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ABSTRACT: Computational screening methods have changed the way new materials and
processes are discovered and designed. For adsorption-based gas separations and carbon
capture, recent efforts have been directed toward the development of multiscale and
performance-based screening workflows where we can go from the atomistic structure of an
adsorbent to its equilibrium and transport properties at different scales, and eventually to its
separation performance at the process level. The objective of this work is to review the
current status of this new approach, discuss its potential and impact on the field of materials
screening, and highlight the challenges that limit its application. We compile and introduce
all the elements required for the development, implementation, and operation of multiscale
workflows, hence providing a useful practical guide and a comprehensive source of reference
to the scientific communities who work in this area. Our review includes information about
available materials databases, state-of-the-art molecular simulation and process modeling tools, and a complete catalogue of data and
parameters that are required at each stage of the multiscale screening. We thoroughly discuss the challenges associated with data
availability, consistency of the models, and reproducibility of the data and, finally, propose new directions for the future of the field.
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1. INTRODUCTION

Recent discoveries in material science and advances in
computational chemistry are having a profound impact on the
way we approach design and optimization of chemical processes,
devices, and technologies.
Traditionally, the workflow for the design of a process or a

device would focus on a small number of materials available for
experimentation and testing, as shown in the top panel of Figure
1. If performance of the material was not satisfactory, the
experience gained in the process and the intuition of the
investigator would guide the search for another material to be
tried or suggest some modification of the existing material.
Unprecedented developments in material science in the last

20−30 years have challenged this approach. Indeed, over this
period, several new classes of materials have been discovered
with each class encompassing hundreds or even thousands of
members. Testing all these materials in relevant experiments,
according to the traditional workflow, is prohibitive in terms of
cost and effort. Alternatively, performance of the materials can
be first tested using a computer model with a view to focusing
the experimental phase only on the most promising candidates.
Moreover, using computational methods allows chemists and
materials scientists to explore the performance of hypothetical,
not yet synthesized materials. This is important both for the new
classes of materials and for the well-known classes, where the
phase space is significant (i.e., alloys). Within the new workflow,

the process starts from the assembly of a large database of
materials (real, hypothetical, or both), shown in the bottom of
Figure 1 as a cloud of points. Their performance is then assessed
using computational modeling. The most promising candidates
are passed on to the experimental phase for validation and
testing. In the feedback loop, the information obtained at the
experimental stage is used to search for specific properties and
functionalities within the database of materials to further
enhance performance of the process.
This is a new strategy for in silico discovery of new materials

and high-throughput screening of materials for various
applications. A review by Curtarolo et al.1 identifies the
following areas where this strategy is likely to make the most
significant impact: alloys, solar materials, photocatalytic water
splitting, materials for carbon capture and sequestration, nuclear
detection and scintillators, topological insulators, piezoelectric
and thermoelectric materials, and materials for catalysis, energy
storage and batteries. These developments also come with new
challenges, for example, how to organize and share large material
databases, how to navigate the clouds of materials properties to
identify the most promising candidates, and how to relate
material properties to their actual performance at the process
level. Some of these challenges have been recognized through
forming large scale collaborative projects, such as the Material
Genome Initiative2 and the Materials Cloud project.3

Carbon capture, reviewed in the article by Curtarolo et al., is
an example of a chemical separation process.1 Significant
reduction of carbon emissions from power plants has been on
the top of the agenda in the scientific and technology policies of
the major economies in the world. Most decarbonization
scenarios show that carbon capture is needed to reach net zero
emissions.4 Themain challenge in the implementation of carbon
capture technologies for existing plants is significant additional
energy (and, ultimately, financial) cost associated with the
process. Adsorption and membrane separations have been
considered as energy efficient alternatives to the traditional
amine-solution based processes. Similar factors have been
driving developments in other chemical separation processes:

Figure 1. Traditional (top) and emerging (bottom) approaches to
material selection for an application.Within the emerging approaches, a
significant role is played by computational screening of a large database
of materials, with the experimental effort focused only on the most
promising candidates.
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as has been recently discussed by Sholl and Lively,5 overall these
processes consume 15% of the worldwide energy, and naturally,
there is a significant incentive to reduce this impact by
developing more efficient alternatives.
At the heart of an adsorption or a membrane process is the

material used as an adsorbent or a membrane. The efficiency of
the process hinges on the characteristics of this material and the
interplay between the material characteristics and process
configuration. Recently, several new families of porousmaterials,
such as metal−organic frameworks (MOFs),6−8 zeolitic
imidazolate frameworks (ZIFs),9 covalent organic frameworks
(COFs),10 porous organic cages (POCs),11 porous aromatic
frameworks (PAFs),12 and polymers, including porous polymer
networks (PPNs)13 and polymers with intrinsic microporosity
(PIMs),14,15 have been discovered. A common motif associated
with these families is a large number of (synthesized and
hypothetical) members available within each family, as well as
tunability and exquisite control of structural characteristics of
the materials such as surface area, pore size distribution (PSD),
and surface chemistry. This has prompted extensive research
efforts to explore these new landscapes of structures to identify
new porous materials with superior characteristics for
adsorption applications, such as carbon capture.
The initial efforts in this field were led by the molecular

simulation community, with various computational tools being
used to obtain structural (e.g., surface area and porosity) and
functional characteristics (e.g., equilibrium adsorption data) of
the materials. These properties or metrics were then used to
explore possible correlations between them and the function of
the material in the actual application. An important question
emerged from these early computational screening studies
concerns the process descriptors or performance metrics: what
descriptors and metrics should one actually adopt for ranking
and selection of materials for a specific application? A useful
metric must somehow reflect the essence of the process under
consideration. For example, for methane storage, the realistic
metric is the working capacity, in other words the specific
amount of methane released by the material when pressure is
reduced from the storage pressure to the lowest pressure in the
device, as oppose to the absolute capacity, corresponding to the
lowest pressure being zero.
If for some applications, such as gas storage, a single metric

may suffice the selection process, for other more complex
dynamic processes this is not possible. This was eloquently
demonstrated by Rajagopalan et al.16 by comparing a broad
range of traditional and new separation performance metrics
developed over the years with the actual performance of the
material in the process simulation using postcombustion CO2
capture as a case study.
In fact, a significant amount of literature and studies have been

accumulated over the years on design and optimization of

pressure, vacuum, temperature, concentration, electrical proper-
ties, and microwave swing adsorption processes, from simplified
equilibrium models to more advanced numerical ap-
proaches.17−28 Typically, these studies focus on a particular
process configuration, defined as the number of units, their
arrangement, and the conditions. For each process, cycle
configuration, defined as the specifications of individual steps
in the cycle, is optimized to meet specific process objectives. In
the case of the postcombustion carbon capture application, the
objectives (or constraints of the process) are 90% recovery of the
CO2 from the feed with 95% purity, as recommended by the US
Department of Energy (DOE) based on the emission control
targets and storage requirements.29 The efficiency of the process
and hence performance of the material for the process can then
be assessed from the perspective of two metrics: productivity, in
other words the amount of CO2 captured per unit of time by a
unit of volume of the adsorbent, and energy penalty, which is the
energy required to capture a mole of CO2 in the process. These
two metrics are in competition with each other and a complex
trade-off between them cannot be captured using simplified
equilibrium-based figures of merits.
The concurrent developments in computational screening

based on molecular simulations and in advanced process
simulations invariably led to the following proposition: what if
the screening of porous materials for dynamic adsorption
processes can be implemented using realistic process
simulations while the microscale properties of materials are
provided by molecular simulations? This multiscale screening
protocol is schematically depicted in Figure 2. According to this
diagram, molecular simulations can be used to obtain
equilibrium data (e.g., adsorption isotherms), dynamic proper-
ties (e.g., micropore diffusivity), or other materials character-
istics (e.g., thermal properties), if needed. This information is
then fed into a process simulator and the performance of the
materials is assessed using the metrics previously developed for
dynamic adsorption process analysis.
The first examples of such a multiscale approach were

published in two pioneering studies by Hasan et al.30 for in silico
screening of zeolite materials in the context of carbon capture
and by Banu et al.31 for computational screening of MOFs for
hydrogen purification. The early endeavors into the field of
performance-based materials screening also exposed a number
of challenges. These challenges are associated with consistent
and reliable transfer of data and information between the
different levels of the simulation (e.g., from molecular
simulations to process simulations), sensitivity of the process
simulation predictions to the properties that cannot be obtained
from molecular simulations, lack of experimental validation of
the process simulation predictions, the accuracy of the produced
material rankings, and propagation of errors, just to name a few.

Figure 2.Multiscale workflow concepts in vacuum swing adsorption (VSA) and pressure swing adsorption (PSA) engineering. The starting point of
the workflow is the structure of the porous material (either experimental or hypothetical, on the left). Molecular simulations are used to obtain
equilibrium adsorption and kinetics data. Process simulations are performed for various cycle configurations. Finally, on the right, performance of the
material is assessed in terms of energy (E)−productivity (Pr) trade-offs, with the red arrow in the graph indicating progression of this assessment
toward the Pareto front (dashed red line).
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Early studies also indicate that multiscale approaches where
one is able to seamlessly progress from a material structure to its
performance in the actual process or device will become of
immense importance in the near future. With the advent of
machine learning and quantum-mechanical methods, we are
witnessing the dawn of material-driven process design, which
will have a profound impact on a number of technologies and
applications. Hence, this review is prompted by recognition of
the importance of this emerging field for materials screening and
discovery and the challenges that have been already encountered
in the early studies. Here, we aim not only to provide a critical
review of the topic by discussing previous contributions and
developments of the field but also to offer a practical guide and a
single source of information for both “users” and “developers” of
the performance-basedmaterials screening workflows. The users
can include chemists and materials scientists working on the
development and characterization of new adsorbents. They can
simply use screening workflows to evaluate performance of their
newly synthesized (or yet to be synthesized) materials in a target
application. The developers, on the other hand, include
computational chemists and molecular modelers (who develop
molecular models and force fields for molecular simulations),
experts in the field of process modeling and optimization (who
develop new methods for simulation of the actual processes),
and data scientists taking on the development of advanced
machine-learning frameworks to better explore materials−
performance space.
Although some of the background information provided as

part of this review is also available in classical textbooks and field-
specific review articles, it is not straightforward for various
practitioners coming from different backgrounds to quickly
extract, compile, and synthesize the information needed for the
advancement of this highly interdisciplinary field. Moreover, it is
important to put different elements of the materials screening
workflow (being simulation methods or tools) into the same
perspective and highlight their relations with respect to one
another in order to demonstrate the difficulties that arise when
they are integrated into a single workflow. Hence, we have
undertaken the task to compile and synthesize all the elements
and ingredients needed for the development of the afore-
mentioned screening workflows for the wide range of readers of
this review.
We note that although this review deliberately focuses on

postcombustion carbon capture using Pressure Swing Adsorp-
tion (PSA) and Vacuum Swing Adsorption (VSA) processes, the
multiscale workflow developed for this purpose and the
challenges associated with advancement of this approach will
be similar for a wide range of other separations processes such as
hydrogen separation, oxygen purification, air separation, and so
on.
Throughout this review, we aim to highlight the fact that

development of accurate and efficient multiscale workflows for
realistic screening of porous materials can only be successful if
scientists working on different elements of these workflows are
aware of the requirements of other parts. We also hope that the
current review can encourage more cross-disciplinary collabo-
rations in this emerging field and lead to the development of
multiscale screening tools to be used in a variety of settings, from
chemistry laboratories to chemical engineering pilot plants.
With this in mind, the specific objectives of this review are as
follows:

(i) Critically review recent contributions and major develop-
ments in the field of performance-based materials screening for
postcombustion carbon capture using PSA or VSA processes.
(ii) Provide a practical guide and a single source of

information on the principles of molecular and process
simulations, a full list of data and parameters required at each
stage, sources of data, and sources of uncertainties.
(iii) Review the key challenges in the implementation of the

multiscale screening strategies and how they can be tackled.
(iv) Outline the existing gaps and propose directions for

future developments and trends in this emerging field.
The review is divided into nine main sections. After this

introduction, sections 2, 3, 4, and 5 will cover the application in
question (postcombustion carbon capture), explain different
elements of pressure and vacuum swing adsorption processes,
discuss a hierarchy of metrics that can be used for selection and
screening of porous materials for this application, and provide a
historical perspective on how computational screening methods
evolved over the last 10 years toward current multiscale
workflows. We also critically review the methods proposed
and used so far in application to materials screening. Section 6
mirrors in its structure the multiscale workflow depicted in
Figure 2. Here, we will cover practical aspects associated with
material databases and the tools available for structural
characterization of materials that are currently collected by
these databases. Next, we will move to introduce the
fundamentals of molecular simulations and process modeling.
We will explain how these elements should be used together and
as part of a multiscale workflow for materials screening. For each
method, we will also introduce available simulation tools and
software packages that can be used for performing these types of
simulations. Our emphasis will be on explaining what data are
required at each stage and what information is obtained at each
level, but we will also discuss the gaps in the methods that need
to be addressed. In section 7, we review current progress and
state-of-the-art in the process-level studies of VSA and PSA
systems for carbon capture, including advanced process
configurations for this task. In section 8, we explore the
challenges associated with accuracy, model consistency, data
availability and reproducibility of the results for materials
screening, and provide our suggestions for addressing them,
which we hope will stimulate further cross-disciplinary
approaches and collaborations. Finally, in section 9, we reflect
on the overall picture emerging so far, we discuss the roadblocks
to industrial applications, and we finish with a brief discussion on
future opportunities and possible directions of research in
multiscale, performance-based screening of porous materials for
carbon capture and other adsorptive separations.

2. POSTCOMBUSTION CARBON CAPTURE

Carbon capture and sequestration (CCS)32−35 remains one of
the key priorities in addressing the global climate change. This is
the area where additional energy penalty associated with
preventing carbon dioxide emission from power plants is the
most significant barrier to the implementation of CCS
technology, and any advance in this domain will likely have a
profound impact on our ability to control atmospheric carbon
dioxide levels. For this reason, CCS has been one of the most
explored applications in the context of computational screening
of new materials: zeolites, MOFs, ZIFs, and others.36,37 This is
also the area where the multiscale screening approaches have
made the most significant progress. Hence, CCS and in
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particular postcombustion capture is the logical focus of this
review.
Given the intended target audience of this review (as outlined

in section 1), it is useful to introduce the basic concepts of
postcombustion carbon capture, while referring the interested
reader to the more specialized and extensive sources on the
topic.38−45

The 2005 IPCC4 committee identified three possible
technologies for carbon capture from power plants, the most
significant stationary CO2 emitter globally: precombustion
carbon capture, oxy-fuel process, and postcombustion carbon
capture (Figure 3a). In the precombustion capture, fuel reacts
with oxygen (or air) and steam. This produces so-called syngas
(synthesis gas) composed predominantly of carbon monoxide
and hydrogen. In the water-shift reactor, this mixture reacts with
steam to produce carbon dioxide and more hydrogen. Carbon
dioxide is then separated from the mixture, and the remaining
purified hydrogen is used as a clean fuel in various processes.
The idea of the oxyfuel process is to use pure oxygen for
combustion. This oxygen is produced in the air separation step,
which naturally comes with energy cost. However, as the process
produces pure carbon dioxide during the combustion step, it
does not require any carbon dioxide separation step, saving the
costs down the line. Finally, in the postcombustion process
carbon dioxide separation is applied to the flue gas from a
standard power plant (Figure 3b).
Postcombustion capture is the only technology that can be

retrofitted onto existing power plants and therefore is a
promising approach in short and medium terms. In fact, detailed

analysis of the US National Energy Technology Laboratory’s
(NETL) CCS database shows that there are currently more than
30 active postcombustion carbon capture plants around the
world.46 This is illustrated in Figure 4. In addition,
postcombustion capture can be applied to hard-to-decarbonize
emissions such as those from industrial processes and to power
plants converted to bioenergy (BECCS), which would enable
negative emissions.
The composition of the flue gas is typically 15−16 vol % CO2,

5−7 vol % H2O, 3−4 vol % O2, and 70−75 vol % N2 for coal-
fired power plants. In addition, the flue gases may contain trace
amounts (tens and hundreds of parts per million) of carbon
monoxide, SOx, and NOx. This stream is at 1 bar and 50−75
°C.47 We note, however, that most of the design efforts focus on
a simplified separation operation involving only a binary mixture
of CO2 and N2 at 1 bar and temperatures below 40 °C.
A viable carbon capture technology must remove 90% of

carbon dioxide from this flue gas and produce it with 95% purity
as proposed by the DOE.29 Although these targets are not
absolute requirements and may change depending on the
economy of the process,48 they provide a reasonable basis for the
comparison of the technologies proposed for this task. In this
context, the 95% purity constraint is mostly dictated by the
requirement to compress the product CO2 gas to 150 bar for
further transportation or geological storage.49,50 The recovery
constraint of 90%, however, is rather an arbitrary choice of policy
to encourage technologies that have higher success in large-scale
mitigation of carbon dioxide.48,51 In fact, there are compelling
reasons that reducing the recovery target can be beneficial for

Figure 3. Different routes to carbon capture from power plants (a) and schematic illustration of postcombustion CCS plant (b).
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practical reasons especially for gas streams with higher
concentrations of CO2 (e.g., carbon capture from cement
plants).48,52−54 In this review, we mainly focus on the DOE’s
95% purity and 90% recovery targets, considering they have
been overwhelmingly used by the majority of materials
screening studies conducted so far.
Traditional approaches for carbon capture from power plant

streams employ solvent-based (e.g., amine) absorption
processes. It is estimated that the best absorption technologies
incur a parasitic energy penalty of about 1.3 MJ per kilogram of
CO2 captured.55 This is associated with a significant energy
demand of the solvent regeneration step. Any new technology

proposed for carbon capture must demonstrate that it is
economically more viable (i.e., has lower energy penalty) than
the reference, state-of-the-art amine absorption processes.

3. PRESSURE AND VACUUM SWING ADSORPTION
FOR POSTCOMBUSTION CARBON CAPTURE

The main objective of this section is to introduce the key
concepts and terminology associated with the pressure/vacuum
and temperature swing adsorption processes that are required
later in the article. The essential principle behind adsorption
separation is that the components of the gas or liquid mixture
somehow interact differently with the porous material and this

Figure 4.Active postcombustion carbon capture plants around the world as shown by green circles. Reprinted with permission from theNETLCarbon
Capture and Storage (CCS) Database.46 Copyright 2020 US Department of Energy.

Figure 5. Schematic 4-step VSA cycle for separation of CO2 and N2 (a), difference of PSA/PTSA/TSA processes illustrated using equilibrium
adsorption isotherms of CO2 (b).
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difference can be exploited to separate them. Depending on the
nature of this difference, we can distinguish three classes of
adsorption-based separation processes: (i) kinetic separations,
in which diffusion of molecules of the gas mixture in and out of
the material happens at significantly different rates; (ii)
molecular sieving, where one of the components of the mixture
is simply too bulky to fit in the pores of the structure while
molecules of the other component are able to permeate through
the porous structure; or (iii) equilibrium separations, where one
of the components interacts more strongly with the porous
structure via intermolecular interactions. The PSA and VSA
processes under consideration in this review belong to this class
of processes that constitute the largest group of the industrial
adsorption-based separation processes.
To illustrate the principles of a PSA process, let us consider

the diagram in Figure 5a, which shows different phases of a
typical PSA cycle. The main element of this diagram is the
adsorption column (schematically shown as just a rectangular
box) filled with the porous material or adsorbent. In the first step
(adsorption), the feed is introduced in the column. Stronger
interacting components (called heavy components) are prefer-
entially adsorbed by the porousmaterial in the column, changing
the composition of the gas phase. As a result, the product gas
stream leaving the column on the other side (so-called,
raf f inate) is rich in the light components (weakly adsorbing
components of the mixture). At some point in time, the
adsorbent becomes saturated and will not be able to adsorb
anymore of the heavy components. At this point, the adsorption
step should be stopped, and the column should go through the
regeneration or desorption phase. This phase may consist of a
preliminary pressure reduction step (the blowdown step)
followed by further reduction of pressure (the evacuation or
extraction step), moving the process to the conditions associated
with the low loadings on the isotherm and causing desorption of
the heavy component (Figure 5b). The column is then
repressurized and goes through the adsorption step again.
The difference in the equilibrium amount adsorbed between

the adsorption and desorption cycle is called the working
capacity. If the PSA system is cycling between ambient pressure
and vacuum, then it is called a vacuum swing adsorption (VSA)
process. The main additional energy cost of PSA and VSA
processes is associated with pulling the vacuum (VSA) and
compression (PSA). Hence, the work of vacuum pumps and
compressors becomes a key ingredient in the assessment of
economic viability of the PSA and VSA processes.
As can be seen from the simplistic description above, the PSA

or VSA process is a cyclic process, where the basic unit of the
process, the adsorption column, goes through repeating phases
of adsorption and desorption. In the example above, we used
pressure swing on the adsorption isotherm to regenerate the
column as depicted in Figure 5b. Alternatively, we could have
used higher temperature for regeneration. Indeed, as adsorption
from the gas phase is an exothermic process, a higher
temperature will shift the equilibrium to lower loadings, leading
to desorption. This process is called temperature swing adsorption
(TSA). A combination of pressure and temperature swing is also
possible (PTSA), and the trajectory of conditions associated
with this process is also shown in Figure 5b. Here, it is useful to
note that Figure 5b represents an ideal case for PSA, VSA, and
TSA processes. In reality, PSA and VSA processes are not
completely isothermal, and TSA processes are not fully isobaric.
This must be considered when idealized models are used for
materials screening based on these processes.

For the PSA or VSA adsorption process to operate
continuously, the actual plant consists of several columns
going through various stages of the cycle. The number of units
and how they are arranged is called process conf iguration. The
types of steps involved, the timing of the steps within a single
cycle, their duration, and other parameters constitute a cycle
conf iguration. Developing process and cycle configurations in
order to lower energy penalty and increase productivity
constitute the main objective of the PSA or VSA design process.
In the case of the postcombustion separation process of a

binary mixture, carbon dioxide is the heavy component and
nitrogen is the light component. Unlike purification adsorption
processes, such as hydrogen production from steam methane
reformer off-gas, where themain product is the light component,
in carbon capture, we are interested in the heavy component
with specific constraints on its quality, and this makes design of
the process more complex. Zeolite 13X is the most explored
material for this application, both in process modeling and in
pilot plant studies. This material is hydrophilic and will adsorb
water present in the flue gas, leading to higher cost of the
process.
Traditionally, PSA and TSA processes utilize packed bed

configurations with the adsorbent being shaped in the form of
beads or extrudates. For a separation process, the capture unit
must be able to achieve the desired purity and recovery targets
with a small footprint. For this, it is necessary to operate the
process with fast cycling and higher flow rates. This poses
challenges with respect to pressure drop and mass transfer. To
overcome these issues, the use of structured sorbents such as
laminates,56,57 monoliths,58,59 hollow fibers,60,61 and 3D printed
foams62−64 is advocated. These sorbents have the potential for
improved mass transfer and lower pressure drop.65,66 While
conventional packed bed systems are widely studied in literature,
more recently 3D printing has attracted much attention due to
its potential for manufacturing sorbents with controlled channel
geometry.62−64,67,68 Nevertheless, to the best of our knowledge,
3D printed adsorbents have not matured beyond laboratory
scale, and the current technology is not yet ready for large scale
deployment.
The brief introduction provided in this section serves only to

establish the most essential elements of the PSA and VSA
processes; for more extensive reviews of this technology for
carbon capture, the reader is referred to more specialized and
extensive sources.43,69−72

4. HIERARCHY OF PERFORMANCE METRICS FOR
MATERIALS SCREENING

In section 2, we described the problem in hand: to capture CO2
from flue gas of a power plant with 90% recovery and 95% purity.
Imagine now that we want to identify the best adsorbent
material for this from a cloud of many thousands of possible
porous materials. To do so, we need a suitable performance
indicator (i.e., metric) that can correctly quantify separation
performance of porous materials and also is able to sufficiently
discriminate between similar materials with different perform-
ance. A large number of performance indicators have been
proposed for this purpose. In this section, we review the most
important of these indicators as reported in the literature,
focusing predominantly on their nature, classification, and
availability. The information provided here will form the basis of
the discussion in the next section where we will illustrate how
application of these metrics in the field of computational
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material screenings evolved over the years leading to wider
adoption of the process-level metrics for materials ranking.
Colloquially speaking, one would want to select the best

material for a particular application simply by looking at its
structure. The specific structural characteristics of a material
may include its porosity, density, surface area, pore size
distribution (PSD), and so on; see, for example, refs 73 and
74. These properties can be obtained either from experiments, as
part of the standard characterization procedure for every newly
synthesized material, or from the computational character-

ization methods that will be discussed later in this review. We
call this group of metrics intrinsic structural material metrics
(ISMMs). These structural metrics do not tell us anything about
how the material interacts with its environment. The functional
behavior ofmaterials is described by adsorption equilibrium data
(e.g., adsorption isotherms, Henry’s constants of adsorption,
adsorption capacity), transport characteristics (e.g., diffusivity),
and thermal properties (e.g., heat capacity, thermal conductiv-
ity); see, for example, refs 75−78. These properties constitute

Table 1. Performance Indicators (performance evaluation metrics)a

index metric class screening metric definition reference

1 ISMM pore volume
2 ISMM porosity
3 ISMM surface area
4 ISMM pore limiting diameter
5 IFMM enthalpy of adsorption
6 IFMM diffusivity

7 IFMM Henry selectivity
K

K1,2
H,1

H,2
β = Bae and Snurr, 201195

8 IFMM adsorption selectivity
q

q
C
C1,2

1
ads

2
ads

2

1
α = Bae and Snurr, 201195

9 IFMM working capacity WC = qads,1 − qdes,1 Bae and Snurr, 201195

10 IFMM regenerability R
q
WC

100%1

1
ads= × Bae and Snurr, 201195

11 HMM adsorbent figure of merit AFM WC
( )

1
1,2ads

2

1,2des
=

α
α

Baksh and Notaro, 199880

12 HMM sorbent selection parameterb SSP
WC
WC1,2

1

2
= α Rege and Yang, 200181

13 HMM separation factor
C
C

SF
WC
WC

1 2

2 1
= Pirngruber et al., 201282

14 HMM adsorbent performance indicator
H

API
( 1) WCA B

C
12 1

ads,1
=

α −
|Δ |

Wiersum et al., 201383

15 HMM adsorbent performance score APS = WC1 × α1,2 Chung et al., 201684

16 HMM separation performance parameter (SPP) SPP

M

M

M
M

E
M

CH4,raff

CH4,feed

ads

CH4,aff CH4,raff

=
×

i
k
jjj y

{
zzz

i
k
jjj y

{
zzz i

k
jjj y

{
zzz

Braun et al., 201685

17 HMM parasitic energy (PE) PE = (0.75ηTfinal
× Q) + Wcomp Lin et al., 201286

18 PLM purity in PSA/VSA purity
total mol CO in extract product

total mol CO and N in extract product
1002

2 2
= × Rajagopalan et al., 201616

19 PLM recovery in PSA/VSA recovery
total mol CO in extract product

total mol CO fed into cycle
1002

2
= × Rajagopalan et al., 201616

20 PLM specific energy in PSA/VSA specific energy
total energy used

total mol CO captured2
= Rajagopalan et al., 201616

21 PLM productivity in PSA/VSA productivity
total mol CO in extract product

(total volume of adsorbent) (cycle time)
2=

× Rajagopalan et al., 201616

22 GEM general evaluation metric H
GEM

WC
WC

1

2,mod
1.32

1,2des
0.25

N
0.97

2

=
× α × |Δ | Leperi et al., 201993

aSubscripts 1 and 2 always denote stronger and weaker adsorbing components, respectively. For evaluation metrics 1−16, WC, α, β, C, KH, and ΔH
represent working capacity, adsorption selectivity, ideal selectivity, concentration, Henry’s constant, and enthalpy of adsorption. For SPP,Mads,Mi,k,
and E denote mass of adsorbent, moles of species i in stream k, and total energy required for separation.85 For PE, Q, η, and Wcomp are the thermal
energy requirement, Carnot efficiency, and compressor work, respectively. For GEM, ΔHN2

and WCmod stand for enthalpy of adsorption for

nitrogen and the modified working capacity as defined in ref 93. bFor Langmuir isotherms. For non-Langmuir systems, SSP
( ) WC

WC
1,2ads

2

1,2des

1

2
= α

α .95
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another group of metrics that can be termed intrinsic functional
material metrics (IFMMs).
In separation applications, adsorption is a competitive process

between two or more adsorbing species. Naturally, to character-
ize this competition, we need a metric that can compare the
behavior of the material with respect to the competing species.
For example, in the most general definition, selectivity is the
ratio of the molar loadings of two competing components in the
adsorbed phase qi

ads in equilibrium with a bulk fluid phase

mixture with respect to their partial fugacities, f i,
q

q

f

f1,2
1
ads

2
ads

2

1
α = .79

At low pressure, selectivity can be expressed simply as the ratio
of the two Henry’s constants. Selectivity is the simplest metric
from the group of hybrid material metrics (HMMs), which
combine various adsorbent metrics mentioned above to more
accurately discriminate between adsorbents with different
separation performances. Examples of these metrics include
adsorption figure of merits (AFM),80 sorbent selection
parameter (SSP),81 separation factor (SF),82 adsorbent
performance indicator (API),83 and adsorbent performance
score (APS).84 Mathematical definitions of these metrics are
provided in Table 1.
One important step in the development of more realistic

metrics for material screening was the realization that selectivity
and working capacity are not necessarily representative of the
economic drivers of gas separation processes.16 To address this
limitation, new screening metrics were developed to exploit the
correlations between adsorption characteristics of porous
materials and the plant-wide economic appraisal of the
separation process. A prominent example of such evaluation
metrics is the separation performance parameter (SPP) by
Braun et al.,85 which was developed to represent the most
important economic drivers for separation of CO2 from natural
gas mixtures. It assumes equilibrium adsorption and desorption
in the PSA, TSA, or PTSA processes in order to calculate the
value of an objective function, which accounts for the amount of
captured target gas (e.g., CH4), amount of adsorbent material
used, and total energy required for the separation process.85 The
assumption of a process performing fully under equilibrium
represents an ideal case scenario; however, this condition is not
always achieved in dynamic separation processes such as PSA
and VSA. Another limitation of the SPP metric is that instead of

using conventional cost indicators (e.g., capital and operating
costs), SPP assumes that all process costs scale with the amount
of adsorbent (Mads) used in the separation unit.85 As has been
discussed in the same publication, there are cases where a large
portion of the capital costs does not depend on the amount of
material used in the process, and if these contributions of the
capital cost become significantly larger, the amount of material
used in the separation unit will become irrelevant.85 Comparison
of SPP, SSP, and API metrics with detailed process modeling
indicates that for CO2/CH4 separation, SPP surpasses the other
two evaluation metrics in terms of accuracy.85

Another important example of new evaluation metrics is the
parasitic energy (PE), which was first used by Lin et al.86 and
Huck et al.87 for evaluation of different classes or porous
materials for postcombustion carbon capture. In their analysis,
the additional energy required for the adsorption carbon capture
process consists of (1) energy to heat the adsorbent material, (2)
energy to supply the heat of desorption, which is equal to the
heat of adsorption, and (3) energy needed to compress CO2 to
150 bar, which is a standard requirement for transport and
storage.86 Based on this, the authors formulated a simplified
expression for the parasitic energy of a CCS process as a
combination of the thermal energy requirement and the
compressor work.86 In the definition of parasitic energy
provided by Lin et al.86 equilibrium adsorption and desorption
is assumed. Asmentioned before, this may not be always the case
in dynamic PSA and VSA systems. The parasitic energy curve is
however shown to be a useful metric for assessing performance
of large groups of porous materials, examples of which are
illustrated in Figure 6 for all-silica zeolites and hypothetical
ZIFs.86

Inadequacy of screening metrics that are solely linked to the
adsorbent properties and not their performance at the process
level has been recently demonstrated by Rajagopalan et al.16

using a case study for postcombustion CO2 capture. Without
intending to repeat the entire argument here, one may consider
as an example selectivity of a candidate material for CO2/N2
separation using a PSA process. On its own, a high value of
selectivity is unlikely to be enough to select the material for CO2
separation. For instance, if the material has very low capacity, the
operation is likely to be very costly, despite high selectivity of the
material. This study clearly demonstrates that for complex,

Figure 6. Parasitic energy as a function of the Henry’s coefficient of adsorption of CO2 for all-silica zeolites (left) and hypothetical ZIFs (right). The
green lines are the parasitic energy of the current monoethanolamine (MEA) absorption technology. Reprinted with permission from Lin et al.86

Copyright 2012 Springer Nature.
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dynamic adsorption processes, such as PSA and VSA processes
for carbon capture, the realistic performance of a specific
material must be assessed in the actual process, by performing
process simulation and optimization under realistic conditions.
For this purpose, a new class of evaluation metrics is required.
The metrics used to assess performance of porous materials at
the process level are therefore called process-level metrics (PLMs)
in this review. In this case, a trade-off curve between overall
energy penalty of the process and its productivity is used as an
evaluation metric for materials screening.16,88,89 Energy penalty
and productivity not only are more realistic measures of process
performance but also are more directly related to the economic
drivers of the separation process. Therefore, the next natural step
in developing realistic evaluation metrics for materials screening
is to link the existing process modeling platforms to techno-
economic analyses of the process because the ultimate goal of
any separation unit is to achieve the design objective at the
lowest cost.90−92 Khurana and Farooq have extended this
concept to include a comprehensive cost framework for the
entire carbon capture plant.90,91 Their integrated optimization
framework looks at the separation cost in terms of $/ton of CO2
captured or $/ton of CO2 avoided, where the latter is defined as
the difference between emissions of two power plants, one
without a capture unit and the other with a capture unit but both
producing the same net amount of electricity.90 Fully integrated
techno-economic analysis of carbon capture plants or any other
industrial separation facility can be a daunting task for the
purpose of screening of large groups of adsorbent materials that
are currently available. As a result of this limitation, more recent
studies have attempted to develop general evaluation metrics
(GEMs) that are strongly correlated with the results of the
detailed techno-economic analyses.93 Usually, this is achieved by
combining all previously known evaluation metrics into a more
general one (i.e., GEM) and then reducing complexity of the
GEM by removing the elements whose contribution into the
correlation coefficient is insignificant.93,94 Importance of each
feature in the GEM developed by Leperi et al.93 for evaluation of
materials performance for postcombustion carbon capture is
illustrated in Figure 7.
Leperi et al.93 have shown that this approach is quite

promising for the development of universal screening metrics
that simultaneously take into account most important character-
istics of the process associated with adsorbent material, process
optimization, and overall economic cost of the plant. Develop-
ment of new GEMs can particularly benefit from recent
advances in machine-learning techniques, if adequately large
data sets of techno-economic forecasts were available for
training the GEM function.
From the review of the hierarchy of metrics provided in this

section, one could make an impression that if the most accurate
assessment of the material performance is achieved by the
detailed process and plant models, then this should be the
standard level of description in all materials screening protocols.
This view, however, does not take into account, the computa-
tional cost associated with materials screening using these
metrics. Once the equilibrium adsorption data are available, the
hybrid metrics provide effectively an instant assessment of the
material performance. Process simulation of a single cycle
configuration for a PSA or VSA process may be done in a few
minutes on a conventional CPU, whereas cycle optimization for
the best performance may take many hours to complete. This
computational price tag applied to thousands and tens of
thousands of materials would still make routine use of screening

of all materials at the process level unaffordable. Hence, this is
still an ongoing area of research to develop a multistage
screening process, where efficiency of process optimization are
improved using novel numerical techniques or alternatively
some preliminary screening is done using hybrid metrics and
simplified process models, while accurate process modeling and
optimization is only carried out for a selected group of promising
materials. The role of emerging numerical techniques for
process optimization and screening of large groups of materials
is discussed in the following sections.

