

Report
Software-based, Intelligent Energy
Optimization Methods for Green IoT

Author(s):
Arda Göknil, Hui Song, Rustem Dautov, K. Sinan Yildirim
Report No:
 2021:01423 - Unrestricted

Client(s) (pos partner):
Internal

1 of 18

SINTEF Digital
Postal address:
Postboks 124 Blindern
0314 Oslo, Norway

Switchboard: +47 40005100

info@sintef.no

Enterprise /VAT No:
NO 919 303 808 MVA

Report

Software-based, Intelligent Energy
Optimization Methods for Green IoT

KEYWORDS
Intermittent Computing,
Energy Harvesting,
Software-defined IoT
Systems, Green IoT

VERSION
1.0

DATE
2021-12-16

AUTHOR(S)
Arda Göknil, Hui Song, Rustem Dautov, K. Sinan Yildirim

 CLIENT(S)
Internal

CLIENT’S REFERENCE

PROJECT NO.
102024558-1

NO. OF PAGES/APPENDICES
17+Appendices

SUMMARY
Internet of Things (IoT) has the potential to support a more sustainable world by
digitalizing various daily-life tasks and industrial processes. On the other hand, the global
energy consumption of IoT devices is already gigantic. The energy consumption and the
e-waste of IoT devices will increase considerably since the number of devices will exceed
75 billion soon. Over the years, Green IoT (G-IoT) has emerged as a research area to
reduce the energy consumption of IoT devices and increase the lifespan of these devices.
Among many, we consider intermittent computing and software-defined IoT systems two
important research directions within the context of G-IoT. In this paper, we investigate
the intermittent computing techniques, categorize them, and present the open
challenges and research opportunities that can assist the research community. We
provide an overview of software-defined IoT systems, discuss their sustainability
objectives, and present techniques to achieve these objectives. As a position paper, we
focus on the opportunities and challenges rather than the results and findings.

PREPARED BY
Arda Göknil

SIGNATURE

CHECKED BY
Ketil Stølen

SIGNATURE

APPROVED BY
Odd Are Svensen

SIGNATURE

REPORT NO.
 2021:01423

ISBN
978-82-14-07702-5

CLASSIFICATION
Unrestricted

CLASSIFICATION THIS PAGE
Internal

Arda Goknil (Jan 10, 2022 14:10 GMT+1)
Arda Goknil

Ketil Stølen (Jan 10, 2022 21:10 GMT+1)

Odd Are Svensen (Jan 13, 2022 14:02 GMT+1)
Odd Are Svensen

https://sintef.eu1.echosign.com/verifier?tx=CBJCHBCAABAATGS3e_KkMUJLujSHnO0f3-4QdL4fis_d
https://sintef.eu1.echosign.com/verifier?tx=CBJCHBCAABAATGS3e_KkMUJLujSHnO0f3-4QdL4fis_d
https://sintef.eu1.echosign.com/verifier?tx=CBJCHBCAABAATGS3e_KkMUJLujSHnO0f3-4QdL4fis_d

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

2 of 18

Document history
VERSION DATE VERSION DESCRIPTION

1.0 2021-12-16 Final version

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

3 of 18

Table of contents

1 Introduction ... 4

2 Intermittent Computing and Green IoT ... 5
2.1 Intermittent Computing on the Batteryless IoT Edge .. 6
2.2 What Makes Programming the Batteryless Edge Different? ... 9

2.2.1 Factors Affecting Software Development and Intermittent Program Behavior 9
2.3 Unique Challenges for Programming the Batteryless Edge ... 10
2.4 Summary and Conclusion for Intermittent Computing ... 12

3 Software-Defined IoT Systems .. 12
3.1 Dynamic adaptive IoT software for reducing energy consumption 12

3.1.1 Green objectives for self-adaptive systems ... 13
3.1.2 Potential adaptation points ... 13

3.2 Software redeployment on IoT devices for reducing e-waste ... 14
3.2.1 Motivation ... 14
3.2.2 The proposed architecture .. 15
3.2.3 Summary .. 16

4 Conclusion .. 17

5 References ... 17

APPENDICES

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

4 of 18

Software-based, Intelligent Energy Optimization Methods for Green IoT

1 Introduction
The Internet of Things (IoT) forms a network of physical devices that can sense the environment via their
sensors, perform computation and communicate wirelessly to interact with each other and exchange
information. IoT applications (e.g., smart homes and cities, autonomous vehicles, wearables) support various
tasks in our daily lives intelligently to increase our comfort and efficiency. On the other hand, the global
energy consumption of IoT edge devices (e.g., sensors, actuators, and gateways) is already gigantic, i.e.,
equal to Portugal’s annual electricity consumption in 2015 [1]. The consumption will increase considerably
since the number of IoT edge devices will exceed 75 billion soon. Moreover, future intelligent IoT
applications will employ modern Artificial Intelligence (AI) techniques that demand more computing
capabilities and, in turn, more energy. For instance, Deep Neural Networks (DNNs) require thousands of
mathematical operations to enable inference applications such as computer vision. Millions of IoT edge
devices executing these operations consume a total power on the order of gigawatts, which is equivalent to
millions of tons of CO2 per year. Thus, there is a need for research to develop IoT systems that achieves
lower energy consumption, optimized energy footprints, and longer lifespan of IoT devices.

Green IoT (G-IoT) has emerged as a research area to reduce the energy consumption of IoT devices and
increase the lifespan of these devices. It is defined as “energy-efficient procedures (hardware or software)
adopted by IoT technologies either to facilitate the reduction in the greenhouse effect of existing
applications and services or to reduce the impact of the greenhouse effect of the IoT ecosystem itself” [18].
Among many, we identify two important research directions within the context of G-IoT:

Intermittent computing: The advancements in energy-harvesting circuits and ultra-low-power
microelectronics enable battery-free sensing devices that operate by using harvested energy only.
Intermittent computing refers to programming models where periods of program execution are separated
by reboots. Intermittent systems are generally powered by energy-harvesting devices: they start executing
a program when the accumulated energy reaches a threshold and stop when the energy buffer is exhausted.

