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Abstract—The operation of energy storage systems (ESSs)
in power systems where variable renewable energy sources
(VRESs) and ESSs must contribute to securing the supply, can be
considered as an arbitrage against scarcity. The value of using
stored energy instantly must be balanced against its potential
future value and future risk of scarcity. This paper proposes
a multi-stage stochastic programming model for the operation
of microgrids with VRESs, ESSs and thermal generators that
is divided into a short- and a long-term model. The short-
term model utilizes information from forecasts updated every six
hours, while the long-term model considers the value of stored
energy beyond the forecast horizon. The model is solved using
stochastic dual dynamic programming and Markov chains, and
the results show that the significance of accounting for short- and
long-term uncertainty increases for systems with a high degree of
variable renewable generation and ESSs and limited dispatchable
generation capacity.

Index Terms—Energy Management, Variable Renewable En-
ergy Sources, Energy Storage Systems, Stochastic Dual Dynamic
Programming, Markov Chains, Quantile Regression

NOMENCLATURE
Sets and indices
i, j Markov node indices
i+ Children of Markov node i
ωi ∈ Ωi Set of scenarios at Markov node i
k ∈ K SDDP iteration index
n ∈ {1, . . . , N} Scenario node sequence number
R Markov chain root node
g ∈ G Set of dispatchable generators
r ∈ R Set of renewable generators
d ∈ D Set of loads
e ∈ E Set of EES
m ∈M Set of markets
t ∈ Ti Set of timesteps in node i
ti, t̄i First and last time step in Ti
Parameters
φij Transition probability from Markov node i

to j
∆Ti Time step length at time t
CGg Generation cost of generator g
CPm/CSm Purchase/sale price in market m
CDd Load shedding cost of demand d
CEe Fixed SMV of EES e

PGmaxg Maximum power generation generator g
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PRmaxr,i Renewable generator r power forecast at
time t

PMp
m/PM

s
m Maximum purchase/sale power at market m

PDd,i Active power demand (before load shedding)
by load d at time t

PSce,t/PS
d
e,t Maximum charge/discharge power of EES e

at time t
SOCmine /SOCmaxe Minimum/maximum SOC of EES e

ηce/η
d
e Charge/discharge efficiency of EES e

Variables and functions
xi/x

′
i Incoming/outgoing state variables at Markov

node i
x̄i Incoming state dummy variable at Markov

node i
ui Control variable at Markov node i
ωi Random variable at Markov node i
λi State dual variable of solution at Markov

node i
θi SDDP cut variable at Markov node i
αki , β

k
i SDDP cut coefficients at Markov node i,

iteration k
Ui(xi, ωi) Control variable feasibility set at Markov

node i
Ti(xi, ui, ωi) Stage-transition function at Markov node i
Ci(xi, ui, ωi) Stage-objective function at Markov node i
Vi(xi, ωi) Value function at node i
SEVi(xi) Storage end value at node i for state xi
SMVi(xi) Storage marginal value at node i for state xi
pg,t Power from dispatchable generator g at time

t

pr,t Power from renewable generator r at time t
ppm,t/p

s
m,t Power purchase/sale from/to market m at

time t
pd,t Power withdrawn by load d at time t
plsd,t Load shedding by load d at time t
psce,t/ps

d
e,t Active power charge/discharge to/from EES

e at time t
pse,t Net active power charge to EES e at time t
soce,t State-of-charge of storage e at time t

I. INTRODUCTION

VARIABLE renewable energy sources (VRESs), primarily
solar photovoltaic (PV) and wind, are expected to be the

main electricity sources in the future. The levelized cost of
energy (LCOE) of solar PV and onshore wind has been re-
duced by 77% and 30% respectively in less than ten years [1],
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and VRESs stand out as a clean and competitive alternative in
the electricity market [2]. Despite their relatively low LCOE,
large-scale integration of VRESs impose new challenges in
balancing the supply and demand. Energy storage system
(ESS) technologies have taken large steps both in terms of
technological improvements and cost reduction, and ESSs will
probably play an important role in balancing the electricity
system.