5. COMPUTATIONAL SCREENING OF POROUS
MATERIALS: A HISTORICAL PERSPECTIVE

In the previous section, we discussed what metrics are available
for material screening in adsorption applications through the
prism of metric hierarchy from very simple “intrinsic”metrics to
process-level metrics. In this section, we take a different,
historical perspective on the development of computational
screening strategies. This perspective will allow us to review how
this field has evolved over time toward current multiscale
workflows that incorporate elements of different types of
simulation techniques and performance indicators.
The first material screening studies can be tracked back to

more than 10 years ago.96−98 In a pioneering study published in
2010,75 Krishna and van Baten employed configurational-biased
Monte Carlo (CBMC) and molecular dynamics (MD)
simulations to examine adsorption, diffusion, and permeation
selectivities for separation of CO2/H2, CO2/CH4, CO2/N2,
CH4/N2, and CH4/H2 mixtures in a number of zeolite, MOF,
ZIF, and carbon nanotube (CNT) structures. Their studies
provided useful guidelines to the optimum choice of micro-

Figure 7. Importance of each feature in the GEM developed by Leperi
et al.93 for the Spearman correlation coefficient (SCC). The higher the
value of SCC, the more reliable the metric is for predicting the cost of
CO2 capture. From right to left, the features are adsorbent density,
selectivity at adsorption conditions, internal energy of adsorption for
CO2, internal energy of adsorption for N2, selectivity at desorption
conditions, working capacity of CO2, and working capacity of N2. SCC
for each column is calculated with the feature listed on top plus the
features listed in the previous columns. For example, the three GEM
features used to calculate SCC in the third column are N2 working
capacity, CO2 working capacity, and selectivity at desorption condition.
Reprinted with permission from Leperi et al.93 Copyright 2019
American Chemical Society.
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porous layers that should be used in membrane separations
representing a compromise between permeation selectivity and
permeability. This study also emphasized the importance of
correlations between pore space properties (pore volume,
limiting pore diameter, etc.) and transport properties (e.g.,
diffusion and permeation) in these classes of porous materials.
Building on the importance of the pore structure character-

ization, Haldoupis et al.74 analyzed pore sizes of more than
250 000 hypothetical silica zeolites to compute the size of the
largest adsorbing cavity and pore-limiting diameter for all
zeolites. This information can be used to reveal the range of
adsorbate molecules that can possibly diffuse through each
zeolite. Additionally, the authors computed Henry’s constant of
adsorption and diffusion activation energy for CH4 and H2 for a
subset of 8000 zeolites using a computational method reported
in their earlier study.99 From the diffusion activation energies,
they were able to estimate diffusivity of each adsorbate using a
simple formulation of the transition state theory (TST). The
method presented in this study for estimation of diffusion was
limited to adsorption at infinite dilution. Calculation of
transport properties at higher loadings is much more time-
consuming, which may limit the ability of the employed method
to screen large groups of porous materials. Nevertheless, within

the limitation of the methods, Haldoupis et al. could successfully
demonstrate that using a combination of molecular simulation
techniques, one can reasonably assess adsorption properties of a
large group of nanoporous crystalline materials for a particular
separation application.74

Application of computational materials screening approaches
took another step forward in 2012 when two major studies were
published. Namely, Snurr and co-workers used a library of 102
building blocks and a “tinker-toy” algorithm to assemble a
database of 137 953 hypothetical MOFs.100 Using geometric
characterization tools and Monte Carlo simulations, they
explored their database to identify themost promising structures
for methane storage. From this perspective, this is the first
example of a computational screening strategy applied to a large
group of MOF materials. Later in the same year, Snurr and co-
workers101 simulated adsorption of CO2, CH4, and N2 in more
than 130 000 hypothetical MOFs from the same database and
subsequently examined their potential for CO2 capture using
five different performance metrics including CO2 uptake,
working capacity, regenerability, adsorption selectivity, and
sorbent selection parameter (as defined in Table 1). They
showed that although the resulting structure−property relation-
ship between pore size, surface area, pore volume, and chemical

Figure 8. Structure−property relationships of MOFs as obtained frommolecular simulations for CO2 separation. Panels show the relations of working
capacity (a), regenerability (b), selectivity (c), and sorbent selection parameter (d) with surface area for four different cases. Each plot is divided into 30
× 30 regions that are represented by a filled circle, if more than 10 (or 25 for selectivity and sorbent selection parameters) structures exist within that
region. The four separation cases include case 1, natural gas purification using PSA, case 2, landfill gas separation using PSA, case 3, landfill gas
separation using VSA, and case 4, flue gas separation using VSA. Reprinted with permission from Wilmer et al.101 Copyright 2012 Royal Society of
Chemistry.
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functionality provide several leads for design of new porous
materials, none of the above metrics is actually a perfect
predictor of CO2 separation performance. The studies of Snurr
and co-workers introduced several concepts that are now central
to the computational screening strategies of porous materials.
These concepts can be formulated as follows:
(i) The modular nature of MOFs allows the use of simple

tinker-toy algorithms to assemble new hypothetical structures
simply by linking the building blocks along the appropriate
topology. This idea can be extended to other new classes of
materials (ZIFs, COFs, etc.).
(ii) Each material within the database can be explored in

terms of structural properties and functional properties. These
properties can be used to classify, compare, and organize
materials within the database.
(iii) Computational screening studies calculate properties

that are mentioned above. Two or more properties correlated to
each other form clouds of data points, which can be explored to
reveal some promising structure−property relations. An
example of structure−property relationships for CO2 separation
in more than 130 000 MOFs is shown in Figure 8.
Further studies in this emerging field also identified several

challenges and new directions of research, which can be
summarized as follows:
(i) Structures assembled using the tinker-toy algorithms

require further accurate structure optimization using quantum
mechanical (QM) methods to be more realistic.
(ii) We need systematic approaches to organize structures

into databases that can be used in molecular simulations.
(iii) Accurate molecular force fields are lacking for new classes

of porous materials interacting with gases and liquids. A
particularly striking manifestation of this was the failure of the
conventional force fields to describe interaction of MOFs
featuring open metal sites with carbon dioxide or unsaturated
hydrocarbons. Interaction of adsorbents with water also presents
a substantial challenge. This prompted the simulation
community to put significant efforts into the development of a
new generation of force fields based on the accurate QM
potential energy surface. However, despite significant progress,
many of these force fields are largely specialized and non-
transferable; hence this is still very much a remaining challenge
and an ongoing area of research.
(iv) Early studies would use several simple, well-known

algorithms to obtain structural characteristics of porous
materials. Later, a number of comprehensive and versatile
tools were developed (Zeo++,102 Poreblazer,103 ZEOMICS/
MOFomics104,105) to calculate geometric descriptors of porous
materials. These descriptors can be used in the context of
materials informatics for discovery and screening of emerging
porous materials.
(v) Development of machine learning algorithms is needed to

establish structure−property relationships within the databases
and drive the discovery of new materials with desired
functionalities.
Following the above studies, Smit and co-workers86 also

published a new study on screening of hundreds of thousands of
zeolite and ZIF structures using the parasitic energy (PE) as a
promising metric for evaluation of materials performance in the
context of postcombustion carbon capture. At the molecular
simulation level, they employed a combination of grand
canonical Monte Carlo (GCMC) simulation, energy grid
construction method, and Widom test particle insertion
technique to obtain equilibrium adsorption characteristics of

materials. The PE metric was then used to search for materials
that have the potential to reduce the parasitic energy by 30−40%
compared to the conventional amine-based absorption tech-
nologies.86 This study proposed a theoretical limit for the
minimal parasitic energy that can be achieved for a particular
class of porous materials.
A series of articles by Sholl and Keskin98,106 and Keskin and

colleagues107−109 had laid the foundation of computational
screening methods for membrane gas separations between 2007
and 2012. These studies were followed by Kim et al.110 in 2013
after publishing a major study on screening of over 87 000
different zeolite structures for permeation separations. In this
publication, the authors estimated the diffusion coefficients of
CO2, N2, and CH4 using free energy calculations and TST, and
identified general characteristics of the best-performing
structures for CO2/CH4 and CO2/N2 membrane separations.
For CO2/CH4 separation, they predicted a structure that
outperformed the best known zeolite by a factor of 4−7. Here,
the performance was measured based on the required area of an
ideal membrane, which is shown to be mainly dominated by and
inversely proportional to the CO2 permeability in the system.110

In comparison with the results of Haldoupis et al.,74 Kim et al.
demonstrated that screening of porousmaterials based on purely
geometric approaches may deviate fromwhat is predicted from a
more advanced energy-based analysis.110

The study of Kim et al.110 was followed by two other
publications with a greater emphasis on MOFs as an emerging
group of porous solids for adsorption separation applications.
The first study was published in 2014 by Sun et al.76 where 12
materials including six MOFs, two ZIFs, and four zeolites were
studied for removal of SO2, NOx, and CO2 from the flue gas
mixtures. They used grand canonical Monte Carlo (GCMC)
simulations to predict mixture adsorption isotherms and
selectivity of the candidate materials for separation of SO2,
NOx, and CO2 in a mixture containing N2, CO2, O2, SO2, NO2,
and NO. They compared the working capacity, absolute
adsorption, and adsorption selectivity as three different
performance indicators to select the best performing materials.
It was concluded that Cu-BTC and MIL-47 were the best
adsorbents for separation of SO2 from the flue gas mixture. For
the removal of NOx, however, Cu-BTCwas identified as the best
performing material. Finally, for the simultaneous removal of
SO2, NOx, and CO2, Mg-MOF-74 was found to be the best
candidate. The three performance indicators (namely, the
working capacity, absolute adsorption, and adsorption selectiv-
ity) used for evaluation of materials performance in this study
only focus on the ability of materials to adsorb different gases at
equilibrium. They do not take into account the role of transport,
which will be important in real dynamic processes. They also
neglect the energy penalty associated with the regeneration of
the bed.
The second study from this group was published by Huck et

al.87 in 2014 focusing on screening of more than 60 different
synthesized and hypothetical materials including MOFs,
zeolites, and porous polymer networks (PPNs) using a hybrid
temperature−pressure swing adsorption (TPSA) process for
postcombustion carbon capture. Acknowledging that several
performance evaluation criteria have been already proposed, this
publication emphasized the use of parasitic energy as a more
realistic metric for materials screening. This is because parasitic
energy takes into account the energy penalty associated with the
compression process (needed for regeneration of the bed and
geological storage of CO2), as well as several essential
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thermodynamic properties such as the thermal energy required
for heating up the adsorption bed, and the heat required to
regenerate it.87 The authors noted that the PSA and TPSA
processes give better performance for all the materials in terms
of the energy penalty compared to the TSA process. Figure 9
demonstrates the correlation of parasitic energy with other
performance indicators calculated for separation of CO2 using a
TPSA process from a coal-fired power plant.
Using parasitic energy as the evaluation metric, the authors

identified Mg-MOF-74, PPN-6-CH2TETA, and PPN-6-
CH2DETA as the most promising materials for CCS in coal
and natural gas fired power plants and for direct air capture,
respectively.

In amore recent study focused onmembrane separation, Qiao
et al.77 screened 137 953MOFs in an attempt to identify the best
performing candidates for separation of CH4, N2, and CO2. In a
four-stage strategy, the authors employed a combination of
geometric pore characterization metrics (e.g., pore limiting
diameter (PLD), pore size distribution) and equilibrium
(Henry’s constant) and transport properties (diffusivity and
permeability) for materials screening showing that the PLD and
pore size distribution are the two key factors governing diffusion
and permeation of different gases in MOFs.77

In early 2016, Braun et al.85 published a new study to explore
performance of all-silica zeolites for CO2 capture from natural
gas where for the first time, the inadequacy of some of the above-

Figure 9.Correlation of parasitic energy with other performance indicators in a TPSA process for CO2 capture. Reprinted with permission fromHuck
et al.87 Copyright 2014 Royal Society of Chemistry.
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mentioned adsorbent metrics for materials screening was
highlighted. This study suggested that selectivity and working
capacity are not necessarily representative of the economic
drivers that are considered for design of a chemical process.85

The authors further argued that the use of these metrics can be
even deceptive; hence they developed a new metric called
separation performance parameter (SPP), which was designed
to correctly represent the economic drivers behind CH4/CO2
separation. They applied this metric to explore separation
performance and structure−property relationship of tens of
thousands of all-silica zeolites recorded in the International
Zeolite Association (IZA) database111 and the Predicted
Crystallography Open Database (PCOD) of hypothetical
zeolites.112

The year 2016 also witnessed publication of more advanced
screening studies. In particular, Snurr and co-workers reported
on high-throughput screening of MOFs for CO2 capture in the
presence of water.78 The article focused on the competitive co-
adsorption of water as a potentially adverse issue in the
deployment of adsorption-based CO2 capture technologies.
Here, computational screening was conducted to search for
MOFs with high CO2/H2O selectivity. The screening workflow
consisted of several steps as described below: initially, the
framework charges were computed for 5109 MOFs using the
extended charge equilibration method (EQeq),113 which is an
approximate, but computationally affordable technique for this
purpose. In the next step, the Henry’s constants of all MOFs
were calculated using the Widom particle insertion. Following
this step, the 15 most selective MOFs were identified based on
the ratio of Henry’s constant for CO2 and H2O. The resulting
prescreened materials were investigated further using more
rigorous simulation techniques. For these materials, partial
atomic charges were computed using the repeating electrostatic
potential extracted atomic (REPEAT)method,114 which is more
accurate compared to the EQeq technique and is based on the
electron density distributions obtained from QM-DFT calcu-
lations. Further, GCMC simulations were carried out to
calculate the binary and ternary adsorption of CO2/H2O and
CO2/H2O/N2 mixtures for the 15 preselected MOFs. GCMC-
simulated adsorption isotherms were then used to identify
MOFs with the highest CO2 selectivity over both water and
nitrogen. This study highlights the importance of electrostatic
potentials in describing the H2O−MOF interactions. On this
basis, the authors suggested that accurate charge calculation
methods are required to conduct similar screening studies. They
also demonstrated a correlation between small pore sizes and
strong binding of CO2, which can limit adsorption of water at
high humidity by preventing the formation of water clusters
inside these pores.78

Later in 2017, Li et al.115 published a new screening study to
explore multivariate metal−organic frameworks (MTV-MOFs).
The authors constructed a new database of ∼10 000 MTV-
MOFs with mixed linkers and functional groups. A GCMC-
based high-throughput computational screening method was
employed to identify the high-performing candidates for CO2
capture. They showed that compared to their parent MOFs,
functionalized structures consistently exhibit better CO2/N2
selectivity and in most cases even CO2 capacity is improved.
This work is particularly interesting as it demonstrated that
arrangements of mixed linkers containing different functional
groups can result in a combinatorial explosion in the number of
possible structures, which can then be mined to increase
structural diversity and surface heterogeneity of materials space.

This extended search space may contain candidate materials
with higher potential for CO2 capture.
Almost all studies reviewed up to this point had focused on the

use of simple performance indicators (classes of ISMM, IFMM,
and HMM), which are associated with structure or microscale
function of adsorbents. These metrics normally consider simple
properties such as the pore limiting diameter (PLD), pore size
distribution (PSD), Henry’s constant of adsorption (KH),
adsorption working capacity (WC), selectivity, and micropore
diffusion. As discussed in section 4, one can use these
performance indicators to reveal correlations between materials
structure and functions at a microscale level, which is important
for fundamental understanding of the system; however these
metrics fail to realistically predict separation performance of
materials at the process level for dynamic adsorption processes
such as PSA or VSA. This realization gradually gave rise to the
wider use of process-level metrics (PLMs) for materials
screening leading to design of multiscale screening workflows,
which combine various molecular simulation methods with
process modeling and optimization.
The idea of constructing a multiscale simulation workflow

through combining molecular simulations and process opti-
mization for the purpose of materials screening was originally
presented by Hasan et al. in 2013.30 They used this method for
cost-effective capture of CO2 using zeolites as adsorbents. A
similar multiscale approach was also adopted by Banu et al.31 for
hydrogen purification using MOFs. However, it was the studies
of Farooq and co-workers88,116 that brought to light the
importance of multiscale performance-based methods for
realistic materials screening especially in the context of
postcombustion carbon capture. In their main screening study,
Khurana and Farooq88 evaluated the performance of 74 real and
hypothetical adsorbents in a 4-step VSA process with light
product pressurization (LPP). Process optimizations were
carried out to minimize overall energy penalty of the process
and maximize its productivity while simultaneously meeting the
95% CO2 purity and 90% CO2 recovery criteria for
postcombustion carbon capture. As a result of this study, the
authors identified several adsorbents with superior performance
over zeolite 13X, the current benchmark and the most studied
adsorbent for postcombustion carbon capture.
This new development also provided additional evidence that

process-level metrics (PLMs) such as process productivity,
overall energy consumption, and product purity do not directly
correlate with the intrinsic properties of adsorbent materi-
als16,88,116−118 that have been widely used by scientists for
materials screening over the past decade. The multiscale
performance-based screening method discussed above ad-
dresses several important pitfalls associated with the traditional
techniques where materials screening is performed solely based
on intrinsic evaluation metrics: (1) This approach can confirm
whether the important CO2 purity−recovery requirement can
be met. ISMM, IFMM, and HMM classes of evaluation metrics
do not take this requirement into account. (2) It can identify the
best performance for each adsorbent across a wide range of
operating conditions while simultaneously satisfying the purity−
recovery constraint. In contrast, adsorbent-based screening
methods usually rank materials for a fixed set of operating
conditions. (3) The process-level metrics (e.g., energy
consumption and productivity) can be directly related to
economic drivers of commercialized carbon capture plants (e.g.,
capital and operation cost).
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The above approach for process-based screening of porous
materials is particularly important in light of the available
experimental evidence that supports the predictions of the
proposed screening platform. In a pilot plant study,
Krishnamurthy et al.119 demonstrated that the 95% CO2 purity
and 90% CO2 recovery targets for postcombustion carbon
capture can be achieved in experiment using the same 4-step
VSA cycle with light product pressurization that was investigated
by Khurana and Farooq.88,119 In a separate study, Estupiñan
Perez et al.120 also verified the ability of multiobjective
optimization techniques to guide the design of PSA and VSA
processes. In this study, it was shown that purity−recovery
Pareto fronts of CO2 as predicted by process modeling of the 4-
step VSA-LPP cycle reasonably agree with the experimental
results.120 These promising observations attracted more
attention to the newly proposed process-based materials
screening approach and its combination with molecular
simulation techniques. Several recent studies that have adopted
this new materials screening approach are discussed below.
In 2018, Farmahini et al.89 used a similar multiscale platform

by combining GCMC simulation with process modeling and
optimization of the 4-step VSA-LPP cycle to explore the
challenges associated with the interface between molecular and
process levels of description. In this study, the authors identified

several sources of inconsistency in the implementation of the
multiscale screening workflow that can potentially affect
prediction of material performance at the process level. This
includes the numerical procedures adopted to feed the
equilibrium adsorption data into the process simulation, and
the role of structural characteristics of adsorbent pellets
including pellet porosity and pellet size.
In 2019, Subramanian Balashankar and Rajendran121

employed a two-stage approach to screen 119 661 hypothetical
zeolites, 1031 zeolitic imidazolate frameworks, and 156 zeolites
catalogued by the International Zeolite Association.111 In their
study, the first stage was dedicated to the rapid screening of all
materials under investigation using a computationally inex-
pensive batch adsorber analogue model to filter adsorbents that
can meet 95% CO2 purity and 90% CO2 recovery targets. This
stage was then followed by detailed process modeling of 15 top-
performing candidates from the previous stage in addition to 24
synthesizable zeolites using the widely used 4-step VSA-LPP
cycle to estimate the process level performance indicators more
accurately. Out of the 39 adsorbents screened in the second
stage, 16 material candidates outperformed zeolite 13X in terms
of both productivity and energy consumption.121

A new generation of materials screening studies based on
process performance metrics also appeared in 2020. In this year,

Figure 10. Hierarchies of top-performing materials based on various adsorbent-based performance indicators as compared with detailed process
modeling and optimization for three cycle configurations, namely, modified Skarstrom, 5-step PSA, and fractionated vacuum swing adsorption (FVSA)
cycle. Adsorbent metrics from left to right include CO2 working capacity, selectivity, sorbent selection parameter, adsorbent performance indicators
(APS 1 and 2), adsorbent figures of merit (AFM 1 and 2), separation factor, and general evaluation metric (GEM). Reprinted with permission from
Yancy-Caballero et al.126 Copyright 2020 Royal Society of Chemistry.
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Farmahini et al.122 explored the role of pellet morphology on
materials performance. Pellet morphology belongs to the
category of properties that cannot be evaluated at the molecular
level and yet can greatly alter separation performance at the
process level. The authors demonstrated that a series of
competing mechanisms associated with diffusion into adsorbent
pellets, convective mass transfer through the adsorption column,
and pressure drop across the bed can be tuned through
optimization of pellet size and pellet porosity to maximize
separation performance of different classes of porous materials
including zeolites and MOFs.122

Later, Park et al.94 assessed separation performance of
selected MOFs for subambient temperature postcombustion
carbon capture based on (i) a selection of simple adsorbent
metrics (e.g., CO2 swing capacity, selectivity, and regener-
ability), (ii) performance in an idealized 2-step PSA model
(adopted from Ga et al.123) consisting of adsorption and
desorption steps, and (iii) performance in a rigorous model of 4-
step Skarstrom cycle with light product pressurization. The
results from this study showed that the order of high performing
materials is different for the idealized 2-step model and the 4-
step Skarstrom cycle. Moreover, it was illustrated that the simple
adsorbent metrics that are strongly correlated with the
predictions of the idealized model are not the same as those
that are closely correlated with the predictions of the rigorous 4-
step process model. This is an important observation, as it clearly
demonstrates that the separation performance of porous
materials is strongly influenced by the design of cycle
configuration at the process level and that materials ranking
based on simple adsorbent metrics are not directly correlated
with materials performance at the process level.
Burns et al.124 screened 1632 experimentally characterized

MOFs using a multiscale platform that combines molecular
simulations with process optimization and machine learning
models. In their screening study, they employed the well-
established 4-step VSA-LPP cycle and found that a total of 482
materials can meet the 95% CO2 purity and 90% CO2 recovery
targets, out of which 365 materials have parasitic energies below
that of commercial solvent-based CO2 capture technologies.

124

Consistent with Danaci et al.,125 this study also highlighted the
fact that nitrogen adsorption behavior is an important factor for
the prediction of materials ability to separate CO2 with very high
purity and recovery in postcombustion CO2 capture.
Another screening study from 2020 was published by Yancy-

Caballero et al.126 who compared process level performance of
15 promisingMOFs with zeolite 13X as a benchmark using three
different process configurations including a modified Skarstrom
cycle, a five-step PSA cycle, and a fractionated vacuum swing
adsorption cycle. The results from this study suggest that UTSA-
16 and Cu-TDPAT perform equally well or even better than
zeolite 13X in all three process configurations mentioned above.
The authors also compared process-level ranking of theseMOFs
with other rankings obtained based on simplified HMM and
GEMmetrics. They showed that the rankings suggested by these
metrics may differ significantly from the one predicted by
detailed process optimizations,126 which is evident by various
hierarchies of top-performing materials shown in Figure 10.
As an example, Cu-TDPAT and UTSA-16 are the two top

performing materials according to FVSA cycle, but based
working capacity they are the ninth and fifth in the list of top-
performing materials. Based on selectivity, these materials are
the fifth and fourth materials from the top. Interestingly, GEM
seems to provide a closer estimation of materials performance

when compared with detailed process modeling for all three
cycles. Another important observation here is the fact that the
order of top-performing materials is a function of process
configurations as shown by the first three columns from the
right.
Another recent study was published by Pai et al.127 in 2020

who developed a generalized and data-driven surrogate model
that can reproduce operation of PSA/VSA processes at cyclic
steady state with high accuracy. The multiscale screening
framework developed here simultaneously optimizes adsorption
isotherm properties and process operating conditions in order to
estimate performance indicators of the process. The framework
makes use of a dense feed forward neural network trained with a
Bayesian regularization technique and is able to significantly
reduce the simulation and optimization time required for
multiscale screening of porous materials for postcombustion
carbon capture.127 Development of such material-agnostic
machine-learning models is particularly useful, considering
they can be employed for performance prediction of any
arbitrary or hypothetical adsorbent as long as equilibrium
adsorption isotherms of CO2 and N2 for that material can be
sufficiently described by the implemented numerical adsorption
model (e.g., a single-site Langmuir model in the case of this
study).
Finally in 2021, Subraveti et al.92 reported on a new attempt

toward integration of techno-economic analyses with detailed
modeling and optimization of adsorption process for post-
combustion carbon capture. They estimated the capture cost of
CO2 using zeolite 13X, UTSA-16, and IISERP-MOF2 as
adsorbent in a 4-step VSA-LPP cycle. Their study showed that
application of IISERP-MOF2 in the above process leads to the
lowest capture cost, while still being higher than the cost of
carbon capture in an MEA-based absorption process as the
current industrial benchmark. According to this study, zeolite
13X and UTSA-16 are respectively second and third material
candidates in terms of the overall cost of the process. An
important message conveyed by the authors in this study was
that the minimum cost configurations obtained from techno-
economic analyses do not necessarily correspond to the most
optimum configurations obtained by minimizing energy penalty
and maximizing productivity of a single-column VSA process,
which is due to the complexities associated with scale-up of the
process. This essentially means that realistic assessment of
materials performance for industrial applications must go
beyond optimization of the process itself and that the multiscale
screening workflows should encompass considerations of
techno-economic analyses for materials screening.
This section was meant to provide the reader with a historical

perspective of the topic without going into technical details of
the screening methods. At the end of this section, it is useful to
reflect on some of the key observations from our overview. It is
clear that multiscale materials screening strategies have
advanced significantly over the past decade, evolving from
screening of porous materials based on simple microscale
properties toward development of more realistic approaches
based on process modeling and optimization for evaluation of
materials performance, and finally to incorporating techno-
economic assessment of the whole separation plant into the
screening workflows. Overview of the studies discussed in this
section reveals lack of consistency among the hierarchies of top
performing materials that are reported by different studies. This
means that the screening studies conducted so far have not been
able to propose a consistent set of materials as top performing
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candidates for postcombustion carbon capture. In fact, this is
associated with the lack of consistency in model assumptions
and in calculation of a series of parameters that are used in
performance-based materials screening workflows including but
not limited to the force fields used in molecular simulations for
prediction of equilibrium adsorption data, the numerical
methods used for fitting adsorption isotherms, various model
assumptions applied in describing the kinetics of the process,
application of different process and cycle configurations, and so
on. Addressing the issue of consistency in ranking of porous
materials requires detailed knowledge about the inner workings
and implementation of all the modeling modules that are used in
a materials screening workflow. This is the topic of the next
section of this review.

6. MULTISCALE SCREENING WORKFLOW

In the previous sections, we briefly discussed why materials
screening is important in the context of PSA and VSA
technologies for postcombustion carbon capture. We also
provided a historical perspective on the evolution of materials
performance metrics and screening methods, which have been
used so far. The main objective of these sections was to illustrate
to the reader the importance and the gradual evolution of the
research community toward adopting more complex multiscale
screening workflows as the emerging way to evaluate separation
performance of porous materials.
The objective of the current section is to introduce in an

accessible, tutorial-style fashion the key elements and methods
involved in multiscale screening workflows. Some of these
elements, such as molecular simulations and process modeling,
have been also comprehensively covered in several authoritative
textbooks. The intention here is not to replace or replicate these
sources but to highlight only the essential aspects of themethods
while focusing on the data they require, information they
produce, and the gaps at the interfaces between different
elements. To achieve this objective, the structure of this section
logically follows the multiscale workflow diagram, shown in
Figure 11. The starting point of this workflow is a database of
porous materials. In section 6.1, we review the currently existing
databases and the computational tools required to characterize
structural properties of the porous materials in these databases.
Molecular simulations are used to obtain equilibrium and
transport properties at a molecular level. These methods are
introduced in section 6.2. Finally, following the workflow we

pass the information from molecular simulations to the process
level modeling and optimization. Models, methods, and data
required for this stage are reviewed in section 6.3.

6.1. Material Databases and Characterization Tools

This section corresponds to the first step in the multiscale
material screening workflow. The aim here is to provide concise
and practical reference to the reader on what databases are
currently available, what materials and data they contain, and
what tools are available to build geometric descriptors for
materials in these databases.

6.1.1. Databases of Porous Materials. MOFs are the
primary and most prominent example of the emerging families
of materials,6−8 and it is useful to briefly review what these
materials are. Although the origins of MOFs can be traced as far
back as the late 1950s, they were given their current name,
metal−organic frameworks, in the seminal paper by Yaghi and Li
in 1995.128 To prepare a MOF, one uses two types of building
blocks: metal centers and organic molecules capable of forming
strong coordination bonds with these centers. In the synthesis
process, the building blocks form a crystalline framework where
metal complexes comprise the vertices of the framework,
connected by the organic linkers. Several papers that followed in
the late 1990s discovered a few more examples of these
frameworks; however, most importantly, they demonstrated
that these structures possessed permanent stable porosity and
high surface area and that new materials could be designed
simply by variation of the building blocks, leading to the concept
of isoreticular material design.129−131 Since then, tens of
thousands of new MOFs have been discovered: the most
current assessment of the Cambridge Structural Database
(CSD) suggests ca. 100 000 reported structures that can be
qualified as MOFs,132 while the modular nature of these
materials implies that in principle infinite variation of structures
is possible (if we assume that the diversity of MOFs can
approach the diversity of the organic chemical space).
ZIFs, discovered a few years later,9,133,134 are a subclass of

MOF materials that have zeolite framework topologies in which
silicon atoms are replaced by transition metals and the bridging
oxygens are substituted by imidazolate building units.135

Currently, there are about 300 ZIFs reported in the CSD and
potential application of these materials in the context of
chemical separations has been recently reviewed by Pimentel
et al.136 In contrast to materials based on coordinative assembly
and coordination bonds, covalent organic frameworks (COFs)

Figure 11. General structure of the multiscale screening workflow for materials screening.
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do not feature metal complexes and are based on covalent
bonds.10,137 Since their discovery in 2005, a substantial number
of 2D and 3D COFs have been reported with diverse structural
and chemical properties.137

Crystalline materials, such as MOFs, ZIFs, and COFs, can be
contrasted with several traditional and emerging classes of
amorphous porous materials, such as activated carbons,138

carbide-derived carbons,139 and polymers with intrinsic micro-
porosity (PIMs).14,15,140 Porous aromatic frameworks (PAFs)
are another class of porous materials with rigid aromatic open-
framework structure constructed with covalent bonds.12

Although PAFs are not crystalline, they are ordered with regular
and high porosity.141

This wealth of new materials should not overshadow more
traditional classes of porous materials such as zeolites, which,
due to their stability, attractive cost, commercial availability, and
maturity in industrial applications, will likely remain the primary
adsorptive materials for years to come. There are currently more
than 250 zeolite topologies recognized by the International
Zeolite Association. From very early studies, efforts have been
made to computationally realize and characterize these
materials.142−144 So far, millions of new zeolite structures have
been hypothesized using computational methods.112,145 On-
going research is also directed toward understanding the
magnitude and diversity of the materials landscape for
adsorption science146,147 and to evaluate what portion of this
structural space is realizable in experiments.148 Combined, these
classes of materials provide enormous chemical and structural
diversity, collectively described as the materials genome.149

Several efforts have been made to assemble databases of
experimentally synthesized or computationally constructed
MOF s , Z I F s , o r p o r o u s p o l ym e r n e t w o r k s
(PPNs).86,100,150−154 Next, we review the most prominent
examples of these databases which are also listed in Table 2.
6.1.1.1. Databases of Hypothetical MOFs. Hitherto, three

main databases of hypothetical MOFs have been created which
are discussed below:
(a) The database by Wilmer et al.: This database contains

137 953 structures and is generated by recombining a library of
102 building blocks including secondary building units (SBUs)

and organic linkers from crystallographic data of already
synthesized MOFs using a “tinker-toy” algorithm.100 The
resulting hypothetical database is, however, composed of only
a few underlying framework topologies.155 By testing a limited
set of MOFs including HKUST-1, IRMOF-1, PCN-14, and
MIL-47, the authors suggested that their method can closely
reconstruct molecular structures of the experimentally synthe-
sized materials.100 Nevertheless, generalization of this finding is
subject to more comprehensive validations, considering no
energy minimization was performed for any of the constructed
structures in this database. The database originally published by
Wilmer et al. did not include partial electrostatic charges on
atoms of MOFs; hence its application was limited to very few
adsorption cases where electrostatic interactions are not
important (e.g., CH4 adsorption).100 The authors employed
this database to search for MOFs that could be potentially used
for methane storage and identified more than 300 MOFs with a
predicted storage capacity larger than that of any previously
known material.100 In a later study, EQeq partial atomic
charges113 were computed for the above hypotheticalMOFs and
used for simulation of adsorption of charged molecules such as
CO2 and N2.

101

(b) The database by Boyd and Woo: This new database of
hypothetical MOFs was constructed using the topology-based
algorithm of Boyd and Woo156 and contains 324 426 structures
which are generated by assembling a set of secondary building
units containing 8 inorganic and 94 organic SBUs resulting in 12
different topologies.157 The set was further diversified by
chemical modification of MOFs, in which available hydrogens
were replaced by functional groups. All MOFs in this database
are structurally optimized using classical force fields. Framework
charges for all structures included in this database were also
computed using the charge equilibration method (Qeq)158 and
the MOF electrostatic potential optimized (MEPO) parame-
ters.159

(c) ToBaCCo Database: This database was constructed
using the topologically based crystal constructor (ToBaCCo)
algorithm and contains 13 512MOF structures with 41 different
edge-transitive topologies.152,160 The database makes use of a
top-down construction algorithm that uses topological blue-

Table 2. Databases of Crystalline Porous Materials

index database number of entries origin cleaned optimized charges included

1 Wilmer-et-al.100 137 953 simulation yes no no
2 Boyd-and-Woo157 324 426 simulation yes yes yes
3 ToBaCCo152,160 13 512 simulation yes yes no
4 CSD150 >1M experiment no no no
5 Goldsmith et al.161 4000 experiment yes no no
6 CoRE-MOF-2019165 ∼14 000 experiment yes partiallya partiallyb

7 CSD-MOF-subsetc154 96 000 experiment yes no no
8 hZeo112,166 2.6M simulation yes yes no
9 IZA111 253 experiment yes yes no
10 hPPN153 18 000 simulation yes yes no
11 hCOF167 69 840 simulation yes yes no
12 CoRE-COF168 449 experiment yes yes yes
13 CURATED-COFs171 482 experiment yes yes yes
14 hZIFs86 simulation
15 NE-DB2 530 243 simulation and experiment
16 NMG149,173 >3M simulation and experiment
17 PRAM-DB175 205 simulation and experiment partially

a879 MOFs underwent geometry optimization and were released as part of CoRE MOF-DFT optimized 2017.164 bPartial atomic charges of 2932
MOFs were computed and were released as part of CoRE MOF-DDEC 2016.163 cAs of Aug 2019.132,154
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prints and molecular building blocks as input to assemble MOF
structures. The algorithm does not check for atom overlaps as
part of the construction process; therefore the geometry of the
resulting structures were optimized using generic force fields
before being used in molecular simulations.160 The database
does not include partial atomic charges.
6.1.1.2. Cambridge Structural Database (CSD). The

Cambridge Structural Database (CSD) contains more than a
million organic and metal−organic small-molecule crystal
structures that are obtained from X-ray or neutron diffraction
analyses.150 The MOF structures deposited in this database are
experimentally realized; nevertheless, the use of CSD entries for
high-throughput screening of porous materials is not straightfor-
ward. Checks must be performed to make sure that the
candidate structures obtained from CSD are adequately porous
and are free from residual substances that are leftover from the
synthesis processes. As such, the first step in performing high-
throughput screening of experimental MOFs is to construct
curated subsets of CSD that can fulfill the above criteria (see
more on the CSD-MOF Subset in section 6.1.1.5).
6.1.1.3. Goldsmith Database of Experimental MOFs. In

2013, Goldsmith et al.161 constructed a MOF database
containing 22 700 computation-ready structures which were
derived from the CSD after the removal of unbonded guest
molecules (e.g., residual solvents). By excluding disordered
compounds and those with missing atoms, the total number of
MOF structures were reduced to 4000,161 which did not include
those with interpenetrated frameworks and charge-balancing
ions.151 The materials included in the database were
subsequently characterized by calculating porosity, surface
area, and total theoretical H2 uptake.

161 Goldsmith et al. used
their MOF database to estimate the maximum theoretical
uptake of hydrogen based on the so-called “Chahine rule” (see
ref 162 for further reading) known for hydrogen adsorption in
microporous carbons but also shown to be valid across a wide
range of other porous materials including MOFs.161

6.1.1.4. CoRE-MOF Database. Construction of the compu-
tation-ready, experimental metal−organic frameworks (CoRE-
MOF) database was a major attempt in development of a MOF
database that can be directly used in molecular simulations. The
first version of CoRE-MOF151 contains 5109 3D MOF
structures with pore-limiting diameter greater than 2.4 Å that
are derived from CSD. The MOF structures were screened to
make sure that all MOFs included in the database are crystalline
(no disorder) and solvent-free. The database also reports helium
void fractions of all MOFs in addition to their surface area,
accessible volume, largest cavity diameter (LCD), and pore-
limiting diameter (PLD). In the original version of the database,
the structures were not optimized (except for very few MOFs
that were manually edited).151 Following the initial release of
CoRE-MOF, two modified subsets of this database were
released in 2016 and 2017. The first subset contains 2932
experimental MOFs whose partial atomic point charges were
calculated using plane wave DFT and the DDEC charge
partitioning methods.163 The second subset focuses on the
geometry optimization of 879 experimentally synthesizedMOFs
using a periodic density functional theory (DFT) method.164

The latter publication demonstrated that although the majority
of MOF structures undergo less than 10% change in their
structural parameters (e.g., pore size, lattice parameters, unit cell
volume, and helium void fraction) upon DFT optimization,
many other MOF structures change significantly after geometry
optimization especially those materials whose crystalline

structures were cleaned from solvent residue molecules. More
importantly, it was shown that the DFT optimization had a large
impact on simulated gas adsorption in some cases, even for
materials whose crystalline structure did not change signifi-
cantly.164 This study has important implications for high-
throughput materials screening approaches that rely on
databases of experimentally synthesized materials such as
CSD150 or the original CoRE-MOF.151 The CoRE-MOF
database was recently expanded to include approximately
14 000 structures (CoRE MOF 2019). The updated database
includes additional structures that were contributed by CoRE-
MOF users, obtained from updates of the CSD database and a
Web of Science search.165 CoREMOF 2019 was released in two
different sets: (1) free solvent removed (FSR) database for
which only the free solvent molecules have been removed from
the structures; (2) all solvent removed (ASR) database for
which both bound and free solvent molecules have been
removed from the structures. CoRE-MOF 2019 also summa-
rizes a list of MOF structures that contain open-metal sites.165

6.1.1.5. CSD-MOF Subset. In 2017, Moghadam et al.154

constructed a new subset of CSD for solvent-free MOFs in
which 69 666 1D, 2D, and 3D MOFs were listed out of which
54 808 structures are nondisordered. These materials were
characterized using the Zeo++ code102 based on the Voronoi
decomposition technique to calculate the accessible surface area,
accessible pore volume, LCD, and PLD. It was found that 46 420
structures have gravimetric surface area equal to zero, which
essentially means that N2 size molecular probes cannot access
their pore spaces for geometric surface area calculations.154 It is
shown that the remaining 8388 MOFs have PLD values larger
than 3.7 Å, which is approximately 3600 structures more than
what was previously published by Chung et al.151 in the initial
version of the CoRE-MOF database. Currently, theMOF subset
of CSD database contains approximately 100 000MOFs.132 The
main advantage of the CSD-MOF subset is that it is integrated
into the Cambridge Crystallographic Data Centre’s (CCDC)
structure search program. This not only allows for tailored
structural queries (e.g., generation of MOF subsets based on
secondary building units or selection of nondisordered
materials), but it can also be used to automatically update the
database with subsequent addition of new MOFs to CSD.154

6.1.1.6. Hypothetical Zeolites Database (hZeo-DB). hZeo is
a database of computationally predicted zeolite-like structures
that were generated by systematically exploring 230 space
groups, unit cell dimensions between 3 and 30 Å, and T atom
densities from 10 to 20 per 1000 Å3.112,166 A computational
procedure based on Monte Carlo search was employed to
produce 3.3 million zeolite-like structures out of which 2.6
million topologically distinct structures were identified after
energy minimization.166 Roughly 10% of this number are the
structures that are deemed to be thermodynamically accessible
as aluminosilicates based on energy stability of the structures.112

6.1.1.7. Database of Zeolite Structures (IZA-DB). IZA-DB
provides information about the structures of all the zeolite
framework types that have been approved by the Structure
Commission of the International Zeolite Association (IZA-SC).
The database currently contains 242 ordered and 11 partially
disordered topologies.111

6.1.1.8. Database of Hypothetical Porous Polymer Net-
works (hPPN-DB). The hypothetical PPN database constructed
by Martin et al.153 contains almost 18 000 hypothetical
structures of porous polymer networks, which are predicted in
silico using commercially available chemical fragments and two
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experimentally known synthetic routes, hence aiming to provide
a database of synthetically realistic PPNs.153 All structures from
this database have their structures optimized using semi-
empirical electronic structure methods.153 The structures are
also characterized for their topological properties and methane
adsorption characteristics.153

6.1.1.9. Hypothetical COF Database (hCOF-DB). This
database is a collection of 69 840 hypothetical covalent organic
frameworks (COFs) that were assembled from 666 distinct
organic linkers and four established synthetic routes.167 It
contains 18 813 interpenetrated 3D structures, 42 386 non-
interpenetrated 3D structures, and 8641 2D-layered structures.
All materials are structurally relaxed using classical force fields.
The database does not include partial atomic charges for the
deposited COFs.
6.1.1.10. CoRE-COF Database. In 2017, Tong et al.168

compiled a computation-ready database of experimental
covalent organic frameworks (COFs) containing 187 structures.
The original version of the database contained 19 3D-COFs and
168 2D-COFs. The structures collected in this database were
reported to be disorder-free and solvent-free, which makes them
ready for computational studies. Althoughmost of the structures
available in CoRE-COF database are cleaned versions of the
experimentally reported CIF files, some of the COFs collected in
the database are constructed computationally based on the
information reported in the literature where synthesis of the
corresponding COFs had been reported without any CIF file.
CoRE-COF materials are structurally optimized using a two-
step procedure168 where optimization was initially performed
using classical force fields and then later refined using the
dispersion-corrected DFT method of Grimme (DFT-D2).169

The database also reports on structural features of each COF
including their largest cavity diameter, pore-limiting diameter,
accessible surface area, and free volume. Since its first release, the
CoRE-COF database has been updated regularly so that its most
recent version (CoRE-COF, ver. 4.0)170 contains 449 structures
with the framework charges obtained from the charge
equilibration (Qeq) method.
6.1.1.11. CURATED COF Database. Clean, uniform, refined

with automatic tracking from experimental database (CURA-
TED) of covalent organic frameworks (COFs) is another
database of experimentally realized COFs.171 The initial version
of the database included 324 structures; however the database
has been updated recently so that its most recent version (Feb
2020) contains 482 structures. All structures collected in the
CURATED COFs are cleaned from solvent molecules and have
no partial occupation or structural disorder. They are
structurally optimized using DFT with the DDEC framework
partial charges included.171

6.1.1.12. Hypothetical ZIFs Database (hZIF-DB). In 2012,
Lin et al.86 published a paper on computational screening of
large number of zeolites and zeolitic imidazolate frameworks
(ZIFs) for carbon capture. In this study, ZIF structures were
generated computationally by using zeolite topologies of the
International Zeolite Association (IZA) database. In doing so,
the distance between zinc atoms and the center of imidazolate
rings was set to be 1.95 times larger than the silicon−oxygen
distance in zeolites. ZIF frameworks were then generated by
scaling the corresponding zeolite structures by the same factor
and replacing every oxygen atom with an imidazolate group and
substituting every silicon atom with a zinc atom. The resulting
ZIF geometries were validated by comparison against geo-
metries of two experimentally known ZIF structures (i.e., ZIF-3

and ZIF-10).86 This database is not available online or in a
depository to further comment on its characteristics.

