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Abstract: The research addressing loss of integrity (LOI) for hydrogen containment 
technologies requires a multidisciplinary perspective. However, lack of collaboration between 
materials and process safety engineers is reflected in the theory addressing the LOI phenomena. 
Even though the potential degrading mechanisms related to hydrogen-metals interaction are 
being extensively studied, they are not explicitly considered by standards and recommended 
practices in relation to plant inspection planning. This inevitably introduces additional 
uncertainties while planning for inspections and predictive maintenance and leads to the 
necessity to address and consider generic mechanisms of material degradation within the 
framework of LOI development prediction. A review of the available standards and 
recommended practices for inspection planning is here conducted to identify how metal-
hydrogen interactions are currently considered in terms of degradation mechanisms. Focus is 
given to risk-based approaches, which include the assessment of potential accident scenarios as 
consequence of LOI. In particular, the association of metal-hydrogen mechanisms with damage 
factors influencing the predicted LOI frequency is studied to understand their impact both on the 
risk and the inspection typology. Appropriate knowledge of material degradation mechanisms 
for hydrogen containment is of paramount importance as it allows not only for a correct design 
of the equipment of interest, but also for a suitable inspection and maintenance planning so to 
guarantee its integrity through an effective and informed risk-based approach. A few 
modifications to the current standards are suggested as a result of this work. 

Keywords: Hydrogen containment, Risk-based inspection, Loss of integrity, Hydrogen damage, 
Standards. 

1.  Introduction 
After the outbreak of the COVID-19 pandemic, the interest in renewable energy systems (RESs) for the 
energy transition skyrocketed [1]. One of the main drawbacks of the RES is its intermittence. This 
limitation may be surmounted by employing hydrogen as energy carrier in the solar and wind parks [2]. 
Although hydrogen has very peculiar properties that make it suitable for several applications, it is also 
a hazardous substance and different accident scenarios might arise if not properly handled. On the one 
hand, it is the most abundant element in the universe, potentially clean and renewable, non-toxic and 
with a high gravimetric energy content compared with the hydrocarbon fuels (lower heating value: 120 
MJ kg-1 [3]). On the other hand, some few hydrogen characteristics raise the safety concern about its 
application in different processes and technologies. In particular, it is highly flammable and the size of 
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its molecule is the smallest one when compared to the other existing elements. Therefore, it can escape 
from containment creating flammable jets or explosive clouds and diffuse in the materials due to its 
atomic and molecular size [4]. Depending on different parameters such as the operative conditions, 
several types of hydrogen damages (HDs) can manifest [5]. The material (often metal) in contact with 
hydrogen is then subjected to a degradation that is time dependent and that may lead to the loss of 
integrity (LOI) of the piece of equipment at a certain point. 

Ustolin et al. [5] demonstrated that there is a lack of collaboration between materials and process 
safety researchers, suggesting that the LOI investigation for hydrogen technologies based on a 
multidisciplinary approach would be more suitable. This inadequate cooperation reflects in the 
theoretical knowledge on the LOI phenomena. Moreover, the outcomes of different studies on metal-
hydrogen interaction mechanisms [6,7] are not yet included in the main standards and recommended 
practices for plant inspection planning despite being highly relevant with respect to LOI characterization 
and prediction. In fact, these documents consider only the generic degradation mechanisms for almost 
all the interactions between different substances and materials, introducing uncertainties during the 
planning for inspections and predictive maintenance activities. 

The risk-based inspection (RBI) is the decision-making technique for inspection planning based on 
risk [8]. During the inspection phase of the RBI approach, the risk is evaluated. Both the probability and 
the consequence of failure are necessary to assess the risk level. The calculation of the probability of 
failure for hydrogen technologies is a challenging task. For this reason, different accident databases for 
hydrogen were created as, for instance, the hydrogen incident and accident database (HIAD) which was 
recently updated by the Fuel Cells and Hydrogen Joint Undertaking 2 – Joint Research Centre (FCH 2 
JU JRC) [9]. However, the traditional risk assessment tools cannot be employed due to the limited 
amount of statistics available on faults and failure modes [9]. The understanding of the LOI phenomena 
for hydrogen technology might aid the evaluation of the loss of containment (LOC) frequency.  