Software-defined IoT systems: The term denotes systems where even the lower-end sensors are
programmable and can be remotely updated/reflushed/redeployed with new software that will define how
the devices work. This means longer lifespan for devices, and even repurposing – i.e., reusability in different
scenarios. With the advances in wireless connectivity, software (re-)deployment can be performed in a
remote, scalable and completely automated manner, typically through an IoT cloud platform.

This paper presents the overview of two research dimensions, i.e., intermittent computing and software-
defined IoT systems, as part of software-based, intelligent energy optimization methods for Green IoT. We
first investigate the intermittent computing techniques in the literature, categorize them, and present the
open challenges and research opportunities that can assist the research community. We later provide an
overview of software-defined IoT systems, discuss the potential sustainability objectives of these systems,
and present techniques to achieve these objectives. We focus on the opportunities and challenges rather
than the final results and findings.

The paper is structured as follows. Section 2 presents a roadmap from today’s continuously powered IoT
devices to tomorrow’s battery-free IoT devices that highlights software engineering challenges for
intermittent programs running on battery-free devices. In Section 3, we discuss software-defined IoT
systems that adapt themselves based on changing conditions to achieve sustainability objectives. Section 4
concludes the paper.

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

5 of 18

2 Intermittent Computing and Green IoT
The majority of IoT edge devices are powered by batteries which can store only a finite amount of energy.
These energy-constrained devices (e.g., sensor nodes, implants, wearables) sense raw data, process it, and
communicate wirelessly to push the pre-processed field information to more powerful nodes in the
hierarchy. It is not feasible for them to offload computationally intensive tasks (e.g., inference tasks) to the
cloud by sending large amounts of raw sensor data and waiting for the results since communication is
energy-intensive and can drain batteries frequently. Contemporary IoT applications tend to execute
computationally intense AI tasks on edge devices and use the energy stored in batteries more conservatively.
However, as the computational energy requirements of these tasks increase, it is inevitable for edge devices
to drain their batteries more and more often. Unfortunately, replacing millions of batteries (optimistically
every year) introduces a significant maintenance cost, and recycling batteries pose a severe threat to our
environment.

Researchers are continuously proposing several hardware (e.g., power-efficient DNN accelerators) and
software solutions (e.g., approximate computing) to decrease the energy requirements of IoT applications
and extend the battery life of edge devices. However, batteries are still the most significant obstacle against
long lived, stand-alone, and environmentally friendly IoT. Fortunately, the progress in energy harvesting
circuits and the decrease in power requirements of processing, sensing, and communication hardware
promised the potential of freeing IoT devices from their batteries. On the other hand, operating, without
batteries, by relying only on ambient energy changes the way we develop software significantly.

Ambient energy is unpredictable and subject to environmental conditions. Therefore, removing batteries
and relying only on ambient energy introduce frequent power failures that interleave the software execution
with intervals during which the batteryless device is off and harvest ambient energy into its tiny energy
reservoir (e.g., a capacitor) to operate again. This phenomenon led to the emergence of a new computing
paradigm, the so-called intermittent computing. A minuscule amount of energy is spent to perform a burst
of tasks and save the computational state (e.g., the global variables, program stack, general-purpose
registers, program counter) in non-volatile memory to recover upon a power failure. Upon recovery, the
computation progresses forward from the latest successfully saved computational state.

Intermittent computing requires custom recovery solutions and programming models (e.g., checkpoints [2]
and task-based models [3]) to tolerate power failures that might keep programs in an inconsistent
computational state. A program in an inconsistent state might never progress correctly, output meaningful
results, and terminate. For instance, a batteryless IoT edge executing audio event detection (using an
acoustic sensor and DNN-based features for event classification) might never infer the audio event (e.g.,
human detection) due to the power failures that hinder execution progress. Naturally, most research in the
past decade focused on the design and development of new programming models [4], language constructs
[2], and runtimes [3] to ensure the consistency of the computational state and forward progress during
intermittent execution.

Despite the recent efforts on intermittent computing, several unique challenges and research opportunities
are waiting for the attention of researchers and practitioners. As a practical example, intermittent programs
may fail at any time, between any two lines of code, during unpredictable lengths of time spent to charge
the capacitor using the sporadic ambient energy. They might be functionally correct but not be beneficial
since they might not satisfy their non-functional requirements (i.e., timing constraints) on the target
deployment environment. It is hard to predict the execution time of an intermittent program and check how
likely it satisfies its timing constraints on a given deployment area. Today’s popular IoT application
development techniques [5], including modeling approaches, languages, verification methods, test
environments, and tools, overlook these challenges since they only target continuously powered systems.
For instance, the state-of-the-art does not model intermittent computing and execution and does not
consider the energy availability of the environment that leads to dynamic charging/discharging times during

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

6 of 18

energy harvesting. Therefore, existing software development techniques are poorly suited to the new
generation of fully sustainable IoT applications running on batteryless edge devices.

Here, we highlight the challenges of programming the batteryless edge that deserve more profound study
and understanding beyond those topics focusing on developing continuously powered IoT solutions. We
emphasize that we need new software engineering techniques and tools (e.g., for the verification of
intermittent programs, testing) to enable beneficial and reliable intermittent IoT applications. With the rise
of mobile devices, there was an emerging need for a new generation of software verification and validation
techniques and tools solely addressing mobile applications, such as mobile device security and testing of
mobile applications. With the emergence of intermittent computing, we expect a similar need to arise in
software engineering practice targeting batteryless IoT devices.