6.1.1.13. Nanoporous Explorer Database (NE-DB). Nano-
porous explorer is an aggregated database of nanoporous
materials including CoRE-MOF,151 hypothetical MOFs,100 and
hypothetical PPNs.153 The database is part of a larger database
developed under the Materials Project program,2 which is
designed to provide a large collection of computed data for
experimentally known and computationally predicted materials
including nanoporous materials.172 The NE-DB provides
information about pore descriptors (e.g., PLD, LCD),
adsorption properties (e.g., Henry’s constant, adsorption
isotherm, heat of adsorption), and simulated powder X-ray
diffraction of many porous materials. At the time of writing this
review, the Nanoporous Explorer database contained 530 243
entries.

6.1.1.14. Nanoporous Materials Genome Database (NMG-
DB).NMG149,173 is a collection of a growing number of materials
databases that currently encompasses more than 3 million
hypothetical and synthesized porous materials. Most prominent
examples of these databases are already discussed in this review.
For the sake of completeness, we provide a full list of the
constituting databases for NMG, which includes hypothetical
MOFs database,100,157 computation-ready experimental MOFs
database (CoRE-MOFs),151,165 hypothetical zeolites,112,166

ideal silica zeolites obtained from the International Zeolite
Association (IZA) database,111 hypothetical covalent organic
frameworks (COFs),167,174 computation-ready experimental
COF database (CoRE-COFs),168,171 hypothetical zeolitic
imidazolate frameworks (ZIFs),86 and hypothetical porous
polymer networks (PPNs).153

6.1.1.15. Database of Porous Rigid Amorphous Materials
(PRAM-DB). So far, the databases we reviewed comprised
crystalline and ordered porous materials. In an important
development, Thyagarajan and Sholl175 have recently collected
205 atomistic models of amorphous nanoporous materials that
had been previously published by various groups. This new
database of porous rigid amorphous materials (PRAM-DB)
contains several classes of materials with disordered porous
structures including amorphous zeolite imidazolate frameworks
(a-ZIFs),176 activated carbons,177 carbide-derived car-
bons,178−183 polymers with intrinsic microporosity
(PIMs),184−187 hyper-cross-linked polymers (HCPs),188−190

kerogens,191 and cement,192 which all have important
applications in adsorption separation technologies. The data-
base contains partial atomic charges for most of the materials. It
also reports on a wide range of physical properties for each
material. This includes pore limiting diameter (PLD), the largest
cavity diameter (LCD), the accessible surface area and pore
volume, pore size distribution (PSD), ray-tracing histograms,
PXRD patterns, and radial pair distribution functions (RDF).175

The new study also reports single-component and binary
adsorption isotherms of several gases for these materials.175

6.1.2. Computational Tools for Structural Character-
ization of Porous Solids. As can be seen from the reviewed
studies, classification of materials within the databases and early
efforts in computational screenings are based on the geometric
descriptors of porous materials, such as the accessible surface
area, pore limiting diameter, and pore volume. As this is a
practice-oriented review, we believe it is useful to mention the
material characterization software available to obtain these
geometric properties for crystalline and amorphous porous
structures. To begin with, we refer the reader to several articles
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describing what properties of porous materials can be calculated
and how they are related to the properties that can be measured
and to the physical process of adsorption in porous
materials.102,103,193,194 In principle, calculation of selected
properties, such as the solvent-accessible surface area (in
application to porous materials often called simply the accessible
surface area), is available within many commercial and free
software packages. Three packages available for a more
comprehensive assessment of the materials are Poreblaz-
er,103,193,195 Zeo++,102 and PorosityPlus196 (Table 3). From
this list, Poreblazer developed by Sarkisov and Harrison103,195

and PorosityPlus developed by Opletal et al.196 are written in
Fortran and are available as open-source packages. Zeo++,
developed by Haranczyk and co-workers,102 is a C++ package
based on the Voronoi tessellation methods.102 With Voronoi
network being a dual graph of Delaunay network, the approach
employed by Zeo++ is closely related to that of Foster et al.197

The program is downloadable from the Web site of the
developers, with the source code available upon request only.
All three codes mentioned above are able to calculate

accessible surface area (equivalent to the area of the surface
formed by the nitrogen probe rolling on the surface of the atoms
of the structure), pore volume (using several alternative
definitions of this property), and pore size distribution.
Poreblazer and Zeo++ can also calculate pore limiting diameter
(PLD) of the porous frameworks, while PorosityPlus is also able
to compute radial distribution function (RDF) of the adsorbed
phase in the system. One important feature of Zeo++ software is
its ability to read framework structures in CIF format, while the
other two programs can only use XYZ format as their input for
the porous framework. A detailed comparison of Poreblazer,
Zeo++, and RASPA198 has been recently provided by Sarkisov et
al.195 for structural characterization of CSD-MOF Subset
database.154 Here, we note that RASPA is a molecular
simulation software that is mainly known for its capabilities
for Monte Carlo simulations. This program is presented in the
following section where we discuss grand canonicalMonte Carlo
(GCMC) technique for simulation of equilibrium adsorption
isotherms.

6.2. Molecular Simulation

The purpose of this section is to briefly introduce the two main
and most widely used molecular simulation techniques, grand
canonical Monte Carlo (GCMC) and molecular dynamics
(MD) simulations, which are used for simulation of adsorption
and transport properties, respectively, on a microscopic level. In
the context of adsorption problems, comprehensive reviews on
molecular simulations for metal−organic frameworks have been
provided by Yang and co-workers199 and for zeolites by Smit and
Maesen.200 In this section, however, we will discuss these
techniques as two important elements of the multiscale
screening workflows. In particular, we would like our intended
reader to appreciate what parameters are required for these
simulations, how they can be calculated, and what open-source
software are available to researchers to perform these
simulations.

In section 6.2.1, we introduce fundamentals of GCMC
method followed by section 6.2.2, which presents the main
publicly available simulation software for performing this type of
simulation. Next, in section 6.2.3, fundamentals of molecular
dynamics will be discussed, which will be followed by a section
related to the open-source programs that can be used to runMD
(section 6.2.4). Finally in section 6.2.5, we will briefly introduce
molecular force fields, which are central to accurate simulation
of molecular systems. The issues associated with the current
gaps in the field of force field development and comments on
their implications for multiscale materials screening studies will
be reviewed later in section 8.1.

6.2.1. Grand Canonical Monte Carlo Simulation. In this
section, we briefly review the grand canonical Monte Carlo
(GCMC) simulation method, which is widely used for
calculation of equilibrium adsorption data. For a more
comprehensive review of Monte Carlo methods, we would
refer the reader to reference books201−203 and several excellent
articles by Dubbeldam and co-workers on the Monte Carlo
methods and the organization of computer codes associated
with them.198,204

The problem of interest here is the adsorption of small
molecules (carbon dioxide, nitrogen, methane, hydrogen) in
crystalline porous materials. The volume (V) and temperature
(T) of the system are fixed, and the specified value of the
chemical potential (μ) establishes thermodynamic equilibrium
between the system and the bulk reservoir, serving as a source
and sink of adsorbate molecules. From the statistical-mechanical
point of view, the system corresponds to the grand-canonical
ensemble (μ V T), for which the Metropolis Monte Carlo is a
widely used method. This approach is suitable for rigid porous
materials, which do not exhibit significant volume changes in
response to external stimuli such as heat, pressure, and
adsorption/desorption of guest molecules, although it is
possible to incorporate in the simulations local movement of
the atoms and groups, such as rotation of the ligands inMOFs. It
is important to note that even for materials with almost rigid
framework, there exists some intrinsic flexibilities.205 This type
of flexibility occurs without any change in unit cell volume and is
associated with effects such as thermal vibrations at equilibrium
or presence of adsorbed molecules inside pores. Recent studies
have shown that the importance of intrinsic flexibility arising
from thermal vibrations varies considerably for MOFs depend-
ing on the adsorption property of interest.206,207 For example, it
was shown that intrinsic flexibility can be more important where
pore sizes are comparable to the kinetic diameter of adsorbate
molecules.206,208 For zeolites, however, the effect of thermal
framework vibrations on molecular adsorption was shown to be
negligible and the rigid framework assumption can be reliably
used in GCMC simulation for these materials.209 For simulation
of flexible materials that undergo significant changes in unit cell
volume, more advanced simulation methods such as the osmotic
ensemble and Gibbs ensemble Monte Carlo should be used.204

A schematic diagram of the GCMC workflow is shown in
Figure 12. According to this scheme, a Monte Carlo simulation
of adsorption requires the following inputs:

Table 3. Computer Software Available for Pore Structure Characterizations

item software surface area pore volume PSD PLD RDF cif format supported code repository

1 Poreblazer103 yes yes yes yes no no https://github.com/SarkisovGroup/PoreBlazer
2 PorosityPlus196 yes yes yes no yes no https://data.csiro.au/collections/collection/CIcsiro:34838v1
3 Zeo++102 yes yes yes yes no yes http://zeoplusplus.org/
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• Force field parameters: these parameters define what
atoms and molecules are present in the system and
describe how they interact with one another. This
includes parameters associated with nonbonded van der
Waals interactions, partial charges on the atoms of the
structure and molecules, and geometry of the adsorbing
molecules (distances and relative positions of the atoms
within the molecule).

• Initial configurations of the species present in the system:
this includes positions of the atoms of the porous
structure and positions of any already adsorbed
molecules.

• Simulation parameters, including details of the Monte
Carlo protocol, number of steps allocated for the
equilibration of the system, parameters associated with
the statistical analysis of the simulation (i.e., number and
size of blocks in the block-average analysis), temperature,
and fugacities of the adsorbing components. This input
data category may also prescribe particular specialized
methods to calculate electrostatic interactions between
partial charges on the atoms.

Let us consider what happens within the Monte Carlo
simulation engine. A configuration of the system with a
particular number of molecules (in case of GCMC) and their
positions is called a microstate. In the actual physical system,
these microstates occur according to the Boltzmann probability
distribution. In a Monte Carlo simulation, these microstates are
generated by stochastically perturbing the state of the system:
we can add molecules to the system or remove them or change
their position and orientation. These different ways to change
the state of the system are called Monte Carlo moves. To ensure
Boltzmann distribution of the microstates, the probability to
accept a move is calculated according to eqs 1−4:
Translation:
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whereU represents the potential energy of interaction,Na and V
are the number of molecules and volume, respectively, β is the
reciprocal thermodynamic temperature, 1/kBT, with kB being
the Boltzmann constant, and θ is the Euler angle of the rigid
body rotation. Here, f is the fugacity of the adsorbing species,
which is related to the chemical potential as
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where qrot is the rotational partition function for a single rigid
molecule, and Λ is the thermal de Broglie wavelength:
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where h is Planck’s constant and m is the molecule mass.
These probability factors depend on the potential energy of

the system before and after the attempted move,ΔU; in the case
of the insertion and deletion moves, they also depend on the
chemical potential or fugacity of the adsorbing species.
Therefore, it is clear that at a fixed volume, temperature, and
chemical potential of the system and given the molecular
structure of the porous solid, the state of the system is governed
by the interaction energy, based on the employed force field.
Hence, the key message of this section is that in Monte Carlo
simulations (as in molecular dynamics), the force field is the
main input information required to setup the physical
description of the system, whereas everything else can be
treated as technical details.
As the simulation progresses, the positions of the molecules

change and the number of the molecules fluctuates, producing a
set of microstates over which the average properties of the
system can be calculated. This set of microstates is called a
trajectory, and it is a common outcome of bothMonte Carlo and
molecular dynamic simulations (in the sense that it reflects the
position of the system in the phase space), with the difference
that theMonte Carlo trajectory is not a function of physical time
and does not contain information about the velocities of the
molecules.
The ensemble of microstates within the trajectory can be used

to produce the relevant output properties of the system. In the
context of adsorption studies, the most important property is the
average number of molecules present in the system. For a single
value of the chemical potential or fugacity, the simulation will
produce an average adsorbed density. A series of simulations at
increasing chemical potentials will produce an adsorption
isotherm.

Figure 12. Schematic depiction of the workflow in the grand canonical
Monte Carlo simulations. The blue boxes indicate the required input
data and parameters for the simulations. In the most general terms, a
simulation run generates a trajectory (a set of microstates of the system,
corresponding to the particular ensemble). The red boxes indicate the
primary properties that are directly calculated from the Monte Carlo
trajectory. The green boxes are the secondary properties that can be
calculated from the primary properties.
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An important distinction has to bemade between the absolute
and excess amount adsorbed. The absolute amount adsorbed is
the actual number of molecules present in the micropores at a
particular fugacity. The excess amount is the difference between
the absolute amount adsorbed and the number of molecules that
would be present in the micropore volume according to the bulk
gas density at the pressure and temperature of adsorption. The
distinction between different definitions of adsorption and their
connection to the experimental measurements has been
discussed by Brandani et al.210 Monte Carlo simulations report
absolute amount adsorbed, whereas experimental measure-
ments are more often presented as the excess amount. The
process simulations discussed in the next section take as an input
analytical models for the absolute amount adsorbed.
Another important property that can be obtained from

GCMC simulation is the enthalpy of adsorption. As will be
discussed in the process modeling section of this review, in real
processes and in process models based on adiabatic consid-
erations, heat effects may play a role in the performance of the
cycle. In molecular simulations, this property can be calculated
either using an expression based on the result from the
statistical−mechanical fluctuation theorem211 or, in direct
analogy to the experimental methods, using the Clausius−
Clapeyron equation. In the first case, a single isotherm is
sufficient to calculate the heat of adsorption at each adsorption
pressure, as described by eq 7:

H
N U N U

N N
U U RTads 2 2 g IG sΔ =

⟨ × ⟩ − ⟨ ⟩ ⟨ ⟩
⟨ ⟩ − ⟨ ⟩

− ⟨ ⟩ − ⟨ ⟩ −μ μ μ

μ μ
(7)

here ΔHads is enthalpy of adsorption, U represents combined
total energy of the solid adsorbent and adsorbed molecules,N is
the total of number of molecules adsorbed in the framework,
⟨Ug⟩IG refers to the average energy of a single molecule in the
ideal gas phase, ⟨Us⟩ is the average energy of the solid
framework, and R is the gas constant. ⟨Us⟩ will be equal to
zero when the framework is assumed to be rigid, and ⟨Ug⟩IG is
also zero if adsorbate molecules are treated as rigid. Thus,
enthalpy of adsorption can be often calculated from the change
in the potential energy of the system after adsorption. We note
that the use of eq 7 in certain systems (e.g., adsorption of water
in hydrophobic MOFs212) may result in large fluctuations of the
values of ΔHads. In such cases, enthalpy of adsorption can be
computed using the derivative of the total potential energy

( )U
N T

∂⟨ ⟩
∂⟨ ⟩ , which will replace the first term on right-hand side of eq

7.212 At high loadings, the reliability of eq 7 deteriorates. This is
because this formula relies on the fluctuation of the number of
adsorbed molecules in the system, and since at high loading the
acceptance ratio for the insertion and deletion Monte Carlo
moves is low, convergence of the method becomes problematic.
This is not an issue for the approach based on the Clausius−
Clapeyron equation;211 however, this method requires
adsorption isotherms at several temperatures. Finally, simplified
expressions are available if one is interested in the heat of
adsorption in the Henry’s law (zero loading) regime.
In addition to the properties directly required by the process

simulation data (adsorption equilibria, heats of adsorption),
molecular simulations also generate a wealth of information by
visualizing the adsorption process on a molecular level (e.g.,
visualizations and density maps). These properties help to
elucidate, for example, the presence of specific binding sites and

distribution of the molecules in the structure, which in turn can
be used to construct new analytical models for adsorption.
So far, this brief introduction to the grand canonical Monte

Carlo methods for adsorption problems implicitly assumed rigid
crystal structures and rigid adsorbate molecules (with small gas
molecules, such as nitrogen, carbon dioxide, and methane being
adequately described by this approximation). Extension of
GCMC simulations to larger flexible molecules (i.e., alkanes)
requires more advanced techniques, such as the configurational-
bias GCMC.200 Adsorption behavior in flexible MOFs has also
attracted significant attention over the years. To capture these
phenomena, simulation in the osmotic ensemble is required as
well as advanced force fields to correctly represent the internal
degrees of freedom within the framework.213

6.2.2. Monte Carlo Simulation Codes. To make the
review a practical reference, here we briefly introduce the open-
source Monte Carlo codes for simulation of equilibrium
adsorption isotherms in porous materials. These codes are
listed in Table 4. We note here that a special issue of Molecular

Simulation journal invited the community to reflect on the codes
and algorithms available for the Monte Carlo simulations and
their accessibility and applicability, efficiency, and challenges.214

In a recent study, we tasked ourselves with exploring the
consistency of some of the most commonly used MC codes as
listed in Table 4 and examined their relative efficiency.215 For
this, we concentrated on a specific case study of carbon dioxide
adsorption in IRMOF-1 material at conditions for which
previous simulation results and experimental data were
available.216 It was a significant reassurance for us to observe
that the codes were indeed consistent with each other. To assess
their relative efficiency, we employed analysis based on the
statistical inefficiency of sampling to compare trajectories from
different codes on a consistent basis of the rate at which they
were generating a statistically novel configuration. Our analyses
revealed some differences in the overall performance of various
MC codes; nevertheless this variation was found to be relatively
negligible.215 RASPA, MuSiC, and DL_MONTE were overall
the top performing programs in the analysis. Within the same
article, we also generated consistent setups and scripts for all the
codes for the above test case, which can be used by themolecular
simulation community as a template for consistency tests and
validation of future MC codes. These materials are available
from our online GitHub repository.215,217 Consistency and
efficiency of MC codes are particularly important in the context
of materials screening and multiscale simulation workflows.
Here, we briefly introduce the codes listed in Table 4.
6.2.2.1. Cassandra.Cassandra is a MC program developed in

Maginn’s research group at the University of Notre Dame. It is a
software package written in FORTRAN for simulation of the
thermodynamic properties of fluids and solids.218 Cassandra
supports canonical (NVT), isothermal−isobaric (NPT), grand
canonical (μVT), osmotic (μpT), Gibbs (NVT and NPT

Table 4. Monte Carlo Simulation Codes

software ref web site

Cassandra Shah et al.218 https://cassandra.nd.edu/
DL_MONTE Purton et al.219 https://www.ccp5.ac.uk/DL_

MONTE
MuSiC Gupta et al.220 https://github.com/snurr-group
RASPA Dubbeldam et

al.198
https://www.iraspa.org/RASPA/
index.html

Towhee Martin221 http://towhee.sourceforge.net/
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versions), and reactive (RxMC) ensembles. The code can be
compiled to run in parallel using OpenMP.218

6.2.2.2. DL_MONTE. DL_MONTE is another Monte Carlo
simulation software written in FORTRAN that can also be run in
parallel.219 It was originally developed by Purton and co-workers
at Daresbury Laboratory in the U.K. with special emphasis at
materials science. It is now being developed as a multipurpose
simulation package in collaboration with the Wilding (Uni-
versity of Bristol) and Parker (University of Bath) research
groups. The code can simulate systems in canonical (NVT),
isobaric−isothermal (NPT), grand canonical (μVT), semi-
grand canonical, and Gibbs ensembles.219 DL_MONTE is a
twin sister code of the DL_POLY package, a molecular
dynamics simulation software that will be introduced later in
this review. With regard to parallelization of MC codes such as
DL_MONTE and Cassandra, Gowers et al.215 have demon-
strated that the measured performances of existing implementa-
tions show poor efficiency due to various reasons. At least in the
context of adsorption simulations and computational screening
of porous materials, parallel execution of multiple MC runs
offers higher efficiency and larger overall speed up compared to
parallelization of MC codes.215

6.2.2.3. MuSiC.Multipurpose simulation code (MuSiC) is an
object-oriented software written in FORTRAN that was
developed in Snurr’s research group from Northwestern
University.220 The code supports grand canonical (μVT),
canonical (NVT), and isobaric−isothermal (NPT) ensembles.
It can also be used to perform hybrid MC and molecular
dynamics (MD) simulations.222

6.2.2.4. RASPA. RASPA is a molecular simulation program
written in C language that was designed for simulation of
adsorption and diffusion processes in nanoporous materials,
including flexible structures.198 The code was originally started
in Snurr’s research group at Northwestern University in active
collaboration with Calero’s group from the University Pablo de
Olavide, and with David Dubbeldam from the University of
Amsterdam being the lead developer of the code.198 RASPA
supports a variety of ensembles including microcanonical
(NVE), canonical (NVT), isobaric−isothermal (NPT), iso-
enthalpic−isobaric (NPH), Gibbs (NVT and NPT versions),
and isobaric−isothermal ensembles with a fully flexible
simulation cell (NPTPR).198 It can be used to perform both
Monte Carlo and molecular dynamics simulations; however it is
best known for its capability as a MC software. The code also
supports configurational bias Monte Carlo (CBMC) and
continuous fractional component Monte Carlo (CFMC) for
rigid and flexible molecules.198,204

6.2.2.5. MCCCS Towhee. The Monte Carlo for complex
chemical systems (MCCCS) program was originally developed
in Siepmann’s research group at the University of Minnesota. It
is currently being developed and maintained by Martin.221,223

The bulk of Towhee is written in FORTRAN 77. The code was
initially designed for the prediction of fluid-phase equilibria;
however, it has been extended later to simulate different systems
including porous materials. Towhee supports a variety of
ensembles including NVT, NPT, μVTm and Gibbs ensem-
bles.221

6.2.3. Molecular Dynamics Simulation. In this section,
we turn our focus to molecular dynamics, which is widely
employed for calculation of time-dependent phenomena across
different fields from gas separation to materials science,
geological sequestration of gases, biomolecular science, and
drug discovery.199,224−229 The brief description provided here

solely concerns molecular diffusion of simple gases in crystalline
porous materials. We also note that although MD has been
extensively used for simulation of molecular diffusion in porous
solids, there are other techniques that might be more suitable for
simulation of diffusion processes depending on different specific
aspects of the system of interest. For example, simulation of very
slow diffusion processes may not be fully attainable in
conventional MD. For these systems, more advanced simulation
methods such as transition path sampling230 and dynamically
corrected transition state theory,231 which are particularly
designed for sampling the sequence of rare events, should be
used. Therefore, the section provided here is only meant to serve
as introductory material for nonexpert readers. For more in-
depth discussion of this technique, the reader is referred to
numerous resources available in the literature.201,229,232−235

In contrast to Monte Carlo method where the microstates of
the system are generated stochastically, in MD, we consider
evolution of the system in space and time by numerically solving
Newton’s classical mechanics equations of motion.234 In a
system of particles interacting with each other and their
environment, the total force exerted on each particle is given
by234,236
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where Fi, vi, mi, ai, and ri denote the force, velocity, mass,
acceleration, and position, respectively, of the ith particle and U
and t stand for the potential energy of interaction and time. The
above equation is normally solved from a Taylor series
expansion about initial position and velocity of particles in the
system.234,237 There are several algorithms in the literature for
time integration of eq 8 such as the Leapfrog238 and Verlet.236 In
the latter one, which is not only one of the simplest methods but
also one of the most widespread algorithms,232 the position of
the particle at each time step is calculated by
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i

2+ Δ ≈ − − Δ + Δ
(9)

The above estimate of the new position of particle i contains an
error that is on the of orderΔt4, whereΔt is the time step in the
MD simulations.232

In the context of gas adsorption where diffusion of particles in
porous materials is monitored, MD simulations are normally
carried out in the canonical (NVT) ensemble where volume
(V), temperature (T), and the number of particles in the system
(N) are conserved. This approach is suitable for molecular
diffusion in materials whose porous framework exhibits
negligible flexibility; hence crystalline structure of these
materials can be safely assumed as rigid. Nevertheless, in
frameworks where pore sizes are close to the kinetic diameter of
adsorbing molecules, the assumption of a rigid framework can
result in diffusivity values that are largely incorrect.239,240 For
materials with considerable framework flexibility, simulations
can be performed in NPT ensemble where pressure (P) is
constant instead of the system volume (V).241,242 This would
allow volume of the system to change under constant pressure,
which is often the case in diffusion experiments.
Figure 13 depicts the schematic diagram of the MD workflow

and the properties that can be calculated from typical MD
simulations. In MD, we need to define a set of starting (i.e.,
initial) configurations for the system, which are often obtained
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fromGCMC simulation. Similar to theMCmethod, interatomic
interactions of all particles must be defined using an appropriate
set of force fields along with other simulation parameters that are
normally supplied to an MD program as input data (e.g., time
step, temperature, and pressure). MD generates a time trajectory
of the system containing positions of all particles and their
associated potential energies. From these data, a number of
transport200,229,243 and thermal properties224,244−246 can be
calculated. Similar to the key message of the GCMC method,
here we emphasize again that given a set of physical constraints
(e.g., NVT) these properties are a function of how molecules
interact with each other, whereas all other parameters can be
treated as technical details of the protocol. These technical
details may influence the efficiency of sampling and convergence
of the results but not the physical properties of the system.
Hence, the force field is the main input property that defines the
physics and the behavior of the system of interest.
From the perspective of multiscale workflows, the key data we

are interested to obtain using MD are transport properties of
multicomponent mixtures. Indeed, obtaining information on
multicomponent diffusion from experiments is not trivial and
requires advanced techniques. Similarly to the GCMC
simulation, extension of simulation from a single component
system to multicomponent mixtures does not make the MD
simulations significantly more complicated, and this is the main
advantage of molecular simulations. It is also important to
recognize that “transport properties” is an umbrella term for
several distinct diffusion phenomena and frameworks of
description associated with them. Below we consider these
phenomena using the single component and multicomponent
cases. In the process, we comment on what properties associated
with these phenomena can be obtained from MD and what
properties are required in process modeling.
6.2.3.1. Diffusion in Single-Component Systems. Self-

diffusivity, collective diffusivity, and transport diffusivity are
three types of diffusion phenomena that are commonly studied
by molecular simulations.200,229,235,243,247,248 Self-diffusivity

(Ds) describes the motion of individual labeled molecules
through a fluid in the absence of the chemical potential or
concentration gradients. In experiments, this property is
measured using tracer diffusivity techniques, such as pulsed
field gradient (PFG) NMR. In simulation, equilibrium
molecular dynamics (EMD) is extensively used to calculate
self-diffusivity of adsorbate molecules in different types of
porous frameworks.249−254 Self-diffusivity can be conveniently
computed from the mean-squared displacement of particles
using the Einstein relationship given by
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where d is dimensionality of the system.Ds can also be computed
from the time integral of the velocity autocorrelation function
(VACF) defined by
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here, vi(t) is the center of mass velocity vector of molecule i. The
brackets in eqs 10 and 11 indicate an ensemble average taken
over the simulation run time. As diffusion in porous materials is
an activated process, temperature dependence of Ds is typically
captured in the we l l -known Arrhen ius re la t ion

( )D D exp E
k Ts 0

a

B
= − , where D0 is the pre-exponential constant

and Ea is the activation energy.
In contrast to self-diffusivity, the transport (Dt) and collective,

or corrected (Dc), diffusivities are associated with the macro-
scopic flux of molecules arising from the spatial concentration
gradient in the fluid.199,234 The transport diffusivity, also referred
to as the Fickian or chemical diffusivity, is related to net flux in
the system, which is described by Fick’s first law:

J q D q q( ) ( )t= − ∇ (12)

here, J and ∇q are the flux and concentration gradient in the
adsorbed phase, respectively.
Equation 12 can also be described in terms of the chemical

potential gradient, ∇μ:234

J q L q
q

k T
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B
cμ μ= − ∇ = − ∇

(13)

where, L is the Onsager transport coefficient and Dc is the
corrected, or collective, diffusivity.234

The transport diffusivity (Dt) is related to the collective
diffusivity (Dc) through a term associated with curvature in the
adsorption isotherm.200,243 This parameter is called the
thermodynamic or Darken correction factor, Γ, described by
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Figure 13. Schematic depiction of the workflow in the molecular
dynamic simulations. The blue boxes indicate the required input data
and parameters for the simulations. MD simulation generates a time-
dependent trajectory from which the primary properties (red squares),
such as mean-squared displacement (MSD) and velocity autocorrela-
tion function (VACF), are calculated. The green boxes are the
secondary properties that can be calculated from the primary
properties.
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where f represents the fugacity of the bulk fluid in equilibrium
with the adsorbed phase and q denotes the concentration of the
adsorbed phase. The thermodynamic correction factor can be
calculated from the adsorption isotherm, which itself is obtained
from GCMC simulation as explained in section 6.2.1.
Therefore, the relation between Dt and Dc can be rewritten

as234

D q
k T

q
L q D q( ) ( ) ( )t

B
c= Γ = Γ

(16)

The collective and transport diffusivities can be calculated from
both equilibrium molecular dynamics (EMD) and nonequili-
brium molecular dynamics (NEMD) simulations. In the latter
approach, the chemical potential gradient is the driving force for
transport, which is imposed on the system in the dual control
volume grand canonical molecular dynamics (DCV-
GCMD).255,256

In EMD, the collective diffusivity can be computed from
either of the following equations:199,234
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In process modeling, the mass balance equations are formulated
using Fick’s description of transport phenomena, and therefore,
it is the data and models for the transport diffusion coefficient,
Dt, that are required to set up a process simulation.
6.2.3.2. Diffusion of Multicomponent Systems. To this

point, we have discussed methods required for the calculation of
different types of diffusion in single-component systems.
Diffusion in multicomponent systems is generally an advanced
topic with extensive literature available on the fundamentals and
practical applications.257 Here, we mention only essential
concepts to illustrate what properties can be obtained from
molecular simulations and challenges associated with the
incorporation in the process models.
Several equivalently rigorous formulations of multicompo-

nent diffusion exist, for example, Onsager, Maxwell−Stefan, and
the generalized Fick’s approach.258,259 Briefly, for an n-
component system, the generalized Fick’s law can be formulated
as

D qJ t[ ] = [ ][∇ ] (19)

here, [J] is the column vector of diffusion fluxes of the
components in the system and [∇q] is the column vector of the
diffusion gradients in the adsorbed phase. The mutual diffusion
matrix, [Dt], is given by
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with Đij being the Maxwell−Stefan diffusion coefficients, and
[Γ] a matrix of thermodynamic correction coefficients.
Equivalently, eq 21 could be formulated using a matrix of

Onsager coefficients [L], which can be shown to be related to
[B]−1.257,260

In principle, all properties in eq 20 can be obtained from
molecular simulations. Mutual diffusion coefficients and the
components of the Onsager matrix can be obtained using
expressions, similar to eq 17 for a multicomponent system:
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whereas elements of [Γ] could be obtained from GCMC
simulations of multicomponent systems. This immediately
points to two challenges. First, construction of the compre-
hensive data for multicomponent diffusion requires a substan-
tially larger number of simulations, with properties, such as Lij
difficult to converge. The complete matrix of thermodynamic
correction factors also requires GCMC simulation of multi-
component systems, which may be associated with substantial
parameter space (i.e., the variation of the composition of the gas
and adsorbed phases). Second, the process simulations require a
continuous analytical model of the transport and equilibrium
properties. Hence, the data obtained frommolecular simulations
for the properties above would need to be fitted to some
simplified models (e.g., the Darken approximation of Maxwell−
Stefan coefficients) or be amiable to interpolation within the
process model. This will be further complicated if one wants to
incorporate temperature dependence of the diffusion coef-
ficients, since in the micropores it is an activated process.

6.2.3.3.What Data on Transport Properties Are Required in
Process Simulations? The general theoretical framework for
multicomponent transport phenomena may require a sub-
stantial number of parameters that are difficult to obtain in both
experiments and simulation. However, to construct a process
model such a level of description may not be actually needed. To
understand this, it is useful to broadly identify three regions of
the process where transport of the components of the mixture
take place: the bulk space between the pellets of the porous
material in the adsorption column, the macropores within the
pellets, and the micropores in the small crystal grains
(crystallites) constituting the pellets.
In the gas phase of the interstitial space between the pellets

and in the macropores, concentration dependent diffusion
coefficients would be required for the cases when the number of
components is more than two and when the system is expected
to significantly deviate from the ideal gas. This is not the case for
low pressure binary mixtures of N2 and CO2. Hence, as we will
see in the process modeling section 6.3, for the diffusion in these
regions we have a range of classical models, such as the
Chapman−Enskog model for molecular diffusivity, that provide
concentration independent Fickian diffusion coefficients.
What about the micropores? In the same section on process

modeling, we will also explain why in the commonly adopted
process models for PSA postcombustion carbon capture, the
diffusion inmicropores of the crystal is not considered at all. The
assumption is that for micropores larger than the size of
adsorbing molecules (for species such as CO2 and N2, the
micropores should be larger than 4 Å), the micropores are in
instant equilibrium with the gas phase in the macropores of the
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pellet, and we will provide a comment on why it is a reasonable
assumption.
Hence, the remaining domain of processes and applications

where the multicomponent data are indeed required in sufficient
detail is associated with kinetic separations, for example, the
separation of oxygen and argon in molecular sieves or propane−
propylene separation using 4A zeolites. However, even in the
kinetically controlled systems, single component diffusivities
coupled with the gradients of the chemical potential will provide
a reasonably good model for process simulations in the most
cases. Molecular simulations, however, could be useful to probe
under what conditions these assumptions are correct, to test
when models of additional intermediate complexity may be
required and identify reliable approaches to calibrate them. In
summary, we are not aware of process modeling studies that
incorporated the description of the multicomponent diffusion in
its full complexity, although some studies employed simple
models for micropore diffusion based on concentration
independent single component data.31,261,262

6.2.4. Molecular Dynamics Codes. In this section, we
briefly introduce some of the most widely used open-source
molecular dynamics simulation software. There are numerous
MD codes developed by various research groups and
commercial developers,204,263 some of which are purpose-built
software that are developed with particular applications in mind,
such as large biological systems (e.g., NAMD,264

CHARMM265). In this section, however, we only focus on
MD packages that offer many useful features for simulation of
fluid transport in nanoporous materials. These software
packages are listed in Table 5 and are briefly described here.

6.2.4.1. LAMMPS. The large-scale atomic-molecular mas-
sively parallel simulator (LAMMPS) is a highly efficient and
scalable classical molecular dynamics simulation code developed
by the US Sandia National Laboratories with a focus on
materials modeling.266 It can be used for simulation of solid-
state materials (metals, semiconductors), soft matter (bio-
molecules, polymers), coarse-grained, and mesoscopic sys-
tems.266 LAMMPS can be employed as a parallel particle
simulator at the atomic, meso, or continuum scales.266

LAMMPS is written in C++. Many features of the code support
accelerated performance on CPUs, GPUs, Intel Xeon Phis, and
OpenMP.266

6.2.4.2. GROMACS. The Groningen machine for chemical
simulations is a MD simulation software primarily designed for
simulation of biochemical molecules;267 however, due to its
computational efficiency it is also highly popular in the domain
of materials modeling and simulation of transport processes in
porous media. The code is written in C/C++. It was originally
developed at the Department of Biophysical Chemistry in the
University of Groningen. Since 2001, two teams at the Royal
Institute of Technology (KTH) and the Uppsala University in
Sweden have been responsible for development and main-
tenance of the GROMACS software.
6.2.4.3. DL_POLY. DL_POLY, which was developed at

Daresbury Laboratory in the U.K., is another classical MD

simulation software. It is a massively parallel code written in
Fortran that is suitable for simulation of macromolecules,
polymers, ionic systems, solutions, and transport in porous
media.204,268

6.2.5. Force Fields. A comprehensive review of the current
state-of-the art in force fields for adsorption phenomena in
nanoporousmaterials has been recently provided byDubbeldam
and co-workers.269 Here, we mention only essential elements
required in the context of the multiscale workflows. A force field
is a set of equations and parameters that describe howmolecules
interact with each other and with their environment, and
governing the thermophysical properties of the system of
interest.
Let us consider adsorption of CO2 in a rigid porous material.