Traditionally, the electricity system have been organized
hierarchically with a relatively small number of centralized
dispatchable generators operating to meet an almost inflexible
demand. In contrast, VRESs are to great extent distributed,
weather-driven and uncertain. Moreover, the market price
in today’s system is often set for large geographical areas
and does not capture the challenges related to distributed
generation [3]. With the increasing share of distributed energy
resources (DERs), a viable option is to move towards decen-
tralized control [4] to manage the system complexity. Micro-
grids (MGs) offer a possible way of integrating distributed
VRESs and ESSs into the power system [5]–[7]. MGs are
capable of operating disconnected from the main grid for a
limited time or permanently [8], and remote areas may also
be organized as MGs to avoid expensive grid expansions.

In energy-constrained systems, where the capacity of
VRESs is high and ESSs replace some of the dispatchable
capacity, the ESSs must contribute to secure the supply in
periods with low generation from VRESs. The operation of
these systems can be considered as balancing dispatchable
generation costs against the risk of scarcity [9]. The sys-
tem’s ESSs must be operated to have sufficient high state-
of-charge (SOC) for periods with high demand, and they
should also have sufficient low SOC upfront periods with high
generation from VRESs to minimize generation curtailment.
These decisions must account for both the daily variations
and uncertainty in demand and solar PV generation, as well
as the variations and uncertainty in wind power generation
over several days.

Power and energy limitations as well as efficiencies also
vary for different ESS technologies. Lithium-ion batteries can
deliver and absorb high power with low losses, but for a
limited time due to energy limitations. A key factor for large
scale integration of VRESs is long-duration energy storage
with sufficient low storage capacity cost, and hydrogen stands
out as one of the most viable options [10]. For hydrogen ESSs
(electrolyzer and fuel cell), the size of the hydrogen tank can
be scaled up at modest cost, while the electrolyzer and the
fuel cell are expensive to scale up and have poor round-
trip efficiency compared to lithium-ion batteries [11]. The
combination of power and energy limitations, efficiency losses,
and uncertain generation and demand makes the operation
optimization problem highly complex, and the long-duration
storage necessitates scheduling several days ahead.

Rule-based energy management has been successfully ap-
plied for managing DERs, both for experimental systems [12]–
[14] and virtual systems [15], [16]. These rule-based methods
charge/discharge the respective ESSs based on fixed SOC
thresholds and predefined priorities, and their computational
performance makes them well suited for integration in a real-

time environment. However, they do not utilize knowledge
about expected future generation and demand from forecasts.

Information from forecasts can improve the operation strat-
egy by formulating dynamic optimization problems with either
deterministic or stochastic generation and load forecasts. The
resulting power dispatch or SOC can be used as a reference to
a real-time control system where the system is re-optimized
using rolling horizon each time where either the forecast or
observed state are updated [17]–[19].

Stochastic dynamic programming (SDP) approaches [20]
also account for how the uncertainty is revealed stage-wise,
and the operation strategy can be adjusted stage-wise as
more uncertainty is revealed. Instead of providing an optimal
control, it provides an optimal policy which is a set of decision
rules on how to respond to a given state at a given time. The
storage marginal value (SMV) obtained from the SDP solution
also has a useful interpretation with respect to deciding when
to use the different ESSs compared to generators using con-
stant marginal cost principles [21]. However, SDP approaches
require stage-wise independent noise and the auto-correlation
of the scenarios are lost. Uncertainty from VRESs is naturally
auto-correlated [22]. Therefore, forecast errors tends to sustain
and must be accounted for to prevent the security of supply
from worsening.

The operation of ESSs is in reality an infinite horizon
optimization problem, and this is particularly important when
studying systems where ESSs must be used to prevent extreme
prices from, for example, periods of scarcity. A common
approach to prevent emptying the ESSs at the end of the
optimization period, is to apply a bound on the end SOC,
typically for daily planning [23]–[25]. However, this approach
is unnecessarily inflexible and prevents utilization of the
flexibility beyond the optimization horizon [26]. Solar PV and
wind power both have distinct seasonal variation, hence the
operation method should also be verified through a whole year
as in [15], [16], but these only consider rule-based approaches.