2.1 Intermittent Computing on the Batteryless IoT Edge

Batteryless edge devices harvest energy from ambient (e.g., via solar panels) or dedicated wireless energy
sources (e.g., radiofrequency transmitters such as WiFi routers). As depicted in Figure 1, the main
components of a batteryless edge are (i) an energy harvester converting incoming ambient energy into
electric current, (ii) an energy buffer (typically a capacitor) storing the harvested energy to power electronics,
(iii) nonvolatile memory that is used to capture the volatile program state, and (iv) an ultra-lowpower
microcontroller that orchestrates sensing, computation, and communication. Typical examples of
batteryless edge devices are Flicker [6] (which can be powered using several harvesters from solar to
piezoelectric) and Camaroptera [7] (which contains an ultra-low-power camera sensor and a long-range
wireless transmitter). The ultra-low-power micro-controllers in intermittent computing platforms (e.g.,
MSP430FR5969 from Texas Instruments) comprise a combination of volatile and nonvolatile memory.

The frequent loss of the computation state is an inevitable phenomenon for the batteryless edge that
operates using only harvested energy. Upon a power failure, the contents of the CPU registers and the
volatile memory (i.e., the volatile computational state) are lost. Therefore, power failures hinder the forward
progress of the computation: the computation starts from the beginning, and the intermediate, volatile
results are lost at each reboot. Restarting a computation block after a power interrupt might also lead to
catastrophic side-effects on memory consistency. If the program modifies the nonvolatile memory, Write-
After-Read (WAR) dependencies on persistent variables (i.e., variables in nonvolatile memory) might keep
these variables inconsistent [4] since repeated computation may produce different results (the violation of
idempotency).

Figure 1 presents a code snippet and an example intermittent execution scenario that demonstrate how
WAR dependencies might lead to memory inconsistencies. x and vector[] are persistent variables maintained
in nonvolatile memory. After executing x++ (which sets x=1) in the scenario, a power failure occurs and
leaves x modified. Upon recovery from the power failure, the device executes {x++; vector[x]=0;}, which
increments x again and sets vector[2]=0. In a continuously powered execution (without power failures), the
device would execute {x++; vector[x]=0;} only once, and we would observe vector[1]=0. Due to the power
failure, x++ is executed twice, and a different output is obtained.

If the program’s control flow depends on external inputs such as sensor readings (e.g., checking persistent
variables whose values are updated during I/O operations), power failures might lead to inconsistent
program behavior [8]. In the scenario in Figure 1, the temperature value (using readTemp()) is read, and the
persistent variable alarm is set to true (the sensed temperature is more than a predefined limit) just before
a power failure occurs. After recovery, the device re-executes the previously executed code lines and re-
reads the temperature value. This time the temperature value is smaller than the predefined limit, and hence
the persistent variable tempOK is set to true. At this point, both alarm and tempOK are true, which is logically
incorrect.

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

7 of 18

Figure 1. The main components of a batteryless IoT edge device are (i) an energy harvester, (ii) an energy
buffer, (iii) an ultra-low-power microcontroller, and (iv) nonvolatile memory. Intermittent execution due to
the frequent loss of the computation state is an inevitable phenomenon for batteryless edge devices. If the
program code modifies the nonvolatile memory, power failures might keep persistent variables in an
inconsistent state.

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

8 of 18

Figure 2. The top part of the figure presents the checkpointed and task-based versions of a 1-D convolution
code for DNN inference developed for continuously powered systems. The batteryless device executes more
tasks in a high-energy ambient environment during a fixed time interval since the capacitor is charged faster.

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

9 of 18

2.2 What Makes Programming the Batteryless Edge Different?

Operating without batteries requires dealing with the forward progress of computation and memory
consistency. These issues significantly change the way we develop software. Placing checkpoints or
employing the task-based model are the two major approaches that ensure the forward progress of the
computation and keep the nonvolatile memory consistent during intermittent execution. Figure 2 presents
the checkpointed and task-based versions of a C program (i.e., 1-D convolution code for DNN inference)
developed for continuously powered systems.

Checkpoints. In checkpointing, either a programmer or a compiler instruments the program to save the
program state in nonvolatile memory [2]. In Figure 2, the checkpoint() interface (provided by the underlying
runtime) inserts checkpoints to a C program. The runtime stores the checkpoint information by protecting
it via double buffering. Thus, the new program state does not supersede the prior one immediately if the
checkpoint data is partially updated due to a power failure. Moreover, the persistent variables modified by
the program should also be versioned to keep nonvolatile memory consistent across reboots [9]. Compiler
analysis is required to determine which persistent variables to be modified between two checkpoints. On
crossing each checkpoint, the runtime saves the program state and versions the necessary persistent
variables. After a reboot, the program state and versions are restored using the checkpoint data. The restore
operation makes the code between two checkpoints naturally idempotent.

Task-based Model. This model requires the programmer to divide the computation into a set of tasks [4], as
depicted in Figure 2. The task re-execution always produces the same results since the inputs are never
modified (and the WAR dependencies are eliminated). Thus, tasks are idempotent (re-executable).
Moreover, they are atomic in the sense that they have all-or-nothing semantics and cannot interrupt each
other. The task-based model creates the local copies of the persistent variables shared among the tasks (the
variables shown within the Task-Shared block in Figure 2). Each task manipulates its local copies (e.g., using
write interface) and atomically commits them to original locations upon completion (e.g., using next
interface). This operation prevents memory inconsistencies due to power failures.

2.2.1 Factors Affecting Software Development and Intermittent Program Behavior
Employing checkpoints or task-based programming models only ensures the forward progress of
intermittent execution and memory consistency. Besides, other factors affect the intermittent execution of
programs.

