no error in the model. A visualization for gearbox tooth
faults is shown in Figure 4. The second type of error source is in vibration sensors. In
order to represent both the measurement errors and the intrinsic mechanical errors of these
sensors, a simple offset was inflicted in the measurement of the vibration sensors; a value
of 0 in this offset indicates no error in the measurement of vibration signals.
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Figure 3. Diagram of the digital twin model.

Figure 4. A visualization for gearbox tooth faults [18].

Both errors (gearbox tooth fault and vibration sensor drift) described in the previous
paragraph are modeled as subsystems in the diagram shown in Figure 3 above. Another
subsystem shown in the diagram functions as a tachometer, in case it was needed. Although
this subsystem was not used in this study, it is potentially valuable in further work. The
tachometer’s output (output of the subsystem) contains pulses that correspond to the
rotations of the motor and the gearbox.

The content of the digital physics-based model is as explained above. The last part
of the modeling step is setting the parameters of the components of the twin, as shown
in Figure 1 above. For this part, the parameters of the components were carefully tuned
and set, after consulting the owner of the SPW machinery, the firm NOKSEL. To create
conditions that were as close to reality as possible, all the parameters were set to the values
provided by the owning firm, and if the exact value of a parameter could not be obtained,
an approximation was made that was known to be correct to the nearest order of magnitude.
As can be seen from Figure 3 above, the digital twin model contains 87 components, and
in consequence, many parameters. These parameters include the electrical power, inertia
and rated speed of the universal DC motor, voltage of the DC supply that drives the motor,
follower-to-base teeth ratio of the gearbox, resulting losses of the system due to friction,
and values of masses and inertias in the damping components. As can be understood
from this variety of components, for the purpose of the digital twin, it is crucial to be as
close to the real values of parameters as possible. If the parameters of components are
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unrealistic, the behavior and the output signals of the digital twin would not reflect the
actual behavior of the SPW machinery. Thus, a precise co-operation was conducted with
NOKSEL to fine-tune the component parameters. After the parameter calibration step,
the modeling was completed. The main benefit of a physics-based digital twin model is
the ability to generate synthetic data. In this study, the described digital twin model was
constantly used to generate both healthy and faulty synthetic data, for use in the later
stages, during the predictive maintenance algorithms development.

2.2. Predictive Maintenance Workflow

In general, a basic predictive maintenance workflow has four main steps [19]: data ac-
quisition, preprocessing, identifying condition indicators, and training. An image depicting
these four steps can be seen in Figure 5 below.

Figure 5. Predictive maintenance workflow.

As shown in Figure 5, the first step of the algorithm is acquiring the data to be worked
on. Each predictive maintenance workflow begins with data, either synthetic or real-life
data [12]. In this study, synthetic data were generated via the digital twin model described
in the previous subsection. The digital twin model is configured with error variables that
describe the level of two error sources, namely gearbox tooth fault and sensor errors, as
explained above. Changes in the values of these error variables in different simulation
runs generate different vibration data. In order to ensure generalizability of the results,
the values of error variables were assigned randomly in different simulations from a
certain boundary of values. The synthetic data generation algorithm is briefly described in
Algorithm 1 below. As well as the synthetic data, real life data were also used to test the
created predictive maintenance algorithm (the testing process is explained in detail in the
following section). Real life vibration data were acquired with a sampling period of 10 ms
and the data included 411,863 datapoints. Furthermore, a frequency domain analysis was
carried out to confirm the resemblance between the generated synthetic data and measured
real-life data. Both real-life and synthetic data were transformed via the Fourier transform,
and frequency contents were compared via power spectra and peak frequency analysis.
The resulting graph of the power spectra analysis, shown in Figure 6 below reveals that
the bandwidth of the synthetic data (spectrum shown in the bottom graph in Figure 6)
and the bandwidth of the real-life vibration data (spectrum shown in the top graph in
Figure 6) were both between approximately 30 and 45 Hz, and the peak frequencies were
at approximately 39 Hz in both data. The boundary of power values for each data was also
very close, indicated by the y-axis of both graphs in Figure 6.