Small molecules such as CO2 can be also treated with reasonable
accuracy as rigid structures. The total energy of interaction in
this case is associated only with nonbonded (not involving a
chemical bond) contributions and can be seen as composed of
two terms: molecules of the gas interacting with each other (we
call this for simplicity f luid−f luid interactions) and with the
atoms of the porous structure ( f luid−solid interactions):

U U Unonbonded fluid fluid fluid solid= +− − (23)

In their turn, each of these terms can be seen as composed of the
short-range dispersion/repulsion interactions and the long-
range polar interactions. The commonly adopted mathematical
model to describe short-range interactions (the so-called van der
Waals interactions) between two atoms is the Lennard-Jones
(LJ) potential model:
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where ε, σ, and r are the potential well-depth, collision diameter,
and distance, respectively, and the indices ij indicate that these
properties are obtained for a pair of atoms i and j. The above

model consists of a repulsive term, 4 ij r

12
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k
jjj

y
{
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term, 4 ij r
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jjj
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{
zzz representing the dispersion interactions.201 In

contrast, the polar interactions are usually captured by placing
partial charges on the specific atoms within the molecule. The
interaction between the two partial charges is then obtained
using the usual Coulomb equation:

u
q q

r4ij
i j

ij
Coul,

0πε
=

(25)

where qi and qj are individual partial charges on atoms i and j and
ε0 is the vacuum electrical permittivity. The total Lennard-Jones
and electrostatic interaction energy in the system are then simply
a sum of all pairwise terms according to eqs 24 and 25 between
atoms and charges in the system. In practice, these calculations
are performed within a particular cutoff distance around each
individual atom. For short-range interactions such as the
Lennard-Jones potential, the calculated value quickly converges
as a function of distance, leading to a small error if the cutoff is
equal to a few atom diameters. This is not the case for the long-
range Coulombic interactions and advanced techniques such as
the Ewald summations have to be employed to account for this.
For rigid porous materials and small rigid adsorbate

molecules, the collection of all Lennard-Jones parameters of

Table 5. Molecular Dynamics Simulation Codes

software ref web site

LAMMPS Plimpton266 https://lammps.sandia.gov
GROMACS Abraham et al.267 http://www.gromacs.org
DL_POLY Todorov et al.268 http://www.ccp5.ac.uk/DL_POLY
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the atoms in the system, partial charges assigned to them, and
the particular rules associated with the calculation of the cross-
term for unlike atoms constitute the simplest force field.
If one wants to consider more complex systems featuring, for

example, flexible molecules or flexible porous structures,
additional energy terms to describe internal degrees of freedom
(bond and angle vibrations, dihedral rotations, etc.) will be
required as defined by eq 26:204,269
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In this case, it is the collection of all functions and parameters
involved in eq 26 that constitute a complete force field.
Over the years, a substantial number of force fields have been

developed. They differ in the functional forms employed in eq
26, target properties they reproduce, specialization, and
numerical procedures used to optimize the force field
parameters to capture the target properties. Important
characteristics of the force fields are (1) availability (the force
field has parameters available for a particular group of molecules
and species of interest), (2) accuracy (the force field is able to
reproduce particular properties of the system) and (3)
transferability (the same force field can be applied to another
class of molecules, while retaining its accuracy).
From this perspective, it is useful to distinguish very

specialized force fields, such as AMBER270−276 for biological
systems, which are very accurate for specific properties within a
specific group of chemical species but may not be available for
other classes of chemicals or have limited transferability. The
other example is generic force fields, such as the universal force
field (UFF)277−279 and DREIDING,280 that are based on a small
number of basic elements, are able to describe a broad range of
chemicals and species, but also for the same reason may lack
consistent accuracy in description of the properties of interest.
A special comment should be also made on the assignment of

the point charges within a particular force field. There is
currently no universally accepted system of point charge
assignment, because point charges are not experimentally
observable properties. As a result, different force fields adopt
different strategies on how to assign partial charges on the
molecules under consideration. For example, the UFF model
was originally calibrated to work with no charges assigned or
charges obtained using the Qeq charge equilibration method.277

For porous materials, the common practice is to assign charges
in a separate step as these charges are not readily available from
the standard force fields. For this, again, many algorithms were
developed over the years, including empirical approaches, based
on fitting some target properties, and a wide range of methods
based on information from quantum-mechanical (QM)
calculations, including the Mulliken population analysis,281

density derived electrostatic and chemical (DDEC) charges,282

repeating electrostatic potential extracted atomic (REPEAT)
charges,114 and ChelpG283 to name a few. What is important to

recognize here is that this large variety of methods differ in their
fundamental principles, in the level of theory they use, and in the
system they consider to calibrate the charges (periodic systems,
fragments). Although methods such as DDEC and REPEAT are
often found to be more reliable for reproducing adsorption
isotherms,284,285 the ambiguity involved in the assignment of
partial point charges in nanoporous materials still prevails. For
example, in one case it was shown that results based on the use of
REPEAT point charges reproduce experimental adsorption data
more accurately compared to DDEC charges; however at the
same time the REPEAT method leads to assignment of charges
that are sometimes unphysical.284 To avoid the ambiguity
involved in assignment of partial charges, Watanabe et al.284

have developed a method to directly incorporate the electro-
static potential energy surface (EPES) derived from DFT
calculations into molecular simulation, hence removing the need
to assign partial charges to framework atoms explicitly. The
above method can be only used for adsorption simulation of
rigid frameworks in which framework atoms are nonpolarizable
with respect to adsorbate molecules.284 For flexible frameworks,
it would be computationally impractical to perform DFT for
every configuration of the framework during simulation.284 The
complexity of charge assignment for materials such as MOFs has
been recently explored by Sladekova et al.,285 who also provided
a useful introduction to the previous studies investigating the
influence of the choice of the charge assignment scheme on the
adsorption properties of the material. More recently, new charge
assignment schemes have been developed based on machine
learning (ML) techniques where the ML model is trained on a
collection of high-quality DFT-derived charges such as
DDEC.286,287 An example of these models is developed by
Kancharlapalli et al.286 for MOFs and was shown to be
transferable to other porous materials such as zeolites and
porous molecular crystals. The ML-based charge assignment
schemes are more beneficial for screening of large databases of
porous materials where application of DFT-derived partial
charges such as REPEAT or DDEC can be computationally very
expensive.
In the context of adsorption in porous materials, a number of

force fields have been developed for zeolites. In particular,
accurate force fields have been developed to describe adsorption
of hydrocarbons in all-silica zeolites.288 These force fields stem
from the transferable potentials for phase equilibria force field
(TraPPE) model that has been developed to accurately capture
phase equilibria of alkanes and other organic species.289−294

Reasonably accurate force fields for CO2, N2, and some other
small gases in zeolites are also available from Garciá-Sańchez et
al.295 and from Martin-Calvo et al.296 Force fields derived from
first-principles calculations such as DFT-D2169 andDFT/CC297

have been also developed and have proved to be accurate in
prediction of CO2 adsorption in siliceous,298 cation-ex-
changed,299,300 and NH4-containing zeolites.

301 One important
feature of these force fields is that they can be developed
completely from first-principles and independent of any
experimental data, while at the same time being able to
accurately reproduce experimental measurements of adsorption
isotherms and heats of adsorption.299,301

In the case of MOFs, the situation is more complex due to
significant chemical heterogeneity of these materials. Early
molecular simulation studies adopted generic force fields such as
UFF and DREIDING for the sole reason that these force fields
contained some parameters for metal atoms, required to
describe MOFs.302 These force fields in fact proved quite
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reasonable in description of adsorption of simple nonpolar
molecules, such as methane, and noble gases.73 The situation
became more difficult as the focus of the research community
shifted to adsorption of polar molecules, such as carbon dioxide
and water. Adsorption of these molecules in MOFs and ZIFs
requires assignment of partial charges on the atoms of the
structure. As we discussed above, the number of possible
methods to assign these charges is significant, and there is not yet
a single, agreed procedure for this step.
An additional challenge is posed by MOFs with open metal

sites. The exposed metal sites interact quite strongly with
molecules such as CO2, water, and unsaturated carbons, and this
is where generic force fields fail.303 Accurate description of
interactions of these molecules with open-metal-site MOFs has
been the subject of intensive investigation in recent years.304−309

The employed approaches involved accurate QM calibration of
the functional forms of the potentials and associated parameters
and led to several specialized force fields for certain groups of
MOF materials, such as the MOF-74 family.306,307,309,310 These
specialized force fields have, however, low transferability to
other MOFs and so far have been focused on specific adsorbate
molecules, such as CO2, whereas the comprehensive imple-
mentation of the multiscale frameworks requires accurate
description of adsorption of all components in the multi-
component mixture, including nitrogen. As flue gas also contains
some water, modeling of water adsorption in addition to CO2
and N2 would also allow one to construct more accurate and
realistic process models. However, accurate molecular simu-
lation of water adsorption in all materials, regardless their nature,
is still a very challenging problem.
Finally, we note that although the developed force field may

be reliable in the prediction of equilibrium adsorption
properties, it does not necessarily imply accurate prediction of
transport properties using the same force field.
In summary, even within the constraints of rigid structures

and small rigid gas molecules, accurate force fields for CO2 and
N2 adsorption are available and have been validated only for a
handful of materials. Later in this review, we will discuss this
challenge and its implications for the computational screening
workflows.
6.2.5.1. Beyond Rigid Structures: Force Fields for Prediction

of Structural Transitions and Lattice Vibrations. Molecular
simulations typically assume adsorbent materials to have rigid
frameworks. Recently, novel porous materials have been
discovered that exhibit structural flexibility.311,312 Development
of force fields that can correctly capture this behavior is an
ongoing area of research.313−317 This is particularly important
for the studies of MOFs, as all MOFs exhibit some forms of
structural flexibility213,269,311 ranging from lattice vibrations at
equilibrium to large-scale structural transformations upon
external stimuli,269 such as temperature,318 guest adsorption,319

and electric field.320 Among different types of structural
flexibilities, structural vibrations and phonon properties of the
lattice determine specific heat capacity of porous sol-
ids,244,321,322 whose importance for performance-based materi-
als screening has been recently demonstrated.122,125

As elucidated by Kapil et al., thermal properties of the lattice
can be described by a quantum harmonic treatment.322

However, the heat capacity of loaded porous frameworks
requires a combination of quantum and anharmonic treat-
ment.322 Analysis of phonon properties for estimation of thermal
properties of materials requires costly quantum mechanical
calculations,323 which are not affordable for routine screening of

large numbers of porous materials. To address this limitation,
development of purpose-built and computationally affordable
force fields has been recently undertaken by several
groups;323−326 nevertheless, further developments for improved
accuracy and transferability of these force fields are required.327

6.3. Process Modeling and Optimization

The main objective of this section is to give an accessible guide
on PSA and VSA process modeling from fundamentals to
practical implementation. We begin with the basics of the mass,
energy, and momentum balances in the adsorption column
packed with pellets of adsorbent material (section 6.3.1). We
will introduce the hierarchy of models, differing in the level of
details in their description and in the assumptions involved. We
will briefly review the commonly involved methods in the
solution of the introduced balance equations under the
appropriate boundary conditions.
Setting up a process model requires a number of parameters

and properties. For a nonpractitioner, it can be overwhelming to
see the process model in its full complexity, and hence in section
6.3.2 we tasked ourselves with explaining what parameters are
required and how their values can be obtained.
A pressure swing adsorption process involves several columns,

each of them going through a cyclic sequence of steps. In section
6.3.3, we will use a simple 4-step cycle to introduce the PSA
process and the key concepts associated with its cycle, such as
cyclic steady state (CSS), and performance of the cycle in terms
of purity, recovery, productivity, and energy consumption.
Furthermore, using this example of the 4-step process, we will
briefly explore the concentration profiles during different steps
at CSS and how to interpret them.
A specific cycle configuration may not operate at the optimal

conditions. Hence, a significant part of process modeling
research is focused on cycle optimization. In section 6.3.4, we
introduce currently used optimization methods, such as genetic
algorithms, and essential concepts associated with process
optimization.
As has been already discussed in the section on process

metrics, in general process simulations are time-consuming. This
prompted significant research efforts into development of more
efficient alternatives for process performance evaluation that
work in tandem with detailed process simulations. These
developments are reviewed in section 6.3.5.
Finally, following the spirit of the review, we conclude the

section on process modeling with a brief overview of the
available codes for this type of modeling and their capabilities
and access (section 6.3.6).

6.3.1. Fundamentals. An adsorption column is the basic
unit of the adsorption process. In this section, we provide a brief
summary of the mass, energy, and moment balances around this
unit, which either are solved numerically in the process
simulations or serve as starting points for simplified analytical
models. For a more comprehensive analysis, we refer the reader
to the seminal books by Ruthven et al.328,329 on fundamentals of
adsorption and PSA processes.
Consider the schematic of a packed column in Figure 14. The

column has length of Lc, z is used as the position within the
column in the axial direction, and the feed is introduced to the
column from the bottom at z = 0. The column is packed with
pellets of adsorbent material. The pellet consists of microporous
crystallites that are held together by an inert binder. Thus, the
pellet has intercrystalline macropores and intracrystalline
micropores. In the description of the various transport
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processes, we adopt the following convention: macropore refers
to the pore space between the crystallites andmicropore refers to
the pores inside the crystallites. On the right of Figure 14, we
show an idealized spherical pellet of radius Rp and volume Vp. In
the model, we can also assume that crystallites are spherical
particles of radius rp. The pellet volume consists of the
macropore volume, Vmacro, and crystal volume, Vcr, which in
turn consists of the micropore volume, Vmicro, and the skeletal
volume, Vskel:

V V Vp macro cr= + (27)

V V Vcr micro skel= + (28)

The bulk density (ρbulk), pellet density (ρp), crystal density (ρcr),
and skeletal density (ρskel) are defined as follows:
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Here, Vgas is the volume of the gas phase in the column andmp is
the total mass of the adsorbent pellets. This mass includes both
the mass of the adsorbent crystals and the mass of the binder.
Thus, it is assumed that the binder volume is part of the skeletal
volume of the pellet. Therefore, the saturation capacity of the
adsorbent has to be corrected for the mass of the binder if the
adsorption isotherms were measured for the nonpelletized
adsorbent crystals. The bed void fraction (ε), pellet void fraction
(εp), and crystal void fraction (εcr) are defined as follows:
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A common starting point for many process modeling
approaches is the material balance in the column based on the
axial dispersed plug flow model (although more complex and

complete formulations are also possible, that is, including radial
dispersion term, etc.):
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Here, ci is the gas phase concentration of component i, ci
m is the

macropore concentration of component i in the adsorbent
pellet, v is the interstitial velocity, and Ji is dispersive flux of
component i. In this equation, the first and the second terms are
the accumulation terms in the gas phase and in the pellets,
respectively. The amount adsorbed in the pellet,Qi , can be seen
as the composite of the amount as gas in the macropores of the
pellet, εpci

m, and the absolute amount adsorbed in the
micropores of the adsorbent material, (1 − εp)qi:

Q c q(1 )i i ip
m

pε ε= + − (37)

where qi is the sorbate concentration of component i in the
micropores of the adsorbent. In the column mass balance, the
average amount adsorbed in the pellet is needed:
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and, similarly the average adsorbed amount in a crystallite can be
defined:
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The third term in eq 36 describes the convective flow of the gas
across the bed, and the final term describes the dispersion
process relative to the bulk flow. The dispersive flux is given by
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where Di
L is the axial dispersion coefficient, cT is the total gas

concentration, and xi is the mole fraction of component i. For
the axial dispersion coefficient (Di

L), correlations are avail-
able,329 such as
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here, Di
m is molecular diffusivity, which is defined later in this

section, and V0 is the average superficial fluid velocity through
the packed bed.
Although eq 36 provides the overall mass balance in the

column, it does not describe the actual process of diffusion into
the pellets. For this, a separate set of material balance equations
can be formulated around the pellet. In the most general case,
the model will contain terms associated with the external film
resistance at the pellet surface, macropore diffusion from the
bulk gas phase into the pellet, barrier and film resistance at the
adsorbent crystal boundary, and micropore diffusion in the
adsorbent crystals. A schematic of an adsorbent pellet with
relevant properties is shown on the right of Figure 14. Let us
consider these processes in more detail.
First, let us focus on the overall material balance for the pellet.

The amount adsorbed in the pellet is governed by the following
mass-balance equation, based on the second Fick’s law
formulated for the spherical pellet geometry:

Figure 14. Schematic depiction of the adsorption system under
consideration. The column is treated as a vessel filled with pellets of
porousmaterials (on the left). Each pellet can be seen as an agglomerate
of crystallites held together by inert binder. Other properties and
processes are explained in the text.
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Here, Dmacro,i
e is the effective macropore diffusion coefficient.

The first term of eq 42 represents the accumulation in the
macropores, the second term describes the accumulation in the
micropores, and the last term describes diffusive mass transport
due to the concentration gradients inside the pellet (the second
Fick’s law).
At the surface of the pellet, diffusion from the bulk gas phase

into the pellet can be described via a mass-transfer process across
the film at the surface:
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where ki,f is the external fluid film mass transfer coefficient. This
equation sets the boundary condition at Rp, whereas at r = 0, the

boundary condition is 0c
r r 0

i
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, which is required due to the

assumption of spherical symmetry.
The effective diffusion coefficient reflects various mass-

transfer mechanisms into the pellet and is obtained by
combining the molecular diffusion (Di

m), Knudsen diffusion
(Di

K), surface diffusion (Di
S), and viscous diffusion coefficients

(Di
V):
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where the individual diffusion coefficients are estimated using
the well-known expressions:
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here, MWi is the molecular weight in g mol−1, σ12 is the collision
diameter from the Lennard-Jones potential in Å, Ω12 is a
function depending on the Lennard-Jones force constant and
temperature, rpore is the mean macropore radius in m, K is the
Henry’s constant of adsorption, and E is the diffusional
activation energy. These expressions along with the theories
behind them and the values of the parameters are discussed in
the classical textbooks on transport phenomena.328,330 We
further note that typically in the process models the values are
obtained at some fixed, representative conditions, while in
reality the conditions change dynamically in the actual process,
and hence, these properties would also vary in time in a more
accurate model.
Similarly, for the diffusive process in the micropores inside the

crystallites, modeled as spherical particles of size rp, we can

formulate a similar general mass-balance equation, based on the
second Fick’s law of diffusion:
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Here, Di
μ is the effective diffusion coefficient in micropores and

other terms are asdescribed before. Similar to the processes at
the pellet surface, the diffusion into the crystallite particle from
the surface can be described using transfer resistances across the
surface:
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Here, qi* is the adsorbed concentration of component i in
equilibrium and ci

s is the concentration of component i at the
crystal boundary. In eq 50, we equivalently consider fluxes across
the external fluid film, governed by the mass-transfer coefficient
κi,f
μ , or across the crystal boundary, governed by the mass-transfer
coefficient ki,b. Equation 50 defines a boundary condition for r =

rp, whereas at r = 0, it is 0
q

r r 0

i =
∂
∂ =

(again similar to the

boundary condition of the pellet).
A similar hierarchy of equations can be formulated for the

energy balance in the column. In the most general non-
isothermal case, the following equation governs the heat-transfer
processes:

U
t

U

t
H v

z

J

z
J H

z
h

A
V

T T

(1 )
( )

( )
( ) 0

i

N
i i

f p f T

1
w

c

c
f w∑

ε ε ε

ε

∂ ̌
∂

+ −
∂ ̌

∂
+

∂ ̌
∂

+
∂
∂

+
∂ ̃

∂
+ − =

= (51)

here, Ŭf is the internal energy in the fluid phase per unit volume,
Ŭp is the internal energy in the pellet per unit volume, H̆f is the
enthalpy in the fluid phase per unit volume, JT is the thermal
diffusive flux, and H̃i is the partial molar enthalpy of component i
in the fluid phase. Tf and Tw are temperatures of the fluid and the
wall, respectively, while hw is the heat transfer coefficient
between the wall and the surroundings. Ac and Vc are the surface
area and the volume of the column, respectively. The first two
terms in eq 51 are accumulation terms for the gas phase and the
solid phase, respectively; the third term is associated with the
convective flux of the fluid stream, with enthalpy H̆f. The next

two terms are the axial dispersion terms. The first one,
J

z
T∂

∂
,

describes thermal flux due to the temperature gradients along
the z axis, whereas the second term is associated with the
diffusive fluxes due to the concentration gradients along z axis
(and hence enthalpy fluxes coupled with them). The last term on
the left in eq 51 describes heat transfer from the fluid to the wall
of the column.
The heat transfer across the wall of the column can be

described as
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where T∞ is the temperature of the surroundings. The column
wall is defined by the column wall density ρw and specific heat
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capacity cP̂,w. The ratio of the logarithmic mean surface area to
volume of the column wall, αwl, is given by
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whereRc and δw are the radius of the column and the thickness of
the wall, respectively.
At the level of the pellet, a uniform temperature profile is

typically assumed across the pellet (no temperature gradients),
and this has been shown to be consistent with the experimental
observations.331

The overall energy balance for the pellet can be then
formulated as
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Here, the first equality simply indicates that the total energy
change in the pellet can be seen as a sum of the change in energy
in the fluid phase in macropores and change in energy associated
with the adsorbed phase (solid + micropores). The second
equality links this change to the heat transfer across the pellet
boundary with heat transfer coefficient hp and heat flux
associated with the adsorption of the components in the system,
where H̅i,f is the partial molar enthalpy of the component i.
Finally, the thermal axial dispersion flux, JT, is given by
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Here, the axial thermal conductivity in the fluid and pellet are
given by λf

L and λp
L, respectively. There are also alternative ways

to formulate the energy balance, for an example of which we
refer the reader to the article by Zhao et al.332

The momentum balance is described by the Ergun pressure
drop equation:
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where μ is the fluid viscosity and ρf is the fluid density.
The equations above provide a complete and general

description of the mass and energy balances in the column.
These equations serve as a starting point for more simplified
models. Indeed, Figure 15 illustrates the hierarchy of the models

with each model based on its own set of assumptions and
resulting simplifications of the governing equations. Reading this
diagram from left to right, the system can be considered as
isothermal (hence no energy balance equations are required) or
nonisothermal. Then, within each branch, we can either include
or ignore the pressure drop across the system. For each branch,
we can further consider whether we include film resistance at the
surface of the pellet or not and so on. This hierarchy
demonstrates that we can construct on order of 102 models
depending on the combination of the assumptions we use. The
boxes shaded green in Figure 15 represent the choice of the
assumptions adopted in the studies of Farmahini et al.,89,122 as
well as in many other previous studies.117,333,334 In this case, the
following assumptions are considered:
(1) The system is modeled as non-isothermal with heat

transfer allowed between the packed bed and its wall, but the
pellets and gas phase are kept at the same temperature.

T Tf p= (57)

(2) Pressure drop is considered across the bed. The pressure
drop is modeled using the Ergun equation, eq 56.
(3) No external film resistance is considered. In this case, eq

43 vanishes, and the following condition applies:

c R z t c z t( , , ) ( , )i i
m

p = (58)

(4) The macropore resistance is modeled using the linear
driving force (LDF) approximation. Effectively, all the
resistances to diffusion are lumped into a single effective
parameter, while the driving force of the process is simply the
difference between the concentration of species i in the gas phase
(ci) and that in the macropores (ci

m). As a result, eq 42 can be
replaced with a simplified model:
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Here, ki
p is the LDF coefficient for the pellet. This parameter can

be calculated using the effective macropore diffusivity with the
Glueckauf approximation, which is equivalent to assuming a
parabolic concentration profile:335
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(5) Micropore equilibrium is assumed. This assumption
implies that the crystallites are in instant equilibriumwith the gas
phase in the macropores of the pellet. This would be the case
when the overall mass transfer into the pellets is controlled by
macropores and not micropores. Although this seems counter-
intuitive, the validity of this assumption for materials with pore
sizes that do not impose significant kinetic constrains on
diffusion of small molecules (larger than 4 Å) has been discussed
on several occasions.328,336 To illustrate this point, let us return
to the eq 42 describing the mass balance around the pellet. If we
make an assumption that the isotherm is linear (q̅i =KH,ici

mwhere
KH,i is the Henry’s constant for component i), eq 42 can be
rearranged as
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which can be further rearranged to obtain the Fick’s diffusion
equation and the effective pore diffusivity of component i, De

P,i:

Figure 15. Hierarchy of the models available for the mass and energy
balances in the adsorption column (not an exhaustive list). Squares
shaded green reflect the combination of the models employed in the
studies by Farmahini et al.89,122 and also commonly adopted by other
practitioners in the field.
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While it is obvious that Di
μ is always smaller than DP,i

e , what is
important in determining the controlling mass transfer
mechanism is the comparison of the molar fluxes. In particular,
the two diffusional time constants that should be compared to
each other are then the macropore diffusion constant (Rp

2/DP,i
e )

and the micropore diffusion time constant, (rp
2/Di

μ). Small
crystals (small rp

2), relatively large beads (large Rp
2) and large

value of the effective Henry’s constants lead to
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≫ μ , or in

other words mass transfer controlled by the macropore
diffusion.
Hence, we assume that the micropores are in instantaneous

equilibrium with the gas phase in the macropores, described by
the concentration ci

m. This assumption is equivalent to the
following condition:

q z t q c( , ) ( )i i i
m= * (64)

Instead of the condition above, one may wish to include a
more detailed model of micropore diffusion using the LDF
approximation. Then, the following simplification can be
employed to describe transport into the crystallites:
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The LDF coefficient ki
cr can be calculated from the effective

micropore diffusivity by
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Regardless of the details of the model, the combined mass and
energy balance equations form a system of differential algebraic
equations (DAEs). These equations are usually discretized in
the spatial domain by an appropriate numerical method such as
finite difference, finite element, orthogonal collocation, or finite
volume method. This produces a system of ordinary differential
equations (ODEs), which can be solved using a number of
approaches, such as the internal functions within the available
simulation packages (e.g., MATLAB), or existing numerical
solution libraries (e.g., SUNDIALS337). Here, it is also useful to
reflect on the simplified LDF-based models versus detailed
diffusion equation models. The motivation to develop simplified
LDF models is driven primarily by the numerical efficiency.
Indeed the simplified LDF model with 30 axial volumes and 2
components corresponds to 120 DAEs, while the same system
with the diffusion equation would be approximately 600 DAEs.
Including also diffusion in themicropores would lead to ca. 3000
equations. The computational costs would be at least propor-
tional to the total number of equations N if the code is well
written and N2 for a not-so-well written code.
6.3.2. Complete Hierarchy of Data Required for

Multiscale Process Simulation. One of the primary
aspirations of this review is to provide a useful guide on PSA
and VSA process models for nonpractitioners. Reading a
standard research paper on process modeling of adsorption
processes can often be overwhelming because of the number of

parameters and properties one needs to specify, with their
sources not necessarily being obvious. Here, we also emphasize
that even after reading our review we do not expect a novice in
process modeling to be able to setup their own simulations.
However, we hope they will be able to understand the
requirements for these simulations and be aware of the potential
sources of data. Broadly, we can split the data required for setting
PSA or VSA process simulations into the following categories:
Column properties describe the geometric dimensions of the
column, its length, diameter, and thickness of the walls. These
properties are either taken to reflect the actual experimental unit,
or given some specific, physically meaningful values. For
example, certain parameters of the column have been used in
several studies, and they have now become commonly employed
by several groups to ensure consistent comparison of the process
modeling results.88,89,93,116,120−122,124 The balance equations
described in section 6.3.1 also imply that to solve these
equations we need values of the properties associated with the
thermophysical characteristics of the material of the column and
how it interacts with its environment (e.g., heat capacity, heat
transfer coefficient, etc.).
In the next category, we have all properties associated with the

pellet: pellet size, pellet porosity, and pellet tortuosity. In the
same category, we also include properties associated with the
transport in macropores of the pellets, such as different
contributions to the overall macropore diffusivity (e.g.,
molecular diffusion, Knudsen diffusion, etc.).
Further down in the hierarchy of scales shown in Figure 15 is

crystallites, and hence the next category of properties is
associated with the properties of the adsorbent material crystals:
crystal density, crystal thermal and transport properties, etc. In
principle, the pellet is made out of crystallites and binder, and
properties of the pellet, such as the specific heat capacity or
thermal conductivity, are a composite property of the two
materials, binder and crystallites. However, the common
convention is to assume these properties of the binder to be
equivalent to the properties of the adsorbent crystals.
Generally, equilibrium adsorption data should also belong to

the category of the crystal properties. However, this requires a
special consideration. Adsorption data, both in experiments and
in simulations, are typically obtained as single component
adsorption isotherms comprised of discrete data points.
However, process simulations require an analytical expression
describing adsorption equilibria in order to be able to solve the
mass-balance equations described in section 6.3.1. Moreover,
the accuracy of process modeling also depends on how well the
supplied models describe the multicomponent equilibria; hence
accurate interpolation of single component isotherms may not
be sufficient for the correct behavior of the model in the actual
process simulations. A common approach is to use the dual-site
Langmuir (DSL) adsorption model to obtain an analytical
description of adsorption isotherms. For a single component
system, the DSL isotherm for species i is defined by
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Here, qi,j
s is saturation capacity of site j with respect to species i,

and bj,i is the affinity of each site described by the van’t Hoff

equation: ( )b b expj i j i
H

RT, o ,
j i,=

−Δ
. In the van’t Hoff equation,

ΔHj,Ij is the heat of adsorption at adsorption site j and boj,i is the
pre-exponential factor.
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As seen here, there are six parameters (q1,i
s , q2,i

s , bo1,i, bo2,i,ΔH1,i,
and ΔH2,i) for each gas component i that can be obtained.
Thermodynamic consistency requires that the saturation
capacity of each site is the same for all adsorbing species (for
example, for the binary CO2/N2 adsorption, this implies q1,N2

s =

q1,CO2

s and q2,N2

s = q2,CO2

s ), unless adsorbing molecules differ
significantly in size. In an early study, Myers showed that these
conditions are essential for the accuracy of the multicomponent
DSLmodel.338 This poses additional constraints on the fitting of

eq 67 to the reference adsorption data using nonlinear least-

squares regression. Adsorption of species A from a binary gas

mixture of A and B at fixed temperature is described by the

extended version of the dual-site Langmuir model (extended

DSL), which is given by

Table 6. Complete Set of Input Parameters for Process Simulation

parameter symbol source

Column Properties
wall (ambient) temperature (K) Tw design specification
column length (m) Lc design specification
inner column radius (m) Rc,i design specification
outer column radius (m) Rc,o design specification
column void fraction ε heuristic values
specific heat capacity of column wall
(J/(kg·K))

ĈP,w literature data

density of column wall (kg/m3) ρw literature data
wall heat transfer coefficient (J/(m2·K·s)) hw literature data
outside heat transfer co-coefficient
(J/(m2·K·s))

U heat-transfer engineering correlations, available from the literature

Pellet Properties
pellet porosity εp mercury porosimetry experiment
pellet radius (m) Rp geometric measurement using conventional callipers
pellet tortuosity (τ) τp often heuristic values are used; however, dynamic tortuosity can be obtained from the measurement of the

effective pellet diffusivity at different temperatures and pressures345

pellet heat transfer coefficient (J/(m2·K·s)) hp analytical correlations328

average macropore diameter (m) rpore mercury porosimetry experiment
molecular diffusivity (m2/s) Dm predicted from kinetic theory of gases or measured in bulk gas mixtures; eq 45 corresponds to the Chapman−

Enskog theory
Knudsen diffusivity (m2/s) DK predicted from the standard kinetic theories, eq 46
surface diffusivity (m2/s) DS measured experimentally; several methods exist,346 eq 47
viscous diffusivity (m2/s) DV eq 48

Crystal Properties
crystal density (kg/m3) ρcr experimental crystallographic data
microporosity (−) εcr helium pycnometry experiment on powder, interpretation of nitrogen and argon adsorption isotherms at 77

and 87 K, respectively, or CO2 adsorption isotherm at 273 K
crystal radius (m) rp optical microscopy
specific heat capacity (J/(kg·K)) ĈP,cr experimental calorimetry, empirical group contribution methods, ab initio simulation methods based on QM
micropore diffusivity (m2/s) Dμ molecular dynamic simulation, NMR experiments, other experimental techniques347

activation energy (kJ/mol) Ea molecular dynamics, NMR experiments, other experimental techniques347

Properties of Competitive Adsorption Isothermsa

saturation capacity for site 1 of the DSL
model (mol/m3)

qs1 DSL fit to experimental adsorption or GCMC simulation data

pre-exponential constant for site 1 of the
DSL model (bar−1)

b01 DSL fit to experimental adsorption or GCMC simulation data

enthalpy of adsorption on site 1 for site 1 of
the DSL model (J/mol)

−ΔH1 DSL fit to experimental adsorption or GCMC simulation data

saturation capacity for site 2 of the DSL
model (mol/m3)

qs2 DSL fit to experimental adsorption or GCMC simulation data

pre-exponential constant for site 2 of the
DSL model (bar−1)

b02 DSL fit to experimental adsorption or GCMC simulation data

enthalpy of adsorption on site 2 for site 1 of
the DSL model (J/mol)

−ΔH2 DSL fit to experimental adsorption or GCMC simulation data

Fluid Properties
viscosity (Pa·s) μ literature data
fluid thermal conductivity (J/(m·K·s)) λf

L literature data
axial dispersion coefficient (m2/s) Di

L eq 41
Feed Properties

feed composition (−) cF,i, xF,i design specifications
feed temperature (K) TF design specifications
aFor example, in the case of the DSL model.
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where yA and yB are mole fractions of components A and B in the
gas phase. To obtain physically meaningful parameters for the
DSL model, normally the fitting algorithm is guided through a
set of mathematical constraints, which also help the algorithm to
converge.89 The quality of the DSLmodel is ultimately tested by
its ability to predict binary adsorption equilibria. This data may
not be readily available from experiment; however in molecular
simulations, it is relatively easy to implement and carry out these
tests. In our previous publications, we explored systematic ways
to obtain parameters of the DSL model, and we refer the reader
to the original publication.89

It should be noted that for many new materials such as phase-
change adsorbents it is not easy to propose a suitable functional
form that can properly describe equilibrium adsorption
data.339,340 The alternative approach here is to describe the
equilibrium relationship between adsorbed phase and fluid
phase as a set of discrete points. Haghpanah et al.341 have
proposed a method to obtain discrete equilibrium data from
single-component breakthrough experiments and include it into
computer simulations so that a continuous functional form is no
longer required. In this method, adsorbed phase concentration
(q) is defined for a set of discrete values of the fluid phase
concentration (c) within the range of the feed concentration.
The adsorbed phase concentration of any point between two
adjacent discrete points is then calculated by interpolation.341

To extract discrete equilibrium data, single-component break-
through experiments are performed for different fluid phase
concentrations. The actual values of the corresponding solid
loadings are found by solving an optimization problem and
reducing the error between the experimental breakthrough
results and predictions of the process model.341 The above
computational technique has been further developed by other
research groups.342,343 For example, Rajendran et al.343 have
extended this method by incorporating discrete single-
component equilibrium data into the ideal adsorbed solution
theory (IAST)344 in order to describe binary equilibrium data.
The final category of parameters that are required for process

modeling includes properties of the feed such as its temperature
and composition, which are typically specified by the design
problem at hand (e.g., postcombustion carbon capture). Table 6
summarizes the full set of properties needed to set up a PSA or
VSA process simulation along with their sources according to
the categories provided above.
From Table 6, it is clear that setting up a model requires a

combination of properties that can be measured experimentally
(e.g., adsorption isotherms, properties of the pellet) or for which
well-established thermophysical models exist (e.g., molecular
diffusivity, Knudsen diffusivity). Some other properties have
well-known literature values (e.g., heat conductivity of steel). In
general, the large number of parameters required to set up the
model in combination with the large number of potential models
(hierarchies used as described in Figure 15) often makes
comparison and reproduction of data between various research
groups a challenging task; hence we strongly advocate detailed
disclosure of the sources, parameters, and algorithms used for
every simulation.

A separate challenge is the implementation of the complete in
silico workflows. As can be seen from Table 6, only a limited set
of properties can be obtained from molecular simulations (e.g.,
equilibrium adsorption data, micropore diffusivity, heat
capacity, and thermal conductivity of adsorbent crystals). For
other properties, particularly those pertaining to the morphol-
ogy of the pellets, we can either adopt some conventional
estimates based on what is known from previous experimental
measurements or use these parameters as optimization variables
within a specified range of known values. The former approach is
however prone to inaccuracy and inconsistency, considering that
pellet morphology is not standardized and various manufac-
turers produce adsorbent materials with different characteristics
(e.g., different size and porosity, various types of binder).
Optimization of these parameters however has proved to be a
more promising approach in some cases. In a recent study,
Farmahini et al.122 have demonstrated that size and porosity of
pellets can be used as decision variables during process
optimization not only to achieve maximum theoretical perform-
ance of adsorbent materials but also for consistent comparison
of different screening studies. To fully understand the impact of
these two approaches, we advocate for sensitivity and error
propagation analyses of the multiscale materials screening
workflows for the parameters that cannot be calculated from
molecular simulations or any other theoretical methods. The
results of such analyses will show whether the use of estimated
reference values for these properties has a significant impact on
the overall predictions of the multiscale workflows.