Energy Harvesting Environment. The energy availability of the deployment environment is stochastic and a
significant factor for the rate of power failures, the execution time of intermittent programs, and in turn,
program throughput. The execution time of programs running on continuously powered devices is more
predictable since these programs are not affected by the stochastic nature of ambient energy. The harvested
ambient energy depends on several factors, such as the energy source type (e.g., solar or radiofrequency),
the distance to the energy source, and the efficiency of the energy harvesting circuit. As depicted in Figure
2, when incoming power is strong enough, the capacitor is charged rapidly, and the device becomes available
quickly after a power failure. At low input power, the charging is slower and takes more time. Since the
computing progresses slowly due to longer charging periods in a low-energy environment, the program
might miss its deadlines, and the program throughput may not meet expectations (e.g., a batteryless long-
range remote visual sensing system should take a picture every 5 minutes and transmit the relevant ones
every 20 minutes).

Hardware Configuration. The energy consumption attribute of the target hardware leads to quantitative
differences in program behavior (e.g., in program throughput and execution time). The power requirements
of the target platform affect the end-to-end delay of program execution. The intermittent program might
take a long time to finish on hardware platforms having high power requirements since the capacitor
discharges faster. Hence, the program might drain the capacitor more frequently (since some instructions

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

10 of 18

consume more energy in a shorter time). Therefore, the device is interrupted by frequent power failures,
and it is unavailable and charging its capacitor for long periods. For instance, special instructions such as
nonvolatile memory access instructions consume more energy than others, drain energy more frequently,
and increase program execution time.

On the other hand, other hardware attributes such as capacitor size and voltage threshold settings also
affect the intermittent program behavior. The capacitor size determines the maximum length of program
execution without a power failure. If the capacitor size is large, the device has more energy to spend until
the power failure, but charging the capacitor takes more time. Another attribute is the size of the volatile
program state (i.e., the volatile memory size and the number of registers on the target platform) that affects
the checkpointing overhead, i.e., the execution time and energy consumption of the checkpoint operation
that saves the program state in nonvolatile memory. The checkpointing overhead is architecture-dependent
since the number of registers and the volatile memory size change from target to target.

Runtime Characteristics. Checkpoint-based recovery and task-based models are supported by runtime
environments (e.g., [2], [3]). These runtimes provide programmers interfaces to develop intermittent
programs and perform the necessary recovery/logging operations. Thus, today’s intermittent programs are
coupled tightly to the underlying runtime environments. Even the programs using the same programming
model (e.g., taskbased) are not portable across platforms and not compatible with other runtimes.
Moreover, each runtime introduces different processing delays and energy overheads during intermittent
execution and, in turn, changes the program behavior significantly.

Program Structure. Intermittent programming models require that source code be decomposed into code
blocks (atomic tasks or code blocks divided by checkpoint instructions). These blocks need to be efficient
and terminating. Their termination is guaranteed if they consume less energy than the capacity of the energy
storage buffer. Therefore, while decomposing code into blocks, programmers consider only stored energy
and not additional energy harvestable during execution. The termination of code blocks short enough is
ensured, but having more code blocks than necessary may waste energy and impose an execution-time
overhead, e.g., due to saving the program state in nonvolatile memory for each code block. For instance,
checkpoint placement is crucial for programmers to ensure the desired timing behavior of their intermittent
programs. The more frequent the checkpoints are, the more energy consumed, but less computation is lost
upon a power failure. Code decomposition based on energy storage size, energy efficiency, and the forward
progress of computation represents a new software design aspect unique to intermittent programs.

2.3 Unique Challenges for Programming the Batteryless Edge

Due to the differences and factors we presented, when implementing intermittent programs, programmers
must consider several new challenges that are unfamiliar to most of the application developers that target
continuously powered IoT systems.

Energy-aware Timing Analysis. Considerable research on intermittent computing has been devoted to
compile-time analysis to find bugs and anomalies of intermittent programs [8] and structure them (via
effective task splitting and checkpoint placement) based on worst-case energy consumption analysis [10],
[11]. Despite these efforts, no attention has been paid to analyzing the timing behavior of intermittent
programs. Without such an analysis, programmers will never know at compile-time if their intermittent
programs execute as they intend to do in a real-world deployment (e.g., meeting throughput requirements).
Worse still, it is extremely costly and time-consuming to analyze the timing behavior of intermittent
programs on real deployments because programmers need to run the programs multiple times on the target
hardware.

Design Space Exploration. The execution time and throughput of intermittent programs depend on multiple
hardware and software design factors such as the capacitor size, the energy consumption of the target
hardware, the efficiency of the energy harvester unit, and the program structure (e.g., checkpoint placement

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

11 of 18

and the size and number of tasks in task-based models). As an example, consider a deployment environment
with low ambient energy and frequent power failures. If the program execution time and throughput do not
meet requirements in the low-energy environment, programmers might increase the capacitor size, change
the target hardware, or remove some checkpoints. These changes may not always lead to what is intended
(e.g., the bigger the capacitor size is, the longer the charging takes). Therefore, programmers might have to
do a what-if analysis by deploying several program versions into various hardware configurations, i.e.,
reconfiguring the hardware, restructuring the program, and checking if the restructured program has the
desired execution time and throughput on the reconfigured hardware. This what-if analysis is currently
manual and not guided. It can quickly become infeasible on target hardware deployments due to the size of
design space, i.e., the number of possible hardware configurations and program versions.

Energy-aware Testing. The impact of harvesting ambient energy on the behavior of intermittent programs
complicates their testing. Programmers need to test their programs with power failures under various
energy conditions. They can expose some bugs only under distinct power failure timings or test cases across
energy conditions. They also need to test energy-related program properties such as forward progress. The
tools and techniques to test intermittent programs are mostly the same tools and techniques designed for
testing programs running on continuously powered systems. They do not inherently support mimicking
power failures and ambient energy conditions during intermittent program testing. Programmers need new
testing tools with simulator support that can accurately emulate real world energy harvesting conditions.