Algorithm 1 Synthetic Data Generation Algorithm

Input: Description of the List of Failures
(1) Develop Detailed Physics-Based Model of the Process
(2) Develop and Implement Modelling Strategies of the Failures
(3) Input Realistic Range of Variables Responsible of the Failures
Randomly vary the Variables Responsible of the Failures
Run Until Enough Data
Output: Supervised Dataset for Predictive Maintenance
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Figure 6. Result of the power spectra analysis.

The next step of the predictive maintenance workflow is preprocessing. Preprocessing
is essential for all applications of machine learning model development processes in
the following step, extracting condition indicators [20]. In this step, the raw data are
manipulated and transformed into a form that facilitates the extraction of features and
indicators. In this study, the preprocessing step consisted of three sub-steps. First, the first
section of simulation outputs, called the transient response of the simulation, was removed
to obtain the actual frequency contents of the signal. Then, the signals were filtered to
reduce the noise. Lastly, in this step, each simulation was classified based on the type of
error. There are two different error variables, and either of these may or may not induce
an error based on its value; thus, four different classes emerge. If both error variables are
in the boundary, such that they induce no error, the simulation is said to be in the healthy
condition (Class 0), and if both error variables are in the error interval, the simulation is
said to be in Class 3 (both variables induce error). In Class 1, there is only a gearbox tooth
fault present in the simulation, and in Class 2, only vibration sensor drift error. Another
challenge in the synthetic data generation process was determining the threshold levels for
the error source variables, which indicates whether a simulation condition is healthy or
faulty. As the values for the error variables were randomly given from a specified interval,
choosing very small healthy condition boundaries resulted in domination of the sampling
of faulty conditions, lowering the accuracy of identification of the healthy conditions in
the classifier model training step, because the healthy condition class was under-sampled.
Such a sampling inequality was overcome by broadening the threshold values specifying
the healthy conditions, leading to a greater overall accuracy of the classifier. Figure 7 below
shows an example simulation output before the preprocessing step (Figure 7a) and after
(Figure 7b). Note that the first 5 s of the signal (the initial transient response) in Figure 7a
was removed, as well as the noise.
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Figure 7. Effect of the preprocessing step proposed above, on an example vibration signal: (a) Vibration data before the
proposed preprocessing step; (b) Vibration data after the proposed preprocessing step.

The following step was the identification of the condition indicators, also called
features. Features are properties belonging to a particular dataset that change in an
anticipated manner as the system itself changes or deteriorates [21]. Condition indicators
are features involved in many different areas of signal analysis, including time domain
features (e.g., mean and standard deviation), frequency domain features (e.g., power
bandwidth and peak frequency), and time–frequency domain features (e.g., special entropy
and special kurtosis). In this study, the following 18 different features from time and
frequency domains were extracted from the preprocessed data: signal mean, median, RMS
value, variance, peak value, peak-to-peak value, skewness, kurtosis, crest factor, median
absolute deviation (MAD), range of cumulative sum, correlation dimension, approximate
entropy, Lyapunov exponent, peak frequency, high-frequency power, envelope power,
and spectral kurtosis. As seen, the features used belong to the time domain, frequency
domain, and time–frequency domain. These features were chosen as being well-established
types of evaluating signal data, in particular, signals that have distinct frequency content,
as in the case of vibration signals [22]. After all 18 features were extracted from the
data, neighborhood component analysis (NCA) was applied to the features for the two
error sources in the model. NCA ensures that only relevant features (relevant condition
indicators) are retained and that the others (those not useful in diversifying different error
classes) are disregarded. This accelerates the final step of the predictive maintenance
workflow, model training.

Model training is the final step of the predictive maintenance workflow of this study,
as mentioned above. A trained model lies at the heart of the predictive maintenance
algorithm. This model examines extracted condition indicators (or features), either to
assess the system’s present state (fault detection and diagnosis) or to forecast its future state
(remaining useful life prediction). After the features are extracted from the preprocessed
data, and NCA is used to disregard undecisive features, and the remaining features are used
to train a machine-learning model to determine the current error condition of the physics-
based model. In both synthetic data and public dataset cases, the remaining features were
the same, and for both cases, NCA decreased the number of features from 18 to 11: mean,
median, peak, kurtosis, crest factor, MAD, range of cumulative sum, correlation dimension,
approximate entropy, Lyapunov exponent, and envelope power. Determining the current
condition of the digital twin model means assigning a class of error conditions to the
current state of the model (according to current value of error variables) among the four
error condition classes described earlier. Details of the model training are explained in the
following subsection.
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2.3. Testing the Predictive Maintenance Algorithm

