Hole Detection in Aquaculture Net Cages from Video Footage
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ABSTRACT

Frequent inspection of salmon cage integrity is essential in order to early detect and prevent the possible escape of
farmed salmon—minimizing the risk of any negative impact for the remaining wild stock of salmon. Current state-of-
the-art computer vision-based approaches can detect net-irregularities under “optimal” net and illumination conditions
but might fail under real-world conditions. In this paper, we present a novel modularized processing framework based
on advanced computer vision and machine learning approaches that allows to effectively detect potential net damages in
video recordings from cleaner-robots traversing the net cages. The framework includes a deep learning-based approach to
segmenting interpretable net structure from background, transfer learning facilitated classification of potential holes from
irrelevance, and computer vision based modules for irregularity detection, filtering, and tracking. Filtering and classifica-
tion are vital steps to ensure that temporally consistent holes within net structure are reported—and irrelevant objects such
as by-passing fish are ignored. We evaluate our approach on representative real-world videos from real cleaning operations
and show that the approach can cope with the difficult lighting conditions that are typical for aquaculture environments.
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1. INTRODUCTION

The rearing of Atlantic Salmon in aquaculture sea cages is an important and fast growing industry in Norway [1]. It
comes with several challenges that need to be addressed in order to minimize it’s environmental footprint, and economic and
ecological costs. Fish escapes under net cage damage is one major concern and can be prevented by regular net inspections.
Net inspections are often carried out by a team of divers or manual inspection of video captured by Remotely Operated
Vehicles (ROVs) equipped with cameras [2]. The former approach is usually related to higher costs and longer delays than
the latter, in addition to greater health, safety, and environment (HSE) concerns (for instance [3,4]). Underwater drones
may in principle serve to completely automate the process of continuous net integrity inspection if a robust algorithm
can process its video stream and evaluate the pictured net structure. In this paper we introduce a modular framework for
automatically analyzing the net integrity of a sea cage
based on video streams from cleaner-robots.  The chal-
lenges in automatic processing and analysis of underwa-
ter net cage structure [5] are manifold; due to the tur-
bidity of the water, caustics, reflections along with possi-
ble low light conditions the video quality might be poor
even with high quality cameras, causing the net struc-
ture to appear “broken” in some video frames. The wa-
ter current and waves might cause spatial deformations in
the net structure. Fish regularly occlude the net and
may appear very similar to holes. In addition, heavy al-
gae growth often covers the net structure to a certain de-
gree. These are all reasons why proof-of-concept hole
detection algorithms in well defined environments and ro-
bust hole detection algorithms intended for real environ-
ments constitute different difficulty levels. Figure 1 illus-
Figure 1: The proposed automated hole-detection trates the proposed hole detection framework pipeline for a
framework is able to detect and track a potential hole video footage taken during a real industrial net cleaning opera-
in difficult real world video-streams. tion.
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1.1 Contributions

We propose a novel framework for automatic analysis of the net integrity based on video recordings from cleaner-robots
in a sea cage. Furthermore, we introduce two strategies for net segmentation: Firstly, an attentional mechanism which is
critical for determining which parts of the recording actually represent net structure that is suitable for further analysis. This
is implemented as neural network based segmentation of the video-frames into three classes: bright-net, dark-net, and non-
net. This strategy, which we call Three-Class Attention Segmentation (3CAS), is followed by an adaptive thresholding
algorithm [6] to achieve coherent segmentation of the net structure as white pixels on black background regardless of
the color gradients in the original image. The call for three classes originates in the observation that dark-net on bright
background, bright-net on dark background, and irrelevance, frequently coappear in real recordings. Our second proposed
strategy for net segmentation, which we call Net Thread Segmentation (NTS), combines the attention and binarization
into a single operation, and yielded favourable results also reducing overhead with respect to the processing time. Both
segmentation strategies were successfully implemented for our use-case based on the MultiRes U-Net [7].

