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digitalizing various daily-life tasks and industrial processes. On the other hand, the global 
energy consumption of IoT devices is already gigantic. The energy consumption and the 
e-waste of IoT devices will increase considerably since the number of devices will exceed 
75 billion soon. Over the years, Green IoT (G-IoT) has emerged as a research area to 
reduce the energy consumption of IoT devices and increase the lifespan of these devices. 
Among many, we consider intermittent computing and software-defined IoT systems two 
important research directions within the context of G-IoT. In this paper, we investigate 
the intermittent computing techniques, categorize them, and present the open 
challenges and research opportunities that can assist the research community. We 
provide an overview of software-defined IoT systems, discuss their sustainability 
objectives, and present techniques to achieve these objectives. As a position paper, we 
focus on the opportunities and challenges rather than the results and findings. 
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Software-based, Intelligent Energy Optimization Methods for Green IoT 
 

1 Introduction 
The Internet of Things (IoT) forms a network of physical devices that can sense the environment via their 
sensors, perform computation and communicate wirelessly to interact with each other and exchange 
information. IoT applications (e.g., smart homes and cities, autonomous vehicles, wearables) support various 
tasks in our daily lives intelligently to increase our comfort and efficiency. On the other hand, the global 
energy consumption of IoT edge devices (e.g., sensors, actuators, and gateways) is already gigantic, i.e., 
equal to Portugal’s annual electricity consumption in 2015 [1]. The consumption will increase considerably 
since the number of IoT edge devices will exceed 75 billion soon. Moreover, future intelligent IoT 
applications will employ modern Artificial Intelligence (AI) techniques that demand more computing 
capabilities and, in turn, more energy. For instance, Deep Neural Networks (DNNs) require thousands of 
mathematical operations to enable inference applications such as computer vision. Millions of IoT edge 
devices executing these operations consume a total power on the order of gigawatts, which is equivalent to 
millions of tons of CO2 per year. Thus, there is a need for research to develop IoT systems that achieves 
lower energy consumption, optimized energy footprints, and longer lifespan of IoT devices. 

Green IoT (G-IoT) has emerged as a research area to reduce the energy consumption of IoT devices and 
increase the lifespan of these devices. It is defined as “energy-efficient procedures (hardware or software) 
adopted by IoT technologies either to facilitate the reduction in the greenhouse effect of existing 
applications and services or to reduce the impact of the greenhouse effect of the IoT ecosystem itself” [18]. 
Among many, we identify two important research directions within the context of G-IoT: 

Intermittent computing: The advancements in energy-harvesting circuits and ultra-low-power 
microelectronics enable battery-free sensing devices that operate by using harvested energy only. 
Intermittent computing refers to programming models where periods of program execution are separated 
by reboots. Intermittent systems are generally powered by energy-harvesting devices: they start executing 
a program when the accumulated energy reaches a threshold and stop when the energy buffer is exhausted.  

Software-defined IoT systems: The term denotes systems where even the lower-end sensors are 
programmable and can be remotely updated/reflushed/redeployed with new software that will define how 
the devices work. This means longer lifespan for devices, and even repurposing – i.e., reusability in different 
scenarios. With the advances in wireless connectivity, software (re-)deployment can be performed in a 
remote, scalable and completely automated manner, typically through an IoT cloud platform.  

This paper presents the overview of two research dimensions, i.e., intermittent computing and software-
defined IoT systems, as part of software-based, intelligent energy optimization methods for Green IoT. We 
first investigate the intermittent computing techniques in the literature, categorize them, and present the 
open challenges and research opportunities that can assist the research community. We later provide an 
overview of software-defined IoT systems, discuss the potential sustainability objectives of these systems, 
and present techniques to achieve these objectives. We focus on the opportunities and challenges rather 
than the final results and findings.  

The paper is structured as follows. Section 2 presents a roadmap from today’s continuously powered IoT 
devices to tomorrow’s battery-free IoT devices that highlights software engineering challenges for 
intermittent programs running on battery-free devices. In Section 3, we discuss software-defined IoT 
systems that adapt themselves based on changing conditions to achieve sustainability objectives. Section 4 
concludes the paper. 
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2 Intermittent Computing and Green IoT 
The majority of IoT edge devices are powered by batteries which can store only a finite amount of energy. 
These energy-constrained devices (e.g., sensor nodes, implants, wearables) sense raw data, process it, and 
communicate wirelessly to push the pre-processed field information to more powerful nodes in the 
hierarchy. It is not feasible for them to offload computationally intensive tasks (e.g., inference tasks) to the 
cloud by sending large amounts of raw sensor data and waiting for the results since communication is 
energy-intensive and can drain batteries frequently. Contemporary IoT applications tend to execute 
computationally intense AI tasks on edge devices and use the energy stored in batteries more conservatively. 
However, as the computational energy requirements of these tasks increase, it is inevitable for edge devices 
to drain their batteries more and more often. Unfortunately, replacing millions of batteries (optimistically 
every year) introduces a significant maintenance cost, and recycling batteries pose a severe threat to our 
environment. 