The proposed predictive maintenance workflow described in the previous subsection
was tested by two methods. The first test used bearing data provided by the public dataset
of Case Western Reserve University (CWRU) [23,24]. This dataset provides bearing test
data for normal and faulty bearings, which resembles the results aimed at by generating
synthetic data (healthy and faulty conditions). As with the synthetic data, the CWRU data
also included four classes, one healthy and three faulty. Data in the public dataset were
collected at 12,000 samples per second. These collections were continuous measurements,
and in different time intervals, different fault conditions were exposed. However, in order
to create enough different data elements, the continuous measurements were segmented by
1001 data points (in order to accord with the synthetic data, which consisted of 1001 data
points for different simulations, as explained subsequently). In order to test the proposed
predictive maintenance algorithm, the dataset was first preprocessed as explained in the
previous subsection. Then, the features listed in Section 2.2 were extracted from the
preprocessed data, and NCA was applied to eliminate unhelpful features. The process
concluded with the training of the diagnosis model (the model that estimates the current
state of the digital twin). This training involved the feature table composed of all 11 relevant
features remaining after NCA, as listed in the previous section, for all data elements. Then,
this feature table was used for training with many different state-of-art machine learning
algorithms, such as SVM, ensemble trees, naïve Bayesian, KNN, and discriminant methods.
The accuracy of these predictions was examined with different algorithms to assess the
success of the proposed predictive maintenance algorithm. Of the many classification
algorithms that were used to train the model, the 5 above-listed algorithms yielded the
most accurate results for both the synthetic data and the public CWRU dataset during
classification. Thus, the classification accuracy for these 5 algorithms is presented in the
graphs and discussed in the next section, Results and Discussion.

The second test of the algorithm was conducted on the generated synthetic data. This
test resembles the test with the public CWRU dataset but using the synthetic data from
the digital twin model instead of the bearing data from the public dataset. These synthetic
data were also a continuous measurement for each simulation. Each simulation was run
with different error variable values and lasted 15 s. In the preprocessing, the first 5 s
was removed as the transient response, leaving 1001 measurements (1001 data points) in
each simulation. For each error variable, 50 random variables were used; thus, in total,
50 × 50 = 2500 simulations were obtained, which means 2500 different elements were clas-
sified in the training model. The number of random variables (50) was deliberately chosen
for computational efficiency, a priority in this study. In addition, 2500 simulations yielded
a large enough dataset to run classification models, without producing very complex and
time-consuming results. If computational efficiency had not been a concern, the number of
different error variables could be increased, as discussed in the future work section. Once
again, the features listed in Section 2.2. were extracted from the data, and NCA was applied
to eliminate unhelpful features. The resulting feature table (with the remaining 11 features
listed above in Section 2.2, as with the CWRU dataset case) was used in training with the
same algorithms as listed in the previous paragraph, and once again, the accuracies of these
predictions were examined to deduce the accuracy of the proposed algorithm. The overall,
complete flowchart of the proposed workflow, including the synthetic data generation step,
is shown in Figure 8 below. The classification accuracy results for the CWRU dataset and
synthetic data are presented and discussed in the following section.
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Figure 8. Overall flowchart of the proposed workflow.

3. Results and Discussion

This section contains a discussion of the results of the classification accuracy after
model training for the CWRU dataset and the synthetic data. First, Figure 9 below, showing
the accuracies for the CWRU, reveals that, regardless of which algorithm is used to train
the diagnosis model, the estimation of the current state of the system was better than
chance. The best-performing algorithm was the ensemble bagged tree, with the accuracy
of 85.85%. The yields in accuracy in classification were as follows: weighted KNN, 73.76%;
cubic SVM, 67.82%; quadratic discriminant, 59.72%; and naïve Bayesian, 56.94%. The
better-than-chance training accuracy for each algorithm, and the models’ ability to estimate
the current state of the system with over 70% accuracy for some algorithms, showed that
the algorithm works as desired for the CWRU dataset. In Figure 10, the accuracy results for
the synthetic data are shown. Notice that the limits of the y-axis in Figure 10 are different
than those in Figure 9.