2. RELATED WORK

The automatic analysis of net cage structure integrity is an important step towards more autonomy in aquaculture. Dif-
ferent sensor modalities such as cameras or acoustic based sensors are used to address the problem. Computer vision based
approaches analyzing the images or video streams are mainly based on image processing techniques [8—10]. Paspalakis et
al. proposed in [9] two strategies to detect net tear. Their first approach was designed to be paralellizable: the frame was
binarized using Otsu’s method [11] and then divided into a grid of overlapping cells. By counting the number of net pixels
per cell, they recognized holes where the net pixel count was significantly low relative to the net pixel count of other cells
in that image. Their second approach utilized the Hough Line Transform [12] to recognize the most prominent straight
lines in the image, identifying holes where such lines were far apart from the nearest net structure pixel in the binary image.
Betancourt et al. [13] resembled other works with respect to several aspects such as the initial binarization of each frame
with Otsu’s method. Following binarization, they applied the Hough Line Transform to recognize the mesh structure, and
from this they identified the knot points in the net, the properties of which where used to reveal holes. The authors tested
their scheme on a real fish cage. Their results section depicts test-images, on which their algorithm performed decently—
reconstructing the net structure with high accuracy and recognizing 79% of present holes. However, real world videos tend
to violate some of the underlying assumptions as the net structure may appear bent and more irregular or even broken in
occasional frames. In addition, challenges such as algae growth and occluding fish (which are crucial to cope with in real-
life fish cage inspection applications) need to be addressed, as they complicate the process of reconstructing mesh structure
features such as knot points, and in certain situations resemble net holes. The authors of [14] applied an ensemble of
image processing modules, consisting of distortion correction, underwater image dehazing, marine growth segmentation,
net-opening structure analysis, and blocked percentage estimation. To evaluate the proposed method, several underwater
images were collected and labeled with pixel-wise annotations. A first attempt to utilize deep learning for net hole detection
was performed by [15] where " You Only Look Once” (YOLO) [16] was exploited to detect net structures and net hole areas
in well confined and controlled underwater lab conditions. Within our developed method we make use of neural networks
for both segmentation of net-structure and classification of scene content (i.e. is the determined irregularity actually a fish
or a piece of seaweed?). However, also more classical computer vision and image processing techniques for tracking and
thresholding among others are integrated and used in our proposed framework.

3. APPROACH

In our approach we established five main modules (as displayed in figure 2) all cooperatively addressing the problem of
robust hole detection in realistic environments. The first module is the deep learning based net segmentation, either based
on 3CAS and subsequent binarization, or direct NTS, translating every video frame into a binary image. Black pixels
represent mesh holes, called background, and white pixels represent net structure and irrelevant parts of the image. The
second module is the local irregularity detector, a module that analyzes the binary image and scans it for atypical patches
of background thereby finding potential holes. The third module is a spatiotemporal filter which tracks local irregularities
and verifies those irregularities that persist in space and time. The fourth module is concerned with tracking verified
irregularities and the computation of their trajectories. It keeps track of all verified irregularities that are still active in the
current frame, and predicts the position of active irregularities if they are not directly discovered. The fifth module is based
on the scene interpreter—a deep convolutional network originally trained on millions of images [17] and then specialized



D Net Segmentation
[:] Irregularity Detection Movement Register
"] Spat otemporal Filtering e " . .
— Within-Frame Irregularities 1 n I Active Irregularities Register
D Tracking —— T
Short-Time Frame Memory | — -1 - .
(] classification T T Tracking
Frame ) U-Net LD Filtering High- Highlighted Frame
” lighting
: - Classifi-

cation

Blur R

ID: Class Register
Scene

Interpreter

Figure 2: The suggested framework consists of five main modules: net segmentation (interpreting the original frame as a
binary image), irregularity detection (detecting irregular patterns in the binary image), spatiotemporal filtering (verifying
irregularities that persist in space and time), tracking (registering the trajectories of currently visible irregularities and
projecting them onto the frame if need be), and classification (discriminating plausible holes from noise).

on discriminating images of fish, or elsewise non-hole objects like floating seaweed or equipment, from images of potential
real holes. Passing all stages, a hole can be reported, highlighted, and archived. The modules are described in the following
subsections in more detail.