Researchers are continuously proposing several hardware (e.g., power-efficient DNN accelerators) and 
software solutions (e.g., approximate computing) to decrease the energy requirements of IoT applications 
and extend the battery life of edge devices. However, batteries are still the most significant obstacle against 
long lived, stand-alone, and environmentally friendly IoT. Fortunately, the progress in energy harvesting 
circuits and the decrease in power requirements of processing, sensing, and communication hardware 
promised the potential of freeing IoT devices from their batteries. On the other hand, operating, without 
batteries, by relying only on ambient energy changes the way we develop software significantly. 

Ambient energy is unpredictable and subject to environmental conditions. Therefore, removing batteries 
and relying only on ambient energy introduce frequent power failures that interleave the software execution 
with intervals during which the batteryless device is off and harvest ambient energy into its tiny energy 
reservoir (e.g., a capacitor) to operate again. This phenomenon led to the emergence of a new computing 
paradigm, the so-called intermittent computing. A minuscule amount of energy is spent to perform a burst 
of tasks and save the computational state (e.g., the global variables, program stack, general-purpose 
registers, program counter) in non-volatile memory to recover upon a power failure. Upon recovery, the 
computation progresses forward from the latest successfully saved computational state. 

Intermittent computing requires custom recovery solutions and programming models (e.g., checkpoints [2] 
and task-based models [3]) to tolerate power failures that might keep programs in an inconsistent 
computational state. A program in an inconsistent state might never progress correctly, output meaningful 
results, and terminate. For instance, a batteryless IoT edge executing audio event detection (using an 
acoustic sensor and DNN-based features for event classification) might never infer the audio event (e.g., 
human detection) due to the power failures that hinder execution progress. Naturally, most research in the 
past decade focused on the design and development of new programming models [4], language constructs 
[2], and runtimes [3] to ensure the consistency of the computational state and forward progress during 
intermittent execution. 

Despite the recent efforts on intermittent computing, several unique challenges and research opportunities 
are waiting for the attention of researchers and practitioners. As a practical example, intermittent programs 
may fail at any time, between any two lines of code, during unpredictable lengths of time spent to charge 
the capacitor using the sporadic ambient energy. They might be functionally correct but not be beneficial 
since they might not satisfy their non-functional requirements (i.e., timing constraints) on the target 
deployment environment. It is hard to predict the execution time of an intermittent program and check how 
likely it satisfies its timing constraints on a given deployment area. Today’s popular IoT application 
development techniques [5], including modeling approaches, languages, verification methods, test 
environments, and tools, overlook these challenges since they only target continuously powered systems. 
For instance, the state-of-the-art does not model intermittent computing and execution and does not 
consider the energy availability of the environment that leads to dynamic charging/discharging times during 
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energy harvesting. Therefore, existing software development techniques are poorly suited to the new 
generation of fully sustainable IoT applications running on batteryless edge devices. 

Here, we highlight the challenges of programming the batteryless edge that deserve more profound study 
and understanding beyond those topics focusing on developing continuously powered IoT solutions. We 
emphasize that we need new software engineering techniques and tools (e.g., for the verification of 
intermittent programs, testing) to enable beneficial and reliable intermittent IoT applications. With the rise 
of mobile devices, there was an emerging need for a new generation of software verification and validation 
techniques and tools solely addressing mobile applications, such as mobile device security and testing of 
mobile applications. With the emergence of intermittent computing, we expect a similar need to arise in 
software engineering practice targeting batteryless IoT devices. 

2.1 Intermittent Computing on the Batteryless IoT Edge 

Batteryless edge devices harvest energy from ambient (e.g., via solar panels) or dedicated wireless energy 
sources (e.g., radiofrequency transmitters such as WiFi routers). As depicted in Figure 1, the main 
components of a batteryless edge are (i) an energy harvester converting incoming ambient energy into 
electric current, (ii) an energy buffer (typically a capacitor) storing the harvested energy to power electronics, 
(iii) nonvolatile memory that is used to capture the volatile program state, and (iv) an ultra-lowpower 
microcontroller that orchestrates sensing, computation, and communication. Typical examples of 
batteryless edge devices are Flicker [6] (which can be powered using several harvesters from solar to 
piezoelectric) and Camaroptera [7] (which contains an ultra-low-power camera sensor and a long-range 
wireless transmitter). The ultra-low-power micro-controllers in intermittent computing platforms (e.g., 
MSP430FR5969 from Texas Instruments) comprise a combination of volatile and nonvolatile memory. 

The frequent loss of the computation state is an inevitable phenomenon for the batteryless edge that 
operates using only harvested energy. Upon a power failure, the contents of the CPU registers and the 
volatile memory (i.e., the volatile computational state) are lost. Therefore, power failures hinder the forward 
progress of the computation: the computation starts from the beginning, and the intermediate, volatile 
results are lost at each reboot. Restarting a computation block after a power interrupt might also lead to 
catastrophic side-effects on memory consistency. If the program modifies the nonvolatile memory, Write-
After-Read (WAR) dependencies on persistent variables (i.e., variables in nonvolatile memory) might keep 
these variables inconsistent [4] since repeated computation may produce different results (the violation of 
idempotency). 