The aim of this contribution is to comprehend which degradation mechanisms should be considered 
for hydrogen technologies. Hence, appropriate suggestions on modification of the current RBI standards 
are provided as well as proposition for future studies. In section 2, the H2 CoopStorage project in which 
the hydrogen degradation mechanisms will be investigated, is briefly described, while in section 3 the 
RBI methodology is presented. The methodology adopted in this analysis, and the results and discussion 
are provided in section 4 and 5, respectively. 

2.  H2 CoopStorage project description 
This study is part of the “Development of tools enabling the deployment and management of a multi-
energy Renewable Energy Community with hybrid storage (H2 CoopStorage)” project [10]. The aim of 
this project, funded within the framework of the Smart Energy Systems ERA-Net [11], is to promote 
the deployment and management of a multi-energy (electric and heat) community by integrating hybrid 
energy storage (electrochemical and hydrogen) able to satisfy the daily and seasonal energy demands, 
and through the development of methodological tools and software. Part of the project focuses on the 
safety aspects of the hydrogen handled and stored within the energy community. The motivation is to 
cover the lack of knowledge on the safety issues associated with the widespread deployment of hydrogen 
technology that represents a major bottleneck for industry, authorities, end users and the social 
acceptance. In this context, the development and validation of risk assessment models and the 
dissemination of knowledge and guidelines concerning the hydrogen safety, for use by the general 
public, are of paramount importance. In particular, a predictive methodology for the dispersion of 
hydrogen gas in its environment will be developed so to allow the determination of the risks related to 
events of a leak or explosion. This innovative and validated risk assessment tool for the hydrogen value 
chain will support critical decision making in terms of safe design, inspection and maintenance 
operations. In order to achieve these audacious goals, it is essential to investigate the metal-hydrogen 
interactions and thus fully comprehend the physical and chemical phenomena that may lead to a LOI of 
the hydrogen equipment.  
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3.  Risk based inspection (RBI) 
The first RBI methodology was developed by the American Petroleum Institute (API) in 1994. For this 
reason, most of the current RBI standards are based on the API methodologies (mainly API RP 580 and 
581 [4, 5]). Generally, RBI is an approach that aims to achieve different targets related to health, safety, 
business and environment criteria [14]. Usually, a multidisciplinary engineering analysis is applied to 
meet these targets. In particular, optimized inspection, monitoring and maintenance programs based on 
a risk-based methodology are implemented in the analysis. As previously mentioned, the evaluation of 
risk follows the procedure describe in figure 1, thus both the probability and consequence of failure must 
be estimated. 

 

 
Figure 1.  Risk evaluation approach. 

 
The calculated risk can be decreased or confirmed by the inspection results. The effectiveness of the 

RBI methodology is depicted in figure 2 where the predicted risk, which exponentially increases in time 
due to several factors, can be reduced after each inspection and be kept below a relatively safe risk 
target. 

 

 
Figure 2. Risk target and inspection planning. 

 
The definition of the RBI framework (RBIF) constitutes the core of the analysis, after the planning 

of the primary work products of RBI assessment and management which aids the prioritization of system 
and/or equipment inspection based on risk. Finally, the methodology must comply with applicable legal 
or normative regulations and guidelines. Different requirements must be met by the RBIF: plant and 
process documentation, personnel requirements, requirements for performing probability of failure 
(PoF) and consequence of failure (CoF) analyses and risk assessment [14]. Therefore, the RBIF process 
is divided in different steps which are displayed in the schematic of figure 3. These steps create a loop 
that should ensure the continuous improvement of the analysis and suggest modifications of the 
management. It can be concluded that RBI is a decision-making management tool applied to the issue 
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of inspection planning which aims to increase reliability by lowering cost and risk (likelihood and 
consequence) [8]. 

 

 
Figure 3. Framework of RBIM procedure within the overall 
management system (adapted from [14]). 

4.  Methodology 
Firstly, a brief review of the available standards and recommended practices on RBI planning was 
conducted. Secondly, the most recent standard was selected, and the reported types of damage generated 
by different degradation mechanisms were investigated. Therefore, the focus was placed on the metal-
hydrogen interactions and the phenomena that may lead to a LOI of the containment. A comparison 
between the main LOI phenomena for hydrogen technologies and the types of damage considered by 
the standard was conducted. Since the types of damage differently influence the predicted LOI frequency 
and thus the risk and the inspection method, appropriate recommendations for the modification of the 
RBI standard were provided. 