3.1 Neural Network Based Cage-Net-Segmentation

In realistic applications, only a certain part of the video frame depicts interpretable net structure. In order to analyze
such images for net damage, one must solve the problem of attention; the algorithm needs to decide which parts of the
image to consider for further analysis, and which parts to disregard. Specifically, our subsequent irregularity detection
scheme does not analyze the net structure per se, but the properties of the background areas in-between net structure. A
sufficient binary representation of the frame is therefore one where foreground-pixels represent net structure and irrelevant
areas, and background pixels represent in-between net structure areas. Below we describe the two different attentional
mechanisms that we developed for this purpose, both exploit adapted implementations of the MultiRes U-Net [7].

3.1.1 Three-Class Attention Segmentation

The 3CAS approach provides a three-channel output image, an attention mask, classifying each pixel of the video
frame as either bright-net, dark-net, or non-net. Non-net refers to all regions that constitute non-net areas or net-areas
that might not be reliable enough for determining if a net-irregularity is present or not. Thus, in our implementation of
3CAS, the MultiRes U-Net [7] was modified to comply with three classes by introducing additional filters in the final layer
to obtain the desired 3-channel output. The left-to-middle part of figure 3 shows an instance from the training dataset of
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Figure 3: An example training image and its corresponding segmentations. From left to right: Real-world example image,
3CAS ground truth, and NTS segmentation result.

3CAS, where each pixel of the ground truth mask keeps a certain RGB-color value: non-net is encoded as [1,0,0] (red),
bright-net as [0,1,0] (green), and dark-net as [0,0,1] (blue). Note that this image also illustrates that bright and dark net
regularly coexist in real-world underwater fish-cage scenes. To obtain a coherent binarization of the original video frame
(one where net structure is always represented by white pixels and background always by black pixels) we applied an



adaptive thresholding scheme to the video frame [6] combined with the suggested 3CAS masks to disregard irrelevance,
and to invert dark-net areas.

3.1.2 Net Thread Segmentation

The NTS procedure was designed to seamlessly binarize video frames containing bright-net, dark-net, and non-net in
a single operation. Whereas 3CAS provides attention masks to guide subsequent binarization modules, NTS carries itself
out the binarization of net structure and removes non-net components of the video frame. The rightmost part of figure
3 shows an NTS segmentation on a previously unseen image, where each pixel of the ground truth mask keeps a binary
value; O for background and 1 for anything else.

To encourage spatiotemporal continuity, in both segmenta-
tion schemes additional lag masks containing segmentation infor-
mation from the previous frame were incorporated in the current
input image, effectively facilitating information transfer from the
previous segmentation result. In this manner we accumulate and
exploit knowledge from the previous video frame sequence in-
stead of evaluating each frame independently. We modified the
input layer of the MultiRes U-Net to comply with this idea, in-
creasing the number of channels per input pixel from 3 to 6 in
. B the 3CAS model (cf. figure 4), and from 3 to 4 in the NTS
‘- model. Instead of directly appending the previous segmenta-
tion results they are first blurred with a Gaussian filter. This
compensates for a possible high discrepancy between the pre-
vious and current segmentation in particular if the scene changes
rapidly. Additionally, we introduced a regularization that acts
during training by replacing 25% of the lag masks with all-
black masks, and 25% with all-white masks. This method reg-
ulated the models’ trust towards the image information of the
current video frame contra the previous lag mask, effectively pre-
venting deadlock-situations where only the lag mask is consid-
ered.

Figure 4: Illustration of pixel-wise concatenation of an
image and a blurred lag mask carrying previous seg-
mentation information. Each pixel of the 3CAS input
images was expanded from 3 channel RGB-values to 6
channels.