Existing literature often studies ESSs’ capabilities to mini-
mize thermal power generation and reduce CO2 emissions, but
very few papers consider how ESSs should be operated if they
must contribute to prevent extreme prices and scarcity. The
valuation of stored energy beyond the optimization period has
therefore gained little attention. However, research on large-
scale hydropower has paid more attention to infinite horizon
optimization both with SDP [27] and stochastic dual dynamic
programming (SDDP) [28].

This paper presents a multi-stage stochastic programming
(MSSP) energy management model that is solved using a
combination of SDP and SDDP [28], [29]. Unlike most pre-
vious studies, we address energy-constrained systems where
the ESSs are decisive to prevent scarcity. While previous
approaches consider forecast uncertainty [17], [19], our model
also accounts for the uncertainty beyond the forecast horizon
with a separate stochastic long-term model. Moreover, we
do not enforce rigorous state end value constraints [23]–
[25], but approximate state and time dependent storage end
value functions. The storage end value functions are updated
monthly to account for seasonal variations and represents
infinite horizon similar to approaches applied for hydropower
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Long-term model
• Monthly update
• Parameters: System model, uncertainty model and

scenarios

Short-term model
• 6 hourly update
• Parameters: System model, uncertainty model and

scenarios

Simulate model
• Hourly update
• Parameters: Observations of ingoing state and

uncertain variable
• Output: Control and outgoing state

Store results (state and control)

Storage end value function

Storage end value function

Control and outgoing state

Outgoing
state

Fig. 1. Summary of stochastic optimization method

scheduling [27]. To overcome the limitations of using stage-
wise independent noise, we address the auto-correlation in
wind uncertainty to maintain adequate security of supply.

Moreover, we bridge the gap between rule-based [12]–[16]
and optimization-based [17]–[19] operation by showing how
the solution of the stage-wise optimization problems can be
translated into a set of time and state dependent rules, and
investigate how these adaptive rules perform compared to
static rules for the operation of an actual MG over almost
a full year. Stochastic scenarios are generated using gradient
boosting quantile regression.

The remainder of this paper is organized as follows: Sec-
tion II describes the method, section III presents and discusses
the results from the application of the method, while section IV
provides the conclusions.

II. METHOD

The proposed method divides the decision process into
multiple stages where the stages within the look-ahead of
the forecasts are categorized as the short-term model and the
stages beyond the forecast horizon as the long-term model.
The short-term model stage length follow the frequency of
the weather forecast updates, while the long-term model stage
length is one day and repeated cyclically.

As illustrated in Fig. 1, the long-term model is solved
first. It considers typical seasonal weather, in this case for
the present month. Therefore, it is only re-optimized every
month as decribed in section II-D. Thereafter, the short-term
model is solved using scenarios based on the most recent
weather forecast that are updated six-hourly as described in
section II-E. Based on the short-term strategy, the optimal
control is obtained for the observed state, generation and
demand. Finally, the results are saved. The stages and models
are connected using the storage end value (SEV) functions
as described mathematically in section II-A and interpreted in
section II-C.

R

1,1

1,2

2,1

2,2

Stages

Markov

states

Fig. 2. Example of policy graph as a Markov chain.

A. Stochastic dual dynamic programming

MSSP represents the stage-wise decision process where
new uncertainty is revealed and control decisions are taken
stage-wise. The solution of an MSSP model is therefore not
a sequence of controls, but rather a sequence of decision-
rules, often referred to as policies, on how to respond to
a given state and for the revealed uncertainty. This is an
important difference from the classical two-stage stochastic
model [30] where the optimal control is obtained by assuming
all uncertainty is revealed at once.

The MSSP model variables are classified into state xt,
control ut and random variable ωt where the objective is
to find a set of admissible controls (1c) that minimizes the
expected stage-wise operating costs for all stages (1a). The
state transitions function (1b) describes how the state changes
for a given scenario ωt and control ut, representing decisions
taken both explicitly and implicitly.

min
ut

{
C1(x1, u1, ω1) + E

ω2|ω1

[
min
u2

(
C2(x2, u2, ω2) + . . .

