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Abstract—We describe a method for assessing the value of
additional data sources used in the prediction of unwanted
events (voltage dips, earth faults) in the power system. Using
this method, machine learning models for event prediction using
(combinations of) different data sources are developed. The value
of each data source is the improvement in model performance it
brings. In addition, feature importance is retrieved using SHapley
Additive exPlanations (SHAP). The methodology is applied to
models that predict faults based on power quality and weather
data. We find that models that combine sources outperform
models using either in isolation. They predict ground faults and
voltage dips with AUCs (Area Under Curve) of 0.74 and 0.80,
respectively. Meteorological data appears more valuable than
power quality data and the most important features are dew
point, month of the year, and the power spectral density at 4.7 Hz.

Index Terms—Machine Learning, Power system, Fault Predic-
tion, Predictive Models, Multiple Data Sources

I. INTRODUCTION

A. Motivation & Background

As society is being electrified, the reliability of the power
system is becoming increasingly important. Power system
interruptions and severe power quality (PQ) disturbances have
a large impact and are harmful to all parts of society. While
grid operators work hard to keep reliability high, events occur
regularly due to phenomena such as component degradation,
vegetation, and inclement weather. Presently, operators have
limited possibilities to predict events and perform mitigating
actions and better systems for event prediction are required.

Literature suggests that many unwanted events are caused
by a combinations of rather than single factors [1, 2, 3].
This paper presents a methodology for combining data from
multiple sources1 and evaluate the added value quantitatively.

1By data source, we mean a measuring instrument or data forecasts.
Each source (a power quality analyzer, a weather forecast) provides data for
different variables (e.g. current, voltage, temperature, humidity).

B. Relevant Literature

Recently, fault prediction in power systems has risen in
interest [3, 4, 5, 6]. Hitherto, most attempts are based on
synthetic data [7], but ongoing roll-outs of advanced sensing
equipment now enable modelling based on real data[8].

In [9, 10, 11], predictive models based on machine learning
methods have been developed based on PQ data measured
in the field. A data-driven prediction system for predicting
line trip faults in power systems was proposed in [5], where
long short-term memory (LSTM) together with support vector
machine (SVM) was used to develop a prediction model.
The prediction model was trained using historical field data
from a substation in China, consisting of measurements of the
voltages, current, and active power.

Weather data has also been used for fault prediction. For
example, [12] explores the impact of weather seasonality of
PQ disturbances and [13] predicts weather-related outages in
the electrical grid. The latter uses three flavours of neural
networks and meteorological data (wind-speed, air pressure,
and temperature) and finds that all methods give comparable
results. Weather observations occurring within a few hours
of faults are most critical and earlier data does not improve
predictions significantly. The authors do, however, emphasize
the need for oversampling due to imbalanced data.

Most existing literature is focused on using either a single
variable, or a combination of variables from a single source. In
[5], models that combine measurements of different variables
from the same source (voltage, current, active power) are
compared to a model using only current. The combined model
significantly outperformed the current-only model. In [4],
authors show the benefits of combining parameters from two
different data sources. Here, PQ and weather data were com-
bined to predict PQ disturbances. However, the performance
of a single data source was not evaluated.
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C. Contributions and Structure

With the increasing use of advanced instrumentation and
retrofitted sensors, the amount of accessible data is ever-
expanding. Data sources include operator-specific sources
(e.g., SCADA, maintenance logs), external sources (e.g.,
weather and satellite data), and in-situ retrofits (e.g., wireless
sensors directly attached to equipment). See also Table I for
a non-exhaustive list with some references.

Integrating additional data sources almost always requires
additional (and potentially brittle and poorly integrated) IT
infrastructure. Simply adding all available sources is, therefore,
(a) unlikely to be effective in terms of costs and benefits,
(b) may not be necessary if most value is originating from a
few sources, (c) lead to models that generalize poorly due to
overfitting [20]. Therefore, it is important to have a pragmatic,
robust, and uncomplicated approach for assessing the value
added by new data sources.

The core contributions of this paper is thus two-fold:
1) A methodology to assess the value added by using

several data sources during training of machine learning
models as well as an objective metric for value.

2) An example utilizing field-data following this method-
ology to show how the fusion of power quality and
meteorological improve the predictive capability of the
models.

The paper has the following structure. Section II opens with
an illustrative example of combining data sources. In section
III, the proposed method for assessing the value of sources is
presented. The results from applying this method to a number
of sources are presented in section IV. In section V, the results
and potential impact on future models are discussed.