Figure 1 presents a code snippet and an example intermittent execution scenario that demonstrate how 
WAR dependencies might lead to memory inconsistencies. x and vector[] are persistent variables maintained 
in nonvolatile memory. After executing x++ (which sets x=1) in the scenario, a power failure occurs and 
leaves x modified. Upon recovery from the power failure, the device executes {x++; vector[x]=0;}, which 
increments x again and sets vector[2]=0. In a continuously powered execution (without power failures), the 
device would execute {x++; vector[x]=0;} only once, and we would observe vector[1]=0. Due to the power 
failure, x++ is executed twice, and a different output is obtained. 

If the program’s control flow depends on external inputs such as sensor readings (e.g., checking persistent 
variables whose values are updated during I/O operations), power failures might lead to inconsistent 
program behavior [8]. In the scenario in Figure 1, the temperature value (using readTemp()) is read, and the 
persistent variable alarm is set to true (the sensed temperature is more than a predefined limit) just before 
a power failure occurs. After recovery, the device re-executes the previously executed code lines and re-
reads the temperature value. This time the temperature value is smaller than the predefined limit, and hence 
the persistent variable tempOK is set to true. At this point, both alarm and tempOK are true, which is logically 
incorrect. 
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Figure 1. The main components of a batteryless IoT edge device are (i) an energy harvester, (ii) an energy 
buffer, (iii) an ultra-low-power microcontroller, and (iv) nonvolatile memory. Intermittent execution due to 
the frequent loss of the computation state is an inevitable phenomenon for batteryless edge devices. If the 
program code modifies the nonvolatile memory, power failures might keep persistent variables in an 
inconsistent state. 
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Figure 2. The top part of the figure presents the checkpointed and task-based versions of a 1-D convolution 
code for DNN inference developed for continuously powered systems. The batteryless device executes more 
tasks in a high-energy ambient environment during a fixed time interval since the capacitor is charged faster. 
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2.2 What Makes Programming the Batteryless Edge Different? 

Operating without batteries requires dealing with the forward progress of computation and memory 
consistency. These issues significantly change the way we develop software. Placing checkpoints or 
employing the task-based model are the two major approaches that ensure the forward progress of the 
computation and keep the nonvolatile memory consistent during intermittent execution. Figure 2 presents 
the checkpointed and task-based versions of a C program (i.e., 1-D convolution code for DNN inference) 
developed for continuously powered systems. 

Checkpoints. In checkpointing, either a programmer or a compiler instruments the program to save the 
program state in nonvolatile memory [2]. In Figure 2, the checkpoint() interface (provided by the underlying 
runtime) inserts checkpoints to a C program. The runtime stores the checkpoint information by protecting 
it via double buffering. Thus, the new program state does not supersede the prior one immediately if the 
checkpoint data is partially updated due to a power failure. Moreover, the persistent variables modified by 
the program should also be versioned to keep nonvolatile memory consistent across reboots [9]. Compiler 
analysis is required to determine which persistent variables to be modified between two checkpoints. On 
crossing each checkpoint, the runtime saves the program state and versions the necessary persistent 
variables. After a reboot, the program state and versions are restored using the checkpoint data. The restore 
operation makes the code between two checkpoints naturally idempotent. 

Task-based Model. This model requires the programmer to divide the computation into a set of tasks [4], as 
depicted in Figure 2. The task re-execution always produces the same results since the inputs are never 
modified (and the WAR dependencies are eliminated). Thus, tasks are idempotent (re-executable). 
Moreover, they are atomic in the sense that they have all-or-nothing semantics and cannot interrupt each 
other. The task-based model creates the local copies of the persistent variables shared among the tasks (the 
variables shown within the Task-Shared block in Figure 2). Each task manipulates its local copies (e.g., using 
write interface) and atomically commits them to original locations upon completion (e.g., using next 
interface). This operation prevents memory inconsistencies due to power failures. 

2.2.1 Factors Affecting Software Development and Intermittent Program Behavior 
Employing checkpoints or task-based programming models only ensures the forward progress of 
intermittent execution and memory consistency. Besides, other factors affect the intermittent execution of 
programs.  

Energy Harvesting Environment. The energy availability of the deployment environment is stochastic and a 
significant factor for the rate of power failures, the execution time of intermittent programs, and in turn, 
program throughput. The execution time of programs running on continuously powered devices is more 
predictable since these programs are not affected by the stochastic nature of ambient energy. The harvested 
ambient energy depends on several factors, such as the energy source type (e.g., solar or radiofrequency), 
the distance to the energy source, and the efficiency of the energy harvesting circuit. As depicted in Figure 
2, when incoming power is strong enough, the capacitor is charged rapidly, and the device becomes available 
quickly after a power failure. At low input power, the charging is slower and takes more time. Since the 
computing progresses slowly due to longer charging periods in a low-energy environment, the program 
might miss its deadlines, and the program throughput may not meet expectations (e.g., a batteryless long-
range remote visual sensing system should take a picture every 5 minutes and transmit the relevant ones 
every 20 minutes). 