+ E
ωT |ωT−1,...,ω2

[
min
uT

(
CT (xT , uT , ωT )

)])]}
(1a)

s.t. xt+1 = Tt(xt, ut, ωt) (1b)
ut ∈ Ut(xt, ωt) (1c)

∀t ∈ T

The MSSP formulation is an optimization problem with nested
expected values of optimization problems, and where the
random variable at each stage depends on all previous random
variables. The size of the extensive problem becomes too large
to solve even for problems of modest size. MSSP models
are therefore commonly solved with dynamic programming,
where the full problem is decomposed into a sequence of
stage-wise problems.

This paper considers SDDP [31] for solving the proposed
MSSP problem. SDDP requires a convex problem formulation
[32] and stage-wise independent random variables. Similar to
SDP [33], SDDP divides the full problem into smaller stage-
wise problems, and approximates the future cost for each stage
using backward recursion. Whereas SDP discretizes the state
space, SDDP utilizes the convex problem formulation and
approximates the future cost iteratively using multiple linear
hyperplanes which serve as lower bounds for the future cost.

A common approach for managing the stage-wise dependent
random variables, are to model them as state variables using
an auto-regressive model [34]. These can be both additive
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and multiplicative [35] depending on the random variable
properties, but require a linear model formulation. However,
this paper uses a combination of SDDP and SDP with Markov
chains [29]. The sequence of stages and the corresponding
Markov states can be described with a policy graph [28] as
illustrated in Fig. 2: Each node is associated with a stage
representing a discrete moment in time, and a Markov state
which captures discrete states not included in the state variable
xi. Each node i has a set of children i+ representing the next
stage for the different Markov states. The transition probability
between nodes φij is positive if j is a child of i and otherwise
zero.

Given that all future decisions are optimal from a given node
and onward, the optimal decision for a previous node can be
found with backward recursion using Bellman’s principle of
optimality [33] by reformulating the model in (1a) to (1c) as
shown in (2a) to (2d).

Vi(xi, ωi) = min
ui

{
Ci(xi, ui, ωi)− SEVi(x′i)

}
(2a)

SEVi(x
′
i) = − E

j∈i+, ωj∈Ωj

[
Vj (x′i, ωj)

]
(2b)

s.t. x′i = Ti(xi, ui, ωi) (2c)
ui ∈ Ui(xi, ωi) (2d)

The recursive formulation can be solved with SDDP and
the algorithm can be divided into two phases: forward and
backward pass. In the forward pass, a random sequence of
nodes i1, . . . , iN is sampled from the Markov model, and
a random scenario ωi ∈ Ωi is sampled for each node. The
Markov model can also be cyclic to represent infinite horizon
where the probability of entering a cycle must be less than
one to ensure that the future value produces a finite sum. For
the example illustrated in Fig. 2, the outgoing edges from
node (2,1) and (2,2) will each sum up to the cycling discount
factor [28]. The algorithm also enforces a maximum number
of subsequent nodes. For the randomly sampled sequence of
nodes and scenarios, the optimization problem (3a) to (3e) is
solved sequentially using the outgoing state of previous node
as the ingoing state to the next node. When a random scenario
has been solved through all stages, the backward pass can
start. For each node i and state xi in the sequence i1, . . . , iN ,
(3a) to (3e) is solved for all outgoing nodes j ∈ i+ and all
scenarios ωj ∈ Ωj . The resulting objectives V Kj (x̂, ωj) and
dual values λj are used to calculate a linear hyperplane (3e)
for the current node i. The whole procedure is repeated until
enough hyperplanes have been added to represent the future
cost functions sufficiently accurate. Detailed algorithms are
provided in reference [28].

V Ki (x̄i, ωi) = min
ui,xi,x′i,θi

Ci(xi, ui, ωi) + θi (3a)

s.t. xi = x̄i, [λi] (3b)
x′i = Ti(xi, ui, ωi) (3c)
ui ∈ Ui(xi, ωi) (3d)

θi ≥ αki + βki x
′
i, k ∈ {1, 2, . . . ,K} (3e)

Unlike SDP, where the entire state space is explored, SDDP
explores the most interesting states based on sampling from
the uncertainty distribution.