6.3.3. PSA and VSA Process and Cycle Configuration.
In section 3, we briefly introduced the PSA and VSA processes.
In the previous sections, we also covered the mass, energy, and
momentum balance equations governing the behavior of the
adsorption column and the data needed to set up the process
model. Here, we consider in more detail a particular 4-step VSA
cycle and essential elements of cycle configuration. For the sake
of concreteness and consistency, we continue with the same case
study of the postcombustion feed, comprised of carbon dioxide
(15%) and nitrogen (85%).
Figure 16 shows a 4-step cycle that first appeared in the work

of Ko et al.,348 who referred to this as the fractionated vacuum
swing adsorption cycle. The first step of the process is the
adsorption step. The feed is introduced to the column at a
pressure close to atmospheric. This is followed by a concurrent
blowdown step: the column is closed at the feed end, and the
pressure is reduced to remove excess nitrogen present in the
column in order to increase the purity of the product. Next is the
counter-current evacuation step, where the pressure is reduced
further, causing desorption of carbon dioxide. The product of
this step is a carbon dioxide-rich stream. Finally, this step must
be followed by bringing the pressure of the column back to the
adsorption pressure, which is done in the repressurization step.
In principle, repressurization can be done using the feed stream.
However, previous studies demonstrated that counter-current
repressurization with the light product stream, as schematically
depicted in Figure 16 leads to much better process perform-
ance.119,349 This effect stems from the counter-current
repressurization helping to concentrate carbon dioxide closer
to the feed end of the column as it will increase purity and
recovery of carbon dioxide during the evacuation step later in the
sequence. As can be seen from Figure 16, each step in this
process is associated with a particular pressure profile and
duration. These parameters, namely, time of the adsorption step
(tads), time of the blowdown step (tbd), and time of the
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evacuation step (tevac), blowdown pressure (Pbd), and evacuation
pressure (Pevac), along with feed pressure (PH) and feed flow
rate, are called cycle variables for this particular process and their
specific values define the cycle configuration. The cycle variables
are typically constrained by a number of considerations. For
example, PH cannot be set too high otherwise the compression of
the dilute gas makes the process not viable. Pevac is another

important example. In practical systems, 0.2−0.3 bar would be a
reasonable value for this parameter, but often much lower values
are used in process simulations in order to achieve the required
purity and recovery targets.
Adsorption processes operate at the cyclic steady state (CSS),

and equations described in section 6.3.1 can be solved iteratively
to arrive to the CSS. Alternatively, time can be discretized, and
the CSS in this case is calculated directly, but this approach
results in a large set of nonlinear equations and is not necessarily
faster.350 Although the actual industrial process features several
adsorption units in a different stage of the cycle at any given
moment, as they all go through the same steps, it is possible to
consider modeling of this process with only one unit. This so-
called unibed approach was originally described by Kumar et
al.351 This in general allows one to study a multicolumn process
at a similar numerical cost as a simple Skarstrom cycle. The
numerical procedure starts with some initial conditions and
solution of the balance equations in the adsorption step. This
produces concentration profiles for each component of the
system in the adsorbed phase and in the gas phase. These
concentration profiles and the composition of the product
stream serve as the initial conditions for the next step in the
adsorption cycle (in this case, the blowdown step), and so on.
The iterative process continues until the numerical CSS is
reached: this happens when the state variables start to depend
only on the spatial position in the system and the time relative to
the start of the cycle. One can employ several mathematical
criteria to establish whether the solution has reached the
CSS.352,353 We note, however, that this is not a simple problem
especially for non-isothermal systems or ones with one very
strongly adsorbed component (for example, water): in this case,
convergence may require thousands of cycles. Complexity of the
PSA and VSA processes is very well illustrated by the
concentration, temperature, and pressure profiles that are
calculated for each process cycle. Figure 17 depicts concen-
tration profiles of CO2 at the end of each step for the 4-step VSA-
LPP cycle shown in Figure 16. The corresponding cycle
variables are provided in Table 7.
Correct interpretation of the bed profiles is vital for the

analysis of the performance and efficiency of the PSA and VSA

Figure 16. Schematic depiction of a four-step process with light
product pressurization (LPP). From left to right, the column goes
through adsorption, cocurrent blowdown, counter-current evacuation,
and LPP steps. The bottom panel shows the pressure profiles during the
steps and their duration within the cycle time. The green color within
the column unit schematically indicates distribution of nitrogen at the
end of each step. The figure has been adapted from Burns et al.124

Figure 17. Examples of the concentration profiles for carbon dioxide in the column as a function of the dimensionless position along the bed. The
profiles correspond to the end of adsorption, blowdown, evacuation, and LPP steps in the gas phase (on the left) and in the adsorbed phase (on the
right) at the cyclic steady state condition. The conditions and other parameters of the process are provided elsewhere.122
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processes. The CSS implies that these profiles do not change
anymore (within the numerical convergence criteria) as we
continue with the numerical iterations and they will remain
looking like this at the end of their respective steps.
Let us focus on these profiles in a step by step fashion. The

LPP step prepares the bed for the next adsorption step, and the
LPP profile reflects the state of the column before the adsorption
step is started. In the gas phase, the concentration of carbon
dioxide is very low. In the adsorbed phase, the concentration of
carbon dioxide is also low; however some carbon dioxide
remains in the adsorbed phase close to the feed end of the
column (dimensionless bed position = 0). At the end of the
adsorption step, the profile in the adsorbed phase reflects the
higher amount of carbon dioxide now present in the solid. It
starts with saturation values at the feed end slowly diminishing
toward the light product end of the column (dimensionless bed
position = 1). This reduction in saturation value is due to a
nonuniform temperature distribution along the column: at the
adsorption front, the heat of adsorption increases the temper-
ature, which in turn reduces the saturation value; behind the
adsorption front, the temperature reduces gradually and, in turn,
the saturation value increases toward the feed end. In the gas
phase, the concentration of carbon dioxide is low at the end of
the adsorption step. The main purpose of the blowdown step is
to remove the remaining nitrogen in the gas phase. At the end of
the blowdown, some carbon dioxide is released from the porous
material, and it is concentrated at the feed end of the column in
the gas phase. The available carbon dioxide at the end of the
blowdown step will contribute to the heavy product, that is,
CO2-rich stream, during the counter-current evacuation step. At
the end of this step, the gas phase consists almost of pure CO2,
while in the adsorbent phase, the concentration of CO2 is
lowered. It is important to note from the profiles discussed that
the porous material is never fully regenerated: the amount of
carbon dioxide it captures is represented by the difference
between blue (adsorption) and green (evacuation) lines,
indicating that the working capacity of the material is only a
fraction of the absolute capacity. From the same graph, it is also
clear that the adsorption step is stopped before complete
breakthrough occurs and the portion of the bed between 0.75
and 1.00 in the dimensionless coordinates along the bed length
is never used.
To quantify performance of PSA and VSA processes, the

following properties are normally evaluated:
(1) Purity, PuCO2

, this property characterizes the composition
of the final product. It is the ratio of the number of moles of
carbon dioxide evacuated to the total number of moles of gas
mixture evacuated during a single cycle:

Pu
moles of CO recovered in evacuation

total moles out in evacuationCO
2

2
=

(69)

(2) Recovery, ReCO2
, this property describes the amount of

carbon dioxide recovered as part of the product stream
compared to what was originally fed into the column.

Re
moles of CO recovered in evacuation

total moles of CO in the feedCO
2

2
2

=
(70)

The other two properties include energy penalty and
productivity of the process, which have been already defined
in Table 1; however, we will explain them here again:
(3) Specific energy penalty (En) is defined as the total amount

of energy used for separation of 1 mol of CO2 from the feed.

En
total energy used

moles of CO captured2
=

(71)

(4) Productivity (Pr) is the amount of CO2 captured in the
product stream per unit volume of adsorbent per unit time.

Pr
total moles of CO in product

(total volume of adsorbent) (cycle time)
2=

× (72)

Here, it is also instructive to reflect on the nature of the energy
used in the process. In the PSA or VSA cycle, this work is
associated with either compression or pulling vacuum. In the 4-
step process considered here, themost significant energy penalty
comes from pulling vacuum during the evacuation step; however
it may shift to other steps in more complex processes.354

The complexity of this picture, its dynamic nature, and the fact
that it depends on a number of parameters, including the
configuration variables of the cycle, explains why it is difficult to
find some simplified metrics that would comprehensively
capture the efficiency of PSA and VSA separation processes.

6.3.4. Process Performance and Optimization. In the
previous section, we considered a single cycle configuration with
specific values ascribed tads, tbd, tevac, Pbd, Pevac, and flow rate of the
feed, F. However, in reality, the resulting process may or may not
be able to meet the design objectives to recover more than 90%
of CO2 with at least 95% purity. It also may not operate
optimally, hence incurring additional energy penalties. The
objective of the optimization process is to adjust the values of the
cycle parameters in such a way that the process can meet its
design constraints while operating at the highest possible
productivity and minimum energy penalty. Normally, most
optimizations consider a fixed process configuration (e.g.,
column size and connections) and only modify the cycle
configuration. For the fixed process configuration case, it is
essential to include the feed flow rate as a decision variable in the
optimization because it directly influences the pressure drop and
residence time of the system. If the feed flow rate was fixed, the
optimization would have to modify the column dimensions,
which would lead to a more complicated optimization problem.
In the optimization language, the cycle parameters described

above become decision variables, while mathematically the
optimization problem can be formulated as follows:

imin 1, 2
t t t P P F

imin
, , , , ,ads bd evac bd evac

Θ = Θ =
(73)

energy/1001Θ = (74)

productivity

subject to Re 90%; Pu 95%
2

CO CO2 2

Θ = −

≥ ≥ (75)

The optimization conditions above form an optimization
problem with two objective functions and two constraints.
Here, it is important to realize that the two optimization targets,
minimal energy penalty and high productivity, are in
competition with each other. Indeed, higher productivity may
be achieved using higher flow rates given the same amount of the
active adsorbent material in the column. However, this approach
may require faster cycles and lower evacuation pressures, which

Table 7. Cycle Variables Used for Simulation of Figure 17

decision
variable

feed
(mol/s)

tads (s) tbd (s) tevac
(s)

Pbd
(bar)

Pevac
(bar)

value 0.793 79.9 15.8 85.3 0.085 0.02
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will lead to higher energy penalties. In contrast, lower energy
penalty can be achieved with more moderate vacuum during the
evacuation step, but it will be achieved at a cost of processing
lower flow rates in the system or having to resort to longer
individual steps, leading to lower productivity. As a result, the
actual solution to the optimization problem is not a single set of
values of the cycle parameters but multiple combinations of
these parameters, each of them associated with a particular
combination of purity, recovery, energy penalty, and productiv-
ity values.
From the mathematical perspective, the problem above

corresponds to a multiobjective optimization. In general, this is a
challenging problem as the search for the solution takes place in
a multidimensional space of the decision variables, which can
form clusters of feasible solutions, separated by nonfeasible
regions. The study of Fiandaca et al.355 showed that the
objective function is nonsmooth and nonconvex and also that
the design space is nonconvex. Several approaches have been
proposed to deal with this problem over the years, with ref 355
briefly reviewing available approaches up to 2009. However, in
recent years, the conventional practice became to invoke the
evolutionary genetic algorithms (GAs) because of their ability to
achieve global convergence, and a large number of tools available
to implement them. In particular, a set of methods associated

with the second and third generations of nondominated sorting
genetic algorithm (NSGA-II,III) has been a popular choice. It
has been implemented in many commercial packages such as
MATLAB and also available as a set of free libraries.356−358

The initial step in the optimization problem is to identify a
range of values within which each decision variable can change.
A number of initial operating conditions (so-called, population in
GA terms) is selected from this range (either randomly or using
more sophisticated approaches such as Latin hypercube
sampling). For each combination of the decision variables, the
PSA process is simulated as described in section 6.3.3. Promising
candidates are identified, and their features are combined (using
mutations and crossover moves) to give a new generation of
operating conditions. As the optimization process evolves from
generation to generation, the cloud of points representing the
cycle configurations on the energy penalty−productivity plot
progresses toward higher values of productivity and lower values
of energy (subject to purity and recovery constraints) until this
process effectively stops (further progress of the cloud is not
visible within the convergence criteria). At this point, the
optimization has converged to its final set of solutions.
This process can be illustrated with two useful graphs

commonly employed in the process simulation and optimization
studies. The first plot has purity and recovery as X and Y axes. It

Figure 18. Process performance characterized in terms of purity−recovery coordinates (constraints, top graph) and energy penalty−productivity
coordinates (Pareto front, bottom graphs); graphs on the left are schematics for the illustration, whereas graphs on the right correspond to a case
studied in our recent publication.122
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identifies the proportion of cycle configurations that are able to
meet the 95%−90% constraints for purity and recovery of
carbon dioxide. The second plot shows the evolution of the
cycles in energy penalty−productivity coordinates. Figure 18
illustrates typical examples of these graphs.
The front edge of the clouds shown in Figure 18 are called the

Pareto fronts. These are the set of cycle configurations that
combine the highest purity−recovery and energy−productivity
for a given process configuration subject to its predefined
process constraints.
As already mentioned, this implies that for each material there

is a number of possible operating conditions to choose from
(points on the Pareto front). High productivity processes will
incur higher energy cost, but lower footprint and capital cost of
the plant. Low energy processes, on the other hand, will benefit
from lower energy penalties but may incur larger capital costs
due to larger required footprint of the plant.
Assessment of the performance of two materials then

invariably becomes the comparison of their corresponding
Pareto fronts. For example, if two specific values of energy
penalty are provided as indicators of the performance of two
materials, it is important to specify to what conditions these
values correspond, the lowest productivity on the Pareto front or
the highest productivity.
6.3.5. Emerging Numerical Techniques for Process

Optimization. The process simulations that we have covered
so far are computationally expensive: a single process simulation
for a given set of design variables takes minutes to complete.
Process optimization to obtain a Pareto front as described in
Figure 18 requires thousands or tens of thousands of
simulations, leading to an overall cost of the process
optimization exercise to be around 102−103 CPU hours for a
single material. Clearly, routine screening of tens, hundreds, or
thousands of materials at the process level is prohibitive.
This promoted the development of several strategies to

reduce the cost of process modeling and optimization stage.
These strategies can be split into three main categories:
(1) Reducing the pool of candidate materials by low cost,

preliminary screening strategies
(2) Reducing the computational complexity of the individual

process simulations through following steps:
(a) Accelerating the convergence to CSS
(b) Using a simpler model from the model hierarchy
(c) Replacing the high-fidelity model with a surrogate model

trained on the high-fidelity one
(3) Reducing the computational effort of the optimization

process
The above three approaches can be combined together,

although each of them has its own disadvantages and limitations
which can compromise the screening process so that the optimal
material and cycle configuration may be missed. Here we review
studies that focus on accelerating process modelling and
optimization using the strategies outlined above.
Strategies in the first category use simple performance metrics

to reduce the number of candidates in pre-screening steps so
that the expensive computational efforts can be only spent on
the most promising materials. As described in section 4, simple
performance metrics are not able to correctly and accurately
rank materials for the complex and highly dynamic adsorption
processes where performance is defined by a balance between
the competing objectives of energy penalty and productivity as
well as the competing constraints of purity and recovery. Thus, it
is crucial to have very conservative exclusion criteria so that

potentially promising candidates are not removed from the
candidate pool. On the other hand, a number of these metrics
can be computed very quickly so that the least promising
candidates can be removed for a low computational cost.
Burns et al.124 performed a detailed multiobjective process

optimization and ranking for a large range of materials for
postcombustion carbon capture. Afterward, they trained
machine learning (ML) classifiers to predict the objectives,
that are, purity, recovery, energy penalty, and productivity, based
on 29 sorbent metrics such as working capacity, selectivity, and
isotherm parameters. They showed that the N2 adsorption
behavior is crucial for the correct classification of materials that
meet the 95% purity−90% recovery constraints and achieved a
prediction accuracy of 91% for this. However, the prediction of
energy penalty and productivity for materials that met the 95%
purity−90% recovery constraints had very low accuracy. They
concluded that full process simulations are required for accurate
prediction of energy penalty and productivity. An interesting
approach was followed by Khurana and Farooq88 who trained a
classification neural network based on five equilibrium isotherm
characteristics, which cover the parameter space of the dual-site
Langmuir isotherm. Their model can predict with 94% accuracy
whether a material can meet the 95%−90% purity-recovery
constraints for postcombustion carbon capture using the VSA-
LPP cycle. For the materials that met the 95%−90% purity-
recovery constraints, they developed a metamodel to predict the
energy penalty and productivity and achieved R2 values of
around 0.9 for minimum energy penalty and maximum
productivity.
The second category is split into three methods to reduce the

computational complexity of the individual process simulations.
First, instead of simulating cycle after cycle to reach CSS, so-
called successive substitution, several studies have explored
methods to accelerate the convergence to CSS. For example,
Smith and Westerberg359 and Ding and LeVan360 used Newton
and quasi-Newton steps to reduce the cyclic deviation. This
method requires the calculation of the Jacobian and can achieve
about an order of magnitude faster convergence. Alternatively,
derivative-free extrapolation methods such as the epsilon
extrapolation used by Friedrich et al.361 can reduce the required
number of cycles to CSS by a factor of 3. Pai et al.362 used
artificial neural networks to predict the bed profiles at CSS and
used this to initialize the high-fidelity simulations. In their tests,
the model reduces the average number of cycles that need to be
simulated to reach CSS by a factor of 6.
Second, simpler but still physics-based models are used

instead of the high-fidelity models. These simplified models
should be fast to calculate while still capturing the main physics
of the separation process. Subramanian Balashankar et al.363

used a batch adsorber analogue model as a simplification for the
full VSA model with spatial discretization. The simplified model
assumes that the system is isothermal and well-mixed and has no
mass transfer resistance but still captures part of the physics of
the separation and can be solved in seconds. The authors
compared the output from the simplified model with the
detailed process optimizations and developed a classifier that
achieved a Matthew correlation coefficient of 0.76 in the
classification of materials that meet the 95% purity−90%
recovery constraints. In addition, they calculated a linear
regression for the energy penalty, which estimated the energy
penalty with reasonably good accuracy, that is, within 15% for
83% of the materials. However, Biegler et al.364 evaluated the use
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of simplified models for process optimization and concluded
that it can lead to convergence failure and even to false optima.
Third, surrogate models are built based on the output of the

high-fidelity models. These models are faster to evaluate and are
usually embedded into optimization methods. Agarwal et al.24

used proper orthogonal decomposition (POD) to replace the
detailed spatial discretization with a reduced order model
(ROM), leading to a system of differential algebraic equations
(DAEs) of a significantly lower order. The ROM was trained on
a number of bed profiles for different cycle conditions simulated
to CSS. Because only the largest singular values are used for the
ROM, the size of the discretized model is reduced by an order of
magnitude. The ROM is accurate close to the training cycle
conditions but loses accuracy further away from these points.
This means that the ROM needs to be retrained if the
optimization moves away from the original training points.
In recent years, the focus has moved to directly using the

optimization objectives and constraints to build ROMs instead
of using the ROMof the bed profiles. This approach replaces the
process simulation (reduced order or high-fidelity) with fast-to-
calculate surrogate models (also called ROMs, metamodels, or
emulators), which directly calculates the optimization objectives
based on the optimization variables. Thesemodels are built from
the input−output relations generated with the high-fidelity
models and can be used with any black-box optimization
algorithm. This enables the interfacing with state-of-the-art
multiobjective optimization methods to handle the trade-off
between competing objectives and constraints. Below, we review
the principles of these models and discuss recent studies that
have used this approach.
The process of surrogate optimization starts with an initial

design of experiments (DoE), which should cover the entire
design space. The high-fidelity model is used to simulate the
responses for these initial designs. Then the optimization loop
starts by building a surrogate model based on these input−
output relations. The optimization method operates on this fast-
to-calculate surrogate model to find promising design points.
The choice of the next design point is a balance between
exploring the design space and exploiting the best-predicted
design or designs. The new design point is evaluated with the
high-fidelity model and added to the input−output relations,
and a new iteration of the optimization loop starts, that is, we
build a new surrogate model. The optimization loop is stopped
once a stopping criterion, which is often a computational budget,
is fulfilled.
Beck et al.25,334 used Kriging regression based surrogate

models with the NSGA-II optimizer to simultaneously optimize
the CO2 purity and recovery for postcombustion capture. The
Kriging regression models the input−output relation as a
Gaussian process and gives the best linear unbiased prediction.
In addition, it also provides confidence bands for the prediction,
which can be used to explore the design space. They achieved a
5-times reduction in computational effort and also investigated
the specific energy penalty.334

The rapid development of machine learning methods and, in
particular, artificial neural networks (ANNs) is mirrored in the
application of machine learning to adsorption process
optimizations. Sant Anna et al.365 developed a three layer neural
network (input layer, one hidden layer, and output layer)
surrogate model for the separation of nitrogen and methane.
They trained the neural network on around 500 training samples
and performed a multiobjective optimization of N2 purity and
recovery on the trained network without further updating the

surrogate model. Comparing the optimal values with the high-
fidelity simulations showed that themaximum relative difference
was 1.4% for N2 purity and 4% for N2 recovery.
Instead of directly approximating the optimization objectives

and constraints, Leperi et al.366 used ANN based surrogate
models to approximate each basic step, for example, counter-
current pressurization and cocurrent feed, of the PSA cycles.
This approach enabled them to build arbitrary PSA cycles and to
include cycle synthesis in the optimization procedure without
the need to retrain the ANN for each process configuration.
They built 12 surrogate models for each step: one ANN for the
state variables at 10 locations along the column and one for each
end of the column to predict the inflow/outflow during the step.
The ANNs are trained with high-fidelity simulations for 300
Latin hypercube samples and used to predict the column profiles
as well as purity and recovery for three process configurations
and two adsorbents for postcombustion carbon capture. The
predictions were used in an optimization loop to find the purity-
recovery Pareto front. The solutions on the Pareto front were
used to test the accuracy of the ANN prediction and to retrain
the ANN in case the prediction is too far from the high-fidelity
simulation. After retraining, the relative errors for both purity
and recovery were below 1.5% for all cases.
Subraveti et al.367 used a surrogate model based on ANN in

the multiobjective optimization of purity and recovery of
precombustion CO2 separation and achieved a 10-fold
reduction in computational effort. For the first five generations
of the multiobjective NSGA-II algorithm, they used the high-
fidelity model. This generated training data for the ANN, which
would already be biased toward the optimal region of the design
space and should improve the prediction accuracy in the optimal
region. The ANN with one hidden layer and 10 neurons was
trained on the generated input−output data. The remaining 45
generations of the optimization were performed on the ANN.
The Pareto front was close to the one generated with the high-
fidelity model but had a relative error around 1% in both
objectives. In a subsequent paper, the group compared a range of
machine learning methods and showed that Gaussian process
regression achieves an R2 value above 0.98 for purity, recovery,
energy penalty, and productivity with a training set of 400
randomly sampled high-fidelity simulations.362 Their optimiza-
tion on this surrogate model (without further refinement) was
within 3% of the high-fidelity simulation for purity and recovery
as well as for energy penalty and productivity. However, the
latter optimization was tested subject to reduced 95%−80%
purity-recovery constraints.
Pai et al.127 developed a material-agnostic surrogate model

called MAPLE that fully emulates operation of the 4-step VSA-
LPP cycle at the cyclic steady state. The framework is based on a
dense feedforward neural network trained with a Bayesian
regularization technique. The framework accepts the adsorbent
properties, the Langmuir adsorption isotherm parameters, and
operating conditions as input. It predicts key performance
indicators of the process including CO2 purity and recovery in
addition to productivity and overall energy consumption of the
process as output. The model was trained with a set of data
generated using detailed process modeling. In order to reduce
computational time of the multiobjective optimization, MAPLE
was used to calculate the CSS performance indicators and feed
them back to the optimizer. The fully trained model predicts
each performance indicator with less than 2% error compared to
the detailed process modeling. The computational time required
for simulation and optimization of the process was also reduced
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from 1500 core-hours per adsorbent to ≤1 core-minute for each
adsorbent, which shows a significant improvement for screening
of large databases of porous materials.127

Strategies in the third category include a range of methods to
reduce the computational requirements of the optimization
itself, that is, reducing the number of required iterations to reach
an optimal value or Pareto front. Here, the first strategy is the
reduction of the search space. This includes the removal of
parameters that have no or only a small impact on the
performance, and the reduction of design space, that is reducing
the evacuation pressure range. For example, Subramanian
Balashankar et al.363 removed the blowdown and evacuation
times from the list of optimization variables. This was acceptable
in their optimization because these variables have very limited
impact on the purity and recovery. However, they have a large
effect on productivity and energy penalty.
Yancy-Caballero et al.126 performed a hierarchical, multi-

objective optimization with NSGA-II. They first optimized
purity and recovery to screen for materials that achieve the
95%−90% purity-recovery constraints and then optimized the
promising materials for energy penalty and productivity. The
energy penalty and productivity optimization was seeded with
the results from the initial optimization and was performed in
two steps: the first step used a low spatial resolution, which
reduces the computational complexity, and the second step used
a high spatial resolution and was preseeded with the low
resolution results.
Finally, Ding et al.368 and Jiang et al.369 presented a strategy

that combines the reduction of the computational complexity of
individual simulations with a reduction of the computational
complexity of the optimization. They included the CSS
condition as a constraint in the constrained single-objective
optimization problem so that both the objective and approach to
CSS were optimized simultaneously. This approach, called the
simultaneous tailored approach by Biegler and co-workers,17

removes the expensive calculation of CSS for each iteration and
has reduced the computational time by a factor of 10 for single-
objective optimizations of air separation VSA cycles.369

6.3.6. Available Tools and Software for Process
Modeling and Optimization. The objective of this section
is to introduce the reader to several software packages and
libraries that are available for PSA/VSA process simulations.
Broadly, these can be divided into two main categories: codes
developed by different academic groups, and commercial
software packages with built-in adsorption process simulators.
From this classification we can also identify the most significant
challenge in a consistent description of these tools: they are not
open source software (with one exception discussed below) and
we do not have direct access to the organization, functionality,
implemented models or capabilities of these codes to make the
comparison consistent. Hence, from the onset we admit that this
section is likely to be incomplete, however our main objective is
to provide the reader with an overview of the options available
for PSA/VSA simulations.
6.3.6.1. Commercial Software. 6.3.6.1.1. gPROMS: The

process builder developed by Siemens Process Systems
Engineering (PSE) has an adsorption process library that has
been used for simulation of pressure and temperature swing
adsorption processes.370 In the adsorption process library, it is
possible to use the dispersed plug flow or the plug flow model.
The adsorption isotherms of Langmuir, dual-site Langmuir, and
virial isotherms can be used in gPROMS. Here, the flow sheet
can be built by joining individual units such as valves, header

mass flow controllers, sources and sinks, and adsorption
columns. The adsorption process model is a system of partial
differential equations that are discretized in the spatial domain
using either finite difference (backward, forward, and central),
finite element, finite volume, or orthogonal collocation with
finite element. The flow controllers supply a constant amount of
gas, while the sources and sinks are used to specify initial and
final operating conditions. gPROMS also has a facility to
account for column headers to distribute flow, and these are
modeled as continuous stirred tank reactors. Building a flow
sheet enables one to schedule various steps operating in multiple
columns. In principle, within gPROMS, it is possible to perform
optimization and scheduling of VSA processes using in house
libraries.371,372 Nevertheless, gPROMS only supports single-
objective deterministic optimisations. For multiobjective
optimisation, the software can be interfaced with MATLAB
where it is possible to use evolutionary genetic algorithms. PSA
processes have been optimized in gPROMS for the max-
imization of CO2 product purity and recovery, with the number
of beds, process configuration, feed pressure, particle diameter,
length to diameter ratio, and feed flow rate as the decision
variables. An example of such studies is provided byNikolaidis et
al.373 The same approach has been also used in an earlier study
by Nikolic ́ et al.374 for H2 recovery from steam methane
reformer off-gas. However, it should be noted that these studies
have not reported any Pareto fronts.

6.3.6.1.2. Aspen Adsorption: Aspen Adsorption is a flow
sheet simulator that can design, simulate, and optimize
adsorption processes.375,376 Few studies exist in literature that
have simulated PSA and dual-reflux PSA processes for CO2
capture using this program.377−380 In Aspen Adsorption, it is
possible to simulate multibed PSA processes with an isothermal
or a non-isothermal model and to use nonideal gas equations of
states. In most publications with Aspen Adsorption, a Langmuir
model has been used. Moreover, it is also possible to use finite
difference or finite volume numerical schemes to solve the
model equations. To the best of our knowledge, no cycle
optimization studies have been published using Aspen
Adsorption software, although it is possible to couple Aspen
products with MATLAB.381

6.3.6.1.3. ProSim DAC. ProSim DAC is a dynamic simulation
software from ProSim.382 It is capable of simulating adsorption
and desorption steps using TSA, PSA, and VTSA processes.
From the model hierarchy point of view, the process model can
be isothermal or non-isothermal, it can further include a pressure
drop, while transport in macropores is modeled using the LDF
approach. Data for a wide variety of adsorbents is available (e.g.,
activated carbon and zeolites) and is accompanied by many
different models for equilibrium data (adsorption isotherms)
and mass transfer models. DAC is a relatively new addition to
the ProSim family of process simulation tools which have been
so far employed predominantly in solvent recovery and in
adsorption of volatile organic compounds. We are not aware of
any academic article on carbon capture simulation and
optimization that have used ProSim DAC.

6.3.6.2. Academic codes. Several academic research groups
have been developing simulation codes for adsorption process
modeling since the 1980s, including SAXS (Swing Adsorption X
= Pressure, Temperature Software) from Da Silva and
Rodrigues, dynamic adsorption process simulator (DAPS) by
Ebner and Ritter, PSA SW from Mazzotti and co-workers,
MINSA byWebley and co-workers, and CySim by Brandani and
co-workers. The key challenge in the discussion of the process

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01266
Chem. Rev. 2021, 121, 10666−10741

10706

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01266?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


modelling codes developed by various academic groups is
similar to the issues associated with the commercial software:
the codes are usually not open-source, and full details of the
algorithms, implementation and capabilities are not readily
available. Below we briefly review the information available on
MINSA, our own process simulator, CySim, and a recently
published open-source code from Fengqi You's research group
(Cornell-PEESE).
6.3.6.2.1. MINSA (Monash Integrated Numerical Simulator

for Adsorption): MINSA is a generalized cycle simulator that
was developed by Webley and co-workers for PSA simulations
using the VODE integration scheme of Brown et al.383 written in
FORTRAN.384−387 This simulation package solves mass and
energy balance equations that have been discretized by the finite
volume method.386,387 The software has been used extensively
for various adsorption processes and verified against exper-
imental data over the past two decades385,388−390

6.3.6.2.2. CySim (Cycle Simulator): CySim is a modular
computer program for simulation of adsorption processes that
was developed by Brandani and co-workers361,391 at the
University of Edinburgh. CySim can be used to simulate
breakthrough curves, ZLC experiments,391 dual piston PSA,392

and other PSA processes. The user defined structure is translated
into a system of differential algebraic equations, which are solved
with the SUNDIALS library. This can be interfaced with either
MATLAB or Python’s genetic algorithm packages such as
gamultiobj,393,394 inspyred,395 and Platypus356 to perform process
optimization. Recently Farmahini et al. have used CySim to
simulate and optimize the 4-step VSA process with LPP for
postcombustion carbon capture.89,122 CySim is regularly
updated with new models and applications, for example, for
monolithic adsorbents to include inlet and flow maldistribu-
tions.353,396

6.3.6.2.3. Cornell-PEESE Simulator: Recently, Yancy-Cab-
allero and co-workers published aMATLAB code for simulation
of PSA/VSA processes.126 In particular, the code uses the finite
volume method with the weighted essentially nonoscillatory
(WENO) scheme to discretize the PSA model, and the ode15s
solver within MATLAB to solve the resulting ODEs. NSGA-II
algorithms within MATLAB are employed for process
optimization. In the most recent study, this code has been
employed for performance ranking of several MOF materials in
postcombustion carbon capture processes, using three different
cycles: a modified Skarstrom cycle, a fractionated vacuum swing
adsorption (FVSA) cycle, and a five-step PSAcycle. A notable
feature of the code is that it is open-source and is publicly
available from the github depository of the Cornell-PEESE
group. Table 8 provides a list of process simulation software that
has been discussed in this section.

7. CARBON CAPTURE WITH ADVANCED PROCESS
CONFIGURATIONS

The main objective of this section is to introduce the reader to
more complex PSA/VSA process configurations and review
recent studies on application of process modeling to assess the
viability of PSA/VSA technologies for carbon capture.
In the previous section, we used the 4-step VSA-LPP process

to introduce several essential concepts and fundamentals of the
PSA/VSA process and optimization. One of the issues
associated with this specific process is that it can meet the
required purity/recovery constraints only by going to very low
evacuation pressures (e.g., 0.01 bar). Although from the Pareto
front analysis this process is very competitive compared to other

alternatives, in practice it is not viable, as the standard industrial
pumps do not typically go below the range of 0.13−0.2 bar.397

This necessitates a search for more complex process
configurations. One option is to consider a two-stage process.336

In this case, the first stage focuses on maximizing the recovery,
while the second smaller polishing unit would aim to achieve the
required purity. Indeed, Abanades et al. summarized recent
studies of 2-stage PSA processes.336 According to their
summary, it is clear that most process simulations arrive at
VSA configurations that require approximately 0.5−0.75 MJ/kg
and that they can operate at evacuation pressures between 0.05
and 0.1 bar, which is more comparable to the industrial
standards.
Alternatively, we can consider more complex multibed

multistep configurations. Below we review several studies that
explore more complex process configurations in the context of
postcombustion carbon capture. In particular, Reynolds et
al.398,399 studied the capture of CO2 from a flue gas mixture
containing 15% CO2 and 10% H2O with the rest being N2 using
potassium-hydrotalcite as the adsorbent. They had studied 9
different cycles with heavy and light reflux steps in 4-bed, 5-bed,
and 6-bed configurations. Two examples of such advanced PSA
or VSA processes are shown in Figure 19. A parametric study
was then carried out and the best performing cycle was the 5-bed
5-step cycle with light reflux (LR) and heavy reflux (HR) from
the counter current depressurization (CnD) as shown in Figure
19 on the left. The purity and recovery values were 98.7% with a
productivity of 0.11 mol/(m3·s). The next best cycle was that
shown in Figure 19 on the right, which, although showed amuch
lower recovery of 71%, had a high throughput of 1.11 mol/(m3·
s). It should be noted that this was a parametric study that did
not show the optimum performance of these cycles; in other
words, detailed process optimization was not carried out to
identify conditions corresponding to maximum productivity
while meeting purity and recovery targets.
Zhang and Webley388 constructed a pyramidal hierarchy of

cycles. In this work, experiments were conducted initially using a
3-column PSA system (1 m long columns with 7.7 cm internal
diameter). The experimental data collected from this systemwas
then used to validate an adsorption process model on which
basis the authors constructed the pyramid of cycles. Here, the
pyramid consisted of cycles ranging from a simple 2-step cycle to
complex cycles that included heavy reflux, light reflux, pressure
equalization, etc. They carried out a parametric study on the

Table 8. List of Academic and Commercial Software for PSA/
VSA Simulation

software reference web site

Commercial Software
gPROMS PSE370 https://www.psenterprise.com/products/

gproms
Aspen
Adsorption

AspenTech375 https://www.aspentech.com/en/products/
pages/aspen-adsorption

ProSim
DAC

ProSim382 https://www.prosim.net/en/product/
prosim-dac-dynamic-adsorption-column-
simulation/

Academic Software
MINSA Webley and co-

workers384,385
http://users.monash.edu.au/~webley/
minsa.htm

CySim Friedrich et
al.361

https://www.carboncapture.eng.ed.ac.uk/
lab/cysim

Cornell-
PEESE
Simulator

Yancy-
Caballero et
al.126

https://github.com/PEESEgroup/PSA

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01266
Chem. Rev. 2021, 121, 10666−10741

10707

https://www.psenterprise.com/products/gproms
https://www.psenterprise.com/products/gproms
https://www.aspentech.com/en/products/pages/aspen-adsorption
https://www.aspentech.com/en/products/pages/aspen-adsorption
https://www.prosim.net/en/product/prosim-dac-dynamic-adsorption-column-simulation/
https://www.prosim.net/en/product/prosim-dac-dynamic-adsorption-column-simulation/
https://www.prosim.net/en/product/prosim-dac-dynamic-adsorption-column-simulation/
http://users.monash.edu.au/~webley/minsa.htm
http://users.monash.edu.au/~webley/minsa.htm
https://www.carboncapture.eng.ed.ac.uk/lab/cysim
https://www.carboncapture.eng.ed.ac.uk/lab/cysim
https://github.com/PEESEgroup/PSA
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01266?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


effect of feed step duration, pressure equalization, heavy reflux
(rinse), evacuation, and purge steps on the purity and recovery
values. Although their model was a simple one, it provided some
useful insights on the performance. In particular, they had
studied the effect of feed time, light reflux, pressure equalization,
and heavy reflux steps on the purity, recovery, and specific
energy consumption. One of the main conclusions was that the
addition of heavy reflux improved the purity from 85.7% to
95.2% in their experiments.
A two-stage vacuum pressure swing adsorption (VPSA)

process was studied both theoretically and experimentally by
Shen et al. using activated carbon as adsorbent.400 The two-stage
VPSA system was composed of two columns. The first stage
employed a 4-step Skarstrom cycle comprising the following
steps: pressurization with feed, adsorption, blowdown, and
counter-current evacuation (light product purge). In the second
stage, a 5-step cycle comprising pressurization with feed,
adsorption, pressure equalization, blowdown, and pressure
equalization was used. The work mimicked a 2-stage operation
where the first stage concentrates CO2 from 15% to 40−50%,
while the second stage is to achieve high values of CO2 purity.
Here, the first stage used a feed under ambient pressure, while
the second stage required a compression up to 3.5 bar. With a
vacuum pressure of 0.1 bar, the two stage process produced 95%
pure CO2 product with 74.4%CO2 recovery. The specific energy
and productivity values were 0.72MJ/kg and 0.23mol/(m3 ads/
s). Deepening the vacuum to 0.05 and 0.03 bar improved the
purity to 96.3% and 96.6% respectively, while the recovery
increased to 80.7% and 82.9%, respectively. This also improved
the productivity to 0.25 and 0.26 mol/(m3 ads/s). The increase
in energy consumption was significant and the values were 0.83
and 0.9 MJ/kg for pressure values of 0.05 and 0.03 bar.