Runtime Independent Programming. Each intermittent runtime supports different language constructs and
abstractions (e.g., Alpaca [12] supporting the privatization of data shared between tasks, and InK [3] enabling
reacting to changes in available energy and variations in sensing data). When writing programs,
programmers use these runtime-specific language constructs to support memory correctness, timely
execution, etc. Intermittent programming is a fast-growing area, and thus, intermittent runtimes constantly
evolve together with the language abstractions they support. New runtimes come with new constructs, or
updates on the constructs are introduced for the existing runtimes. Programmers modify the program for
the new/updated constructs. Or, they port it from an old runtime to a new one, which may require
fundamental changes, e.g., new task structures replacing checkpoint instructions. It is a manual, time-
consuming, and error-prone task. Therefore, programmers need techniques supporting runtime
independent program models transformed (semi-) automatically into runtime dependent intermittent
execution models.

Software Adaptation. Energy-aware adaptation of program execution (e.g., reducing sensor sampling rates
or degrading computation) is a promising way to avert power failures, meet timing deadlines, and increase
program throughput. There are different adaptation strategies that all depend on the characteristics of
intermittent applications. For some applications, decreasing the number of sensor readings might be a
better solution when the ambient energy is low. Some other applications might need to keep the sensing
rate constant but can degrade the computation by skipping some computationally heavy code blocks. Due
to constrained device capabilities and limited energy information, it is challenging to decide the best time
and strategy for adapting execution. Estimating the available energy in an environment during runtime is
hard. And, small changes in the ambient energy might have a significant impact on program execution.
Therefore, we need flexible and configurable runtime adaptation frameworks [13] that provide automatic
responses to changes in energy based on the adaptation heuristics programmers specify concerning
environmental and physical phenomena (e.g., when off-time increases, degrade program execution to
maintain throughput since the environment is experiencing energy scarcity).

Reusability of Libraries. The libraries implemented for continuously powered systems are not reusable for
intermittent systems. Due to the rigid checkpoint and task-based programming models, programmers need
to reimplement the new versions of open-source libraries, and programs are prevented from using closed-
source libraries. As of now, intermittent programs can use closed-source libraries by employing checkpoints.
Checkpointing the internal state of these libraries (e.g, when and what to checkpoint), and power failure

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

12 of 18

recovery might be different for each library. Providing a generic solution for closed-source library
management remains an open question for researchers and practitioners.

Secure Intermittent Execution. A significant software challenge to the widespread use of batteryless devices
is the secure execution of intermittent programs. Although cryptographic keys and algorithms, security
certificates, protocols, and other security mechanisms used for continuously powered IoT devices still play
a critical role in intermittent computing, several technical challenges remain. Ensuring secure intermittent
computing is difficult due to the limited capabilities and energy budgets of batteryless devices. Intermittent
execution models and runtimes do not provide inherent security support, but program recovery with charge-
discharge cycles can pose high-security risks. For instance, by altering the checkpoint image, attackers can
manipulate the state of the intermittent program and prevent the device from functioning correctly. A
power failure might leave a cryptographic operation uncompleted and private data in an insecure state.
Attackers can gain physical access to the device and obtain private data in the device’s memory.

Programmers should pay extra attention when implementing security functions in intermittent programs.
Some security functions (e.g., stateful signature generation functions) may need to be executed without a
power interruption.

2.4 Summary and Conclusion for Intermittent Computing

Sustainable software is necessary for many reasons [14]: economic reasons, environmental reasons, and
because society has sustainability awareness that has increased dramatically over the past decade.
Intermittent computing paves the way for sustainable software in the batteryless edge. Due to the
differences and factors we presented, programmers implementing software running on intermittent devices
must consider various challenges unfamiliar to most programmers developing continuously powered
systems. These challenges require new software engineering tools and techniques for the development and
testing of intermittent programs.

3 Software-Defined IoT Systems
The IoT technology started from development and applying many types of specialized devices for sensing
and actuation, to connect the physical things into the internet. For the sake of cost, energy consumption,
and physical maintenance, these devices are normally designed for the task, or the things that they are
attached to. They undertake the minimal tasks, normally just sensing in a pre-defined interval or simple
actuation actions. The business logics such as data aggregation, analytics, decision making, etc., are hosted
in the cloud.

The recent years have seen an overturn of this trend. As semiconductor technology improves, the unit cost
for the computation power keeps decreasing, and the more and more logics are pushed from the cloud
down to the devices, leading to the emerging of edge computing. The logics are running as software hosted
by the different devices, and concentrating on edge devices, such as gateways, microcontrollers, etc. Such a
trend has the following major impact to the green aspect of IoT systems:

- The flexibility of software defined IoT logics makes it possible for dynamic adaptation to optimize
the resource and energy usage.

- The capability of redeploying software for new tasks and usages allows the reuse of devices for
different purposes, reducing the potential electronic waste.

3.1 Dynamic adaptive IoT software for reducing energy consumption
Self-adaptation is a widely expected feature for both hardware and software systems. The idea is that the
systems are able to automatically adapt their status and behaviours when their context has changed, to
achieve better performance, tolerate failures and reduce the maintenance cost. Over decades of research
and innovation in this direction, there are still huge potential that is worth exploring and exploiting for self-

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

13 of 18

adaptive systems, and to have green and sustainable aspects into the consideration is an important direction
for the future work on self-adaptive systems.

We briefly discuss the potential sustainability aspects that can be considered for self-adaptive systems, and
the possible adaptation points to achieve these aspects. The report will be focused on the opportunities and
challenges, rather than initial results and findings.

3.1.1 Green objectives for self-adaptive systems
We foresee the following aspects, or objectives, for self-adaptive IoT systems, which may have an impact on
the sustainability of the target systems.

- Lower energy consumption of the whole system. IoT systems are energy consuming. Sensors
consume electricity to stay alive and to collect data. After that, the whole data processing pipeline
from sensors, edge devices, local servers, to the central cloud, requires electricity from different
powers sources. At the same time, data communication is also energy consuming. Along the pipeline,
different devices and communication channels have different efficiency on energy consumption,
and an optimized pipeline may significantly reduce the total energy consumption of the whole
system.