II. MOTIVATING EXAMPLE

We begin with a motivating example (to which we return
later). Fig. 1 shows distributions of events recorded at a
single node in the Norwegian 22 kV distribution grid. One
of the most basic analyses one can perform is to calculate
the distribution of events over time – without taking into
account even the event type. Doing this, we find (top panel)
that events are not uniformly distributed over the year, but
clump into the summer and winter months. If we now add
information (admittedly from the same data source) about the

TABLE I: Overview of different types of data sources that could
be used for predicting faults and other unwanted events in the grid.
While the list is non-exhaustive, it is hoped that it does give a flavour
of the diversity of available data.

Data Type Data Source Ref.

Power Quality Power Quality Analyzers (PQA), Phasor
Measurement Units (PMU), Fault Recorders

[14]

Weather Weather Observations & Forecasts, Lightning [15]
End-User Advanced Metering Systems (AMS), Battery

Manag. Sys. (BMS), Household Data
[16]

Grid Sensors Transformer Temperatures, Line Sensors [17]
Grid Topology Grid Config., Power Flows, Load Distribution [18]
Market Price Data, Bidding Curves [19]
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Fig. 1: Distribution of different events in the grid and their depen-
dence on month of the year and air temperature. Distributions (i.e., the
probability density functions; PDFs) are derived from kernel density
estimates (KDEs) over the available samples. Top: Total distribution
of all events over the 12 months of a year. The number of events peak
in summer and winter. Middle: As the panel above, but grouped by
event type. Ground faults peaks in the summer while voltage dips
in the winter. Bottom: Distribution of air temperature during event
occurrence, grouped by event type. Voltage dips cluster around the
freezing point and ground faults occur at higher temperatures.

type of event (middle panel), we discover that the two lumps
actually correspond to different types of events. Suppose, we
then add another data source (meteorological data) to the
analysis (bottom panel). In that case, we discover the clumping
of events in the summer and winter months may be driven
by correlations between air temperature and event incidence.
Clearly, there is validity in combining multiple data sources.

Ultimately, we wish to develop machine learning models to
predict events in the grid. The value of each data source is
then the improvement of predictive performance it brings.

III. METHODOLOGY

We propose a pragmatic approach to assess the value added
by combining data sources. Given two sources A and B, we
(i) train and evaluate a machine learning model on dataset A,
(ii) train and evaluate the same model (using identical hyper-
parameters) on dataset B, (iii) train and evaluate the model on
the intersection of dataset A and B, and (iv) ask the model to
explain the features it is most sensitive to. The notion of value
added by a data source is then the marginal improvement in
the performance metric of the machine learning model.

We illustrate this approach by three datasets: (i) event logs,
(ii) time-series of power quality measurements, and (iii) time-
series of weather observations. We now describe data sources,
pre-processing, models, evaluation scheme, and techniques
used to explaination model predictions.
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A. Data Sources

We use (a) event logs from a single site in the Norwegian
22 kV distribution grid, (b) sequences of phase-to-ground
voltages, and (c) historical weather observations from the
nearest observing site. Weather data is sourced through the
Norwegian Meteorological Institute2. Event logs and voltage
data are obtained from power quality instrumentation deployed
in the grid [8]. We use data from 2008 to 2020. Event logs
indicate the event type (earth fault, voltage dip, interruption),
the phase(s) involved, and a timestamp.

Voltage sequences and weather conditions during the hours
containing events are the positive samples for our models.
The negative samples (”no event”) are voltage sequences and
weather conditions at random times (between 2008 and 2020).

B. Features & Forecast Horizon

We use cycle-by-cycle RMS voltage sequences to calculate
averaged spectra using the Welch method. Spectra are calculate
on the sum of the three line voltage. The DC component
is discarded and the (base-10) logarithm is calculated. We
use 20 minute long sequences. For the positive (”event”)
samples, sequences are cut-off 2.5 seconds before the actual
event. The spectrum is calculated with 64 frequency bins and
covers a spectral range 0 ≤ f ≤ 25 Hz for a resolution of
∆f = 25/64 ∼ 0.39 Hz. The power spectral density at these
frequencies is the first set of features.

For the weather conditions, we use 16 variables as features
(cf. appendix A). Observations are made hourly, so we select
weather conditions corresponding to the hour during which the
event occurs (positive samples) or the voltage sequence begins
(negative samples). Missing observations are forward-filled.

The final feature is the month. It is taken from timestamps of
the event or the voltage sequence (positive/negative samples).

The forecast horizon is determined by the features. Models
using only the month have an infinite horizon. Models using
weather are limited by the forecast availability (usually 72
hours). Models using power quality data are limited to time
on to the order of the cut-off (2.5 seconds).