Figure 9. Accuracy results for different algorithms for the CWRU dataset.
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Figure 10. Accuracy results for different algorithms for the synthetic data.

As can be seen from Figure 10, for all algorithms, the accuracy of state estimation was
greater than 90%. The highest accuracy was once again with ensemble bagged trees, at
99%. The accuracies for cubic SVM, weighted KNN, quadratic discriminant, and naïve
Bayesian were 99%, 98.1%, 96.8%, 92.3%, and 91.5%, respectively. It can be deduced
that the proposed predictive maintenance algorithm worked exceptionally well for the
synthetic data. However, there was a clear performance difference between the synthetic
data and CWRU dataset because the measurements in the CWRU dataset were taken from
a real-life device, making it practically impossible to obtain the same measurements and
characteristics for a certain error class at different times. However, synthetic data generation
is a theoretical process, and the characteristics of an error class can be exactly replicated
in different runs. Thus, the classification gives very accurate results for synthetic data, as
the characteristics for different classes can be exactly replicated for different elements in a
particular class.

In Figure 11 below, feature vs. classes histograms for the classification in the syn-
thetic data case with the ensemble bagged tree algorithm are shown, where, in each
graph, the y-axis corresponds to the number of datapoints. Graphs in Figure 11 show
the feature vs. class diagrams for each feature (before applying NCA and eliminating
features) for the synthetic data. It can clearly be seen that peak spectral kurtosis (shown
on the bottom right in Figure 11c) is an irrelevant feature for classifying the different
faulty conditions, as it is unable to separate different classes, and will likely be elimi-
nated through applying NCA. On the other hand, Figure 11b shows that approximate
entropy is a good feature to separate healthy conditions from faulty conditions and will
likely be used as a feature in the classification model. Figure 10 clearly demonstrates
that some features can easily differentiate between different classes, and through multi-
ple features, the trained model can classify different error conditions and estimate the
current system state with very high accuracy.
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Figure 11. Features vs. classes graphs for the synthetic data with ensemble bagged tree algorithm: (a) Feature vs. classes
graphs for mean, median, variance, peak value, skewness and kurtosis; (b) Feature vs. classes graphs for RMS value, MAD,
peak-to-peak value, approximate entropy, crest factor and high-frequency power; (c) Feature vs. classes graphs for range of
cumulative sum, correlation dimension, Lyapunov exponent, peak frequency, envelope power and spectral kurtosis.

4. Conclusions

The main goal of this study was to suggest a viable workflow to generate healthy and
faulty synthetic vibration data, and to bring forward a feasible predictive maintenance
algorithm to classify these faulty and healthy data. This main objective was met by a process
involving creating an algorithm consisting of a digital twin model of the system, generating
the synthetic data, preprocessing the synthetic data, and extracting condition indicators
(also called features) from the preprocessed data and machine learning model training. The
success of this proposed methodology was assessed through two test processes. First, the
proposed methodology was applied to the CWRU public-bearing dataset, and the success
of the workflow in classifying the faulty conditions was better than chance for five different
state-of-the-art machine learning algorithms. For some of these algorithms, the classifying
accuracy reached approximately 85%. Secondly, the proposed methodology was tested on
the synthetic data generated by the digital twin model. For the synthetic data, the workflow
was very successful in classifying different simulation conditions (different faults), with
the accuracy of classifications above 90% for the same five ML algorithms, and in some
cases, reaching approximately 99%. These results showed that the proposed methodology
functions as desired, with acceptable accuracy in classification.

The scope of the future work in this area should consider several key aspects. One
of these is the size of the synthetic data dataset. In this study, two error variables were
used to generate 2500 unique simulations and the classification accuracy was very high.
In order to further test the proposed methodology, more error variables may be used
in the digital twin model, to obtain more than 2500 unique simulations. It should be
remembered, however, that this would increase the computational cost and decrease
the time-efficiency of the study. Furthermore, the digital twin model used in the study
may be upgraded to a cognitive twin model, and also state estimation filters, such as
Kalman filtering, may be used to update the component parameters to obtain more
realistic data from the physics-based model. In summary, the proposed methodology
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was successful in creating faulty and healthy synthetic data, and in classifying the faulty
conditions within the desired boundaries.
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