B. Mathematical description

The detailed mathematical description below is repeated for
each node i. Incoming state xi is the initial SOC soce,t−1 for
the first time step in each node, and the outgoing state x′i is
the SOC soce,t for the final step in each node. The random
variable ωi includes the maximum generation from VRESs
(5), such that they can be freely curtailed at no cost, and the
demand (6). The admissible controls includes all the remaining
constraints.

Dispatchable generators can adjust the generation between
zero and maximum generation continuously (4), while the
VRES generators have time dependent upper bounds given by
weather conditions (5). The demand is also variable in time
and load shedding can be applied if the system has insufficient
capacity (6). Power can be injected and withdrawn from the
ESSs at constant efficiency (7a), but the SOC limits must be
respected (7b) and the charge and discharge power must stay
within their limits (7c) and (7d). The change in SOC and power
limits due to degradation are relatively small for the studied
interval and has not been considered. The operation costs due
to lifetime reduction for ESSs has neither been considered, but
has been addressed for future work. In grid-connected mode,
the system can exchange power with an external market within
the transmission limits (8a) and (8b). The power injected and
withdrawn must be balanced at all time (9). The objective is to
minimize the cost of dispatchable generation, net import and
load shedding (10).

0 ≤ pg,t ≤ PGmaxg , ∀g ∈ G, t ∈ Ti (4)

0 ≤ pr,t ≤ PRmaxr,t (ωt), ∀r ∈ R, t ∈ Ti (5)

pd,t = PDd,t(ωt)− plsd,t ≥ 0, ∀d ∈ D, t ∈ Ti (6)

soce,t = soce,t−1 + ∆Tt

(
ηcpsce,t −

psde,t
ηd

)
(7a)

SOCmine ≤ soce,t ≤ SOCmaxe (7b)
0 ≤ psce,t ≤ PSce,t (7c)

0 ≤ psde,t ≤ PSde,t (7d)

∀e ∈ E , t ∈ Ti

0 ≤ ppm,t ≤ PMp
m (8a)

0 ≤ psm,t ≤ PMs
m (8b)

∀m ∈M, t ∈ Ti

∑
g∈G

pg,t +
∑
r∈R

pr,t +
∑
m∈M

ppm,t +
∑
e∈E

psde,t

=
∑
d∈D

pd,t +
∑
m∈M

psm,t +
∑
e∈E

psce,t, t ∈ Ti (9)
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min
∑
t∈Ti

{∑
g∈G

CGg pg,t +
∑
d∈D

CDd plsd,t

+
∑
m∈M

[
CPm ppm,t − CSm psm,t

]}
(10)

C. Model interpretation

The optimal energy management of a small-scale power sys-
tem can be considered as the decision process of meeting the
energy demand using the available resources with the lowest
marginal operating cost. The marginal cost of dispatchable
generators is mainly given by the fuel and emission costs,
while VRESs have marginal operating costs close to zero.
The value of lost load (VOLL) represents the cost of not
being able to meet the demand, and is normally assigned a
high value [36]. Since the ESSs neither consume nor deliver
energy, but shift energy in time, the marginal cost/value can be
considered as the future opportunity cost/value given they are
dispatched perfectly in the future. Therefore, they will vary
between zero and the VOLL since the energy charged to an
ESS can originate from VRESs, and the discharged energy
can prevent loss of load [21].

The objective in (2a) has two terms: the stage-objective and
the SEV function. The stage-objective is a function of the
control variable, while the SEV function is a function of the
state. The marginal operating cost of dispatchable generators,
demand, purchase and sale are all time and state independent
(11), and the optimal dispatch can easily be obtained by
picking the unit with the lowest marginal cost first.

∂Ci(xi, ui, ωi)

∂pg,t
= CGg,

∂Ci(xi, ui, ωi)

∂plsd,t
= CDd

∂Ci(xi, ui, ωi)

∂ppm,t
= CPm,

∂Ci(xi, ui, ωi)

∂psm,t
= −CSm

(11)

The marginal charge and discharge cost of an ESS is both
time and state dependent and can be expressed as a function of
the SMV, the marginal value of the SEV function with respect
to state (12), as shown in (13) and (14).