- Optimized energy footprints. In an IoT system, different devices and resources may use different
power sources, and therefore the same unit of energy consumption may have different environment
footprint. For example, an edge device on batteries may have a higher energy footprint than a server
in the datacentre powered by renewable electricity. Even for the same datacentre, there is
possibility to switch between different power sources. If possible, optimization of the total footprint
may be a more relevant may be a more relevant objective for green self-adaptation.

- Longer lifespan of IoT devices. The production of IoT and edge devices also have significant
environment footprints, both on the manufacturing side and on the recycling side. Increasing the
lifespans of these devices will contribute to the reduction of such footprints. In the next subsection,
we will talk about re-deployment of software on IoT devices to reuse the same device for different
purposes, as a way to extend the lifespan. However, more generally, for devices that are used for
the same scenario, self-adaptation for an optimized usage and better maintenance activities will
also increase the lifespan.

- Reduced maintenance cost. Self-healing and self-recovery without human interaction by system
operators is an important direction of self-adaptive systems. This will reduce the cost of human
maintenance, which also have environmental impacts, such as the logistic of system operators or
the transportation of the devices.

3.1.2 Potential adaptation points
These green objectives can be achieved through different types of system adaptations, also known as the
management capabilities of the IoT systems.

- Elastic resource allocation: A system can dynamically adjust the computation, storage or network
resources to some of its services according to the computation load, in order to reduce the energy
consumption without harming the performance

- Dynamic service placement: In a Cloud-edge-IoT continuum, different parts have different energy
efficiency. Placing services on the right parts (e.g., cloud vs. edge) will optimize the total energy
consumption of the whole system and help to increase the lifespan of the devices or their batteries.
Moving services closer or father from the data sources can also balance the energy consumption on
data processing and communication.

- Switching between alternative service implementations: The same service can be implemented in
different technologies. Depending on the contexts, some alternatives may have better energy
efficiency than others. Switching the alternatives based on the contexts is also a way to optimize the
total energy consumption.

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

14 of 18

- Dynamic management of device lifecycle. Edge devices are normally designed to tolerant frequent
switching on and off. On the application side, the use of more stateless microservices also allows
migrating services from inactive devices. Exploiting these capabilities can lead to an active control
of devices lifecycles to reduce unnecessary energy consumption, and also extend device lifespan.

- Self-healing and self-recovery. Modern devices and application services have the capability to
tolerate unexcepted situations and can recover from failures. Self-adaptation based on these
capabilities in a global perspective will also increase the system performance and significantly
reduce the need for manual maintenance.

The adaptation points listed above are not meant to be an exhaustive list, but rather some examples of
possible mechanisms that a future sus self-adaptive system can utilize.

In summary, the sustainability concern is emerging as an import aspect for designing and implementing
self-adaptative systems, and on the other hand, self-adaptive systems have many potential mechanisms to
manipulate system to achieve these sustainability-oriented aspects.

3.2 Software redeployment on IoT devices for reducing e-waste
3.2.1 Motivation
Billions of sensors are already embedded in a vast array of networked physical objects, and soon it will be
difficult to buy a new product without connected smart features. Controlling an appliance from a mobile
phone is already a standard feature and ubiquitous sensors and actuators will transform industrial
automation, buildings, and our interaction with the surrounding world.

This global digital transformation is driven by a new class of microcontrollers (MCUs), i.e. stand-alone
miniature computing chips equipped with flash memory for code storage, and a small amount of RAM in
which to execute the code. They are also able to communicate with hardware peripherals via General
Purpose Input/Output (GPIO). This includes both digital I/O and associated protocols such as I2C, Serial, SPI,
and CAN, as well as analog I/O for reading data from environmental sensors and other analog sources. The
power efficiency means that MCUs, even with sensors, can be placed virtually anywhere and run for years
on a small battery, or indefinitely by adding an energy harvesting unit such as a solar cell. By using a fraction
of the power that single-board computers do, their total cost of ownership is significantly lower.

With the rapid development of the Internet of Things (IoT), MCU-enabled tiny sensor devices have
penetrated almost every aspect of people's everyday life, enabling smart and interactive environments, such
as homes, buildings and even whole cities. This rising sensor-based economy, however, produces myriads of
devices with short lifespans and offers no way of properly disposing them once they become obsolete [15].
The United Nations estimated 74.7 million tonnes of e-waste to be generated annually by 2030, thus almost
doubling in 16 years, with less than a third of it being recycled [16].

While MCUs have been embedded in everything from toys to cars for several decades now, it is only been
in the last few years that they have become truly useful for the IoT. They are not only sufficiently powerful
to run complex applications, but many have also received built-in support for gateway connectivity such as
Ethernet, WiFi, Bluetooth, and others. Many of them have also opened up their memory buses to be
extended with external flash and RAM. As we further argue in this report, these increased connectivity
capabilities can and should be exploited in order to enable hardware re-use and re-purposing, and thus to
extend the lifespan of IoT devices and to slow down the e-waste generation rate. To enable this, we present
in this report a scalable hierarchical agent-based approach to deploying code to terminal IoT devices via
edge gateways. The proposed architecture enables re-programming and re-purposing of devices, not
immediately connected to the Internet, thus facilitating hardware re-use and re-purposing, reducing the
device obsolescence, and, eventually, contributing to the creation of a more sustainable IoT.

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

15 of 18

3.2.2 The proposed architecture
In a simplified IoT hierarchy, we distinguish between three main elements, i.e., a centralised cloud platform,
Internet-connected edge gateways, and downstream IoT devices not connected to the Internet, but only to
a local edge gateway. Accordingly, data communication takes place via two links between (i) the cloud
platform and edge gateways and (ii) edge gateways and IoT devices. While both types of network interaction
are a common state of practice, it is still a challenge to propagate data (e.g., firmware updates) from the
cloud down to terminal IoT devices via edge gateways in a generic, scalable, and automated manner.