C. Pre-Processing, Modelling, & Tuning

The XGBOOST implementation of gradient boosted decision
trees [21] is used to (initially) train three types of models to
predict the probability of an event. First, models are trained
only on voltage sequences. Second, models are trained only
on meteorological data. Third, models are trained on voltage
sequences and meteorological data. Main hyperparameters for
XGBOOST were a maximum tree depth of three, a binary
logistic objective function, the logloss evaluation metric, and
64 learners. Other parameters remained at their default values.

Taken together, pre-processing and training introduces
dozens of parameters that can be tuned for predictive perfor-
mance (e.g., voltage sequence length, model hyperparameter,
additional weather observations). However, our objective is to
demonstrate the value of data sources. As such, no parameters
were tuned and we use what we consider sane defaults.

2https://frost.met.no/index.html

D. Model Evaluation & Balancing

Model performance is evaluated using three-fold cross-
validation.3 Datasets are artificially balanced so that curves of
receiver operating characteristics (ROC) and their summary
metric (the area under the curve; AUC) can be used to com-
pare performance. These metrics compare model performance
across decision thresholds.

Statistically, the incidence of ground faults and voltage dips
is roughly one every 405 and 286 hours (17 and 12 days),
respectively. As such, the datasets are heavily imbalanced and
aggressive balancing during model development can result in
models with limited real-world applicability. However, proper
treatment of imbalanced datasets requires metrics that are more
complicated to reason about. To not detract from the core point
(the relative value of different sources), we have chosen to
present balanced datasets and use ROC and AUC.4

E. Feature Importance

Once trained, machine learning models can be asked to
explain how they arrived at a particular prediction. We use
SHapley Additive exPlanations (SHAP, [22]) to quantify the
contribution of each feature value to each final prediction.
For a single prediction, the model can – for example –
explain how much a particular value of wind speed pushed
the model to predict an above average risk for a voltage
drop. By aggregating over features and predictions, the model
can also explain the overall contribution of features. In other
words, we can find out (a) what features influence the final
predictions the most, and (b) in which way feature values push
the final prediction. For example, are higher or lower dew
points correlated with the increased risk of earth faults?

IV. RESULTS

We now pick up the exploratory analysis from Section II,
describe the performance of models using weather and voltage
sequences, show how to better control for seasonality, and
close with analyzing the most important features.

A. Exploratory Analysis

In the period of 2008 to 2020, a total of 2117 events occur at
the site under consideration – 1195 ground faults, 913 voltage
dips, and 9 service interruptions. Most (71 percent) events
are strongly clustered in time [23], so we reject all duplicates
that occur within the same hour. This leaves 614 events – 253
ground faults, 358 voltage dips, and 3 service interruptions. We
ignore service interruptions to avoid small number statistics.

Fig. 1 shows distributions of events with respect to time (top
and middle panel) and air temperature (bottom). We find that
events occur most frequently in either the summer or winter
and that ground faults dominate in the summer while voltage

3During initial testing, three-fold cross-validation was selected as trade-
off between the high-variance and computational intensity of Leave-One-Out
schemes and the biasing dangers of a simple training/validation split.

4We have tested and reproduced our core results (the ordering of the
value of our sources) on a moderately imbalanced (3.5x) dataset using more
appropriate metrics (precision, recall, and average precision).

"© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works." 

This is the accepted version of an article published in 2021 International Conference on Smart Energy Systems and Technologies - SEST 
10.1109/SEST50973.2021.9543226



dips dominate in the winter. The incidence of ground faults in
the summer also increases more than the incidence of voltage
dips does in the winter. Their concentration (how far the peak
of the distribution is above the baseline) also differs.

These patterns suggest correlations with weather conditions,
so we expect that attempts at modelling (predicting) events
is improved by adding meteorological data. However, there
are many meteorological variables and – during initial data
exploration – it remains unclear which help most during
modelling. Interactions with the most obvious variable – air
temperature – was used as an initial assumption. Indeed, Fig.
1 reveals that air temperature during voltage dips and ground
faults follow different distributions.

This analysis suggests that meteorological variables can im-
prove the predictive capability of models. However, it cannot
answer whether voltage dips are caused by cold weather or just
happen to occur more often in the winter. This is an example
of correlation does not imply causation.

B. Model Performance

Nevertheless, correlations can be exploited without a deep
understanding of the underlying causality if they help in
improving the ultimate bottom-line – model performance. If
they do, there is a value in adding meteorological parameters,
even if they serve only as proxy variables. We now illustrative
this by way of model performance.