Hardware Configuration. The energy consumption attribute of the target hardware leads to quantitative 
differences in program behavior (e.g., in program throughput and execution time). The power requirements 
of the target platform affect the end-to-end delay of program execution. The intermittent program might 
take a long time to finish on hardware platforms having high power requirements since the capacitor 
discharges faster. Hence, the program might drain the capacitor more frequently (since some instructions 
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consume more energy in a shorter time). Therefore, the device is interrupted by frequent power failures, 
and it is unavailable and charging its capacitor for long periods. For instance, special instructions such as 
nonvolatile memory access instructions consume more energy than others, drain energy more frequently, 
and increase program execution time. 

On the other hand, other hardware attributes such as capacitor size and voltage threshold settings also 
affect the intermittent program behavior. The capacitor size determines the maximum length of program 
execution without a power failure. If the capacitor size is large, the device has more energy to spend until 
the power failure, but charging the capacitor takes more time. Another attribute is the size of the volatile 
program state (i.e., the volatile memory size and the number of registers on the target platform) that affects 
the checkpointing overhead, i.e., the execution time and energy consumption of the checkpoint operation 
that saves the program state in nonvolatile memory. The checkpointing overhead is architecture-dependent 
since the number of registers and the volatile memory size change from target to target. 

Runtime Characteristics. Checkpoint-based recovery and task-based models are supported by runtime 
environments (e.g., [2], [3]). These runtimes provide programmers interfaces to develop intermittent 
programs and perform the necessary recovery/logging operations. Thus, today’s intermittent programs are 
coupled tightly to the underlying runtime environments. Even the programs using the same programming 
model (e.g., taskbased) are not portable across platforms and not compatible with other runtimes. 
Moreover, each runtime introduces different processing delays and energy overheads during intermittent 
execution and, in turn, changes the program behavior significantly. 

Program Structure. Intermittent programming models require that source code be decomposed into code 
blocks (atomic tasks or code blocks divided by checkpoint instructions). These blocks need to be efficient 
and terminating. Their termination is guaranteed if they consume less energy than the capacity of the energy 
storage buffer. Therefore, while decomposing code into blocks, programmers consider only stored energy 
and not additional energy harvestable during execution. The termination of code blocks short enough is 
ensured, but having more code blocks than necessary may waste energy and impose an execution-time 
overhead, e.g., due to saving the program state in nonvolatile memory for each code block. For instance, 
checkpoint placement is crucial for programmers to ensure the desired timing behavior of their intermittent 
programs. The more frequent the checkpoints are, the more energy consumed, but less computation is lost 
upon a power failure. Code decomposition based on energy storage size, energy efficiency, and the forward 
progress of computation represents a new software design aspect unique to intermittent programs. 

2.3 Unique Challenges for Programming the Batteryless Edge 

Due to the differences and factors we presented, when implementing intermittent programs, programmers 
must consider several new challenges that are unfamiliar to most of the application developers that target 
continuously powered IoT systems. 

Energy-aware Timing Analysis. Considerable research on intermittent computing has been devoted to 
compile-time analysis to find bugs and anomalies of intermittent programs [8] and structure them (via 
effective task splitting and checkpoint placement) based on worst-case energy consumption analysis [10], 
[11]. Despite these efforts, no attention has been paid to analyzing the timing behavior of intermittent 
programs. Without such an analysis, programmers will never know at compile-time if their intermittent 
programs execute as they intend to do in a real-world deployment (e.g., meeting throughput requirements). 
Worse still, it is extremely costly and time-consuming to analyze the timing behavior of intermittent 
programs on real deployments because programmers need to run the programs multiple times on the target 
hardware. 

Design Space Exploration. The execution time and throughput of intermittent programs depend on multiple 
hardware and software design factors such as the capacitor size, the energy consumption of the target 
hardware, the efficiency of the energy harvester unit, and the program structure (e.g., checkpoint placement 
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and the size and number of tasks in task-based models). As an example, consider a deployment environment 
with low ambient energy and frequent power failures. If the program execution time and throughput do not 
meet requirements in the low-energy environment, programmers might increase the capacitor size, change 
the target hardware, or remove some checkpoints. These changes may not always lead to what is intended 
(e.g., the bigger the capacitor size is, the longer the charging takes). Therefore, programmers might have to 
do a what-if analysis by deploying several program versions into various hardware configurations, i.e., 
reconfiguring the hardware, restructuring the program, and checking if the restructured program has the 
desired execution time and throughput on the reconfigured hardware. This what-if analysis is currently 
manual and not guided. It can quickly become infeasible on target hardware deployments due to the size of 
design space, i.e., the number of possible hardware configurations and program versions. 

Energy-aware Testing. The impact of harvesting ambient energy on the behavior of intermittent programs 
complicates their testing. Programmers need to test their programs with power failures under various 
energy conditions. They can expose some bugs only under distinct power failure timings or test cases across 
energy conditions. They also need to test energy-related program properties such as forward progress. The 
tools and techniques to test intermittent programs are mostly the same tools and techniques designed for 
testing programs running on continuously powered systems. They do not inherently support mimicking 
power failures and ambient energy conditions during intermittent program testing. Programmers need new 
testing tools with simulator support that can accurately emulate real world energy harvesting conditions. 