The cloud counterpart is usually able to directly communicate with edge gateways, but not with the billions
of terminal sensor devices placed in the field. In these circumstances, it is typically not feasible to target a
firmware update to a specific single IoT device (using, for example, its ID). Instead, it is required to annotate
firmware updates with target conditions and push them down to the edge layer, which, in its turn, will
evaluate the conditions and route the updates to matching IoT devices in its subnet. Thus, edge gateways
become the key element in this software management hierarchy. Accordingly, we tackle the challenge of
last-mile software deployment by introducing a context-aware deployment agent to be installed on edge
gateways in order to bridge the communication gap between the cloud and IoT devices by 'routing' software
updates to target IoT devices taking into account the current cyber-physical context. The agent is expected
to be operating in a daemon-like manner, implementing the following four-fold functionality, as depicted in
Figure 3.

Figure 3. Architecture for last-mile deployment

- Interaction with the cloud: edge gateways sit in the middle of the IoT hierarchy and are able to
receive updates from the cloud. It is expected that the cloud platform maintains a list of registered
edge gateways and communicates with them asynchronously using standard pub-sub mechanisms
or -- less usual -- synchronously using direct method invocations. In both cases, edge gateways
should be able to receive update commands (annotated with target conditions) along with the actual
code to be installed on IoT devices.

- Context monitoring: edge gateways are expected to perform continuous context monitoring by
keeping track of associated downstream devices. These are closely located IoT devices using the
gateway for pushing collected sensor data via one of the available communication interfaces, such
as Bluetooth, ZigBee, serial USB connection, or even direct physical wiring via GPIO pins. The
collected context information about downstream IoT devices, among other things, may include the
current firmware version, manufacturer brand and model, MCU architecture, available physical

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

16 of 18

interfaces, installed hardware sensors/actuators, etc. It is important to collect the relevant context
information, since it will be taken into account at the next step to resolve to which devices firmware
updates should be applied.

- Context-aware firmware assignment: at this step, edge gateways will map target conditions of
received firmware updates with the collected device context information, thus assigning new
firmware to matching devices. In its simplest form, this can be implemented as a collection of AND
and OR logical operators, where each IoT device is evaluated independently from the rest. More
sophisticated scenarios might take into account the whole fleet of IoT devices, so that updates are
assigned following some global policies. For example, it might be required to evenly distribute
several firmware variants among the devices, or follow an A/B testing strategy, where some new
code is tried only on a limited subset of devices. This step should also consider situations when an
IoT device satisfies conditions of multiple updates, as well as when none suitable devices are found.
As an outcome of this step, the deployment agent generates a map of firmware updates and
matching IoT devices (assuming that a device can accept at most one update at time).

- Interaction with downstream IoT devices: the firmware update pipeline concludes with the actual
flashing of new code onto matching IoT devices. Once again, the collected context information about
IoT devices will help the deployment agent to determine which underlying physical interface should
be invoked in each individual case.

3.2.3 Summary
The proposed last-mile deployment agent, provisioned on edge gateways via the centralised cloud platform
in the form of containerised micro-services, is able to receive firmware updates from the cloud and install
them on connected IoT devices. The major benefit of this solution is that IoT software engineers are not
required to know about target IoT devices beforehand when releasing code updates (which would be simply
infeasible given the growing numbers). Instead, the task of assignment of firmware updates is shifted to the
edge layer and takes place on gateways, which are able to evaluate target conditions against the collected
cyber-physical context in order to selectively install new code to terminal IoT devices. By offloading the
software assignment task to the edge layer, the proposed solution implements a hierarchical approach to
software deployment in the IoT-Edge-Cloud continuum, and also contributes to the increased scalability by
parallelising the software assignment task across multiple edge gateways, rather than centralising it on the
cloud. By integrating with the already available cloud-based container management at the edge, it is possible
to build an end-to-end software management pipeline, so that even terminal IoT devices without Internet
connectivity can be re-flashed in an automated scalable manner. This is a step towards a sustainable IoT
where all the elements, even dormant and outdated, are not wasted, but are rather re-programmed and re-
used.

A potentially promising direction for future work is to implement dynamic discovery of IoT devices in a local
network of an edge gateway. The currently implemented prototype assumes that IoT devices are connected
to the host gateway via a USB port; in this case, implementing a polling mechanism for continuously updating
the list of connected devices and their cyber-physical contexts is relatively straight-forward using the
standard Linux tools. A more challenging task would be to implement similar dynamic discovery in a local
TCP/IP network or even via a wireless interface by detecting idle devices within the range of the edge
gateway. Some initial attempts in this direction are reported in [17].

Another direction yet to be explored is the continuous self-adaptive behaviour of the system, as well as the
intelligent resolution of infinite loops and potential conflicts between the changed context (caused by the
applied firmware updates) and the target conditions. While the current proof of concept is implemented as
a finite four-step pipeline triggered by the initial update command received from the cloud, some advanced
scenarios would require a continuous operation where firmware assignment and installation would be
triggered by the changing cyber-physical context of IoT devices.

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

17 of 18

In this report we focused on demonstrating only the technical feasibility of designing and implementing
sustainable IoT systems for smart environments. There are, however, many other aspects to be considered
and addressed in this respect. We intentionally omitted the discussion on the device ownership, access
management, and security issues, which are major hindering factors. The proposed solution (and any other
similar approaches relying on re-programming and re-purposing existing IoT infrastructures) is not yet ready
to be immediately put into practice and adopted by the society. As any other `green' initiative, it would
require involving not just ICT researchers and IoT companies, but rather multiple stakeholders and policy
makers from several adjacent domains, including governmental, environmental, and legal organisations,
who should join their efforts to define common strategies for building sustainable IoT systems.

4 Conclusion
We presented the overview of intermittent computing and software-defined IoT systems as part of software-
based, intelligent energy optimization methods for Green IoT. We first introduced the open challenges and
research opportunities for intermittent computing. We then discussed the potential sustainability objectives
of software-defined IoT systems and the techniques to achieve these objectives.