Through a combination of experiments and simulations,
Wang et al.401 studied CO2 capture from dry flue gas containing
15%−17% CO2. They used a two-stage process with the first
stage containing 3 columns packed with zeolite 13X and the
second stage containing 2 columns packed with activated
carbon. In the first stage, the cycle chosen was an 8-step cycle
comprising pressurization with feed, adsorption, concurrent
evacuation, heavy reflux, depressurizing pressure equalization,
counter-current evacuation, light reflux, and pressure equal-
ization. The CO2 product was collected from the counter-
current evacuation and the reflux step. For the second stage, a
six-step cycle comprising pressurization with feed, adsorption,
heavy reflux, depressurizing pressure equalization, light reflux,
and pressurizing pressure equalization was used. The vacuum
pressures of the first and second stage were 0.08 and 0.2 bar,
respectively. In the first stage, CO2 purity of 70% was achieved.
This stream containing 70% CO2 was then compressed and sent
to the second stage, and here the product contained over 95%
CO2. The overall recovery was over 90%. From the experiments
and the simulations, the values of the energy consumption were
found to be 2.44 and 0.76 MJ/kg respectively. The large
differences in the reported energy consumption values could
have been a consequence of the low pressure used in the first
stage, which would have resulted in a lower vacuum pump
efficiency as shown by Krishnamurthy et al.119 The other
possibility is the use of a constant efficiency for the vacuum
pump, whereas pump efficiency is a function of the suction
pressure.92

Haghpanah et al.349 also performed detailed process
optimization on 7-different cycles, ranging from 4 to 6 steps,
to identify the optimal configuration of postcombustion CO2
capture using zeolite 13X as adsorbent. The genetic algorithm-
based optimization was carried out in two steps: (a) to maximize

Figure 19. Examples of more complex process configurations: 5-bed 5-step cycle with light reflux and heavy reflux from counter-current
depressurization on the left; 5-bed 5-step cycle with light reflux and heavy reflux from light reflux purge on the right.399 HR: heavy reflux; CnD:
counter-current depressurization; LR: light reflux; LPP: light product pressurization.
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Table 9. Summary of Selected Process Configurations Studies for Post-combustion Capture in Chronological Order from 1993
to 2021

process adsorbent
yCO2

(%) Phigh/Plow (kPa) purity (%)
recovery
(%)

minimum
specific energyh

(MJ/kg) sourcel reference

4-step VSA AC, CMS 17 120/10 99.99 68.4 i sim Kikkinides et
al.405

7-step PSA 13X 16, 26 110/6.7 99 70 i sim Chue et al.406

dual reflux PSA 13X 15 101.3/8.1 95 95 i exp Diagne et al.403

2 bed PTSA/PSA 13X 15 NA/5−15 99 90 2.02 mixj exp Ishibashi et al.407

VSA 13X 10 115/6.7 50−70 30−90 0.9−1.1 sim Park et al.408

2 bed, 2 stage
PVSA

13X 10.5 1st NA/6.7,
2nd NA/13

99 80 2.3−2.8 exp Cho et al.510

4-step PVSA 13X 15 652/10−70 88.9 96.9 1.5 sim Ko et al.348

TSA 5A 10 423 K >94 75−85 6.12−6.46 thk lab Merel et al.409

VSA 13X 12 100/3 95 >70 0.54 sim Xiao et al.387

6-step PVSA (3
beds)

13X 12 130/5 82 60−80 0.34−0.69 exp Zhang et al.410

9-step PVSA (3
beds)

13X 12.1 130/5 90−95 60−70 0.51−0.86 exp Zhang et al.410

3-step PVSA 13X 12a 118/4 72.4 60 i exp Li et al.411

PVSA 13X 12.6 120/5−6 90−95 60−70 0.52−0.86 lab Zhang and
Webley,388

5-bed, 5-step PVSA hydrotalcite 15b 139.7/11.6 96.7 71.1 i sim Reynolds et al.399

6-step PVSA 13X, F200 alumina 13c 140/3 89.6 74.9 0.72 exp Zhang et al.412

9-step PVSA 13X 13c 140/3 98.9 78.7 0.57 exp Zhang et al.412

9-step PVSA 13X 13d 140/3 98.9 82.7 0.65 exp Zhang et al.412

9-step PVSA 13X 15c 140/3 86.1 60 1.07 sim Zhang et al.412

9-step PVSA 13X 15d 140/3 90 62 0.89 sim Zhang et al.412

2-bed, 4-step 13X 15 276/21.4 90.74 85.94 2.3 sim Agarwal et al.54

4-step VPSA AC 15 202.6/10 93.7 78.2 i exp Shen et al.413

2-stage PVSA 5A 15 150/10 96.1 91.1 0.65 sim Liu et al.371

TSA 5A 10 433 K 95 81 3.23 thk sim Clausse et al.414

VSA 13X 13 100/2 93.8 91.5 0.43 sim Delgado et al.415

2-stage VPSA AC 15 350/10 95.3 73.6 0.73 sim Shen et al.400

2-stage VPSA AC 15 350/5 96.4 80.4 0.83 sim Shen et al.400

2-stage VPSA AC 40−60 202/10 94.1 85.1 i exp Shen et al.400

VTSA 13X 15 101/363K,
3 kPa

98.5 94.4 i exp Wang et al.416

2-stage PVSA 13X APG 15 150/10 96.5 93.4 0.53 sim Wang et al.417

2-stage PVSA 13X APG 15 150/6 96.6 97.9 0.59 sim Wang et al.417

VSA 5A 15 101.3/5.5 71−81 79−91 2.64−3.12 exp Liu et al.418

2-stage VSA 1st 13X APG 2nd AC beads 16 1st 123/7.5,
123/20

95.2 91.3 0.76 sim Wang et al.401

4-step VSA 13X 15 101/2 90 90 0.53 sim Haghpanah et
al.117

VSA 13X 15 101/3 90−97 90 0.55 sim Haghpanah et
al.117

VSA 13X, AC, MOF-74, chemisorbent 15 120/5−10 45−95 35−95 0.95−1.2 sim Maring and
Webley118

1-stage and 2-stage
VSA

CMS 15 101/3 90 90 0.99 sim Haghpanah et
al.262

4-step PVSA 13X 15 150/2.2 95.9 86.4 1.7 exp Krishnamurthy et
al.119

4-step PVSA with
LPP

13X 15 150/2.2 94.8 89.7 1.71 exp Krishnamurthy et
al.119

2-bed, 4-step VSA
with LPP

13X, silica gel 15e 101/3 95 90 0.63 sim Krishnamurthy et
al.333

4-step VSA with
LPP

13X, rho-ZMOF 15 101/3 95 90 0.56−0.7 sim Nalaparaju et
al.116

2-bed, 6-step VSA 13X, AC, MOF-74 15 101/2 95 90 0.76−0.83 sim Nikolaidis et
al.419

4-bed, 9-step cycle 13X 15 105/3,5 70.5−92.4 62.9−91.3 0.22−0.3 exp Ntiamoah et
al.377

Skarstorm cycle 13X, HKUST, 5A, MOF-74 15f 1st 101/10 2nd
126/10

90 90 0.99−1.3 sim Leperi et al.420

4-step VSA with
LPP

74 real and hypothetical materials 15 101/2 95 90 0.43−0.53 sim Khurana and
Farooq88
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purity and recovery; (b) to minimize energy consumption and
maximize productivity for cycles satisfying 90% purity and
recovery constraints. The decision variables were the step
durations, evacuation pressures, and the feed flow rate. The
adsorption step pressure was kept constant at 1 bar, and the feed
was a 15% CO2/85% N2 mixture at 298 K. The optimization
results from the first step showed that 4 cycles, namely, a 4-step
cycle with LPP, a 5-step cycle with light reflux (LR) and LPP,
and two 6-step cycles satisfied the 90% purity−recovery targets.
The next step was to minimize energy and maximize
productivity, and in this case, the 4-step cycle with LPP was
the best performing cycle in terms of the energy consumption.
The minimum energy consumption was 0.47 MJ/kg for a
productivity of 0.57mol/(m3·s) and with an evacuation pressure
of 0.03 bar. The 6-step cycle with LR and HR was the best in
terms of the purity and recovery, and in this cycle over 98%
purity and recovery were achieved. However, this cycle had
much higher energy consumption. The 4-step cycle with LPP
was also able to achieve the 95% purity and 90% recovery targets,
and in this case the energy and the productivity values were

0.554MJ/kg and 0.44mol/(m3·s), respectively. The 4-step cycle
with LPP was shown to meet the 95% purity and 90% recovery
targets through a pilot plant study by Krishnamurthy et al.119

Later, in a fully computational investigation, Haghpanah et
al.262 studied CO2 capture using a carbon molecular sieve by the
optimization of 1-stage and 2-stage VSA processes. The 2-stage
process was basically a 4-step cycle with LPP carried out twice
where the product from the counter-current evacuation step
from the first stage served as the feed for the adsorption step in
the second stage. In the 1-stage process, 5-step cycles with heavy
reflux and with feed and light product pressurization were used.
It was seen that the 2-stage VSA process was the best in terms of
energy and productivity. However, the productivity was about
50% smaller than that of zeolite 13X mentioned above,
considering that carbon molecular sieve is a kinetically selective
adsorbent.
It should be noted that in both the studies by Haghpanah et

al.262,349 the evacuation pressures were from 0.01 to 0.05 bar,
and this, as we have already discussed, may not be industrially
achievable. In a recent study by Khurana and Farooq,354 it was

Table 9. continued

process adsorbent
yCO2

(%) Phigh/Plow (kPa) purity (%)
recovery
(%)

minimum
specific energyh

(MJ/kg) sourcel reference

4-step VSA with
LPP

UTSA-16, 13X 15 101/0.02−0.1 95 90 0.43−0.86 sim Khurana and
Farooq354

4-step VSA with
LPP

UTSA-16, 13X 15 101/2−10 95 90 0.56−1.85 sim Khurana and
Farooq354

4-step VSA 13X, UTSA-16, AC, MOF-74 15 101/2−3 95 90 0.41−0.63 sim Rajagopalan et
al.16

4-step VSA UTSA-16, 13X, hypothetical
material

15 101/2 95 90 0.38−0.59 sim Khurana and
Farooq421

6-step VSA UTSA-16, 13X, hypothetical
material

15 101/10 95 90 0.41−0.66 sim Khurana and
Farooq421

4-step VSA 13X 15 100/1−2 95 90 0.57−0.85 sim Farmahini et al.89

4-step TSA 13X + alumina 12g 440 K 95 90 4.86 thk sim Hefti and
Mazzotti422

4-step VSA 13X, hypothetical materials 15 100/2 95 90 0.4−1.38 sim Rajagopalan and
Rajendran423

4-step VSA 13X, diamine appended MOFs 15 100/3−10 95 90 0.51−0.63 sim Pai et al.340

4-step VSA with
LPP

13X, UTSA-16 and hypothetical
materials

15 101/3 95 90 0.8−0.9 sim Burns et al.124

4-step VSA with
LPP

13X, UTA-16, AC, hypothetical
material

15 101/1−10 95 50−90 0.36−0.86 sim Maruyama et
al.48

4-step VSA with
LPP

13X, silicalite, HKUST, Ni MOF-
74

15 101/1−2 95 90 0.5−0.9 sim Farmahini et
al.122

MBTSA 13X, Ni MOF-74 5 101, 480 K,
405 K

95.8, 98.9 98.2, 92.6 1.42, 1.89 thk sim Mondino et
al..372

modified
Skarstrom, 5-
step, and FVSA

13X, 15 MOFs 15 100−1000/
10−50

90 90 0.55−2.5 sim Yancy-Caballero
et al.126

4-step VSA with
LPP

13X, UTSA-16, IISERP-MOF2 20 100/1 95 90 0.55−0.72 sim Subraveti et al.92

4-step VSA with
LPP

36 materials 0.05−
0.7

100/1 95 90 0.42 sim Pai et al.127

6-step VSA supported amine sorbent 15c 101/10 95 90 1 sim Krishnamurthy et
al.424

6-step VSA supported amine sorbents with
PEI, benzyl, amine, and amino
silane

15c 101/10 95 90 1 sim Krishnamurthy et
al.425

4-step VSA with
FP or LPP

13X, UTSA-16, IISERP-MOF2 5, 15,
25,
35

100−500/
1−100

95 90 0.1−1.1 sim Pai et al.426

aIn the presence of 3.4% H2O.
bIn the presences of 10% H2O.

cIn the presence of 5% H2O.
dIn the presence of 7% H2O.

eIn the presence of 3%
H2O.

fIn the presence of 5.5% H2O.
gIn the presence of 1.5%, 3.1%, and 4.5% H2O.

hAll energy values are electric, that is, the energy consumed by
the vacuum pumps and the compressors. iNot available. jmix = electric + thermal, the electric energy consumed by vacuum pumps in the 2nd stage
PSA process and heat needed to recover the CO2 from the 1st stage PTSA process of Ishibashi et al.407 kth = thermal, the heat supplied to desorb
the CO2 in TSA/PSA process. lSim and Exp refer to simulation and experimental studies, respectively.
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shown that with a 6-step cycle it was possible to achieve
evacuation pressures of 0.1 bar and above. The 6-step cycle is
essentially the 5-bed 5-step cycle with heavy reflux from light
reflux product of Reynolds et al. with the addition of a
concurrent evacuation step.399 The authors have compared the
performance of this cycle with that of the 4-step cycle with LPP
and used two adsorbents, namely, zeolite 13X and UTSA-16.
Through detailed process optimization, it was seen that the 6-
step cycle was able to achieve similar productivity values as the
four-step cycle but at a much higher evacuation pressure of 0.1
bar.
Another cycle that has shown promise for producing both

CO2 and N2 in high purities is the dual reflux pressure swing
adsorption (DRPSA) cycle. The concept of the dual reflux PSA
process first appeared in the 1990s in the experimental studies of
Diagne et al.,402,403 who had obtained 95% CO2 purity and
recovery from a stream containing 20% CO2. The DRPSA
contains two columns, one operating at high pressure and the
other at low pressure at a given instance. Feed can be introduced
from the bottom or from an intermediate position, both at low
and high pressures. The enriched gas from low pressure feed is
then compressed and sent to the column at high pressure to
perform the heavy reflux. The light product from this heavy
reflux step can be used to recover the heavy component
simultaneously during the feed step. After this step, the column
roles reverse, and the same sequence of steps are carried out.
Over the years, variations of the dual reflux PSA cycle have been
studied by a few authors.378−380,404 One among them is that of
Li et al.,379 who had studied the CO2 capture from a binary
mixture containing 15%CO2 and 85%N2 at 2 bar and 20 °C feed
using silica gel adsorbent. They were able to achieve over 99%
purity and recovery for CO2 and N2. A follow up study by Shen
et al.380 presented a detailed experimental and simulation
investigation of the same cycle and the adsorbent in which the
process achieved over 95% purity and recovery with energy
consumption of 2.5 MJ/kg.
In Table 9, we complement the summary of Abanades et al.336

with a summary of the recent studies of various process
configurations for postcombustion capture. We note that
although the table contains two TSA cycles, in reality the
productivity of these cycles will be low compared to the PSA and
VSA processes. Lower productivity of TSA processes is a result
of longer cycle times that are required for heating and cooling
steps. To be competitive in the postcombustion capture from
coal-fired plants, larger columns (or a larger number of them)
are required in TSA processes. They may however find
application in the carbon capture from natural gas fired power
plants, where the concentration of CO2 in the flue gas is much
lower.

8. CHALLENGES OF MULTISCALE MATERIALS
SCREENING: ACCURACY, DATA AVAILABILITY,
AND REPRODUCIBILITY

In this section, we outline what we believe are the key challenges
in the development and implementation of realistic multiscale
workflows for performance-based screening of porous materials.
Our awareness of these challenges evolved over time as we,
being a collaborative group of molecular simulators and process
modelers, navigated this emerging field of research. Through
experience, we have come to a conclusion that the main obstacle
in development of realistic materials screening approaches is not
the number of materials and the magnitude of phase space that
must be explored, but the main pitfalls lie in the accuracy,

reproducibility, consistent implementation, and validation of
these workflows. In this section, we pay special attention to these
issues and aim to discuss them in a practical way.
Let us imagine that two articles from two different academic

groups have reported ranking of two sets of porous materials for
a particular separation application (e.g., CO2 capture) using the
multiscale workflows discussed in this review. Are these two
different rankings compatible and consistent with each other? In
other words, can we combine the results of the above two studies
into one ranking and therefore identify the best material out of
the combined group of candidates? As we will see in section 9.1,
in general, the answer is “no”! This is because different groups
employ different hierarchies of models and assumptions, use
different sources and values of parameters, and apply different
conditions to the process. Such an inconsistent approach to
materials screening results in prediction of performance
indicators that are largely different. Therefore, in this section,
we will explore the importance of data availability, reproduci-
bility, and consistency in materials screening simulations.
There aremany concerns about accuracy and transferability of

the force fields that are used for prediction of equilibrium
adsorption data in molecular simulations. Reproducibility of
experimental adsorption isotherms (as reported in the
literature) is another source of concern. Adsorption isotherms
obtained from experiment are routinely employed for validation
of atomic force fields that are used in GCMC simulation. As
such, any concern about reproducibility and accuracy of
experimental adsorption data will manifest itself in our
confidence about accuracy of the predictions made based on
simulated adsorption isotherms. The two issues concerning
accuracy of molecular force fields and reproducibility of
experimental adsorption data are discussed in sections 8.1 and
8.2.
Another challenge in development of reliable multiscale

screening workflows concerns the issue of data availability and
consistent implementation of models. As has been discussed
throughout this review, not all of the data required for setting up
themultiscale simulation workflows are available in the literature
or can be calculated from classical molecular simulations. This is
in fact a limiting factor for multiscale materials screenings to be
performed consistently and fully in silico. Some of the
macroscopic properties required for process modeling, such as
diffusion in macropores, can be constructed using appropriate,
well-established theories and models. For other data however,
some assumptions have to be made. In order to be able to
compare different material rankings consistently, similar
assumptions for implementation of the models and estimation
of input parameters should be made. Recent studies have probed
the influence of some of these assumptions on the actual process
performance predictions and are discussed in section 8.3.
The next important question here concerns the reliability of

material rankings produced by the multiscale screening
workflows. Can these workflows realistically predict relative
performance of high-performing material candidates, which are
then going to be tested and used in real applications? How
accurate such predictions are when compared against lab- or
pilot-scale experiments? How big is the error in the final
predictions, and how must propagation of such errors be
understood? All of these questions will be discussed in sections
8.4 and 8.5.
Finally in section 8.6, we will discuss the efficiency of process

optimization techniques for comprehensive screening of
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materials space, and outline some of the challenges associated
with screening of unconventional adsorbents.

8.1. Accuracy and Transferability of the Molecular Force
Fields

Accurate adsorption equilibrium models are the basis for
equilibrium driven separations, such as those considered here for
postcombustion carbon capture. From the perspective of a
processmodeler, themost immediate advantage of having access
to accurate molecular simulation tools is gained by having the
ability to predict multicomponent adsorption equilibria. This
requires force fields for the mixture constituents that are
validated against pure component adsorption data of good
quality. As discussed in section 6.2.5 about force fields, van der

Waals and electrostatic interactions are two important classes of
molecular interactions that are relevant to adsorption and
diffusion phenomena. It was also noted that the ability of
molecular simulations to correctly predict adsorption behavior is
limited by the ability of force fields to correctly model these
interactions. In this section, we highlight the existing issues
around accuracy of molecular force fields for predicting
adsorption isotherms and emphasize the need for consistent
implementation of them in multiscale workflows for materials
screening.

8.1.1. van der Waals Interactions. An important concern
regarding the use of molecular force fields is availability and
transferability of model parameters for calculation of van der
Waals interactions (e.g., Lennard-Jones parameters). Currently

Figure 20. Variation of minimum energy penalty and maximum productivity in a 4-step VSA-LPP process with respect to different isotherm
characteristics. The symbols (closed symbols for minimum energy and open symbols for maximum productivity) are associated with the results of
detailed process modeling and optimization, and lines (continuous lines for minimum energy and dashed lines for maximum productivity) represent
the predictions from a meta-model, which is discussed in the original publication. Reprinted with permission from Khurana and Farooq.88 Copyright
2016 American Chemical Society.
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and for practical reasons, high-throughput screening of large
materials databases heavily relies on the use of generic force
fie ld s tha t a r e common ly used fo r f r amework
atoms.76−78,86,93,99,153,427 As mentioned before, the most
commonly used generic force fields include DREIDING,280

UFF,277 andOPLS-AA.428 Despite their widespread use, generic
force fields fail to accurately reproduce experimental adsorption
data in many cases429−431 particularly for gas adsorption in
MOFs with coordinatively unsaturated metal sites.305,310,432

Even for the systems where generic force fields are deemed
suitable, prediction of experimental adsorption isotherms is
rather qualitative in which simulated isotherms only capture the
general shape of their experimental counterparts.433−436 There-
fore, the use of generic force fields for screening of large and
diverse databases of porous materials should be approached with
caution. These issues have been raised in several excellent
studies in the past.433,437,438 In fact, many groups have already
started to develop specialized force fields for challenging systems

such as those involving adsorption of water431,439 or MOFs
containing open metal sites.306−310

At this point, it is also useful to reflect on what is considered to
be “good agreement” between a simulated adsorption isotherm
and experimental data, as this terminology can mean different
things for a molecular modeler and a process modeler. While
correctly reproducing the overall shape of the isotherm may
seem a good achievement in molecular simulations (particularly
for challenging cases such as water or other polar species), in
process modeling, accurate estimation of Henry’s constant,
nonlinearity, saturation capacity, and other quantitative features
of the adsorption data are important, considering they will
impact separation performance of adsorbent materials at the
process level (i.e., their energy−productivity or purity−recovery
Pareto fronts). An illustrative example here is provided by
Khurana and Farooq88 where the influence of isotherm
characteristics on minimum energy penalty and maximum
productivity of a 4-step VSA-LPP cycle is demonstrated (Figure
20).

Figure 21. Purity and recovery Pareto fronts for different hypothetical adsorbents (MCcNn) with fixed N2 isotherm (a) and fixed CO2 isotherm (b).
MC1N1 represents zeolite 13X as a reference material, α is binary selectivity of CO2/N2 for each material, and ratio of c/n is equal to selectivity of
MCcNn normalized by selectivity of zeolite 13X (α13X = 365). Reprinted with permission fromRajagopalan and Rajendran.423 Copyright 2018 Elsevier.
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As shown in this figure, both minimum energy penalty and
productivity of the process are highly sensitive to variation of
binary mixture selectivity. For the case studied here, the local
slope, nonlinearity, and Henry’s constant of CO2 isotherms
seem to have rather small effects on the minimum energy and
maximum productivity of the process. Nevertheless, one should
consider these results with caution because in the above example
only one isotherm characteristic has been allowed to vary for
each case, while other isotherm characteristics are held constant.
In reality, it is not rare to see GCMC simulated isotherms that do
not adequately reproduce multiple characteristics of exper-
imental adsorption isotherm; hence the combined effect on the
performance of the material at the process level will be larger
than what is shown in the above figure. Finally, the effect of
isotherm characteristics of nitrogen is not considered in the
analysis provided in Figure 20 (i.e., this figure is only related to
characteristics of CO2 adsorption isotherm).
While molecular simulations often focus on the behavior of a

single component of interest (CO2 in carbon capture), in
process modeling, it is recognized that the separation perform-
ance depends on the behavior of the mixture and accurate
equilibrium data for all components is important. Several studies
have shown that adsorption of nitrogen plays a significant role in
separation performance of the PSA and VSA processes for
postcombustion carbon capture.16,88,89,93,118,124,125,423 In fact,
an important concern regarding the quality of available force
fields is associated with the role of nitrogen in process
simulation. To date, significant efforts have been made to
develop more reliable force fields for adsorption of CO2;
however, the impact of other components in the flue gas mixture
has been somehow overlooked. A quick review in the literature
shows that specialized QM-derived force fields for nitrogen
adsorption are scarce,304,440,441 although the accuracy of generic
force fields for prediction of nitrogen adsorption is not
satisfactory for many materials. Some examples of this include
adsorption of nitrogen in STT, CHA all silica zeolites,442 FAU
and MFI type zeolites with different Si/Al ratios,89,442 Mg-
MOF-74304 and Ni-MOF-74,122 ZIF-68,443 Zn-MOF, and Cu-
BTC.444

From a process simulation perspective, it is the nitrogen
adsorption behavior that most significantly determines whether
the process can produce CO2 with 95% purity and 90%
recovery.16,93,124,423 A recent study by Rajagopalan and
Rajendran423 has clearly demonstrated that purity−recovery
Pareto fronts obtained using a 4-step VSA-LPP cycle for
separation of CO2 and N2 are very sensitive to variation of
nitrogen adsorption. This observation is illustrated in Figure 21.
As shown here, reducing selectivity by more than 160 times

(from 1825 to 11.4) through changing CO2 adsorption
isotherms, while N2 isotherm is held constant (Figure 21a)
has less impact on purity and recovery of the process compared
to the case where selectivity is reduced only by 15 times (from
1095 to 73) through changing N2 adsorption isotherm, while
CO2 isotherm is fixed (Figure 21b).423

In a separate study from Leperi et al.,93 it was shown that heat
of adsorption of nitrogen plays a crucial role on the maximum
CO2 purity that can be achieved in a fractionated vacuum
pressure swing adsorption (FVPSA) cycle. It was shown that if
N2 heat of adsorption is greater than 16 kJ/mol, the process
cannot produce CO2 with 90% purity.93 This is illustrated in
Figure 22.
Even for those materials that meet 95%−90% targets for

purity and recovery of CO2, inaccurate prediction of N2

adsorption data is shown to affect energy and productivity of
the process.89 These observations in turn highlight the
importance of having access to accurate molecular force fields
for realistic prediction of nitrogen adsorption data using
molecular simulations, a topic whose importance has been
overlooked so far. Force field development for nitrogen is,
however, a challenging task for two related reasons. Initially, one
would consider QM methods to develop a detailed picture on
the potential energy surface for nitrogen in various porous
materials including MOFs, in a similar fashion that has been
done for several CO2−MOF systems. What is important to
remember is that nitrogen is a weakly adsorbing component
(heat of adsorption 10−20 kJ/mol, but likely to be closer to 10−
12 kJ/mol). Relative error in QM estimates of energy of binding
is likely to have a much stronger impact on nitrogen adsorption
than on stronger adsorbing carbon dioxide. For a similar reason,
the uncertainty in the experimental adsorption isotherms of
nitrogen (which are used for validation of QM-based force
fields) is also greater, considering the amount adsorbed tends to
be much smaller for N2 compared to CO2 under the conditions
of interest.

8.1.2. Electrostatic Interactions. As mentioned in section
6.2.5, there are several computational schemes to assign partial
charges to the atoms of porous materials. The overwhelming
majority of material databases constructed so far do not include
partial atomic charges, and there is no universal agreement in the
scientific community on what scheme should be adopted to
assign these charges. The effect of framework atomic charges on
gas adsorption has already been demonstrated in several
studies.285,445 It was shown that application of different charge
calculation schemes in molecular simulation can lead to
substantial variation in the adsorption data.285,445 For example,
Sladekova et al.285 have compared adsorption isotherms of
carbon dioxide and water in several MOFs using different sets of
partial atomic charges, which were obtained from different
charge calculation methods such as DDEC,282 ChelpG,283

LoProp,446 EQeq,113 and REPEAT.114 As shown in Figure 23,
the use of various charge calculation schemes can lead to
significantly different adsorption behavior of CO2 and water in

Figure 22. Optimal heats of adsorption for the FVPSA cycle using a
generic adsorbent with density of 1.1 g/cm3. Each point represents the
highest CO2 purity that can be achieved while recovering 90% of CO2.
Each line depicts a different N2 internal energy of adsorption. The
dashed horizontal line is CO2 purity of 90%. Reprinted with permission
from Leperi et al.93 Copyright 2019 American Chemical Society.
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these materials. This in turn will have a profound impact on
separation performance of thesematerials at the process level. As
we previously mentioned, the flue gas contains water, and if we
wished to include water adsorption in the process model,
obtaining accurate equilibrium data from molecular simulations
would be challenging.
Li et al.78 provide another good example for the use of two

different charge calculation techniques for screening of MOFs
for CO2 capture in the presence of water. They use the extended

charge equilibration (EQeq)113 and the REPEAT114 methods to
compute atomic partial charges of porous frameworks for
adsorption of CO2/H2O and CO2/H2O/N2 mixtures in a large
group of MOFs, which were selected from the CoRE-MOF
database. It was demonstrated that water adsorption behavior
can be greatly influenced by the choice of methods used for
calculation of electrostatic interactions.78 This is evident in
Figure 24, which compares CO2/H2O selectivities of various

Figure 23. Adsorption isotherms of CO2 and water in IRMOF-1 (a), Co-MOF-74 (b), and Cu-BTC (c) as obtained from different charge calculation
schemes. Reprinted with permission from Sladekova et al.285 Copyright 2020 Springer Nature.
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MOFs based on two different sets of partial charges obtained
from EQeq and REPEAT methods.

In a more recent study, Altintas and Keskin447 discussed the
role of partial charge assignment methods in high-throughput
screening of MOFs for CO2/CH4 separation. They employed a
quantum-based density-derived electrostatic and chemical
charge method (DDEC)282 and an approximate charge
equilibration method (Qeq)158 to predict adsorption of CO2/
CH4 mixtures in 1500 MOFs. The authors demonstrate that gas
uptake, working capacity, selectivity, adsorption performance
score (APS), and regenerability of MOFs vary considerably
depending on the charge assignment methods used in molecular
simulations, as shown in Figures 25 and 26.447 The authors also
report that the rankings of the best-performing MOFs are also
different depending on the method used for charge calcu-
lations.447

The fact that application of different charge calculation
schemes in molecular simulations can lead to very different
results in prediction of adsorption properties (as shown by a
number of studies discussed in this section) suggests that none
of these methods can actually reproduce the electron density of
real materials very accurately. As previously discussed in section
6.2.5, point charges are not experimentally observable properties
and different charge assignment methods are only approximate
techniques to mimic the actual electron density of porous solids.
Having said that, various studies have demonstrated that
techniques such as REPEAT and DDEC are more reliable or
at least can reproduce experimental adsorption data more
consistently.284,285 Therefore, these methods should be
preferably used in application to screening of porous materials.
8.2. Availability and Reproducibility of the Experimental
Adsorption Data

To develop molecular force fields we need experimental
adsorption data. While reproducibility of computational studies
is generally expected and is easier to achieve (as long as the
details of the models and computer codes are provided),
ensuring replicability of the data obtained from experimental
measurements is more challenging. Two research groups
measuring the same adsorption data on the same material and
under the same conditions may produce different adsorption
isotherms. This is often associated with the two samples of the
same material having different properties, different activation

procedures involved, accuracy of the equipment used, and errors
of the measurements. Now, the question is which data should be
used for the development and validation of molecular models in
such cases? This is a principal question for the implementation
of multiscale screening workflows, as the ultimate performance
of the materials depends on the adsorption data against which
the models are calibrated.
Although a number of general recommendations have been

made to improve reproducibility of data in scientific
research,448−452 recent observations have raised many concerns
about reproducibility of experimental measurements in
materials-oriented research especially in the areas of materials
synthesis and adsorption measurements.453,454

An interesting study from Agrawal et al.454 has recently
explored the reproducibility of 130 experimentally synthesized
MOFs from the CoRE-MOF database.151 The authors analyzed
literature metadata of more than 4300 papers and demonstrated
that only a small fraction of the above materials have been
resynthesized repeatedly. Analysis of BET surface area of these
materials demonstrated large variability indicating significant
structural differences of the resynthesized materials. This
observation is attested in Figure 27.
This figure demonstrates variation of experimentally meas-

ured BET surface area for six MOFs whose replicate synthesis

Figure 24. Comparison between the Henry selectivities obtained for
the structures with EQeq partial atomic charges (y-axis) and REPEAT
partial atomic charges (x-axis). Red circles are related to CO2/H2O
selectivity, and blue circles are associated with CO2/N2 selectivity.
Reprinted with permission from Li et al.78 Copyright 2016 American
Chemical Society.

Figure 25. CO2 (a−c) and CH4 (d−f) uptake obtained from
simulations using Qeq and DDEC charges at 0.1, 1.0, and 5.0 bar for
the 10%−90% CO2/CH4 mixture. Reprinted with permission from
Altintas and Keskin.447 Copyright 2020 Royal Society of Chemistry.
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has been reported more frequently among the materials studied
by the authors. Wide distribution of BET surface area implies
significant structural differences between the synthesized
samples especially once we remember that this parameter is
highly correlated with pore volume of thematerial.454 The above
irreproducibility of structural properties could be due to many

factors including exposure of the samples to moisture,
degradation, incomplete removal of solvents, and so on.454

Round robin testing and investigation of literature metadata
have provided even more evidence for large variabilities of
adsorption measurement data.453,455−462 Two recent studies
conducted by Sholl and co-workers particularly provide useful
insights into the scale of the reproducibility problem in this
area.457,458 In one example, Park et al.458 examined thousands of
experimental adsorption isotherms reported in the NIST/
ARPA-E Adsorption Database463 and collected all CO2
adsorption isotherms for MOFs. First of all, they found that
even for the widely studied case of CO2 adsorption, there are
only 15 MOFs with adequate replicates in the literature that can
be used in a reproducibility test. More importantly, the authors
showed that from all the isotherms analyzed, more than one in
five (i.e., 21%) were not consistent with other reported data for
the same adsorbent at the same temperature and hence must be
classified as outliers. A reproducibility map for all CO2 isotherms
analyzed in this study is provided in Figure 28.
In this figure, MOFs for which the strongest conclusions

about their reproducibility can bemade are located further to the
right, andMOFs with the smallest number of outliers are located
at the top. The font size implies the number of independent
measurements that are available after removing outliers.458

In a similar study, Bingel et al.457 analyzed reproducibility of
510 experimental adsorption isotherms for alcohols in 176
adsorbents including MOFS and zeolites as reported in NIST/
ARPA-E Adsorption Database.463 The results from this study
demonstrate that despite numerous examples of alcohol
adsorption isotherms in the literature, there are only a small
number of them that have been replicated independently and
hence can be used for reproducibility analyses. These results also
suggest that almost 20% of all adsorption isotherms for alcohol
must be classified as outliers. Interestingly, this value is very
similar to the fraction of outliers identified for adsorption of CO2

Figure 26. Calculated adsorbent performance evaluation metrics using
Qeq and DDEC charges under VSA conditions at 298 K for 10%−90%
CO2/CH4 mixture: (a) CO2 working capacity, (b) selectivity, (c)
adsorbent performance score, and (d) regenerability. Reprinted with
permission from Altintas and Keskin.447 Copyright 2020 Royal Society
of Chemistry.

Figure 27.Distribution of experimentally reported BET surface areas for UiO-66, ZIF-8, HKUST-1,MIL-101(Cr), IRMOF-1, andMOF-177. Here,N
denotes the number of reported surface areas for each material. Computationally calculated values of surface area for defect-free/cleaned crystal
structures is shown by a vertical blue line and text for each material. Reprinted with permission from Agrawal et al.454 Copyright 2020 National
Academy of Sciences.
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in MOFs as reported by Park et al.458 In addition to that, the
authors observed considerable variability in the adsorbed
amounts even for materials that are not considered as outliers.457

Figure 29 depicts the reproducibility map of alcohol isotherm in
various porous materials. As shown here, 42 out of 61 systems
analyzed by the authors were only moderately consistent (R3).

Analysis of literature metadata for mixture adsorption
measurements also conveys the same picture about availability
of replicate data and reproducibility of experimental adsorption
isotherms.464 Recently, Cai et al.464 analyzed a collection of 900
gas mixture experiments consisting of 125 different binary
mixtures, 60 different adsorbates, and 333 different porous
materials as adsorbent and showed that the number of replicate
experiments for which adsorption was measured independently

at similar temperatures, pressures, and compositions for a given
binary mixture and adsorbent is very scarce.
To summarize, the picture that starts to emerge from the

studies discussed in this section about the extent of the
irreproducibility of experimental adsorption measurements is
alerting. Now, we know that a non-negligible portion of
experimental adsorption data reported in the literature is not
reproducible. Moreover, even if we decide to cross check the
reproducibility of the available data by comparing them against
similar measurements, there is not enough replicate data in the
literature to allow sufficient checks. These observations have
important implications for the materials screening community
especially for modelers who use experimental adsorption
isotherms for validation of atomic force fields and simulated
isotherms. They also emphasize the need for implementation of
a series of recommendations453 especially aimed at experimental
research to enhance reproducibility and quality of adsorption
measurements.

8.3. Data Availability and Consistent Implementation of
Multiscale Screening Workflows

As briefly mentioned in the introduction part of this section,
there are several parameters that are required for process
modeling but are not available in the literature or from classical
molecular simulations. We also need to make certain
assumptions for implementation of various models across the
simulation workflow. All of these are important for consistent
comparison of materials rankings. In this section, we probe the
influence of some of these parameters and model assumptions
on the actual performance of the process.

8.3.1. Heat Capacity of the Adsorbents. Traditionally, it
has been assumed that heat effects play a secondary role in the
adsorption column and will not significantly influence the
performance of the process or ranking of thematerial. Adsorbent
heat capacity is also a property scarcely measured or available for
the new classes of porous materials, such asMOFs. Therefore, as
a pragmatic approach, some studies have assumed the heat
capacity of all adsorbents to be equal to the heat capacity of a
reference material, such as zeolite 13X.88,116 Nevertheless, a
recent preliminary sensitivity study of the influence of this
parameter painted a somewhat different picture.122 As shown in
Figure 30, performance of Cu-BTC with the value of the heat
capacity equal to that of reference zeolite 13X was considerably
different from the performance of the same material using its
actual experimental value for this property.122

Recently, Danaci et al.125 have also analyzed sensitivity of
three process-level performance indicators, namely, purity,
recovery, and capture cost to variation of specific heat capacity
for Mg-MOF-74 and UTSA-16 using a 0-dimensional
equilibrium-based PVSA model. As shown in Figure 31, all of
the above indicators show considerable sensitivity to variation of
specific heat capacity for Mg-MOF-74. For UTSA-16 however,
the sensitivity to variation of heat capacity is negligible.
Therefore, it seems for a diverse group of porous materials

(MOFs, zeolites), it would be prudent to procure more heat
capacity data, explore the heat effects in more details, and use
more accurate values of Cp in process modeling. How can this be
accomplished in purely in silico workflows? With some
compromise, we can use empirical group contribution methods
where heat capacity of an adsorbent is estimated by summing the
molar fraction contributions of its functional groups (e.g., metal
nodes and organic ligands in MOFs).125,465,466 Kloutse et al.466

have recently calculated specific heat capacities of MOF-5, Cu-

Figure 28. Reproducibility map of experimental CO2 adsorption
isotherms in MOFs. The definitions of reproducibility level and
consistency rating can be found in the original article. Outlier levels are
indicated by the font size. Most of the isotherms are measured at 298±
5 K except for data at 313 ± 5 K (superscript a) and 273 ± 5 K
(superscript b). Reprinted with permission from Park et al.458

Copyright 2017 American Chemical Society.

Figure 29. Reproducibility map of experimental adsorption isotherms
for alcohols in different porous materials. The numbers indicate the
quantity of systems for the given molecule that were classified at the
corresponding consistency and reproducibility level. The distinction
between the different outlier levels is provided by different type of fonts
(O1, bold; O2, regular; and O3, italic underlined). The replicate
strength decreases from S1 (top) to S3 (bottom) within ovals with
different strengths. The definitions of reproducibility (R) and outlier
(O) levels, consistency rating, and replicate strength (S) can be found in
the original article. Reprinted with permission from Bingel et al.457

Copyright 2020 American Chemical Society.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01266
Chem. Rev. 2021, 121, 10666−10741

10718

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01266?fig=fig28&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01266?fig=fig28&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01266?fig=fig28&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01266?fig=fig28&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01266?fig=fig29&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01266?fig=fig29&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01266?fig=fig29&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01266?fig=fig29&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01266?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


BTC, Fe-BTC, MOF-177, and MIL-53 (Al) at a single
temperature (323 K) using this method. The results are
compared with experimental heat capacity data showing relative
difference errors between 2.58% and 14.77%.466 Nevertheless, in
the absence of experimental data for many porous adsorbents,
the results from this method should be considered with caution
especially for flexible materials such as MOFs. As correctly
pointed out by Danaci et al.,125 the group contribution method
for calculation of heat capacity does not take into account the
contribution of vibrational modes of crystalline materials. This
will lead to underestimation of the heat capacity. In contrast,
atomic vibrations of ligands may be reduced upon coordination,
which is due to the loss of some degrees of freedom. This is also
not considered in the group contribution method, resulting in
overestimation of the heat capacity.125 To fully evaluate
reliability of the group contribution method, a separate
computational study is needed to investigate the relative
contributions of these factors for a range of different materials
including MOFs.
An alternative technique for estimation of heat capacity while

taking into account the vibrational modes of the structure is the
so-called phonon analysis method.323,324,467,468 Togo and
Tanaka469 have accurately estimated specific heat capacity of
aluminum lattice using the quasi-harmonic approximation
(QHA) in the context of first-principles phonon calculations.
This approach was later expanded to a large group of inorganic
solid crystals by Nath et al.467 who could reliably predict thermal
properties of these materials. Figure 32 demonstrates the results
obtained by Nath et al.467 for a set of inorganic solid crystals
showing a maximum of 20% error in prediction of experimental
heat capacity data.
Analysis of phonon properties of porous solids often requires

time-consuming quantum mechanical calculations to capture
the full range of harmonic/anharmonic behaviors that are
pertinent to thermal properties of these materials.468,470 At the
same time, the use of QM-based methods is not affordable for
routine screening of large groups of materials. One way forward
would be the development of transferable force fields that are

especially tuned to reproduce lattice dynamics of porous solids.
These force fields can be affordably used in classical simulations
for calculation of heat capacity. An example of such force fields

Figure 30. Effect of specific heat capacity (Cp) on position of the Pareto
fronts for Cu-BTC (black), Ni-MOF-74 (green), silicalite-1 (blue), and
zeolite 13X (red) obtained from optimization of a 4-step VSA−LPP
cycle. Dashed lines illustrate a case where experimental Cp of each
material is used for process simulations. Solid lines represent another
case where Cp for all materials is assumed to equal 920 J·kg−1·K−1.
Reprinted with permission from Farmahini et al.122 Copyright 2020
Royal Society of Chemistry.