∂SEVi(xi)

∂xi
= SMVi(xi) (12)

∂SEVi(x
′
i)

∂psce,t
=
∂SEVi(x

′
i)

∂x′i

∂x′i
∂psce,t

= SMVi(x
′
i) · ηc (13)

∂SEVi(x
′
i)

∂psde,t
=
∂SEVi(x

′
i)

∂x′i

∂x′i
∂psde,t

= −SMVi(x
′
i) ·

1

ηd
(14)

When the SMV function is known, the operation strategy
of both generators, loads and ESSs can be translated into a set
of time and state dependent decision-rules where the resources
with the lowest marginal operating costs are chosen similar to
the rule-based approaches in references [12]–[16]. However,
the proposed rules based on SMV are both time and state
dependent and will therefore consider the future generation
and demand under uncertainty.

D. Long-term model

The long-term model uses 24-hour scenarios which are
representative for the time of day and year, in this case the

respective month, to represent the expectation beyond the
forecast horizon. The SDDP algorithm is typically run from a
known initial state. In this case, the outgoing state of the short-
term model which is the incoming state of the planning is not
known ahead, hence the initial Markov state and state variable
value are randomized to ensure the model to be sufficiently
explored by the algorithm. Since the problem is, in reality, an
infinite horizon problem, a cyclic Markov model is used [28].
The cyclic Markov model permits transition from the nodes
representing the final stage back to nodes representing previous
stages, in this case 24 hours back, with probability 0.8. This
will represent an infinite horizon with a discount and prevents
the ESSs from emptying after 24 hours. This decomposition
permits updating the long-term strategy monthly instead of
six-hourly.

1) Wind power: The main purpose of the long-term model
is to predict net power balance over several days. Wind
power is the dominant energy source and has an evident
auto-correlation. The long-term model assumes constant daily
wind power generation using five scenarios represented as
individual Markov states. The scenarios are generated based on
the 24-hourly mean values of historical wind power observa-
tions which are sorted and divided into intervals of relative
size 0.1, 0.2, 0.4, 0.2, 0.1. The mean value of each interval
represents the scenario. The transition probabilities between
the scenarios are obtained using the method described in
section II-J.

2) Solar PV power: Clearness index (CI) is a number
between zero and one and gives the ratio between solar PV
power generation and the clear sky generation at that particular
time. The CIs are calculated for the historical observations
where hours with zero generation are neglected to avoid zero
division. The mean daily CIs are sorted and divided into three
equally sized intervals. The mean value for each interval is
used as the CI for the long-term model scenarios. The auto-
correlation has not been considered to keep the number of
Markov states sufficiently low, and since wind is the dominant
power source.

3) Demand power: The demand scenarios are generated
using quantile regression with the hour of day and the month
of year as explanatory variables. The scenarios are given by
the 0.1, 0.5, 0.9 quantiles with probability 0.2, 0.6, 0.2. The
quantile regression method is further described in section II-J.

E. Short-term model

The short-term model stage length is equal to the weather
forecast update frequency, six hours, and the forecasts have
60 hours look-ahead yielding ten stages.

1) Wind power: The ratio between wind speed and power
generation is non-convex [37] and has increasing variability
with increasing wind speed [35]. Wind power scenarios are
generated using the 0.1, 0.3, 0.5, 0.7, 0.9 quantiles, each with
0.2 probability, where each scenario represents a Markov state.
The quantile regression model is fitted using the following
explanatory variables: wind power forecast at turbine height,
wind speed forecast, wind direction forecast, look-ahead hours
and last observed power before the forecast period.
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The wind speed vref is forecasted at a reference height
href which usually differs from the turbine height hturbine.
Therefore, the turbine wind speed vturbine is scaled using the
power law profile [38] shown in (15).

vturbine = vref

(
hturbine
href

)k
(15)

The roughness factor k is an empirical value for the roughness
of the terrain around the wind turbine. Transition probabilities
are obtained as described in section II-J.