3.2 Local Irregularity Detector

The local irregularity detector (denoted LID in figure 2) analyzes the binary image produced by the segmentation
module and detects in it irregular background regions. The module works on single video frames, independently, and
outputs a morphologically [18] closed binary image called the irregularity space (compare Stage 3 in Figure 1) where
black pixels represent irregular areas. Furthermore, we introduce an adaptive variable called the elbow to describe the
largest morphological structuring element that allows K patches of background to persist in the binary image after applying
the morphological closing operation to it. Effectively, we close the binary image with a structuring element of increasing
size until K such patches can no longer be counted in the closed image, and we refer to the previous kernel size as the
elbow. Having attained the elbow value, we increase the kernel size with X% and apply a new closing operation. The
parameter X decides the relationship between the K-th largest patch and the detected irregularity. Intuitively, a single
broken mesh thread can result in a hole that is 100% wider or taller than its neighbors, but spatial deformations in the net
structure can significantly lower this number. We set X = 50 and hence require an irregularity to be at least 50% larger than
the K-th largest patch. Lowering this number increases the number of false reports, but increases also the recall in terms of
not overlooking true irregularities. Increasing X yields in turn a more conservative hole detection scheme that reports only
severe damage.

In figure 5 it can be observed that the number of persisting patches decreases as the kernel size is incremented, but
the presence of irregularities brings forth a plateau in the plot. The detection of this plateau with the elbow approach is
analogous to finding the K-th largest patch and assuming that no regular patch is X% larger. Since the elbow represents
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Figure 5: Holes manifest themselves as plateaus in the plot when we apply the closing operator to the binary image with
an iteratively increasing kernel size and count the persisting background regions. Our irregularity detection scheme reveals
these plateaus by finding the elbow. We close the binary image with an iteratively increasing kernel size until we can no
longer count K regions (we set K=3). In this particular case, this kernel size (elbow value) is 24 (the largest kernel size
to which 3 regions persist after closing). We then increase the kernel size by X% (we set X=50) and suggest that regions
which persist after a new closing operation are irregular. As for this example, the one region that persists after closing with
kernel size elbow - 1.5 = 36 is an irregularity.

the size of the K-th largest piece of background in the binary image, it is temporally stable (since the zoom level varies
little from frame to frame) and the search for the elbow can thus be optimized by initializing the search at the elbow value
of the previous frame. As for the parameter K, choosing it too large means a higher computational demand since more
regions need to be counted for each iteration. The lower the K, however, limits the number of irregularities that can be
detected. With K = 3, we obtained a fast-converging scheme that was capable of detecting two irregularities per tile.

One drawback to this approach is the assumption that a hole is always larger than the K-th largest piece of background
in the global image. This is not always the case, for instance if the hole is further away from the camera than intact net
structure in the foreground. We coped with this issue by splitting the binary image into 16 tiles, and evaluated each tile
independently. With this strategy, irregularities were judged by their appearance relative to their immediate neighborhood
and not the global image.

Single broken net threads can result in rectangular holes, which are not easily discoverable with square or disk-shaped
structuring elements. We therefore employed a procedure with rectangular kernels which grew first in the horizontal
direction and later in the vertical direction. With such kernels, we enabled the discovery of irregularities that deviated from
their neighborhood in either height or width but not necessarily in both directions simultaneously.

Furthermore—if utilizing 3CAS, we propose to use the elbow to derive a fitting neighborhood size for the adaptive
thresholding algorithm [6]. The neighborhood size should be large enough to encapsulate an area consisting of both net
structure and background, but small enough to preserve the adaptive qualities when shifted across an image with a color
gradient. Intuitively, the elbow as identified with a cross-shaped kernel reflects the properties of the mesh structure in the
image. Our experiments concluded that an adaptive neighborhood size of six times the size of the elbow yielded satisfactory
binary results regardless of the distance between net and camera.

3.3 Spatiotemporal Filtering

The spatiotemporal filtering module determines which distinctive irregularities, detected with the local irregularity
detector, are consistent with detected irregularities in previous frames. This allows short term tracking over consecutive
frames, a necessary precondition for later verification. Note that longer term tracking, capable of coping also with missing
observations is handled within the tracking module. The first step within this module isconsidering the irregularity space
which and how many different irregular regions are present in the current frame. All disjoint regions are stored as bounding
boxes with their respective position and size. Subsequently, we match the current set of detected irregularities with the
irregularities detected in previous frames.
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on median movement in five preceding reports.
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In our implementation we compared the intersection over union (IoU) ratio of the bounding boxes (also known as
Jaccard index [19]) to determine if previous regions match (=overlap) with current regions. For coping with fast-moving
scenes one has to use lower thresholds on the IoU for tracking the irregularities (i.e. a threshold of 0.15 worked well for
our real world scenes). In order to increase robustness three consecutive frames stored in a short-time frame memory are
explored to match the irregularities. For a matched or re-identified irregularity we increase its accumulated vote count
and update its verification number if the matched irregularity is also verified. To verify that a real irregularity is present,
we require a vote count of seven to be reached, meaning that the irregularity must satisfy the overlap criterion for at least
seven frames. Once verified, the irregularities get a unique ID assigned. This verification procedure effectively nullified the
occurrence of sporadic appearing irregularities mainly caused by occasional poor segmentation. All verified irregularities
are stored in the active irregularities register with a timer that resets every time the irregularity is re-discovered.