Figure 31. Sensitivity analysis of purity (a), recovery (b), and capture
cost (c) to variation of heat capacity for Mg-MOF-74 and UTSA-16 at
0.01 and 0.15 bar desorption pressure in a PVSA process. Reproduced
with permission from Danaci et al.125 Copyright 2020 Royal Society of
Chemistry.
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has been recently developed by Bristow et al.323,324 for a few
MOFs. In this study, the authors show close agreement of
specific heat capacity data calculated using the QHA method
with the values obtained using the new force field. Unfortu-
nately, due to the lack of reliable experimental data for heat
capacity of these MOFs, the values of heat capacity computed in
this study were not compared against experiment. As mentioned
earlier, there is a huge gap in availability of experimental data for
thermal properties of porous materials, which is now considered
as a major challenge for validation of any computational
technique that seeks to accurately predict these properties.
8.3.2. Pellet Size and Pellet Porosity. In the process

modeling literature, the values of pellet size and pellet porosity
are typically obtained from experiment for a specific sample of
the material under consideration. However, for an in silico study,
these values must be somehow estimated. A pragmatic approach
adopted in previous studies has been to use the values available
for a reference material (such as zeolite 13X) universally for all
the othermaterials under consideration. However, in the context
of the ranking of porous materials, a question can be asked
whether optimal performance of a material can be achieved only
at specific values of pellet size and pellet porosity (within the
range of feasible experimental values)? In this case, shall the
ranking be performed under the constraint of specific values of
pellet size and porosity or shall these properties also become
some optimization parameters? Farmahini et al.122 have
explored these questions in a recent study and observed that
depending on the protocol adopted (i.e. pellet size and porosity
constrained to some reference values versus being free
optimization parameters), performance of the materials as well
as the order of the top-performing candidates indeed
change.89,122 This effect is illustrated in Figure 33 for flour
materials including Cu-BTC, Ni-MOF-74, silicalite-1 and
zeolite 13X.
Therefore, consistent comparison of the materials’ perform-

ance at the process level must take into account opportunities for
the optimization of pellet morphology.
8.3.3. Numerical Models for Adsorption Isotherms.

Adsorption models for process simulations are trained on the
available experimental or simulation data, and they should be

able to give consistent and accurate representation of multi-
component adsorption equilibria. This is however not always the
case and two different models trained on the same data may give
different predictions of the binary (or multicomponent)
adsorption equilibria (depending on the training protocols
adopted) and hence, process level predictions.89,471 For
example, Farmahini et al.89 have recently demonstrated that
the use of different recipes for fitting adsorption data to the DSL
model can affect position of the energy−productivity Pareto
fronts obtained from the process optimization. The authors have
therefore proposed and validated a rigorous numerical protocol
for consistent fitting of the widely used DSL model, in which the
choice of temperature range, fitting constraints, and calculation
of Henry’s constant are standardized.89 Similarly, several other
studies have attempted to establish consistent routines for fitting
equilibrium adsorption data;471−473 nevertheless none of the
proposed procedures have been universally adopted by other
groups, as a result of which consistency of various materials
rankings that have been produced so far remains uncertain. As
has been also discussed by Farmahini et al.,89 the ultimate test of
the analytical models used in the process level simulations is
their ability to predict binary and multicomponent adsorption
data. This can be easily done using molecular simulations, as
simulation of multicomponent systems come with relatively
small additional effort compared to the simulation of single
component systems. Recently, Cai et al.464 has developed a
database of 900 gas mixture adsorption experiments using
literature meta-analysis, which will be also very useful for cross
validation of the analytical models and the fitting protocols
adopted for describing adsorption isotherms. Hence, we
propose this validation step to be adopted as a routine practice
in the simulation community in order to probe the accuracy of
the analytical adsorption models before performing any process
simulation.

8.3.4. Consistency between Various Simulation Pack-
ages. As mentioned in section 8.2, reproducibility of computa-
tional studies is generally expected and perhaps easier to achieve
compared to experimental investigations. Whether a computa-
tional study is fully reproducible or not largely depends on the

Figure 32.Comparison of experimental and predicted values of specific
heat capacity, Cp for a selected set of inorganic solid crystals. The
dashed black lines represent ±20% error. Reprinted with permission
from Nath et al.467 Copyright 2016 Elsevier.

Figure 33. Pareto fronts of Cu-BTC (black triangle), Ni-MOF-74
(green square), silicalite-1 (blue circle), and zeolite 13X (red diamond)
obtained using fixed values of pellet size and pellet porosity (solid
symbol) and optimized values of pellet size and pellet porosity (open
symbol) in process optimization of a 4-step VSA−LPP cycle. Reprinted
with permission from Farmahini et al.122 Copyright 2020 Royal Society
of Chemistry.
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availability of the codes, methods, assumptions, and data. In
order to improve reproducibility, replicability, and reusability of
computer-based experiments, a set of useful recommendations
have been made.474,475 Unfortunately, not all of these
recommendations have been adopted universally.
In the context of computational materials screening, one

important aspect in the development of consistent multiscale
workflows with reproducible results is having access to widely
used and validated open-source software and case studies. As
discussed in sections 6.1.2, 6.2.2, and 6.2.4, there are a number of
open-source molecular simulation packages for which several
benchmark and case studies have been produced.195,215,263

However, this has not been done for process simulation
packages mainly because the majority of these software are
not available as open-source. In fact, among all the software
introduced in section 6.3.6, only one computer code has been
released as open source.126 As has been shown by the molecular
simulation community over the last two decades, access to open-
source simulation software and clear case studies has facilitated
the development of new generations of computer codes and
modeling tools leading to significant advancement of the field of
computational materials science. We believe this will be also the
case for the process simulation community, and hope that the

current review has been successful in demonstrating the
importance of any efforts that can address the current gap.

8.4. Validation of Multiscale Screening Workflows

Despite recent advances in development of more sophisticated
multiscale screening workflows, validation of the materials
rankings produced by these frameworks is still an outstanding
issue. As illustrated throughout this review, multiscale screening
workflows have a modular structure in which various computa-
tional modules are put together to perform different types of
simulations. The simplest multiscale workflow contains three
modules in order to perform (1) GCMC simulation, (2) process
modeling, and (3) process optimization. This can be further
extended, if one decides to include quantum mechanical or MD
simulations in the workflow. Normally, results of each module
can be validated separately. For example, adsorption isotherms
generated using GCMC simulation are routinely compared
against equilibrium adsorption data obtained from experiments
to ensure the accuracy of the predictions. At the process level,
validation tests are conventionally carried out by reproducing
column breakthrough curves, or temperature, pressure, and
concentration profiles from experiments,119,120,361,476,477 an

Figure 34. Example of validation of simulated transient histories against experimental data for adsorption of CO2 and N2 in zeolite 13X using a basic 4-
step VSA cycle. Evolution of CO2 purity (a), temperature histories at three locations in the column (b), pressure history for one cycle at CSS (c), CO2
composition and flow rate at the outlet of the adsorption step (d), CO2 composition and flow rate at the outlet of the blowdown step (e), CO2
composition and flow rate at the outlet of the evacuation step (f). Symbols represent experimental data and lines indicate numerical simulations.
Reprinted with permission from Estupiñan Perez et al.120 Copyright 2019 Elsevier.
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example of which is illustrated in Figure 34 for a basic 4-step
VSA cycle.
Efforts for validation of genetic algorithms that are used for

multiobjective optimization of PSA and VSA processes are more
recent and less widespread. In one recent example, the ability of
multiobjective optimization techniques to guide the design of
PSA and VSA processes has been shown by Estupiñan Perez et
al.120 In this study, purity and recovery of CO2 predicted
through numerical optimization of a basic 4-step VSA cycle and
a 4-step VSA cycle with LPP were replicated by experiment for
postcombustion carbon capture using zeolite 13X as adsorb-
ent,120 which is shown in Figure 35.

Unfortunately, it was not possible in this study to carry out any
measurement to verify total energy consumption of the process
against experimental data.120 A pilot plant study conducted by
Krishnamurthy et al.119 for CO2 capture using the same 4-step
processes with zeolite 13X reported significant discrepancies
between theoretical and experimental values of energy
consumptions, while their analyses show overall quantitative
agreement for purity and recovery and somewhat modest
agreement for productivity data (Figure 36).119

Other pilot- or lab-scale studies also report reasonable
agreement between experimental and theoretical values of
purity and recovery at the given feed concentrations for
separations of CO2 using VSA and PSA processes,417,418 while
the discrepancy reported for the total energy consumption is still
considerable.418 This becomes especially crucial, if we
remember that energy−productivity Pareto fronts obtained
from multiobjective optimization of the process play a central
role in performance-based ranking of porous materials. Here, it
should be noted that estimation of total energy consumption of
the process from simulation is particularly problematic due to
the difficulty of including exact characteristics of the valves, heat
losses across the system, and the performance at a variable flow
rate of the vacuum pumps and compressors.
With the surge in development of machine-learning

approaches for modeling and optimization of separation
processes, one would also need to consider additional tests for
validation of these novel techniques. Some recent studies have
reported promising cases where machine-learning based

surrogate models developed for the optimization of PSA/VSA
processes have been validated against Pareto fronts and cyclic
steady state (CSS) column profiles that are mainly obtained
from detailed process simulations127,362,366 but some also from
lab-scale experiments.362

Despite all these efforts for validation of different computa-
tional modules of multiscale screening workflows, there is no
single material ranking study in which the order of top
performing materials has been confirmed experimentally. In
fact, unless this final level of validation is achieved, it is unlikely
that the top-performing materials proposed by various computa-
tional screening studies are going to find their way into any
industrial application.
8.5. Sensitivity Analysis and Propagation of Errors

From the studies reviewed so far, it is clear that the overall
process performance and ranking of porous materials depend
upon calculation of a large group of parameters and model
assumptions at both molecular and process level of descriptions
(see Table 6). Despite some studies on the sensitivity of process
pe r f o rmance to va r i ou s inpu t pa r ame te r s and
data,89,122,125,126,423,478 it is yet to be established what level of
accuracy is required for the full spectrum of parameters and
models to guarantee consistent and comparable ranking of
porous materials between different studies. One crucial element
of such a study would be the investigation of error propagation
from molecular level all the way through to process modeling
and optimization. For example, we need to understand how the
errors arising from the use of inaccurate molecular force fields in
GCMC simulations for prediction of adsorption isotherms are
combined with the errors resulting from the use of numerical
models for fitting adsorption data and what impact they will have
together on the overall performance of the process. Shih et al.479

have recently employed a hierarchical Bayesian approach to
quantify the inconsistency among experimental adsorption data
reported in the literature for similar materials. Analogous
methods can be also used, for example, to investigate the
inconsistency between adsorption isotherms obtained from

Figure 35. Pareto fronts corresponding to a basic 4-step VSA cycle
(dashed line) compared to a 4-step VSA−LPP cycle (solid line). Closed
symbols correspond to the optimized set of operating conditions that
were implemented in experiment. Open symbols represent the
corresponding purity and recovery values obtained from the experi-
ment. The shaded region around the Pareto front denotes the 1.8%
confidence region arising due to a 10% uncertainty of selected model
inputs. Reprinted with permission from Estupiñan Perez et al.120

Copyright 2019 Elsevier.

Figure 36. Energy consumption of pilot plant experiments conducted
by Krishnamurthy et al.119 compared with other data extracted from
literature. The dotted line represents an efficiency of 72% for the VSA
process, while the solid line denotes an efficiency of 30%. Note that all
the experiments shown in this figure resulted in different purity−
recovery values; thus care should be taken in comparing their
corresponding energy values directly (The references in the inset are
available from the original publication). Reprinted with permission
from Krishnamurthy et al.119 Copyright 2014 John Wiley and Sons.
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molecular simulations using different force fields or calculated
from different numerical adsorption models. Sensitivity analysis
of the simulated systems should be expanded to contain all
sources of errors and uncertainties in the multiscale workflow so
that the impact of the combined error on variation of purity−
recovery and energy−productivity Pareto fronts can be
understood. In this case, separation performance of each
material will be represented by a range of Pareto fronts, rather
than a single Pareto front. The results from this analysis are likely
to change our perspective on what are currently perceived as the
top performing candidates for postcombustion carbon capture
in VSA and PSA processes.

8.6. Other Challenges

8.6.1. Improving Efficiency of Process Optimization
for Comprehensive Screening of Materials Space.
Multiscale simulation of PSA/VSA processes for screening of
large databases of porous materials requires extensive computa-
tional resources. In the screening workflow, process optimiza-
tion is usually considered as a bottleneck where significant
computational efforts are incurred.367 Attempts have been made
to improve computational efficiency of process optimization
through reducing dimensionality of the variable space in process
optimization, by development of novel machine-learning
methods (section 6.3.5). These methods pave the way not
only for faster screening of large databases of porous materials
but also for identifying the most efficient process configurations
for a particular separation process. This can lead to better
understanding of the material−process−performance relation-
ships. Nevertheless, the remaining challenge is yet to tackle the
magnitude of the material−process phase space. Currently,
these methods have only been tested for screening of small sets
of porous materials (<2000),124,127 which is infinitesimal
compared to the huge number of materials that have been
discovered so far, as mentioned in section 6.1.1. Also,
experimental evidence for validation of numerical techniques
that are used for expedited optimization of PSA/VSA processes
are still scarce,362 and it is for the future studies to address this
important limitation.
8.6.2. Multiscale Workflows for Unconventional

Adsorbents. In addition to what has been discussed in this
section, development of more advanced multiscale workflows
for PSA/VSA/TSA processes can be envisioned where behavior
of more complex materials is simulated. An important example

of such cases is the prediction of separation performance of
novel porous materials311,312,480 with gating effects and phase-
change behavior that exhibit step-shaped adsorption iso-
therms.339,481−483 Atomistic structures of these materials
undergo considerable structural changes in response to external
stimuli such as heat, pressure, humidity, and adsorption of guest
molecules.213,481 Simulation of adsorption processes in this class
of materials must capture the interplay between the presence of
adsorbate molecules and the structural deformation of the
framework using computational methods that go beyond
conventional GCMC (e.g., the osmotic Monte Carlo method
or hybridMC/MDmethods).194,484 In addition to simulation of
structural flexibility of these materials that must be handled at
the molecular level, it is also crucial to develop more
sophisticated analytical adsorption models that can capture
stepwise shape of the isotherms in these materials as required for
process simulation.339,485,486 These two issues alone pose a
significant challenge to the development of future generations of
multiscale simulation workflows for screening of flexible
materials.

9. CURRENT PERSPECTIVE AND THE FUTURE
OUTLOOK

9.1. Current Perspective

In this article, we reviewed the recent progress in the application
of performance-based multiscale workflows for material screen-
ing in postcombustion carbon capture. To make it useful for our
wide range of audience consisting of material scientists,
computational modelers, and chemical engineers, we introduced
the basic principles involved in each element of the workflow
and provided references to the available computational tools.
We outlined what data are required at each level and showed
how they can be calculated computationally without resorting to
experiment. We also highlighted the issue of availability and
completeness of the data, as well as the consistency of
implementations for multiscale workflows. The article also
summarized all the recent studies in the field, and as such can
serve as a starting point for further developments. Before we can
close this review with our concluding remarks, it is important to
highlight the current perspective of the field and explain what
actually the multiscale materials screening approach has
achieved. Naturally, two questions emerge here:

Table 10. Ranking of Top 10 Materials Based on Minimum Energy Penalty

index

4-step VSA with
LPPa (Khurana and

Farooq88)

4-step Skarstrom
PSAb (Park et

al.94)

4-step VSA with LPPa

(Subramanian Balashankar and
Rajendran121)

4-step VSA with
LPPa (Burns et

al.124)

modified Skarstromc

(Yancy-Caballero et
al.126)

FVSAc (Yancy-
Caballero et

al.126)

5-step PSAc

(Yancy-Caballero
et al.126)

1 h8155527 TASXIW h8116500 IISERP-MOF2 UTSA-16 UTSA-16 UTSA-16
2 NAB BIBXUH h8297545 IGAHED02 zeolite 13X Cu-TDPAT Ti-MIL-91
3 UTSA-16 TERFUT h8210285 XAVQIU01 SIFSIX-3-Ni zeolite 13X Cu-TDPAT
4 NaA FAKLOU h8180594 YEZFIU Ti-MIL-91 Ti-MIL-91 zeolite 13X
5 h8124767 MODNIC h8116694 NaA Cu-TDPAT SIFSIX-3-Ni SIFSIX-3-Ni
6 ZIF-36-FRL ZESFUY IZA-WEI ZIF-36-FRL Ni-MOF-74 Zn-MOF-74 Zn-MOF-74
7 h8291835 RAXCOK h8329775 UTSA-16 SIFSIX-2-Cu-i Mg-MOF-74
8 ZIF-82 SENWIT IZA-BIK HUTTIA Zn-MOF-74
9 ZIF-78 CUHPUR ZIF-Im-h8127937 QIFLUO Mg-MOF-74
10 ZIF-68 SENWOZ IZA-MON GAYFOD

a4-step VSA with LPP using a packed-bed adsorbent system. Feed composition: 15% CO2/85% N2 at 298 K. Optimization constraints: 95% CO2
purity and 90% CO2 recovery.

b4-step PSA using a hollow fiber adsorbent model. Feed composition: 14% CO2/86% N2 at 243 K. No optimization
constraint imposed on purity and recovery. cPSA cycles using packed-bed adsorbent system. Feed composition: 15% CO2/85% N2 at 313 K.
Optimization constraints: 90% CO2 purity and 90% CO2 recovery.
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(1) What processes and materials have been identified so far
as the most promising candidates for postcombustion carbon
capture?
(2) Have we already reached the limit of performance that

could be achieved through design of new materials?
To answer these questions, we have compiled the top

performing material candidates that have been identified so far
by the most comprehensive screening studies using detailed
process modeling and optimization for postcombustion carbon
capture from binary CO2/N2 flue gas mixtures. This is
summarized in Tables 10 and 11 where the top 10 materials
from each study have been listed in order of performance. The
tables contain the results of 7 screening studies performed using
5 different PSA or VSA process configurations. Table 10
summarizes top-performing materials based on minimum
energy consumption of the process, while Table 11 lists the
top candidates based on their maximum productivity.
Evidently, the answer to the first question raised at the

beginning of this section does not seem to be straightforward.
This is because different screening studies have employed
various process and cycle configurations for assessment of
materials performance at the process level. We also need to be
aware that these studies draw their candidates form different
databases of materials, so the fact that a particular material does
not appear in a top ranked group, may simply indicate that it was
not included in the original screening set. For the studies listed
in Tables 10 and 11, the processes include 4-step VSA cycle with
LPP, 4-step Skarstrom-based PSA cycle, modified 5-step
Skarstrom cycle, FVSA cycle, and 5-step PSA cycle. The use of
different process configurations inevitably makes direct
comparison of materials performance problematic. For example,
according to Yancy-Caballero et al.,126 Mg-MOF-74 appears to
be among the top performing materials in the modified
Skarstrom and 5-step PSA cycles but not in the FVSA cycle
(as seen in Tables 10 and 11). Nevertheless, the issue is beyond
the use of different process configurations, because the hierarchy
of materials rankings are not consistent even within those studies
that have used a similar cycle (e.g., 4-step VSA with LPP). A
prominent example here is the position of UTSA-16 in Table 10
in which UTSA-16 outperforms NaA according to the ranking
by Khurana and Farooq,88 but its performance is found to be
poorer compared to the same material according to the study
conducted by Burns et al.124 The same is true if we compare the
position of UTSA-16 with ZIF-36-FRL in the two studies

mentioned above in Table 10. This could be due the use of
different model assumptions at the molecular or process levels
(e.g., different force fields used for molecular simulations or
different numerical protocols employed for fitting adsorption
isotherms). These observations clearly demonstrate our point
about the importance of consistent implementation of multi-
scale screening workflows, which is highlighted throughout this
review and particularly discussed in sections 8.1 and 8.3.
On the other hand, in Tables 10 and 11, we deliberately did

not include the actual values of the energy penalty or
productivity as we believe it would be an inconsistent
comparison of studies that are conducted on different bases.
However, without the actual numbers, we also need to be careful
in our criticism of the consistency of rankings: the data
presented in Tables 10 and 11 do not tell us how close materials
are in terms of the numerical performance. Therefore, a more
comprehensive discussion of the meaning of the rankings is not
possible without the accompanying analysis of the propagation
of uncertainties.
So what is the impact of the studies reviewed above? From an

engineering point of view, they have identified several candidates
that are very promising for postcombustion carbon capture.
From Tables 10 and 11, many materials have energy
consumption and productivity values that are superior to
those of zeolite 13X, which is the current industrial benchmark.
Examples of these materials include NAB, UTSA-16, NaA, and
ZIF-36-FRL.88 IISERP-MOF2 is another example whose energy
consumption is less than that of amine-based absorption
technology, while its productivity surpasses zeolite 13X.124

This new MOF is known to have excellent stability against
moisture and acid gas environments.487 This list of top-
performing candidates also includes other MOFs with high
kinetic stability in the presence of water such as UTSA-16 and
SIFSIX-2-Cu-i.488 As a Linde type A (LTA) zeolite, NaA is
another promising candidate that is currently synthesized at
industrial scales;124,489 hence its application for carbon capture
from dried flue gas can be more economical compared to other
candidates that are not currently mass produced.124

In addition to identifying promising materials and processes,
application of performance-based screening strategies has led to
important learning outcomes, a prominent example of which is
the role of nitrogen adsorption for material performance. Now,
we know that we do not need to limit our search for ideal

Table 11. Ranking of Top 10 Materials Based on Maximum Productivity

index

4-step VSA with
LPPa (Khurana and

Farooq88)

4-step Skarstrom
PSAb (Park et

al.94)

4-step VSA with LPPa

(Subramanian Balashankar and
Rajendran121)

4-step VSA with
LPPa (Burns et

al.124)

modified Skarstromc

(Yancy-Caballero et
al.126)

FVSAc (Yancy-
Caballero et

al.126)

5-step PSAc

(Yancy-Caballero
et al.126)

1 UTSA-16 SENWOZ h8315144 GAYFOD UTSA-16 Cu-TDPAT UTSA-16
2 NaA SENWIT h8328529 WUNSII zeolite 13X UTSA-16 zeolite 13X
3 h8155527, h8124767 WONZOP IZA-MON IISERP-MOF2 Cu-TDPAT Zn-MOF-74 Cu-TDPAT
4 ZIF-36-FRL UTEWUM IZA-RRO UTSA-16 Ni-MOF-74 zeolite 13X Zn-MOF-74
5 NAB OJICUG IZA-JBW YEZFIU Mg-MOF-74 Ti-MIL-91 Ti-MIL-91
6 CaX BIBXUH h8206103 IGAHED02 SIFSIX-3-Ni SIFSIX-3-Ni SIFSIX-3-Ni
7 ZIF-78 SENWAL IZA-WEI XAVQIU01 SIFSIX-2-Cu-i Mg-MOF-74
8 h8272272 FEFDAX h8313037 NaA Ti-MIL-91
9 Zn-MOF-74 RAXCOK ZIF-Im-h8055553 HUTTIA Zn-MOF-74
10 MgX CUHPUR ZIF-Im-h8164555 ZEGSUB

a4-step VSA with LPP using a packed-bed adsorbent system. Feed composition: 15% CO2/85% N2 at 298 K. Optimization constraints: 95% CO2
purity and 90% CO2 recovery.

b4-step PSA using a hollow fiber adsorbent model. Feed composition: 14% CO2/86% N2 at 243 K. No optimization
constraint imposed on purity and recovery. cPSA cycles using packed-bed adsorbent system. Feed composition: 15% CO2/85% N2 at 313 K.
Optimization constraints: 90% CO2 purity and 90% CO2 recovery.
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adsorbents to materials with high CO2 capacity, but rather we
should look for the candidates that have low nitrogen uptake.
Considering what is discussed in this section, it is reasonable

to state that performance-based screening of porous materials
has significantly improved our ability to realistically identify a
range of promising materials that can be considered for lab-scale
and pilot-plant examinations. This will be especially true if the
research community focuses on addressing the challenges that
were identified and discussed in section 8 of this review to
improve consistency and accuracy of the multiscale screening
workflows.
The second question posed at the beginning of this section is

also crucial in deciding whether (and how) we should proceed
with materials engineering and screening studies for carbon
capture. We can view this problem as an inverse engineering
problem. Indeed, imagine we could design and synthesize an
ideal adsorbent for carbon capture. Of course, its properties
must be located within the limits of physically meaningful and
realistic values. Having said that, what would be the performance
of such an ideal material for a carbon capture process? We could
then look at the differences (both in the performance and
properties) of this ideal adsorbent from the actual materials
reviewed in Tables 10 and 11 as the current innovation gap. In
other words, a potential improvement in performance that could
be achieved through the engineering of new materials could be
identified in this way. A large innovation gap would suggest that
our current collection of materials is still far away from what is
theoretically possible in terms of performance, and it would be
worthwhile to continue our efforts for design and screening of
porous materials to close this gap. A small innovation gap,
however, would indicate a likely plateau in what is achievable
through material optimization in the process, and hence the
focus should shift to other processes and conditions. This is
precisely the question that was recently posed by Pai et al.426 in
their study about practically achievable limits of process
performance for carbon capture using PVSA processes. For
this, the authors considered a 4-step cycle with light product
pressurization and with feed pressurization using realistic pump
efficiencies. One important aspect of this study is that the
authors explored performance of these processes as a function of
the evacuation pressure, concentration of CO2 in the feed,
pressure of the feed, and broader limits of purity/recovery
constraints, while comparing the resulting performance with the
thermodynamic minimum energy required for gas separation,
and with the conventional reference absorption process.490

Overall, the study indicates that for the standard case of 15%
CO2 in the feed, adsorption processes are competitive in terms
of energy penalty only if the process invokes very low evacuation
pressures (0.01−0.1 bar, which is not realistic in practice).
Moreover, the current top-performing materials (zeolite 13X,
UTSA-16, IISERP-MOF2) are already quite close to the
performance of the ideal material (innovation gap in perform-
ance is about 20%). The PVSA processes seem to be much more
competitive (and operate under more realistic conditions) at
higher CO2 concentrations of the feed. However, at the same
time, the innovation gap under these conditions becomes very
small, meaning the existing materials already perform close to
what will be realistically achievable.

9.2. Roadblocks to the Industrial Application of New
Materials for Carbon Capture

In the previous section, we provided a summary of several recent
screening studies that collectively identified a group of materials

with promising properties for carbon capture. Now, the key
question is what the impact of these findings will be on the
industrial practices. Can any of the above material candidates
find their way into industrial applications and be commercial-
ized?
As it happens, there are multitude of barriers between

identifying some promising materials for carbon capture and
their actual implementation as new technologies on an industrial
scale. It should be boldly stated that these barriers have not been
overcome yet! Although, this review aimed to predominantly
focus on the principles of the multiscale workflows and on the
screening of porous materials using these workflows, it is vital to
discuss the above-mentioned technological barriers in order to
provide a realistic picture about the potential of the adsorptive
carbon capture technologies.

9.2.1. Stability. The flue gas typically contains small
amounts of water vapor and trace amounts of acid gases, such
as SOx and NOx. For a material to be suitable for large scale
industrial applications, it should be stable against the presence of
these gases. Many of the early MOFs reported would not be
stable under the conditions of interest for any extensive period of
time. An excellent example of this situation is Mg-MOF-74 (or
Mg-DOBDC or CPO-27-Mg). It has one of the highest CO2
capacities at 0.1 bar because of the strong interaction of its open
metal sites with the gas.435,491 For the same reason, this material
has been extensively investigated as a benchmark adsorbent for
carbon capture.491,492 Nevertheless, it has been shown that the
structure of Mg-MOF-74 collapses irreversibly in the presence
of even a small amount of water, as its open magnesium sites
strongly interact with water.493,494 Furthermore, as the column
experiences gradients in temperature and pressure, the industrial
adsorbent must be stable under multiple repeating cycles of
these conditions over the expected lifespan of the unit (scale of
years). There is evidence that mechanical stability of flexible
MOFs is far from this threshold.495

In recent years, the situation has moved on with an increasing
number of thermally, mechanically, and water stable MOFs
being discovered, for which we refer the reader to some
appropriate reviews.488,496−498 Prominent recent examples of
stable new materials with promising carbon capture properties
include CALF-20 from Shimizu and co-workers,499 IISERP-
MOF2 from Nandi et al.,487 Al-PMOF from Boyd et al.,157 and
MUF-17 from Qazvini and Telfer.500 This, however, also draws
attention to an important issue of defining stability. It is crucial
to know how the stability of materials is defined and measured,
as depending on the community and application, the condition
and the definition of stability may widely vary. Retaining CO2
capacity under cyclic conditions reflecting the actual PSA
process for carbon capture would be themost useful definition of
stability in the context of the application of interest. Stability
tests however are very time-consuming processes. As noted by
Gibson et al.,477 the zero length column (ZLC) technique can be
used to test the stability of adsorbents with respect to flue gas
contaminants, such as SOx, NOx, and water. In this method, the
sample is exposed to a mixture containing the contaminants for a
few hours, and after regeneration, the normal test is carried out
to determine its CO2 uptake. The experiment is then repeated
cyclically to determine the variation of the CO2 uptake as a
function of the amount of contaminants that have been eluted
on the sample. Because of the small amount of material used in
ZLC, results can be obtained rapidly to determine whether the
sample is stable or whether pretreatment of the flue gas is needed
before the carbon capture unit. As an alternative to time-
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consuming experimental procedures, Batra et al.501 recently
proposed the use of machine learning techniques to search for
water stable MOFs. In summary, it can be said that stability
testing requires further research to establish the necessary
standards in terms of consistency and reliability of the test
methods.
9.2.2. Cost and Availability. To understand the

importance of the cost of materials, it is useful to reflect on
the scale of the carbon capture process from a typical coal power
plant. For this, let us consider one of the baseline cases published
by the US National Energy Technology Laboratory (NETL).502

In particular, case B12A in the study represents the performance
of a pulverized coal based plant without CO2 capture. The plant
has gross electrical output of 580 MW and net electrical output
of 550 MW and generates ca. 104 kmol/h of CO2. In other
words, this relatively small scale plant generates 440 tons of CO2
every hour. The NETL study also provides important reference
figures of the cost of carbon capture using the conventional
absorption technologies (Shell Cansolv capture system). The
report indicates that the gross power of the power plant had to
increase to 640 MW to have net power 550 MW after capture,
while the levelized cost of electricity (LCOE) increased from
$80.4/MWh without carbon capture to $133.2/MWh with
capture. Khurana and Farooq90 used this case study from NETL
to provide a techno-economical analysis of the same carbon
capture process using adsorption technologies with the gross
and net power of plant being 665 and 630 MW, respectively. To
capture the desired amount of CO2, their representative case
based on a 6-step PSA process required 104 trains each of which
consisted of 6 columns. Although the LCOE numbers seemed
promising (LCOE without capture $79.6/MWh and with
capture 114.9$/MWh for the optimal adsorbent), the required
footprint of the adsorption area was 8800 m2. With each column
being 6.8 m in length and about 2.3 m in diameter, the required
amount of the adsorbent material would be on the order of 104

tons. As mentioned above, the plant considered in this example
is of a rather small scale. For comparison, capacity of the largest
coal power plant in the world (Datang Tuoketuo, China) is ten
times higher than the plant considered in this case study (∼6.7
GW).503 Assuming a linear relationship between the capacity of
the plant and the adsorption area, installing adsorptive carbon
capture at the 10 largest coal power stations in the world would
require 106 (one million) tons of adsorbent.
Clearly, industrial applications of this scale cannot rely on

expensive adsorbents. The back-of-the envelope calculations
provided above raise concerns about the feasibility of using new
materials such as MOFs in adsorptive technologies for carbon
capture from power plants. In the study of Khurana and Farooq,
the indicative cost of Zeochem zeolite 13X as adsorbent was
taken to be $0.5/kg.90 The cost of MOFs is much greater than
that of zeolite 13X, although it has been projected to drop
significantly for some of the materials (from tens of thousands or
thousands of dollars per kilogram to tens of dollars per kilogram)
as new synthetic routes, solvents, and conditions become
available.504,505 One particularly notable example is CALF-20
(already mentioned in this section), which is claimed to be
available at $20−30/kg.506 Another issue closely related to the
cost of materials is the availability of new adsorbents. There are
now several companies that commercially produce MOFs,
including BASF, MOF Technologies, novoMOF, NuMat,
Immaterial, MOFWORX, and framergy. However, the produc-
tion capacity of these companies is still limited to a few tons of
materials per year (i.e., kilograms per hour), and this is far away

from meeting the global demands for building new carbon
capture plants at industrial scales.
These findings, combined with the analysis of Pai et al.426

reviewed in the previous section, raise serious concerns about
the prospects of new materials such as MOFs for carbon capture
from power plants. More promising avenues seem to be
associated with capture units for other industrial applications
which are 1−2 orders of magnitude smaller compared to power
plants. These applications have been reviewed by Abanades et
al.336 For example, the good stability of CALF-20 and its
attractive cost led to efforts to increase its production to “ton
scale” and to use it for carbon capture from a cement plant.507

What is however important to emphasize for the purpose of this
review is that a comprehensive analysis of promising porous
materials (such as that provided by Pai et al.426) is only possible
through the use of advanced multiscale screening workflows that
were introduced and discussed in this review. From this
perspective, the multiscale workflows described here will also
be able to play an important role in evaluating the potential of
adsorbent materials for carbon capture in the context of other
applications, such as those reviewed by Abanades et al.336

9.3. Future Outlook

After reflecting on the state-of-the-art in the field, here we
provide our concluding remarks and proposals for the future
direction of multiscale performance-based materials screening
studies.

9.3.1. Beyond Postcombustion Carbon Capture. In this
review, we focused on postcombustion carbon capture as it is a
very challenging, societally relevant, and most investigated
process. However, we believe the multiscale screening
approaches reviewed here will become a new way to design
and appraise material options for other separation applications
as well. Decarbonization of the chemical industry by 2050
cannot be achieved with carbon capture from power plants alone
and will require a wider range of technologies. These
technologies will deal with different process conditions
(primarily different levels of carbon dioxide concentration)
and will be operating on relatively small scale processes,
compared to postcombustion capture (meaning, smaller
amounts of materials will be required). For these processes, it
is likely that faster cycles will be used to reduce the footprint of
the units, especially in retrofit applications. This will in turn lead
to larger effects of mass transfer and heat transfer limitations,
precisely the challenges that need to be explored within the
multiscale framework.
Air separation is a very useful case to consider for

benchmarking multiscale modeling approaches. Production of
oxygen is an equilibrium driven separation where the light
component is produced. Therefore, simpler process config-
urations will work well in this case and advances are more likely
to be in the definition of the ideal structural properties of the
formed materials. Production of nitrogen is a kinetic separation
that requires materials with small pore openings. Again,
although this process is well-established, the data accumulated
over the years can provide a benchmark to understand whether
accurate a-priori predictions based on force fields that are
efficient in equilibrium calculations can be also used in
predicting diffusivities.
Finally, we envision that other separation processes, such as

membrane separations, where the performance of the process is
defined by the material used, will also benefit from multiscale
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screening workflows in producing more realistic, performance-
based rankings of the available materials.
9.3.2. The Role of ML Methods Will Grow. It is already

evident that the scope of multiscale screening methods will be
expanding along with the range of available materials. This,
combined with a large number of parameters, leads to a
multidimensional “material−process configuration−perform-
ance” space, which is very challenging for conventional
optimization algorithms to deal with. Machine learning methods
have already been used successfully to accelerate the
optimization problems in this field. The growing availability of
data across all scales opens exciting opportunities to use ML not
only to explore the search space, but also for other aspects of the
multiscale workflow such as the design of new force fields and
the prediction of the best material structure.508 This direction is
both very promising and still widely uncharted. Hence, there is a
strong incentive to fully explore the potential of ML models to
accelerate process-level screenings.
9.3.3. Quality Data, Reproducibility of Results, and

Consistency of Comparisons. We believe these aspects will
be a singular, most important barrier for the multiscale
approaches to make an actual impact through identifying both
better and realistic options for carbon capture. The molecular
simulation community has already produced a substantial
number of screening studies for carbon capture. Similarly, the
process simulation community has been examining various
options for both processes and materials (but not in a large scale
screening mode) for this task. The multiscale methods emerging
from the combination of these two realms have been reviewed
here. However, these studies use different assumptions, models,
and conditions, which makes systematic comparison of their
results difficult. One possible proposal for the simulation
community would be an open call for systematic comparison
of the currently existing process modeling codes (including
commercial ones) and the model assumptions using a reference
case study. This will be a significant step toward building
confidence in ranking of the materials.
9.3.4. Techno-economic Analysis and Scale-Up of the

Process. Development of multiscale screening studies should
eventually go beyond the process-level. This is because, similar
to any technology, the ultimate driver for commercialization of
adsorption-based carbon capture is the cost. Therefore, the
screening studies at the process level must be linked with
techno-economic analyses where the ultimate design objective is
to reduce the overall cost of CO2 capture and concentration
(CCC) at industrial scales. Although there have been some
attempts in this direction,90−92,125 there is still a dire need for
integrated adsorbent-process optimizations that are properly
linked with techno-economic assessments of the CCC
technology. Such studies, must realistically assess capital and
operating costs of the process including the cost of adsorbent,
operational lifetime of key components of the cyclic process,
realistic efficiencies of vacuum pumps, process scheduling, and
finally the costs associated with scale-up of the technology and
its footprint requirements.90,92,125

From the few techno-economic studies conducted so far, it
seems that the cost of the CO2 capture using VSA or PSA
technology is generally higher than that of the current
technological benchmark, which is the amine-based absorption
separation (despite the promising values of energy penalty
reported92,125). Recent studies have consistently noted that the
cost of adsorbent has a major impact on the ultimate cost of the
CO2 capture process.92,125 As discussed in section 9.2, this is

indeed the case for some materials (such as MOFs) whose
synthesis is still expensive and limited for large-scale
productions. In the case of VSA processes, another major
challenge is the limitation of maximum feed velocities that can
be employed in beaded or pelletized adsorbents.92 Apparently,
this results in the requirement for a large number of adsorption
columns and multiple parallel trains, which in turn poses other
technological challenges associated with practicality of deploy-
ing large and complex capture plants.90,92 From this perspective,
future efforts in the domain of adsorption-based carbon capture
technology must focus on addressing the following techno-
logical barriers:

• Development of monolith adsorbents65,66 or parallel-
passage contactors509 that can increase productivity of the
process through reducing pressure drop and enhancing
kinetics.90,92

• Development of better and cheaper adsorbents that can
be economically mass produced.

• Development of adsorbents with improved thermal and
mechanical stabilities and higher resistance to moisture
that can operate under rapid cyclic conditions of PSA and
VSA processes with reasonable operational lifetime.

In this context, the following should be particularly under-
taken by the simulation community for future materials
screening studies using the multiscale workflows:

• Materials screening using structured adsorbents65 (as
opposed to pelletized adsorbents) in PSA/VSA systems.
These adsorbents exhibit lower pressure drop compared
to traditional packed bed systems and do not suffer from
fluidization at high feed velocities; hence they can be used
for cycle intensification and increasing productivity.
Recent studies have also shown that it is possible to
operate monolithic VPSA processes at a higher
productivity than the traditional methyldiethanolamine
(MDEA)-based absorption processes.353 A number of
recent studies have already developed new models for
implementation of structured adsorbents in PSA and VSA
simulations.353,396

• Focusing the computational efforts on screening of
materials that are known to meet the essential criteria
stated in this section (e.g., low price, water resistant, and
thermally and mechanically stable materials).