Program execution without batteries requires techniques ensuring the forward progress of computation and
memory consistency. Placing checkpoints or employing the task-based model are the two major approaches
that guarantee the forward progress of the computation and keep the non-volatile memory consistent
during intermittent execution. Besides, some other factors affect the intermittent program execution. One
of the significant factors is the energy availability of the deployment environment. It is stochastic and affects
the rate of power failures, the execution time of intermittent programs, and, in turn, program throughput.
Therefore, it is hard to predict the execution time of an intermittent program and check how likely it satisfies
its timing constraints on a given deployment area.

The differences and factors we presented for intermittent programming force programmers to consider
various challenges unfamiliar to most programmers developing continuously powered systems. Existing IoT
application development techniques, including modeling approaches, languages, verification methods, test
environments, and tools, overlook these challenges since they only target continuously powered systems.
These challenges require new software engineering tools and techniques to develop and test intermittent
programs.

Software-defined IoT systems enable dynamic adaptation to optimize resource and energy usage. They have
the capability of redeploying software for new tasks and usages, which allows the reuse of IoT devices for
different purposes and reduces the potential electronic waste. We identified various research directions for
software-defined IoT systems, e.g., the dynamic discovery of IoT devices in a local network of an edge
gateway, the continuous self-adaptive behavior, and the intelligent resolution of infinite loops and conflicts
between the changing context and the target conditions.

5 References
[1] X. Liu and N. Ansari, “Toward green IoT: Energy solutions and key challenges,” IEEE Communications
Magazine, vol. 57, no. 3, pp. 104–110, 2019.

[2] V. Kortbeek, K. S. Yildirim, A. Bakar, J. Sorber, J. Hester, and P. Pawełczak, “Time-sensitive intermittent
computing meets legacy software,” in ASPLOS’20, 2020, pp. 85–99.

[3] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and J. Hester, “InK: Reactive kernel for
tiny batteryless sensors,” in SenSys’18, 2018, pp. 41–53.

[4] A. Colin and B. Lucia, “Chain: tasks and channels for reliable intermittent programs,” in OOPSLA’16, 2016,
pp. 514–530.

Project no.
102024558-1

Report No
 2021:01423

Version
1.0

18 of 18

[5] A. Taivalsaari and T. Mikkonen, “A roadmap to the programmable world: software challenges in the iot
era,” IEEE Software, vol. 34, no. 1, pp. 72–80, 2017.

[6] J. Hester and J. Sorber, “Flicker: Rapid prototyping for the batteryless internet-of-things,” in SenSys’17,
2017, pp. 19:1–19:13.

[7] M. Nardello, H. Desai, D. Brunelli, and B. Lucia, “Camaroptera: A batteryless long-range remote visual
sensing system,” in ENSsys’19, 2019, pp. 8–14.

[8] M. Surbatovich, L. Jia, and B. Lucia, “I/o dependent idempotence bugs in intermittent systems,” in
OOPSLA’19, 2019, pp. 1–31.

[9] B. Lucia and B. Ransford, “A simpler, safer programming and execution model for intermittent systems,”
in PLDI’15, 2015, pp. 575–585.

[10] A. Colin and B. Lucia, “Termination checking and task decomposition for task-based intermittent
programs,” in CC’18, 2018, pp. 116–127

[11] S. Ahmed, M. Nawaz, A. Bakar, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and L. Mottola, “Demystifying
energy consumption dynamics in transiently powered computers,” ACM Transactions on Embedded
Computing Systems, vol. 19, no. 6, pp. 1–25, 2020.

[12] K. Maeng, A. Colin, and B. Lucia, “Alpaca: intermittent execution without checkpoints,” in OOPSLA’17,
2017, pp. 1–30.

[13] A. Bakar, A. G. Ross, K. S. Yildirim, and J. Hester, “Rehash: A flexible, developer focused, heuristic
adaptation platform for intermittently powered computing,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2021.

[14] A. Fonseca, R. Kazman, and P. Lago, “A manifesto for energy-aware software,” IEEE Software, vol. 36,
no. 6, pp. 79–82, 2019.

[15] S. Higginbotham, “The internet of trash: IoT has a looming e-waste problem,” IEEE Spectrum:
Technology, Engineering, and Science News, vol. 17, 2018.

[16] V. Forti, C. P. Balde, R. Kuehr, and G. Bel, “The Global E-waste Monitor2020: Quantities, flows and the
circular economy potential,” tech. rep., United Nations University/United Nations Institute for Training and
Research, International Telecommunication Union, and International Solid Waste Association, 2020

[17] R. Dautov and S. Distefano, “Targeted content delivery to IoT devices using Bloom filters,” International
Conference on Ad-Hoc Networks and Wireless, pp. 39–52, Springer, 2017

[18] C. Zhu, V. CM Leung, L. Shu, and E. C-H. Ngai, "Green internet of things for smart world," IEEE access,
vol. 3, pp. 2151-2162, 2015.

	1 Introduction
	2 Intermittent Computing and Green IoT
	2.1 Intermittent Computing on the Batteryless IoT Edge
	2.2 What Makes Programming the Batteryless Edge Different?
	2.2.1 Factors Affecting Software Development and Intermittent Program Behavior

	2.3 Unique Challenges for Programming the Batteryless Edge
	2.4 Summary and Conclusion for Intermittent Computing

	3 Software-Defined IoT Systems
	3.1 Dynamic adaptive IoT software for reducing energy consumption
	3.1.1 Green objectives for self-adaptive systems
	3.1.2 Potential adaptation points

	3.2 Software redeployment on IoT devices for reducing e-waste
	3.2.1 Motivation
	3.2.2 The proposed architecture
	3.2.3 Summary

	4 Conclusion
	5 References

		2022-01-13T05:02:04-0800
	Agreement certified by Adobe Sign