5.  Results and discussion  
In this section, the results of the review of the available standards and recommended practises for 
inspection planning are presented. Furthermore, the outcomes of the comparison between the damages 
considered by the standards and the LOI phenomena related to hydrogen are reported. 

5.1.  RBI standards and recommended practices 
The main available standards and recommended practices for RBI planning are listed in table 1. Only 
the most recent version of each standard is presented. All the standards suggest inspection once the 
predicted risk of a piece of equipment reaches a predetermined risk value. As previously mentioned, 
both the PoF and CoF analyses must be conducted to estimate the risk level. Although the RBI 
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methodologies proposed by these documents have several aspects in common, they differ in the 
definition of the damages. For instance, the DNVGL-RP-G101 considers the damage mechanisms while 
the EN16991 provides examples of types of in-service damage. Moreover, few damage types are not 
included in all the standards listed in table 1. 

 
Table 1. Risk-based inspection standards in literature. 

Standard Ref. Title Year 
API 580 [12]  Risk Based Inspection 2016 
API 581 [13]  Risk Based Inspection methodology 2016 

ASME PCC-3 [15]  Inspection Planning Using Risk-Based Methods 2017 

DNVGL-RP-G101 [8]  
Risk based inspection of offshore topsides static 

mechanical equipment 2017 
EN16991 [14]  Risk-based inspection framework 2018 

 
Table 2. Comparison between examples of damages provided by the 
EN16991 standard [14], and the loss of integrity (LOI) phenomena for 
hydrogen technologies [5]. 

LOI phenomena EN16991 

Hydrogen damages (HD):  
o Hydrogen embrittlement (H2 

environment embrittlement, H2 stress 
cracking, loss in tensile ductility) 

Embrittlement incl. hardening, strain 
aging, temper embrittlement, liquid 
metal embrittlement, etc. (general) 

o Hydrogen attack (HA) High temp. HA (H2 induced damage) 
o Blistering Blistering (H2 induced damage) 
o Shatter cracks, flakes, fisheyes Cracking, mainly on surface (general) 
o Microperforation Micro-cracking (general) 
o Degradation in flow properties Fluid flow disturbance (general) 
o Metal hydride formation Dealloying (general) 

Low temp. embrittlement Embrittlement (general) 

Thermal contraction, stresses caused by: 
o dimensional change 
o thermal gradients 

Dimensional changes, thermal fatigue 
(general) 

5.2.  Loss of integrity phenomena and their mechanisms 
A thorough review of the main physical and chemical phenomena that may lead to a LOI of hydrogen 
technologies together with their mechanisms can be found in [5]. The LOI phenomena that are provoked 
by the metal-hydrogen interaction at molecular level are categorized as hydrogen damage (HD). It must 
be mentioned that the HD might happen even in equipment in which hydrogen is not directly employed. 
On the other hand, the low temperature embrittlement (LTE) and the thermal contraction are LOI 
phenomena that develop due to the extremely low temperature of liquid hydrogen (-253°C at 
atmospheric pressure [16]). During the thermal contraction the stresses in the material can be generated 
by the dimensional change or the high thermal gradient between different parts of the liquid hydrogen 
(LH2) equipment such as a tank or a pipe. However, these two phenomena are usually not considered as 
HD but can manifest together with one or more HDs, and thus increase the risk level of the piece of 
equipment. Since the last standard listed in table 1 (EN16991) is the most recent one as well as the result 
of previous RBI methodologies, it was selected for a more detailed investigation on the interested LOI 
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phenomena. A comparison between these latter and the damages considered by the EN16991 standard 
is presented in table 2. 