Runtime Independent Programming. Each intermittent runtime supports different language constructs and 
abstractions (e.g., Alpaca [12] supporting the privatization of data shared between tasks, and InK [3] enabling 
reacting to changes in available energy and variations in sensing data). When writing programs, 
programmers use these runtime-specific language constructs to support memory correctness, timely 
execution, etc. Intermittent programming is a fast-growing area, and thus, intermittent runtimes constantly 
evolve together with the language abstractions they support. New runtimes come with new constructs, or 
updates on the constructs are introduced for the existing runtimes. Programmers modify the program for 
the new/updated constructs. Or, they port it from an old runtime to a new one, which may require 
fundamental changes, e.g., new task structures replacing checkpoint instructions. It is a manual, time-
consuming, and error-prone task. Therefore, programmers need techniques supporting runtime 
independent program models transformed (semi-) automatically into runtime dependent intermittent 
execution models. 

Software Adaptation. Energy-aware adaptation of program execution (e.g., reducing sensor sampling rates 
or degrading computation) is a promising way to avert power failures, meet timing deadlines, and increase 
program throughput. There are different adaptation strategies that all depend on the characteristics of 
intermittent applications. For some applications, decreasing the number of sensor readings might be a 
better solution when the ambient energy is low. Some other applications might need to keep the sensing 
rate constant but can degrade the computation by skipping some computationally heavy code blocks. Due 
to constrained device capabilities and limited energy information, it is challenging to decide the best time 
and strategy for adapting execution. Estimating the available energy in an environment during runtime is 
hard. And, small changes in the ambient energy might have a significant impact on program execution. 
Therefore, we need flexible and configurable runtime adaptation frameworks [13] that provide automatic 
responses to changes in energy based on the adaptation heuristics programmers specify concerning 
environmental and physical phenomena (e.g., when off-time increases, degrade program execution to 
maintain throughput since the environment is experiencing energy scarcity). 

Reusability of Libraries. The libraries implemented for continuously powered systems are not reusable for 
intermittent systems. Due to the rigid checkpoint and task-based programming models, programmers need 
to reimplement the new versions of open-source libraries, and programs are prevented from using closed-
source libraries. As of now, intermittent programs can use closed-source libraries by employing checkpoints. 
Checkpointing the internal state of these libraries (e.g, when and what to checkpoint), and power failure 



 

Project no. 
102024558-1 

 

Report No 
 2021:01423 

Version 
1.0 
 

12 of 18 

 

recovery might be different for each library. Providing a generic solution for closed-source library 
management remains an open question for researchers and practitioners. 

Secure Intermittent Execution. A significant software challenge to the widespread use of batteryless devices 
is the secure execution of intermittent programs. Although cryptographic keys and algorithms, security 
certificates, protocols, and other security mechanisms used for continuously powered IoT devices still play 
a critical role in intermittent computing, several technical challenges remain. Ensuring secure intermittent 
computing is difficult due to the limited capabilities and energy budgets of batteryless devices. Intermittent 
execution models and runtimes do not provide inherent security support, but program recovery with charge-
discharge cycles can pose high-security risks. For instance, by altering the checkpoint image, attackers can 
manipulate the state of the intermittent program and prevent the device from functioning correctly. A 
power failure might leave a cryptographic operation uncompleted and private data in an insecure state. 
Attackers can gain physical access to the device and obtain private data in the device’s memory. 

Programmers should pay extra attention when implementing security functions in intermittent programs. 
Some security functions (e.g., stateful signature generation functions) may need to be executed without a 
power interruption. 

2.4 Summary and Conclusion for Intermittent Computing 

Sustainable software is necessary for many reasons [14]:  economic reasons, environmental reasons, and 
because society has sustainability awareness that has increased dramatically over the past decade. 
Intermittent computing paves the way for sustainable software in the batteryless edge. Due to the 
differences and factors we presented, programmers implementing software running on intermittent devices 
must consider various challenges unfamiliar to most programmers developing continuously powered 
systems. These challenges require new software engineering tools and techniques for the development and 
testing of intermittent programs. 

3 Software-Defined IoT Systems 
The IoT technology started from development and applying many types of specialized devices for sensing 
and actuation, to connect the physical things into the internet. For the sake of cost, energy consumption, 
and physical maintenance, these devices are normally designed for the task, or the things that they are 
attached to. They undertake the minimal tasks, normally just sensing in a pre-defined interval or simple 
actuation actions. The business logics such as data aggregation, analytics, decision making, etc., are hosted 
in the cloud. 

The recent years have seen an overturn of this trend. As semiconductor technology improves, the unit cost 
for the computation power keeps decreasing, and the more and more logics are pushed from the cloud 
down to the devices, leading to the emerging of edge computing. The logics are running as software hosted 
by the different devices, and concentrating on edge devices, such as gateways, microcontrollers, etc. Such a 
trend has the following major impact to the green aspect of IoT systems: 

- The flexibility of software defined IoT logics makes it possible for dynamic adaptation to optimize 
the resource and energy usage. 