9.3.5. The Ultimate Challenge in Postcombustion
Carbon Capture Still Remains. It is important to recognize,
that despite 15 or so years of computational materials screening
studies for postcombustion carbon capture, there is no pilot-
scale plant that is designed to operate using a MOF or ZIF as an
adsorbent. While the aim of developing an in silico route to
finding optimal materials is a sound aspiration, there is the need
to include in the selection process, also the ability to synthesize
new materials and assess their stability against thermal cycling
and exposure to contaminants and moisture. Predicting the
stability of the materials is a challenging area. There are also
other technical issues associated with scale-up that were
mentioned earlier in this review. Hence, it is clear that there
are still significant challenges toward industrial implementation
of carbon capture technologies based on novel porous materials.
Notwithstanding, we believe development of more advanced
and realistic multiscale screening methods (such as those
reviewed in this work) is an important step in accelerating our
progress toward our ultimate goal.
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Study of Mofs as Adsorbents in H2 Psa Purification. Ind. Eng. Chem. Res.
2013, 52, 9946−9957.
(32) de Coninck, H.; Benson, S. M. Carbon Dioxide Capture and
Storage: Issues and Prospects. Annual Review of Environment and
Resources 2014, 39, 243−270.
(33) Bui, M.; Adjiman, C. S.; Bardow, A.; Anthony, E. J.; Boston, A.;
Brown, S.; Fennell, P. S.; Fuss, S.; Galindo, A.; Hackett, L. A.; Hallett, J.
P.; Herzog, H. J.; Jackson, G.; Kemper, J.; Krevor, S.; Maitland, G. C.;

Matuszewski, M.; Metcalfe, I. S.; Petit, C.; Puxty, G.; Reimer, J.; Reiner,
D. M.; Rubin, E. S.; Scott, S. A.; Shah, N.; Smit, B.; Trusler, J. P. M.;
Webley, P.; Wilcox, J.; Mac Dowell, N. Carbon Capture and Storage
(Ccs): The Way Forward. Energy Environ. Sci. 2018, 11, 1062−1176.
(34) Sood, A.; Vyas, S. Carbon Capture and Sequestration- a Review.
IOP Conference Series: Earth and Environmental Science 2017, 83,
012024.
(35) Vitillo, J. G.; Smit, B.; Gagliardi, L. Introduction: Carbon
Capture and Separation. Chem. Rev. 2017, 117, 9521−9523.
(36) Yu, J.; Xie, L.-H.; Li, J.-R.; Ma, Y.; Seminario, J. M.; Balbuena, P.
B. CO2 Capture and Separations Using Mofs: Computational and
Experimental Studies. Chem. Rev. 2017, 117, 9674−9754.
(37) Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.;
O’Keeffe, M.; Yaghi, O. M. Synthesis, Structure, and Carbon Dioxide
Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res.
2010, 43, 58−67.
(38) Nakao, S.-I. Advanced CO2 Capture Technologies: Absorption,
Adsorption, and Membrane Separation Methods; Springer: Cham, 2019.
(39) Process Systems and Materials for CO2 Capture: Modelling, Design,
Control and Integration; Wiley: Hoboken, NJ, 2017.
(40) Post-Combustion Carbon Dioxide Capture Materials; Royal
Society of Chemistry: London, 2019.
(41) Carbon Capture and Storage; Royal Society of Chemistry:
Cambridge, U.K., 2020.
(42) Wang, Y.; Zhao, L.; Otto, A.; Robinius, M.; Stolten, D. A Review
of Post-Combustion CO2 Capture Technologies from Coal-Fired
Power Plants. Energy Procedia 2017, 114, 650−665.
(43) Bhattacharyya, D.; Miller, D. C. Post-Combustion CO2 Capture
Technologies a Review of Processes for Solvent-Based and Sorbent-
Based CO2 Capture. Curr. Opin. Chem. Eng. 2017, 17, 78−92.
(44) Zaman, M.; Lee, J. H. Carbon Capture from Stationary Power
Generation Sources: A Review of the Current Status of the
Technologies. Korean J. Chem. Eng. 2013, 30, 1497−1526.
(45)Gao,W.; Liang, S.;Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie,
B.; Toe, C. Y.; Zhu, X.; Wang, J.; Huang, L.; Gao, Y.; Wang, Z.; Jo, C.;
Wang, Q.; Wang, L.; Liu, Y.; Louis, B.; Scott, J.; Roger, A.-C.; Amal, R.;
He, H.; Park, S.-E. Industrial Carbon Dioxide Capture and Utilization:
State of the Art and Future Challenges. Chem. Soc. Rev. 2020, 49, 8584.
(46) Netl Carbon Capture and Storage (Ccs) Database. 04/2018 ed.;
the US National Energy Technology Laboratory: online, 2018.
(47) D’Alessandro, D. M.; Smit, B.; Long, J. R. Carbon Dioxide
Capture: Prospects for New Materials. Angew. Chem., Int. Ed. 2010, 49,
6058−6082.
(48) Maruyama, R. T.; Pai, K. N.; Subraveti, S. G.; Rajendran, A.
Improving the Performance of Vacuum Swing Adsorption Based CO2

Capture under Reduced Recovery Requirements. Int. J. Greenhouse Gas
Control 2020, 93, 102902.
(49) Lackner, K. S. A Guide to CO2 Sequestration. Science 2003, 300,
1677.
(50) Smit, B.; Reimer, J. A.; Oldenburg, C. M.; Bourg, I. C.
Introduction to Carbon Capture and Sequestration; Imperial College
Press: London, 2014; Vol. 1.
(51) Brandl, P.; Bui, M.; Hallett, J. P.; Mac Dowell, N. Beyond 90%
Capture: Possible, but at What Cost? Int. J. Greenhouse Gas Control
2021, 105, 103239.
(52) Nikolaidis, G. N.; Kikkinides, E. S.; Georgiadis, M. C. An
Integrated Two-Stage P/Vsa Process for Postcombustion CO2 Capture
Using Combinations of Adsorbents Zeolite 13x and Mg-Mof-74. Ind.
Eng. Chem. Res. 2017, 56, 974−988.
(53) Turner, M.; Iyengar, A.; Woods, M. Cost and Performance
Baseline for Fossil Energy Plants Supplement: Sensitivity to CO2

Capture Rate in Coal-Fired Power Plants;. NETL-PUB-22695; US
National Energy Technology Laboratory (NETL): 2020.
(54) Agarwal, A.; Biegler, L. T.; Zitney, S. E. A Superstructure-Based
Optimal Synthesis of Psa Cycles for Post-Combustion CO2 Capture.
AIChE J. 2010, 56, 1813−1828.
(55) Ramezan, M.; Skone, T. J.; Nsakala, N. Y.; Liljedahl, G. N.
CarbonDioxide Capture from Existing Coal-Fired Power Plants. DOE/

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01266
Chem. Rev. 2021, 121, 10666−10741

10729

https://doi.org/10.1021/acs.chemrev.9b00687?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cm1021068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cm1021068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.polymer.2020.122736
https://doi.org/10.1039/b600349d
https://doi.org/10.1039/b600349d
https://doi.org/10.1039/b600349d
https://doi.org/10.1016/j.ijggc.2015.12.033
https://doi.org/10.1016/j.ijggc.2015.12.033
https://doi.org/10.1016/j.ijggc.2015.12.033
https://doi.org/10.1081/SPM-120039562
https://doi.org/10.1081/SPM-120039562
https://doi.org/10.5402/2012/982934
https://doi.org/10.5402/2012/982934
https://doi.org/10.1016/j.egypro.2017.03.1385
https://doi.org/10.1016/j.egypro.2017.03.1385
https://doi.org/10.1016/j.egypro.2017.03.1385
https://doi.org/10.1016/j.apenergy.2012.11.034
https://doi.org/10.1016/j.apenergy.2012.11.034
https://doi.org/10.1016/j.apenergy.2012.11.034
https://doi.org/10.1080/15422119.2015.1047958
https://doi.org/10.1080/15422119.2015.1047958
https://doi.org/10.1080/01496395.2014.915854
https://doi.org/10.1080/01496395.2014.915854
https://doi.org/10.1016/j.pecs.2019.100784
https://doi.org/10.1016/j.pecs.2019.100784
https://doi.org/10.1016/j.pecs.2019.100784
https://doi.org/10.1021/ie071416p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie071416p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie071416p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/B978-0-444-59520-1.50102-0
https://doi.org/10.1016/B978-0-444-59520-1.50102-0
https://doi.org/10.1016/B978-0-444-59520-1.50102-0?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.egypro.2013.05.082
https://doi.org/10.1016/j.egypro.2013.05.082
https://doi.org/10.1016/j.egypro.2013.05.082
https://doi.org/10.1016/j.cej.2019.122002
https://doi.org/10.1016/j.cej.2019.122002
https://doi.org/10.1016/j.cej.2019.122002
https://doi.org/10.1039/c3cp53627k
https://doi.org/10.1039/c3cp53627k
https://doi.org/10.1039/c3cp53627k
https://doi.org/10.1021/ie4011035?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie4011035?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev-environ-032112-095222
https://doi.org/10.1146/annurev-environ-032112-095222
https://doi.org/10.1039/C7EE02342A
https://doi.org/10.1039/C7EE02342A
https://doi.org/10.1088/1755-1315/83/1/012024
https://doi.org/10.1021/acs.chemrev.7b00403?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.7b00403?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00626?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00626?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar900116g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar900116g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.egypro.2017.03.1209
https://doi.org/10.1016/j.egypro.2017.03.1209
https://doi.org/10.1016/j.egypro.2017.03.1209
https://doi.org/10.1016/j.coche.2017.06.005
https://doi.org/10.1016/j.coche.2017.06.005
https://doi.org/10.1016/j.coche.2017.06.005
https://doi.org/10.1007/s11814-013-0127-3
https://doi.org/10.1007/s11814-013-0127-3
https://doi.org/10.1007/s11814-013-0127-3
https://doi.org/10.1039/D0CS00025F
https://doi.org/10.1039/D0CS00025F
https://doi.org/10.1002/anie.201000431
https://doi.org/10.1002/anie.201000431
https://doi.org/10.1016/j.ijggc.2019.102902
https://doi.org/10.1016/j.ijggc.2019.102902
https://doi.org/10.1126/science.1079033
https://doi.org/10.1016/j.ijggc.2020.103239
https://doi.org/10.1016/j.ijggc.2020.103239
https://doi.org/10.1021/acs.iecr.6b04270?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.6b04270?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.6b04270?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/aic.12107
https://doi.org/10.1002/aic.12107
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01266?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


NETL-401/110907; National Energy Technology Laboratory, US
Department of Energy: 2007.
(56) Akhtar, F.; Ogunwumi, S.; Bergström, L. Thin Zeolite Laminates
for Rapid and Energy-Efficient Carbon Capture. Sci. Rep. 2017, 7,
10988.
(57) Ojuva, A.; Akhtar, F.; Tomsia, A. P.; Bergström, L. Laminated
Adsorbents with Very Rapid CO2Uptake by Freeze-Casting of Zeolites.
ACS Appl. Mater. Interfaces 2013, 5, 2669−2676.
(58) Grande, C. A.; Rodrigues, A. E. Electric Swing Adsorption for
CO2 Removal from Flue Gases. Int. J. Greenhouse Gas Control 2007, 2,
194−202.
(59) Zhao, Q.;Wu, F.; Men, Y.; Fang, X.; Zhao, J.; Xiao, P.; Webley, P.
A.; Grande, C. A. CO2 Capture Using a Novel Hybrid Monolith (H-
Zsm5/Activated Carbon) as Adsorbent by Combined Vacuum and
Electric Swing Adsorption (Vesa). Chem. Eng. J. 2019, 358, 707−717.
(60) Rezaei, F.; Subramanian, S.; Kalyanaraman, J.; Lively, R. P.;
Kawajiri, Y.; Realff, M. J. Modeling of Rapid Temperature Swing
Adsorption Using Hollow Fiber Sorbents. Chem. Eng. Sci. 2014, 113,
62−76.
(61) Lively, R. P.; Bessho, N.; Bhandari, D. A.; Kawajiri, Y.; Koros, W.
J. Thermally Moderated Hollow Fiber Sorbent Modules in Rapidly
Cycled Pressure Swing Adsorption Mode for Hydrogen Purification.
Int. J. Hydrogen Energy 2012, 37, 15227−15240.
(62) Grande, C. A.; Blom, R.; Middelkoop, V.; Matras, D.;
Vamvakeros, A.; Jacques, S. D. M.; Beale, A. M.; Di Michiel, M.;
Anne Andreassen, K.; Bouzga, A. M. Multiscale Investigation of
Adsorption Properties of Novel 3d Printed Utsa-16 Structures. Chem.
Eng. J. 2020, 402, 126166.
(63) Thakkar, H.; Eastman, S.; Hajari, A.; Rownaghi, A. A.; Knox, J.
C.; Rezaei, F. 3d-Printed Zeolite Monoliths for CO2 Removal from
Enclosed Environments. ACS Appl. Mater. Interfaces 2016, 8, 27753−
27761.
(64) Middelkoop, V.; Coenen, K.; Schalck, J.; Van Sint Annaland, M.;
Gallucci, F. 3d Printed Versus Spherical Adsorbents for Gas
Sweetening. Chem. Eng. J. 2019, 357, 309−319.
(65) Rezaei, F.; Webley, P. Structured Adsorbents in Gas Separation
Processes. Sep. Purif. Technol. 2010, 70, 243−256.
(66) Rezaei, F.; Mosca, A.; Webley, P.; Hedlund, J.; Xiao, P.
Comparison of Traditional and Structured Adsorbents for CO2
Separation by Vacuum-Swing Adsorption. Ind. Eng. Chem. Res. 2010,
49, 4832−4841.
(67) Thakkar, H.; Eastman, S.; Al-Naddaf, Q.; Rownaghi, A. A.;
Rezaei, F. 3d-Printed Metal-Organic Framework Monoliths for Gas
Adsorption Processes. ACS Appl. Mater. Interfaces 2017, 9, 35908−
35916.
(68) Wang, S.; Bai, P.; Sun, M.; Liu, W.; Li, D.; Wu, W.; Yan, W.;
Shang, J.; Yu, J. Fabricating Mechanically Robust Binder-Free
Structured Zeolites by 3d Printing Coupled with Zeolite Soldering: A
Superior Configuration for CO2 Capture. Advanced Science 2019, 6,
1901317.
(69) Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M. An
Overview of Current Status of Carbon Dioxide Capture and Storage
Technologies. Renewable Sustainable Energy Rev. 2014, 39, 426−443.
(70) Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A Review of CO2 Capture by
Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745−769.
(71) Ben-Mansour, R.; Habib, M. A.; Bamidele, O. E.; Basha, M.;
Qasem, N. A. A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon Capture by
Physical Adsorption: Materials, Experimental Investigations and
Numerical Modeling and Simulations - a Review. Appl. Energy 2016,
161, 225−255.
(72) Wilcox, J.; Haghpanah, R.; Rupp, E. C.; He, J.; Lee, K. Advancing
Adsorption and Membrane Separation Processes for the Gigaton
Carbon Capture Challenge. Annu. Rev. Chem. Biomol. Eng. 2014, 5,
479−505.
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(222) Chempath, S.; Düren, T.; Sarkisov, L.; Snurr, R. Q. Experiences
with the Publicly Available Multipurpose Simulation Code, Music.Mol.
Simul. 2013, 39, 1223−1232.
(223) Martin, M. G. Mcccs Towhee, http://towhee.sourceforge.net/
(accessed 26/06/2020).
(224) Zhang, J.; Xu, F.; Hong, Y.; Xiong, Q.; Pan, J. A Comprehensive
Review on the Molecular Dynamics Simulation of the Novel Thermal
Properties of Graphene. RSC Adv. 2015, 5, 89415−89426.
(225) Hollingsworth, S. A.; Dror, R. O. Molecular Dynamics
Simulation for All. Neuron 2018, 99, 1129−1143.
(226) Ma, Z.; Ranjith, P. G. Review of Application of Molecular
Dynamics Simulations in Geological Sequestration of Carbon Dioxide.
Fuel 2019, 255, 115644.
(227) Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E. W.
Computational Methods in Drug Discovery. Pharmacol. Rev. 2014,
66, 334.
(228) Singh, A.; Vanga, S. K.; Orsat, V.; Raghavan, V. Application of
Molecular Dynamic Simulation to Study Food Proteins: A Review.Crit.
Rev. Food Sci. Nutr. 2018, 58, 2779−2789.
(229) Dubbeldam, D.; Snurr, R. Q. Recent Developments in the
Molecular Modeling of Diffusion in Nanoporous Materials.Mol. Simul.
2007, 33, 305−325.
(230) Boulfelfel, S. E.; Ravikovitch, P. I.; Sholl, D. S. Modeling
Diffusion of Linear Hydrocarbons in Silica Zeolite Lta Using Transition
Path Sampling. J. Phys. Chem. C 2015, 119, 15643−15653.
(231) Verploegh, R. J.; Nair, S.; Sholl, D. S. Temperature and Loading-
Dependent Diffusion of Light Hydrocarbons in Zif-8 as Predicted
through Fully Flexible Molecular Simulations. J. Am. Chem. Soc. 2015,
137, 15760−15771.
(232) Frenkel, D.; Smit, B. Molecular Dynamics Simulations. In
Understanding Molecular Simulation, 2nd ed.; Frenkel, D., Smit, B., Eds.;
Academic Press: San Diego, 2002; Chapter 4, pp 63−107.
(233) Frenkel, D.; Smit, B. Molecular Dynamics in Various
Ensembles. In Understanding Molecular Simulation, 2nd ed.; Frenkel,
D., Smit, B., Eds.; Academic Press: San Diego, 2002; Chapter 6, pp
139−163.
(234) Gubbins, K. E.; Liu, Y.-C.; Moore, J. D.; Palmer, J. C. The Role
of Molecular Modeling in Confined Systems: Impact and Prospects.
Phys. Chem. Chem. Phys. 2011, 13, 58−85.
(235) Sholl, D. S. Understanding Macroscopic Diffusion of Adsorbed
Molecules in Crystalline Nanoporous Materials Via Atomistic
Simulations. Acc. Chem. Res. 2006, 39, 403−411.
(236) Verlet, L. Computer “Experiments” on Classical Fluids. I.
Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev.
1967, 159, 98−103.
(237) Hinchliffe, A.Molecular Modelling for Beginners, 2nd ed.; Wiley-
Blackwell: Oxford, 2008.
(238) Hockney, R. W. Computer Simulation Using Particles, special
student edition; Hilger: Bristol, 1988.

(239) Hertäg, L.; Bux, H.; Caro, J.; Chmelik, C.; Remsungnen, T.;
Knauth, M.; Fritzsche, S. Diffusion of CH4 and H2 in Zif-8. J. Membr.
Sci. 2011, 377, 36−41.
(240) Zheng, B.; Sant, M.; Demontis, P.; Suffritti, G. B. Force Field for
Molecular Dynamics Computations in Flexible Zif-8 Framework. J.
Phys. Chem. C 2012, 116, 933−938.
(241) Zhang, L.; Wu, G.; Jiang, J. Adsorption and Diffusion of CO2
and CH4 in Zeolitic Imidazolate Framework-8: Effect of Structural
Flexibility. J. Phys. Chem. C 2014, 118, 8788−8794.
(242) Pantatosaki, E.; Megariotis, G.; Pusch, A.-K.; Chmelik, C.;
Stallmach, F.; Papadopoulos, G. K. On the Impact of Sorbent Mobility
on the Sorbed Phase Equilibria and Dynamics: A Study of Methane and
Carbon Dioxide within the Zeolite Imidazolate Framework-8. J. Phys.
Chem. C 2012, 116, 201−207.
(243) Keskin, S.; Liu, J.; Rankin, R. B.; Johnson, J. K.; Sholl, D. S.
Progress, Opportunities, and Challenges for Applying Atomically
Detailed Modeling to Molecular Adsorption and Transport in Metal-
Organic Framework Materials. Ind. Eng. Chem. Res. 2009, 48, 2355−
2371.
(244) Huang, B. L.; McGaughey, A. J. H.; Kaviany, M. Thermal
Conductivity of Metal-Organic Framework 5 (Mof-5): Part I.
Molecular Dynamics Simulations. Int. J. Heat Mass Transfer 2007, 50,
393−404.
(245) Schelling, P. K.; Phillpot, S. R.; Keblinski, P. Comparison of
Atomic-Level Simulation Methods for Computing Thermal Con-
ductivity. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 65, 144306.
(246) Ning, F. L.; Glavatskiy, K.; Ji, Z.; Kjelstrup, S.; H. Vlugt, T. J.
Compressibility, Thermal Expansion Coefficient and Heat Capacity of
CH4 and CO2 Hydrate Mixtures Using Molecular Dynamics
Simulations. Phys. Chem. Chem. Phys. 2015, 17, 2869−2883.
(247) Chempath, S.; Krishna, R.; Snurr, R. Q. Nonequilibrium
Molecular Dynamics Simulations of Diffusion of Binary Mixtures
Containing Short N-Alkanes in Faujasite. J. Phys. Chem. B 2004, 108,
13481−13491.
(248) Skoulidas, A. I.; Sholl, D. S. Molecular Dynamics Simulations of
Self-Diffusivities, Corrected Diffusivities, and Transport Diffusivities of
Light Gases in Four Silica Zeolites to Assess Influences of Pore Shape
and Connectivity. J. Phys. Chem. A 2003, 107, 10132−10141.
(249) Skoulidas, A. I.; Sholl, D. S. Self-Diffusion and Transport
Diffusion of Light Gases in Metal-Organic Framework Materials
Assessed Using Molecular Dynamics Simulations. J. Phys. Chem. B
2005, 109, 15760−15768.
(250) Ford, D. C.; Dubbeldam, D.; Snurr, R. Q.; Künzel, V.; Wehring,
M.; Stallmach, F.; Kärger, J.; Müller, U. Self-Diffusion of Chain
Molecules in the Metal-Organic Framework Irmof-1: Simulation and
Experiment. J. Phys. Chem. Lett. 2012, 3, 930−933.
(251) Farmahini, A. H.; Shahtalebi, A.; Jobic, H.; Bhatia, S. K.
Influence of Structural Heterogeneity on Diffusion of CH4 and CO2 in
Silicon Carbide-Derived Nanoporous Carbon. J. Phys. Chem. C 2014,
118, 11784−11798.
(252) Farmahini, A. H.; Bhatia, S. K. Differences in the Adsorption
and Diffusion Behaviour of Water and Non-Polar Gases in Nanoporous
Carbon: Role of Cooperative Effects of Pore Confinement and
Hydrogen Bonding. Mol. Simul. 2015, 41, 432−445.
(253) García-Sánchez, A.; Dubbeldam, D.; Calero, S. Modeling
Adsorption and Self-Diffusion of Methane in Lta Zeolites: The
Influence of Framework Flexibility. J. Phys. Chem. C 2010, 114, 15068−
15074.
(254) Leroy, F.; Rousseau, B.; Fuchs, A. H. Self-Diffusion of N-
Alkanes in Silicalite Using Molecular Dynamics Simulation: A
Comparison between Rigid and Flexible Frameworks. Phys. Chem.
Chem. Phys. 2004, 6, 775−783.
(255) Heffelfinger, G. S.; Swol, F. V. Diffusion in Lennard-Jones
Fluids Using Dual Control Volume Grand Canonical Molecular
Dynamics Simulation (Dcv-Gcmd). J. Chem. Phys. 1994, 100, 7548−
7552.
(256) Swol, F. V.; Heffelfinger, G. S. Gradient-Driven Diffusion Using
Dual Control Volume Grand Canonical Molecular Dynamics (Dcv-
Gcmd). MRS Proceedings 1995, 408, 299.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01266
Chem. Rev. 2021, 121, 10666−10741

10734

https://doi.org/10.1021/ja076595g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja076595g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://github.com/SarkisovGroup/gcmcbenchmarks
https://doi.org/10.1002/jcc.24807
https://doi.org/10.1002/jcc.24807
https://doi.org/10.1080/08927022.2013.839871
https://doi.org/10.1080/08927022.2013.839871
https://doi.org/10.1080/0892702031000065719
https://doi.org/10.1080/08927022.2013.828208
https://doi.org/10.1080/08927022.2013.828208
https://doi.org/10.1080/08927022.2013.819103
https://doi.org/10.1080/08927022.2013.819103
http://towhee.sourceforge.net/
https://doi.org/10.1039/C5RA18579C
https://doi.org/10.1039/C5RA18579C
https://doi.org/10.1039/C5RA18579C
https://doi.org/10.1016/j.neuron.2018.08.011
https://doi.org/10.1016/j.neuron.2018.08.011
https://doi.org/10.1016/j.fuel.2019.115644
https://doi.org/10.1016/j.fuel.2019.115644
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1080/10408398.2017.1341864
https://doi.org/10.1080/10408398.2017.1341864
https://doi.org/10.1080/08927020601156418
https://doi.org/10.1080/08927020601156418
https://doi.org/10.1021/acs.jpcc.5b01633?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.5b01633?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.5b01633?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.5b08746?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.5b08746?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.5b08746?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C0CP01475C
https://doi.org/10.1039/C0CP01475C
https://doi.org/10.1021/ar0402199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar0402199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar0402199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1016/j.memsci.2011.01.019
https://doi.org/10.1021/jp209463a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp209463a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp500796e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp500796e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp500796e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp207771s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp207771s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp207771s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie800666s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie800666s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie800666s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.002
https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.002
https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.002
https://doi.org/10.1103/PhysRevB.65.144306
https://doi.org/10.1103/PhysRevB.65.144306
https://doi.org/10.1103/PhysRevB.65.144306
https://doi.org/10.1039/C4CP04212C
https://doi.org/10.1039/C4CP04212C
https://doi.org/10.1039/C4CP04212C
https://doi.org/10.1021/jp048863s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp048863s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp048863s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0354301?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0354301?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0354301?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0354301?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp051771y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp051771y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp051771y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz300141n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz300141n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz300141n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp502929k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp502929k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/08927022.2014.976640
https://doi.org/10.1080/08927022.2014.976640
https://doi.org/10.1080/08927022.2014.976640
https://doi.org/10.1080/08927022.2014.976640
https://doi.org/10.1021/jp1059215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp1059215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp1059215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/b310273d
https://doi.org/10.1039/b310273d
https://doi.org/10.1039/b310273d
https://doi.org/10.1063/1.466849
https://doi.org/10.1063/1.466849
https://doi.org/10.1063/1.466849
https://doi.org/10.1557/PROC-408-299
https://doi.org/10.1557/PROC-408-299
https://doi.org/10.1557/PROC-408-299
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01266?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(257) Krishna, R.; Wesselingh, J. A. The Maxwell-Stefan Approach to
Mass Transfer. Chem. Eng. Sci. 1997, 52, 861−911.
(258) Kärger, J.; Ruthven, D. M. Diffusion in Nanoporous Materials:
Fundamental Principles, Insights and Challenges. New J. Chem. 2016,
40, 4027−4048.
(259) Kärger, J. R.; Ruthven, D. M.; Theodorou, D. N. Diffusion in
Nanoporous Materials; John Wiley & Sons: Hoboken, 2012.
(260) Wang, Y.; LeVan, M. D. Mixture Diffusion in Nanoporous
Adsorbents: Development of Fickian Flux Relationship and Concen-
tration-Swing Frequency Response Method. Ind. Eng. Chem. Res. 2007,
46, 2141−2154.
(261) Shen, C.; Grande, C. A.; Li, P.; Yu, J.; Rodrigues, A. E.
Adsorption Equilibria and Kinetics of CO2 andN2 on Activated Carbon
Beads. Chem. Eng. J. 2010, 160, 398−407.
(262) Haghpanah, R.; Rajendran, A.; Farooq, S.; Karimi, I. A.
Optimization of One- and Two-Staged Kinetically Controlled CO2

Capture Processes from Postcombustion Flue Gas on a Carbon
Molecular Sieve. Ind. Eng. Chem. Res. 2014, 53, 9186−9198.
(263) Sedova, A.; Eblen, J. D.; Budiardja, R.; Tharrington, A.; Smith, J.
C. High-Performance Molecular Dynamics Simulation for Biological
and Materials Sciences: Challenges of Performance Portability. 2018
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC); IEEE: Dallas, TX, USA, 2018.
(264) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid,
E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable
Molecular Dynamics with Namd. J. Comput. Chem. 2005, 26, 1781−
1802.
(265) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;
Swaminathan, S.; Karplus, M. Charmm: A Program for Macro-
molecular Energy, Minimization, and Dynamics Calculations. J.
Comput. Chem. 1983, 4, 187−217.
(266) Plimpton, S. Fast Parallel Algorithms for Short-Range
Molecular Dynamics. J. Comput. Phys. 1995, 117, 1−19.
(267) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.;
Hess, B.; Lindahl, E. Gromacs: High Performance Molecular
Simulations through Multi-Level Parallelism from Laptops to Super-
computers. SoftwareX 2015, 1−2, 19−25.
(268) Todorov, I. T.; Smith, W.; Trachenko, K.; Dove, M. T.
Dl_Poly_3: New Dimensions in Molecular Dynamics Simulations Via
Massive Parallelism. J. Mater. Chem. 2006, 16, 1911−1918.
(269) Dubbeldam, D.;Walton, K. S.; Vlugt, T. J. H.; Calero, S. Design,
Parameterization, and Implementation of Atomic Force Fields for
Adsorption in Nanoporous Materials. Adv. Theory Simul. 2019, 2,
1900135.
(270) Weiner, P. K.; Kollman, P. A. Amber: Assisted Model Building
with Energy Refinement. A General Program for Modeling Molecules
and Their Interactions. J. Comput. Chem. 1981, 2, 287−303.
(271)Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.;
Alagona, G.; Profeta, S.; Weiner, P. A New Force Field for Molecular
Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc.
1984, 106, 765−784.
(272) Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. An All
Atom Force Field for Simulations of Proteins and Nucleic Acids. J.
Comput. Chem. 1986, 7, 230−252.
(273) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K.
M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.;
Kollman, P. A. A Second Generation Force Field for the Simulation of
Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc.
1995, 117, 5179−5197.
(274) Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.;
Hauser, K. E.; Simmerling, C. Ff14sb: Improving the Accuracy of
Protein Side Chain and Backbone Parameters from Ff99sb. J. Chem.
Theory Comput. 2015, 11, 3696−3713.
(275) Wang, L.-P.; McKiernan, K. A.; Gomes, J.; Beauchamp, K. A.;
Head-Gordon, T.; Rice, J. E.; Swope,W. C.; Martínez, T. J.; Pande, V. S.
Building a More Predictive Protein Force Field: A Systematic and
Reproducible Route to Amber-Fb15. J. Phys. Chem. B 2017, 121, 4023−
4039.

(276) Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. An Overview of
the Amber Biomolecular Simulation Package. WIREs Computational
Molecular Science 2013, 3, 198−210.
(277) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.;
Skiff, W. M. Uff, a Full Periodic Table Force Field for Molecular
Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc.
1992, 114, 10024−10035.
(278) Coupry, D. E.; Addicoat, M. A.; Heine, T. Extension of the
Universal Force Field for Metal-Organic Frameworks. J. Chem. Theory
Comput. 2016, 12, 5215−5225.
(279) Jaillet, L.; Artemova, S.; Redon, S. Im-Uff: Extending the
Universal Force Field for Interactive Molecular Modeling. J. Mol.
Graphics Modell. 2017, 77, 350−362.
(280) Mayo, S. L.; Olafson, B. D.; Goddard, W. A. Dreiding: A
Generic Force Field for Molecular Simulations. J. Phys. Chem. 1990, 94,
8897−8909.
(281) Mulliken, R. S. Electronic Population Analysis on Lcao-Mo
Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833−1840.
(282) Manz, T. A.; Sholl, D. S. Chemically Meaningful Atomic
Charges That Reproduce the Electrostatic Potential in Periodic and
Nonperiodic Materials. J. Chem. Theory Comput. 2010, 6, 2455−2468.
(283) Breneman, C. M.; Wiberg, K. B. Determining Atom-Centered
Monopoles fromMolecular Electrostatic Potentials. TheNeed for High
Sampling Density in Formamide Conformational Analysis. J. Comput.
Chem. 1990, 11, 361−373.
(284) Watanabe, T.; Manz, T. A.; Sholl, D. S. Accurate Treatment of
Electrostatics During Molecular Adsorption in Nanoporous Crystals
without Assigning Point Charges to Framework Atoms. J. Phys. Chem. C
2011, 115, 4824−4836.
(285) Sladekova, K.; Campbell, C.; Grant, C.; Fletcher, A. J.; Gomes, J.
R. B.; Jorge, M. The Effect of Atomic Point Charges on Adsorption
Isotherms of CO2 andWater in Metal Organic Frameworks. Adsorption
2020, 26, 663−685.
(286) Kancharlapalli, S.; Gopalan, A.; Haranczyk, M.; Snurr, R. Q.
Fast and Accurate Machine Learning Strategy for Calculating Partial
Atomic Charges in Metal-Organic Frameworks. J. Chem. Theory
Comput. 2021, 17, 3052.
(287) Raza, A.; Sturluson, A.; Simon, C. M.; Fern, X. Message Passing
Neural Networks for Partial Charge Assignment to Metal-Organic
Frameworks. J. Phys. Chem. C 2020, 124, 19070−19082.
(288) Dubbeldam, D.; Calero, S.; Vlugt, T. J. H.; Krishna, R.; Maesen,
T. L. M.; Smit, B. United Atom Force Field for Alkanes in Nanoporous
Materials. J. Phys. Chem. B 2004, 108, 12301−12313.
(289) Martin, M. G.; Siepmann, J. I. Transferable Potentials for Phase
Equilibria. 1. United-Atom Description of N-Alkanes. J. Phys. Chem. B
1998, 102, 2569−2577.
(290) Martin, M. G.; Siepmann, J. I. Novel Configurational-Bias
Monte Carlo Method for Branched Molecules. Transferable Potentials
for Phase Equilibria. 2. United-Atom Description of Branched Alkanes.
J. Phys. Chem. B 1999, 103, 4508−4517.
(291) Chen, B.; Siepmann, J. I. Transferable Potentials for Phase
Equilibria. 3. Explicit-HydrogenDescription of Normal Alkanes. J. Phys.
Chem. B 1999, 103, 5370−5379.
(292) Wick, C. D.; Martin, M. G.; Siepmann, J. I. Transferable
Potentials for Phase Equilibria. 4. United-Atom Description of Linear
and Branched Alkenes and Alkylbenzenes. J. Phys. Chem. B 2000, 104,
8008−8016.
(293) Potoff, J. J.; Siepmann, J. I. Vapor-Liquid Equilibria of Mixtures
Containing Alkanes, Carbon Dioxide, and Nitrogen. AIChE J. 2001, 47,
1676−1682.
(294) Chen, B.; Potoff, J. J.; Siepmann, J. I. Monte Carlo Calculations
for Alcohols and Their Mixtures with Alkanes. Transferable Potentials
for Phase Equilibria. 5. United-Atom Description of Primary,
Secondary, and Tertiary Alcohols. J. Phys. Chem. B 2001, 105, 3093−
3104.
(295) García-Sánchez, A.; Ania, C. O.; Parra, J. B.; Dubbeldam, D.;
Vlugt, T. J. H.; Krishna, R.; Calero, S. Transferable Force Field for
Carbon Dioxide Adsorption in Zeolites. J. Phys. Chem. C 2009, 113,
8814−8820.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01266
Chem. Rev. 2021, 121, 10666−10741

10735

https://doi.org/10.1016/S0009-2509(96)00458-7
https://doi.org/10.1016/S0009-2509(96)00458-7
https://doi.org/10.1039/C5NJ02836A
https://doi.org/10.1039/C5NJ02836A
https://doi.org/10.1021/ie061214d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie061214d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie061214d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cej.2009.12.005
https://doi.org/10.1016/j.cej.2009.12.005
https://doi.org/10.1021/ie403143z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie403143z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie403143z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1002/jcc.540040211
https://doi.org/10.1002/jcc.540040211
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1039/b517931a
https://doi.org/10.1039/b517931a
https://doi.org/10.1002/adts.201900135
https://doi.org/10.1002/adts.201900135
https://doi.org/10.1002/adts.201900135
https://doi.org/10.1002/jcc.540020311
https://doi.org/10.1002/jcc.540020311
https://doi.org/10.1002/jcc.540020311
https://doi.org/10.1021/ja00315a051?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00315a051?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.540070216
https://doi.org/10.1002/jcc.540070216
https://doi.org/10.1021/ja00124a002?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00124a002?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.7b02320?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.7b02320?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1021/ja00051a040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00051a040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00664?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00664?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jmgm.2017.08.023
https://doi.org/10.1016/j.jmgm.2017.08.023
https://doi.org/10.1021/j100389a010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100389a010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1740588
https://doi.org/10.1063/1.1740588
https://doi.org/10.1021/ct100125x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct100125x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct100125x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.540110311
https://doi.org/10.1002/jcc.540110311
https://doi.org/10.1002/jcc.540110311
https://doi.org/10.1021/jp201075u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp201075u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp201075u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10450-019-00187-2
https://doi.org/10.1007/s10450-019-00187-2
https://doi.org/10.1021/acs.jctc.0c01229?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01229?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c04903?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c04903?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c04903?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0376727?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0376727?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp972543+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp972543+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp984742e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp984742e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp984742e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp990822m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp990822m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp001044x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp001044x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp001044x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/aic.690470719
https://doi.org/10.1002/aic.690470719
https://doi.org/10.1021/jp003882x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp003882x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp003882x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp003882x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp810871f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp810871f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01266?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(296) Martin-Calvo, A.; Gutiérrez-Sevillano, J. J.; Parra, J. B.; Ania, C.
O.; Calero, S. Transferable Force Fields for Adsorption of Small Gases
in Zeolites. Phys. Chem. Chem. Phys. 2015, 17, 24048−24055.
(297) Bludsky,́ O.; Rubes,̌ M.; Soldán, P.; Nachtigall, P. Investigation
of the Benzene-Dimer Potential Energy Surface: Dft/Ccsd(T)
Correction Scheme. J. Chem. Phys. 2008, 128, 114102.
(298) Fang, H.; Kamakoti, P.; Zang, J.; Cundy, S.; Paur, C.;
Ravikovitch, P. I.; Sholl, D. S. Prediction of CO2 Adsorption Properties
in Zeolites Using Force Fields Derived from Periodic Dispersion-
Corrected Dft Calculations. J. Phys. Chem. C 2012, 116, 10692−10701.
(299) Fang, H.; Kamakoti, P.; Ravikovitch, P. I.; Aronson, M.; Paur,
C.; Sholl, D. S. First Principles Derived, Transferable Force Fields for
CO2 Adsorption inNa-ExchangedCationic Zeolites. Phys. Chem. Chem.
Phys. 2013, 15, 12882−12894.
(300) Fang, H.; Kulkarni, A.; Kamakoti, P.; Awati, R.; Ravikovitch, P.
I.; Sholl, D. S. Identification of High-CO2-Capacity Cationic Zeolites by
Accurate Computational Screening. Chem. Mater. 2016, 28, 3887−
3896.
(301) Fang, H.; Findley, J.; Muraro, G.; Ravikovitch, P. I.; Sholl, D. S.
A Strong Test of Atomically Detailed Models of Molecular Adsorption
in Zeolites Using Multilaboratory Experimental Data for CO2

Adsorption in Ammonium Zsm-5. J. Phys. Chem. Lett. 2020, 11,
471−477.
(302) Vishnyakov, A.; Ravikovitch, P. I.; Neimark, A. V.; Bülow, M.;
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