It can be noticed that only two types of damages are related to hydrogen: the high temperature (200 
÷ 595°C) hydrogen attack (HTHA) and the blistering. Even though different LOI phenomena are taken 
into account by the selected RBI methodology these are generalized for all the types of interactions 
between metals and different substances. The damage mechanisms that lead to the LOI phenomena are 
different for hydrogen compared to most of the substances due to the large difference in chemical and 
physical properties. One of the most studied and well-known LOI phenomena is the hydrogen 
embrittlement which includes three different phenomena: hydrogen environment embrittlement, 
hydrogen stress cracking and loss in tensile ductility. Hydrogen embrittlement phenomena are very 
peculiar and frequent in the process industry. However, the magnitude of the degrading effects of 
hydrogen uptake into materials is highly material-dependent and therefore, HE can be "managed" and 
even avoided with an appropriate selection of materials during the design phase and/or by refraining 
processing techniques that might generate hydrogen, such as electroplating [17], during both the design 
and maintenance phases. However, this type of damage is generalized in the standard and hydrogen is 
not even mentioned. This is the case also for the micro-cracking, fluid flow disturbance and dealloying. 
Furthermore, flakes and fisheyes, which are similar to blistering but manifest during forging, weldment 
and casting, were not reported in the document. Finally, metal-hydrogen interactions can drastically vary 
depending on the materials systems and the operating conditions. Therefore, the damage mechanisms 
may lead to significant different LOI, thus LOC and CoF. An inappropriate risk assessment might be 
carried out by generalizing or neglecting the types of damage. 

As previously mentioned, the LTE as well as the thermal contraction may occur due to the extremely 
low temperature of the LH2 or cold hydrogen gas. The boiling points of the cryogenic fluids usually 
employed in the process and chemical industries are quite higher than the temperature of LH2 at 
atmospheric pressure. For instance, liquid nitrogen, adopted in several applications and processes, has a 
temperature of -195.8°C (77.35 K) [16] at atmospheric pressure, i.e. more than 56°C above the LH2 
boiling point. Therefore, the stresses generated in the materials which contains the LH2 are greater than 
the ones for the other cryogens with exception for liquid helium which has a boiling point of -268.9°C 
(4.25 K) [16] at atmospheric pressure. In addition, the LH2 boiling point is lower than the ductile-brittle 
transition temperatures of most of the metals commonly employed in the chemical industry. This aspect 
reduces the range of suitable materials choice for hydrogen storage and might increase the PoF. The 
fatigue life of the components subjected to either pressure or temperature cycles must also be carefully 
evaluated. Different studies conducted by Murakami et al. [18], Nakamura et al. [19] and San Marchi et 
al. [20, 21] demonstrated the need for further investigations on the behaviour during fatigue cycles for 
the materials selected for hydrogen applications. Finally, the cryo-compressed hydrogen storage is one 
of the most suitable solutions to increase the hydrogen density (up to 80 kg m-3 at 300 bar and -235°C 
[22]). In this case, the HD can manifest together with other physical phenomena such as LTE and thermal 
contraction, and the fatigue cycles are of thermomechanical nature. It must be highlighted that nearly 
each HD has different mechanisms and a unifying universal theory able to encompass all the reported 
HDs does not exist yet. The understanding of the HD mechanisms might greatly aid the probability 
evaluation during the risk assessment particularly if allows for the prediction of failure modes inherent 
to the material of interest for the given application. This seems to be currently impeded due to the lack 
of fault and failure modes for hydrogen [9].  

For all the reasons heretofore described, it is suggested to update the current standards and 
recommended practices. In particular, few LOI phenomena related to hydrogen such as flakes and 
fisheyes must be included among the damages considered by the EN16991 standard. In addition, it 
should be specified that the damage mechanisms and failure modes may differ greatly when hydrogen 
enters into play when compared to more inert environments. Furthermore, a dearth of knowledge on 
metal-hydrogen interaction still exists in the literature. Nevertheless, it is critical to comprehend which 
are parameters and operational conditions affecting the LOI occurrence the most in order to prevent 
and/or mitigate any LOI occurrences during the design, inspection and maintenance phases. 
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6.  Conclusions  
The RBI methodology was described in this study and a brief review of the available RBI standards and 
recommended practices was provided together with a comparison between the main HDs and the types 
of damage considered by the RBI standards. It was highlighted that most of the HDs are not included in 
these documents. Therefore, few modifications to the standards are suggested. Moreover, it is critical to 
improve the knowledge on material degradation mechanisms for hydrogen equipment especially in the 
case of new applications and thus emerging technologies. Future studies on the HD mechanisms must 
be conducted to understand which are the parameters that influence more the formation of the 
phenomena. In this manner, it would be possible to optimise the inspection planning of the hydrogen 
containment. 
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