- The capability of redeploying software for new tasks and usages allows the reuse of devices for 
different purposes, reducing the potential electronic waste. 

3.1 Dynamic adaptive IoT software for reducing energy consumption 
Self-adaptation is a widely expected feature for both hardware and software systems. The idea is that the 
systems are able to automatically adapt their status and behaviours when their context has changed, to 
achieve better performance, tolerate failures and reduce the maintenance cost. Over decades of research 
and innovation in this direction, there are still huge potential that is worth exploring and exploiting for self-
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adaptive systems, and to have green and sustainable aspects into the consideration is an important direction 
for the future work on self-adaptive systems.  

We briefly discuss the potential sustainability aspects that can be considered for self-adaptive systems, and 
the possible adaptation points to achieve these aspects. The report will be focused on the opportunities and 
challenges, rather than initial results and findings.  

3.1.1 Green objectives for self-adaptive systems 
We foresee the following aspects, or objectives, for self-adaptive IoT systems, which may have an impact on 
the sustainability of the target systems. 

- Lower energy consumption of the whole system. IoT systems are energy consuming. Sensors 
consume electricity to stay alive and to collect data. After that, the whole data processing pipeline 
from sensors, edge devices, local servers, to the central cloud, requires electricity from different 
powers sources. At the same time, data communication is also energy consuming. Along the pipeline, 
different devices and communication channels have different efficiency on energy consumption, 
and an optimized pipeline may significantly reduce the total energy consumption of the whole 
system.  

- Optimized energy footprints. In an IoT system, different devices and resources may use different 
power sources, and therefore the same unit of energy consumption may have different environment 
footprint. For example, an edge device on batteries may have a higher energy footprint than a server 
in the datacentre powered by renewable electricity. Even for the same datacentre, there is 
possibility to switch between different power sources. If possible, optimization of the total footprint 
may be a more relevant may be a more relevant objective for green self-adaptation. 

- Longer lifespan of IoT devices. The production of IoT and edge devices also have significant 
environment footprints, both on the manufacturing side and on the recycling side. Increasing the 
lifespans of these devices will contribute to the reduction of such footprints. In the next subsection, 
we will talk about re-deployment of software on IoT devices to reuse the same device for different 
purposes, as a way to extend the lifespan. However, more generally, for devices that are used for 
the same scenario, self-adaptation for an optimized usage and better maintenance activities will 
also increase the lifespan. 

- Reduced maintenance cost. Self-healing and self-recovery without human interaction by system 
operators is an important direction of self-adaptive systems. This will reduce the cost of human 
maintenance, which also have environmental impacts, such as the logistic of system operators or 
the transportation of the devices.    

3.1.2 Potential adaptation points 
These green objectives can be achieved through different types of system adaptations, also known as the 
management capabilities of the IoT systems. 

- Elastic resource allocation: A system can dynamically adjust the computation, storage or network 
resources to some of its services according to the computation load, in order to reduce the energy 
consumption without harming the performance 

- Dynamic service placement: In a Cloud-edge-IoT continuum, different parts have different energy 
efficiency. Placing services on the right parts (e.g., cloud vs. edge) will optimize the total energy 
consumption of the whole system and help to increase the lifespan of the devices or their batteries. 
Moving services closer or father from the data sources can also balance the energy consumption on 
data processing and communication. 

- Switching between alternative service implementations: The same service can be implemented in 
different technologies. Depending on the contexts, some alternatives may have better energy 
efficiency than others. Switching the alternatives based on the contexts is also a way to optimize the 
total energy consumption. 
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- Dynamic management of device lifecycle. Edge devices are normally designed to tolerant frequent 
switching on and off. On the application side, the use of more stateless microservices also allows 
migrating services from inactive devices. Exploiting these capabilities can lead to an active control 
of devices lifecycles to reduce unnecessary energy consumption, and also extend device lifespan. 

- Self-healing and self-recovery. Modern devices and application services have the capability to 
tolerate unexcepted situations and can recover from failures. Self-adaptation based on these 
capabilities in a global perspective will also increase the system performance and significantly 
reduce the need for manual maintenance. 

The adaptation points listed above are not meant to be an exhaustive list, but rather some examples of 
possible mechanisms that a future sus self-adaptive system can utilize.  

In summary, the sustainability concern is emerging as an import aspect for designing and implementing 
self-adaptative systems, and on the other hand, self-adaptive systems have many potential mechanisms to 
manipulate system to achieve these sustainability-oriented aspects.  
 
3.2 Software redeployment on IoT devices for reducing e-waste 
3.2.1 Motivation 
Billions of sensors are already embedded in a vast array of networked physical objects, and soon it will be 
difficult to buy a new product without connected smart features. Controlling an appliance from a mobile 
phone is already a standard feature and ubiquitous sensors and actuators will transform industrial 
automation, buildings, and our interaction with the surrounding world. 