Fig. 2 and Table II show the predictive performance of the
models trained to predict ground faults. Models using only
power quality data tend to perform poorly with mean AUC
being ∼ 0.57 during three-fold cross-validation. Models using
only meteorological data perform much better with mean AUC
∼ 0.70. Models that combine voltage and meteorological data
perform best (mean AUC ∼ 0.71). Additionally, models using
only meteorological data and those using both meteorological
and voltage data perform almost equal at low and high decision
thresholds. At intermediate decision thresholds (0.25 to 0.75),
models combining sources outperform single-source models.

We have also trained models to predict voltage dips and find
identical trends (not shown). In line with [24], models asked to
predict voltage dips perform better than those used to predict
ground faults. Their baseline performance has a mean AUC of
0.71 (voltage data) and 0.79 (meteorological data). Combing
both data sources increases the mean AUC to ∼ 0.80. Trends
across the ROC curve are identical to ground fault prediction
– performance improves at intermediate thresholds.

C. Controlling for Seasonality

Thus far, we have relied on seasonality being implicitly
encoded in the meteorological variables. However, using 16
variables to encode seasonality is both heavy-handed and
potentially obscures more direct relationships between events
and weather. To better account for seasonality, we add a new
feature – the month of the year. This makes for (i) one
new model using only the month to predict events, and (ii)
modifications to the existing models to include the month, cf.
Table II.
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Fig. 2: Receiver operating characteristic (ROC) curves for three
machine learning models. One model uses only power quality data
(black), one only meteorological data (blue), and one power quality
and weather data (green). The diagonal is the performance of a nav̈e
model (coin toss). Models were evaluated using three-fold cross-
validation. We show the mean (lines) and the mean ± standard de-
viation (shaded) across folds. Additionally, three decision thresholds
are indicated (per model). The model combining weather and voltage
data outperforms both others at intermediate thresholds and performs
similar to the model using only weather at low and high thresholds.

We make four major observations. Firstly, the model using
only the month performs 25 per cent better than the model
using only power quality. It also more stable (AUC varies
less across folds). It performs approximately equal as the
model using weather data (their difference is smaller than AUC
variation), but is more stable (AUC varies by 0.03 vs 0.01).
Second, adding the month to the model using weather data
(minimally) decreases the average performance (mean AUC
decreases from 0.71 to 0.70) while at the same time stabilizing
it. Third, combining the month with power quality data does
not increase model performance as much as adding meteoro-
logical data (18 vs 25 per cent difference). However, models
are more stable (AUC varies by 0.01 vs 0.02). Fourth, adding
the month to a model using power quality and meteorological
data improves performance as well as stability.

TABLE II: Model performance for different feature sets. We show
mean and standard deviation of the AUC across the folds. Models
tagged with * include the month of the year.

Feature Set AUC (Mean ± Std)

Only Power Quality Data 0.57± 0.03
Only Weather Data 0.70± 0.03
Only Month (of the Year)* 0.71± 0.01

Weather Data, Month* 0.70± 0.03

Power Quality Data, Month* 0.67± 0.01
Power Quality Data, Weather Data 0.71± 0.02

Power Quality Data, Weather Data, Month* 0.74± 0.01
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Fig. 3: The seven most important features in terms of their mean
absolute contribution (the SHAP value) to all predictions. Features
are ranked top to bottom. The remaining 74 features account for – on
average – a contribution of 5.01/74 ∼ 0.07. Meteorological features
are self-explanatory, month is the month of the year, and PSD the
power spectral density at a particular frequency.

D. Feature Importance

Having understood differences in model performance, we
now try to identify the features most important for predictions.

Fig. 3 shows the seven features with the highest mean
absolute contribution towards the final prediction (as well as
the total contribution of the remaining features) for the ground
fault predicting model. The three most important features are
from unique feature sets each – the dew point temperature
during the last hour, the power spectral density at 4.7 Hz, and
the month of the year. This backs up our findings that models
combining data sources outperform models that do not.

Additionally, the importance between the most and second
most relevant features are within 20 per cent of one another
(even the fifth is within 60 per cent). This suggests that no
single feature dominates over all others, implying that the
relations between features and events are nuanced.