3.4 Tracking

The tracking module keeps track of the trajectories of detected and verified irregularities over time. In the case of
the disappearance of an irregularity (that is not at the border) this module also predicts and inserts its anticipated location
based on the previous observations. This is performed by considering its apparent speed and size. For instance, a poor
segmentation may cause a verified irregularity to be overlooked by the local irregularity detector for a number of frames.
In this case, our implementation updates its boundaries within the short-time frame memory and also considers it as active
irregularities register is updated based on the motion hypothesis corresponding to the considered irregularity.

We calculated the relative movement of an irregularity as the spatial difference between its center coordinate (x°, y°)
in frame ¢ — 1 compared to frame ¢. Our first movement hypothesis utilized the instantaneous movement from the past
two reports to project the irregularity onto the current scene. Our second hypothesis calculated the median movement
from the past five reports, instead, which provided a significantly better tracking of the irregularity. These two hypotheses
are visualized on the left and right side of figure 6 respectively, showing instantaneous and median movement projection,
respectively.

3.5 Classification

Although non-net objects such as fish and equipment are supposed to be handled by the segmentation module, a
separate module was developed to effectively verify or falsify arising hole reports. The pre-trained VGG16 [20] model
was fine-tuned on 300 images of the three classes net, fish, and irrelevance (see figure 7). By assuming that holes can
exclusively exist within net, we only verify hole reports if the surrounding area in the video frame is evaluated as such by
the scene interpreter. By introducing the ID: class register, we effectively map irregularity IDs with a class and subsequent
highlighting can decide whether or not to focus on the irregularity based on its proposed class.

For instance, fish can be highlighted with green color, and holes with red.

The module was tested on a set of 300 test images, and its performance saw slight improvement with data augmentation,
increasing precision scores on fish class from 0.83 to 0.84 and net class from 0.89 to 0.91, with irrelevance class put at
0.91. Recall scores improved on fish class, from 0.86 to 0.89, and on net class, from 0.89 to 0.91, whilst irrelevance class
decreased some, from 0.87 to 0.86.



Figure 7: The scene interpreter was trained to recognize three image classes. From left to right: fish, net, irrelevance.

4. RESULTS

The effectiveness of the framework was investigated on ten ten-second test videos. These were extracted from videos
of two cleaning operations and were not utilized during the U-Net training stages. The videos displayed holes in the net
structure (No. 1, 2, 5, and, 9), and swimming fish (No. 8 and 9). Five videos (No. 3, 4, 6, 7, and 10) were hole- and
fish-free. We investigated binary image quality (representation of the net structure), robustness and effectiveness of the
local irregularity detector, irregularity classification (net, fish, and irrelevance), and tracking quality. Additionally, in a
second test trial using the same video material we added salt-and-pepper noise, corrupting 2% of the pixels of each frame.
These tests were executed to investigate the noise influence on the performance of the framework. The performance scores
from all tests are summarized in table 9.

Within our suggested framework we incorporated previous scene knowledge in the segmentation module through the
integration of “lag masks” containing information from past segmentations. The Net Thread Segmentation (NTS) per-
formed better in comparison to the Three-Class Attention Segmentation (3CAS), providing stable results and seamlessly
combining segmentation, binarization, and denoising in a single operation. However, compared to the 3CAS approach,
NTS turned out to be more sensitive to salt-and-pepper noise—ultimately leading to an increased number of detected irreg-
ularities. A solution likely to improve this tendency is to increase the training data foundation and to introduce additional
regularization as noisy input frames during U-Net training stages. The developed scene interpreter discriminates effec-
tively floating potential non-holes highly accurately, but apparent stationary irregularities in a moving scene are difficult to
distinguish from real holes.