This global digital transformation is driven by a new class of microcontrollers (MCUs), i.e. stand-alone 
miniature computing chips equipped with flash memory for code storage, and a small amount of RAM in 
which to execute the code. They are also able to communicate with hardware peripherals via General 
Purpose Input/Output (GPIO). This includes both digital I/O and associated protocols such as I2C, Serial, SPI, 
and CAN, as well as analog I/O for reading data from environmental sensors and other analog sources. The 
power efficiency means that MCUs, even with sensors, can be placed virtually anywhere and run for years 
on a small battery, or indefinitely by adding an energy harvesting unit such as a solar cell. By using a fraction 
of the power that single-board computers do, their total cost of ownership is significantly lower. 

With the rapid development of the Internet of Things (IoT), MCU-enabled tiny sensor devices have 
penetrated almost every aspect of people's everyday life, enabling smart and interactive environments, such 
as homes, buildings and even whole cities. This rising sensor-based economy, however, produces myriads of 
devices with short lifespans and offers no way of properly disposing them once they become obsolete [15]. 
The United Nations estimated 74.7 million tonnes of e-waste to be generated annually by 2030, thus almost 
doubling in 16 years, with less than a third of it being recycled [16]. 

While MCUs have been embedded in everything from toys to cars for several decades now, it is only been 
in the last few years that they have become truly useful for the IoT. They are not only sufficiently powerful 
to run complex applications, but many have also received built-in support for gateway connectivity such as 
Ethernet, WiFi, Bluetooth, and others. Many of them have also opened up their memory buses to be 
extended with external flash and RAM. As we further argue in this report, these increased connectivity 
capabilities can and should be exploited in order to enable hardware re-use and re-purposing, and thus to 
extend the lifespan of IoT devices and to slow down the e-waste generation rate. To enable this, we present 
in this report a scalable hierarchical agent-based approach to deploying code to terminal IoT devices via 
edge gateways. The proposed architecture enables re-programming and re-purposing of devices, not 
immediately connected to the Internet, thus facilitating hardware re-use and re-purposing, reducing the 
device obsolescence, and, eventually, contributing to the creation of a more sustainable IoT. 
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3.2.2 The proposed architecture 
In a simplified IoT hierarchy, we distinguish between three main elements, i.e., a centralised cloud platform, 
Internet-connected edge gateways, and downstream IoT devices not connected to the Internet, but only to 
a local edge gateway. Accordingly, data communication takes place via two links between (i) the cloud 
platform and edge gateways and (ii) edge gateways and IoT devices. While both types of network interaction 
are a common state of practice, it is still a challenge to propagate data (e.g., firmware updates) from the 
cloud down to terminal IoT devices via edge gateways in a generic, scalable, and automated manner. 

The cloud counterpart is usually able to directly communicate with edge gateways, but not with the billions 
of terminal sensor devices placed in the field. In these circumstances, it is typically not feasible to target a 
firmware update to a specific single IoT device (using, for example, its ID). Instead, it is required to annotate 
firmware updates with target conditions and push them down to the edge layer, which, in its turn, will 
evaluate the conditions and route the updates to matching IoT devices in its subnet. Thus, edge gateways 
become the key element in this software management hierarchy. Accordingly, we tackle the challenge of 
last-mile software deployment by introducing a context-aware deployment agent to be installed on edge 
gateways in order to bridge the communication gap between the cloud and IoT devices by 'routing' software 
updates to target IoT devices taking into account the current cyber-physical context. The agent is expected 
to be operating in a daemon-like manner, implementing the following four-fold functionality, as depicted in 
Figure 3. 

 
Figure 3. Architecture for last-mile deployment 

- Interaction with the cloud: edge gateways sit in the middle of the IoT hierarchy and are able to 
receive updates from the cloud. It is expected that the cloud platform maintains a list of registered 
edge gateways and communicates with them asynchronously using standard pub-sub mechanisms 
or -- less usual -- synchronously using direct method invocations. In both cases, edge gateways 
should be able to receive update commands (annotated with target conditions) along with the actual 
code to be installed on IoT devices.  

- Context monitoring: edge gateways are expected to perform continuous context monitoring by 
keeping track of associated downstream devices. These are closely located IoT devices using the 
gateway for pushing collected sensor data via one of the available communication interfaces, such 
as Bluetooth, ZigBee, serial USB connection, or even direct physical wiring via GPIO pins. The 
collected context information about downstream IoT devices, among other things, may include the 
current firmware version, manufacturer brand and model, MCU architecture, available physical 
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interfaces, installed hardware sensors/actuators, etc. It is important to collect the relevant context 
information, since it will be taken into account at the next step to resolve to which devices firmware 
updates should be applied.      

- Context-aware firmware assignment: at this step, edge gateways will map target conditions of 
received firmware updates with the collected device context information, thus assigning new 
firmware to matching devices. In its simplest form, this can be implemented as a collection of AND 
and OR logical operators, where each IoT device is evaluated independently from the rest. More 
sophisticated scenarios might take into account the whole fleet of IoT devices, so that updates are 
assigned following some global policies. For example, it might be required to evenly distribute 
several firmware variants among the devices, or follow an A/B testing strategy, where some new 
code is tried only on a limited subset of devices. This step should also consider situations when an 
IoT device satisfies conditions of multiple updates, as well as when none suitable devices are found. 
As an outcome of this step, the deployment agent generates a map of firmware updates and 
matching IoT devices (assuming that a device can accept at most one update at time).  