By plotting the relative contribution of the value of each
feature for every prediction the model makes, we can gain
insight into these nuances (Fig. 4). We find that (a) for
most predictions, the top seven features do not have SHAP
values exceed ±1, (b) of the 74 remaining features, there
are predictions with SHAP values in excess ±2, although
(c) most are concentrated between −2 and 2. Further, (d)
most predictions have low dew point temperatures (which
push models away from predicting an event), (e) when dew
point temperatures are above average, they almost always
increase the probability of event occurring. We further find
that (f) wind direction has a consistent effect (westerly winds
correlate with events, easterly winds do not). Additionally, (g)
the power spectral density at 4.7 Hz is distributed into two
clumps of nearly identical colour. This suggests that the value
of the feature itself is not a strong driver of the prediction,
but that it interacts with other features. Finally, (h) in most
predictions, the month increases event probability irrespective
of its numerical value. This indicates interaction with other
features – suggesting that the month can indeed help models
disentangle seasonal variations from more direct relationship
between events and weather conditions.
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Fig. 4: Beeswarm plot of the seven most important features. Each
dot corresponds to a single prediction and shows how the feature
influenced the final prediction. Negative SHAP values mean that the
feature value pushed the model towards predicting a lower event
probability (and vice versa). Colours indicate the value of the feature
during the prediction (relative to its average). Dots clump where there
are many predictions. Meteorological features are self-explanatory,
month is the month of the year, and PSD the power spectral density.

V. DISCUSSION

Having shown how multiple data sources combine to pro-
duce superior models, we now calculate their value. Recall
that the value gain is our metric of choice – AUC. To produce
a robust ranking, we begin with a naı̈ve model, proceed to
the worst single source model, and then add the worst of
the remaining possible source combinations, until we arrive
at the model combining all sources. In our case, we begin
with (i) the coin toss (AUC = 0.5), followed by (ii) the
worst single source model (power quality, AUC ∼ 0.57),
(iii) the worst (remaining) two-source model (power quality,
month, AUC ∼ 0.67), and (iv) the three-source model (power
quality, month, weather, AUC ∼ 0.74). This means that power
quality, weather, and the metadata of the event logs (month)
have a value of 0.57 − 0.5 = 0.07, 0.67 − 0.57 = 0.1, and
0.74 − 0.67 = 0.07, respectively. Note that stabilizing effect
of month is not accounted for in the quantitative ranking.

The large value of weather data is reflected in the feature
relevance – top features are dominated by meteorological
variables. If the most important features were, for example,
related to voltages, there would be no gain in the addition of
weather data. That said, even if meteorological features have
the largest impact on the predictions, this does not mean that
they are the underlying cause of the events. Instead, they may
simply correlate with the underlying cause and act as a proxy
variable. The month of the year appears to control for this
as models without (not shown) rely on the maximum hourly
temperature, which correlates with the month.

If we repeat the analysis to predict voltage drops (not
shown), we find value of power quality, the month of the year,
and the weather data to be 0.08, 0.14, and 0.2. In contrast to
earth fault models, using only weather data performs much
better than using only the month (AUC ∼ 0.79 vs 0.64). This
suggest that voltage drops depend more strongly on weather
conditions than earth faults. In fact, this is what Fig. 1 suggests
– voltage dips are spread out more over the year, but also lump
more strongly around the freezing point.
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VI. CONCLUSION AND FURTHER WORK

We have presented a methodology to quantify the value
added when combining multiple (independent) data sources
for developing machine learning models that predict unwanted
events in power systems. The notion of value was linked to
the marginal improvement in model performance when adding
a data source. We also show how feature importance can be
used to assess which parameters that drive model performance.

We applied the methodology to the prediction of ground
faults and voltage dips based on event logs, power quality
data, and meteorological data. We find that meteorological
data is more valuable the power quality data and that much of
that value is derived by its implicit seasonality. If we control
for this seasonality (by adding an explicitly seasonal variable;
the month of the year), models perform even better – likely
because it helps the models to focus on non-seasonal corre-
lations between weather conditions and events. By applying
the same methodology to voltage drops and ground faults, we
find that ground faults tend to correlate more with (unknown)
seasonal effects whereas voltage drops correlate more with
certain weather conditions.

In the future, a systematic exploration of various data
sources (cf. Table I) may result in models capable of fore-
casting events with performance sufficient for operational
deployment. Beyond roles in decision support, models and
their explanatory power may also be applied to analyse root
causes (or at least correlations) of past, ongoing, or even
future failures (in a simulation scenario). We expect the most
powerful models to result from combining sources that sample
different physical processes.
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APPENDIX A: METEOROLOGICAL VARIABLES

Models used the following meteorological measurements: (a) dew point
(measured on the hour), (b) relative humidity (on the hour), (c) accumulated
precipitation (last hour), (d,e,f) air temperature (on the hour, min/max last
hour), (g-h) wind speed (max last hour, mean last 10 minutes before the hour
), (i) wind direction (mean last 10 minutes before the hour), (j) wind speed of
gust (max last hour), (k) wind direction of gust (max last hour), (l) duration
of precipitation, (m) surface snow thickness, (n-o) time of max wind speed
and wind gust (last hour). See https://frost.met.no/elementtable for details.
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