In the future we intend to increase the robustness of our approach towards different types of noise by enlarging the
training dataset with images disturbed by the considered noise-types. Naturally, the training data foundation will be signif-
icantly extended when we are able to perform more experiments. A parallelized version of our approach can be designed by
independently analyzing the different overlapping tiles of a image. The tracking module might be improved by integrating
more sophisticated motion hypotheses allowing to cope better with circumstances when the movement is non-constant.

5. CONCLUSION

We presented a novel framework, consisting of five main modules, for a robust visual-based net hole detection in
realistic aquaculture underwater environments. Two alternative strategies (NST and 3CAS) facilitating deep learning for
net structure segmentation were applied on noise-free as well as noisy video data. Specifically, the MultiRes U-Net with
access to lag masks led to excellent performances and produced well defined binary representations of the test videos.
The local irregularity detector, which utilizes a morphological scheme along with a measure (the elbow) for a typical
background patch analyses every binary image. The combination of the local irregularity detector with the introduced
spatiotemporal filtering to report only those irregularities that sustain themselves in both space and time, led to robust
detection. The problem of over-reporting when noise was introduced, leading to higher computational costs, could be
addressed in future investigations by tuning specific parameters of the detector, and by regularization strategies during U-
Net training stages. More sophisticated motion hypotheses could be deduced to achieve better tracking under circumstances
when the movement is not constant.
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Figure 8: Each video excerpt shows three views; the leftmost view is the irregularity space in which local irregularities
arise and accumulate votes. Red squares indicate verified holes (as classified by the scene interpreter), green squares are
verified fish, black squares are verified irrelevance, and blue squares are unverified irregularities which are in the process

of accumulating votes. The number accompanying each square is the vote count of unverified irregularities, or the ID of

(j) Scene from test video 10.

verified ones. The middle view shows the binary representation as proposed by NTS, and the rightmost view is the output
view where only verified fish and holes appear.




No. View Segmentation NIRR HITP HFP HEN FIP FFP NTP NFP SP30F

1 S Mostly Excellent 152 1 o 0 0 o o 0 2.38
IN Mostly Poor 659 o o 1 0 1 7 0 2.87
2 P Mostly Excellent 169 1 1 1 0 o o 0 2.47
2N Decent 1181 1 o 1 o o 10 0 11.63
3 P Excellent 109 0 0 0 0 1 0 0 2.43
3N Mostly Good 523 o o 0 0 o 2 0 2.87
4 F Very Good 584 o o 0 0 o 1 0 3.06
4N Poor 2154 0 0 0 0 0 18 0 20.39
5 S Very Good 148 2 0 0 0 @) 1 0 2.20
5N Poor 1409 0 1 2 0 0 18 0 6.99
6 e Good 74 0 1 0 0 0 0 0 2.18
6N Poor 881 0 0 0 0 0 6 0 4.00
7 F Decent 1769 0 0 o o 0 19 0 22.53
7N Poor 2416 0 o o o 0 25 o 21.60
8 F Excellent 126 o o 0 1 o 0 0 2.21
8N Poor 2764 0 0 0 0 0 32 0 17.43
9 S Excellent 291 1 o 1 2 o 1 0 2.44
9N Mostly Good 834 0 0 2 1 0 6 0 3.88
10 F Varying 993 0 o 0 o} 0 13 o 3.19
10N Poor 2691 0 o o o o 26 0 45.67

Figure 9: Noisy tests are tagged with N-suffixes. Views: S(tarboard), P(ort), F(ore). NIRR is the number of local irregular-
ities (not necessarily verified). Subsequent short-hands are True Positives (-TP), False Positives (-FP), and False Negatives
(-FN), for Holes (H-), Fish (F-), and Nonsense (N-), all applicable to verified irregularities only. SP30F is mean execution
time [s] per 30 frames. The NVIDIA Titan X GPU was utilized during testing.
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