- Interaction with downstream IoT devices: the firmware update pipeline concludes with the actual 
flashing of new code onto matching IoT devices. Once again, the collected context information about 
IoT devices will help the deployment agent to determine which underlying physical interface should 
be invoked in each individual case. 

3.2.3 Summary 
The proposed last-mile deployment agent, provisioned on edge gateways via the centralised cloud platform 
in the form of containerised micro-services, is able to receive firmware updates from the cloud and install 
them on connected IoT devices. The major benefit of this solution is that IoT software engineers are not 
required to know about target IoT devices beforehand when releasing code updates (which would be simply 
infeasible given the growing numbers). Instead, the task of assignment of firmware updates is shifted to the 
edge layer and takes place on gateways, which are able to evaluate target conditions against the collected 
cyber-physical context in order to selectively install new code to terminal IoT devices. By offloading the 
software assignment task to the edge layer, the proposed solution implements a hierarchical approach to 
software deployment in the IoT-Edge-Cloud continuum, and also contributes to the increased scalability by 
parallelising the software assignment task across multiple edge gateways, rather than centralising it on the 
cloud. By integrating with the already available cloud-based container management at the edge, it is possible 
to build an end-to-end software management pipeline, so that even terminal IoT devices without Internet 
connectivity can be re-flashed in an automated scalable manner. This is a step towards a sustainable IoT 
where all the elements, even dormant and outdated, are not wasted, but are rather re-programmed and re-
used. 

A potentially promising direction for future work is to implement dynamic discovery of IoT devices in a local 
network of an edge gateway. The currently implemented prototype assumes that IoT devices are connected 
to the host gateway via a USB port; in this case, implementing a polling mechanism for continuously updating 
the list of connected devices and their cyber-physical contexts is relatively straight-forward using the 
standard Linux tools. A more challenging task would be to implement similar dynamic discovery in a local 
TCP/IP network or even via a wireless interface by detecting idle devices within the range of the edge 
gateway. Some initial attempts in this direction are reported in [17]. 

Another direction yet to be explored is the continuous self-adaptive behaviour of the system, as well as the 
intelligent resolution of infinite loops and potential conflicts between the changed context (caused by the 
applied firmware updates) and the target conditions. While the current proof of concept is implemented as 
a finite four-step pipeline triggered by the initial update command received from the cloud, some advanced 
scenarios would require a continuous operation where firmware assignment and installation would be 
triggered by the changing cyber-physical context of IoT devices. 
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In this report we focused on demonstrating only the technical feasibility of designing and implementing 
sustainable IoT systems for smart environments. There are, however, many other aspects to be considered 
and addressed in this respect. We intentionally omitted the discussion on the device ownership, access 
management, and security issues, which are major hindering factors. The proposed solution (and any other 
similar approaches relying on re-programming and re-purposing existing IoT infrastructures) is not yet ready 
to be immediately put into practice and adopted by the society. As any other `green' initiative, it would 
require involving not just ICT researchers and IoT companies, but rather multiple stakeholders and policy 
makers from several adjacent domains, including governmental, environmental, and legal organisations, 
who should join their efforts to define common strategies for building sustainable IoT systems. 

4 Conclusion 
We presented the overview of intermittent computing and software-defined IoT systems as part of software-
based, intelligent energy optimization methods for Green IoT. We first introduced the open challenges and 
research opportunities for intermittent computing. We then discussed the potential sustainability objectives 
of software-defined IoT systems and the techniques to achieve these objectives.  

Program execution without batteries requires techniques ensuring the forward progress of computation and 
memory consistency. Placing checkpoints or employing the task-based model are the two major approaches 
that guarantee the forward progress of the computation and keep the non-volatile memory consistent 
during intermittent execution. Besides, some other factors affect the intermittent program execution. One 
of the significant factors is the energy availability of the deployment environment. It is stochastic and affects 
the rate of power failures, the execution time of intermittent programs, and, in turn, program throughput. 
Therefore, it is hard to predict the execution time of an intermittent program and check how likely it satisfies 
its timing constraints on a given deployment area. 

The differences and factors we presented for intermittent programming force programmers to consider 
various challenges unfamiliar to most programmers developing continuously powered systems. Existing IoT 
application development techniques, including modeling approaches, languages, verification methods, test 
environments, and tools, overlook these challenges since they only target continuously powered systems. 
These challenges require new software engineering tools and techniques to develop and test intermittent 
programs. 

Software-defined IoT systems enable dynamic adaptation to optimize resource and energy usage. They have 
the capability of redeploying software for new tasks and usages, which allows the reuse of IoT devices for 
different purposes and reduces the potential electronic waste. We identified various research directions for 
software-defined IoT systems, e.g., the dynamic discovery of IoT devices in a local network of an edge 
gateway, the continuous self-adaptive behavior, and the intelligent resolution of infinite loops and conflicts 
between the changing context and the target conditions.  
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