2) Solar PV power: Solar power explanatory variables
are: cloud area fraction forecast, normalized maximum so-
lar power, initial solar power and look-ahead hours. The
normalized maximum solar power represents the theoretical
maximum generation for that time of day and year as a
number between zero and one. There are theoretical methods
for determining this value given the geographical location, and
the panel direction and tilt. Since panel angle and direction
as well as seasonal configurations are unknown for the case
in this paper, the normalized maximum solar power has
been approximated using historically observed generation by
assuming the normalized maximum solar power is given by
the maximum observed value at that day and hour plus/minus
nine days for all observed years.

3) Demand power: The demand will use the same regres-
sion model as the long-term model described in section II-D3.

F. Simulation

To verify the value of the different optimization strategies,
historical observations are simulated with rolling horizon. For
each observed value, the corresponding node i is identified
based on the Markov state and stage, and the optimal control
is found by solving (3a) to (3e). The optimal control and the
resulting state are saved, and the procedure is repeated for the
next stage using the previous outgoing state as the incoming
state. The short- and long-term models are updated as shown
in Fig. 1.

G. Reference models

1) Perfect foresight: The perfect foresight model uses the
mathematical model description from section II-B but opti-
mizes the whole period at once with the actual historical
generations and demand instead of using forecasts. The SEV
at the end of the optimization is set using the fixed SMV
described in section II-G3. The perfect foresight model can
be considered as a theoretical absolute lower bound of the
operating costs.

2) Deterministic model: The deterministic model formula-
tion uses the same mathematical model description presented
in section II-B as the stochastic model, but with least square
point forecasts for generation from VRESs and demand instead
of multiple scenarios, stages and Markov states. The determin-
istic model only considers the short-term model horizon and
is similar to references [17], [18].

3) Rule-based model: Rule-based models [12]–[14] use a
fixed priority for generators and ESSs to decide where to with-
draw lacking or inject surplus energy. Given an arbitrary ESS
e with charge/discharge efficiency ηce/η

d
e and SMV CEe, then

the cost of discharging one unit will be CEe

ηde
, hereby referred

as discharge cost. The corresponding value of charging one
unit, the charge value, will be CEeηce. If the SMV is chosen
such that the discharge cost is less than the diesel generation
cost, the ESS will be used to meet the demand before the
diesel generator. Likewise, diesel will not be used to charge
the ESS as long the charge value is less than the diesel cost,
and the ESS with highest charge value will be charged first
when there are surplus generation from VRESs.

The cases with fixed end value will use SMV 80 e/MWh
for both ESSs. Since the charge value is less than the marginal
cost of the diesel generator, both of the ESSs will only be
charged when there are surplus generation from VRESs. The
discharge value of the battery is less than the diesel generator
marginal cost or the grid purchase price, hence it will displace
diesel generation or import whenever possible. However, the
discharge value of hydrogen is higher. Consequently, it will
only be used to prevent load shedding.

H. Implementation

The proposed method has been implemented in the pro-
gramming language Julia (1.4.2) using the toolbox SDDP.jl
(0.3.14) [39] and Gurobi (9.1) for solving the stage-wise linear
optimization models. The long-term models were trained with
1000 iterations, and the short-term models with 100 iterations.
To simulate the proposed case, 1350 short-term models were
trained and simulated in 4-5 hours while the training time for
12 months of the long-term model was around 1.5 hours on a
laptop with Intel i7-8650U CPU and 16 GB RAM.

I. Case study

Rye microgrid is located in Central Norway near Trondheim
and is partly funded by the Horizon 2020 project REMOTE
[40]. The MG comprises a farm and a few residential houses,
and the electricity is supplied by solar PV panels and a
wind turbine [41]. The turbine height and the reference height
are 30 and 10 meters respectively, and the terrain roughness
factor is set to 0.3 considering the wind turbine is partially
surrounded by forest [42]. There is also a lithium-ion battery
and a hydrogen storage unit with an electrolyzer and a fuel cell
to balance the load and generation. A diesel generator serves
as backup when the VRE generation is persistently low. The
generation capacities are 86 and 135 kW for solar PV and wind
respectively. The import price and diesel generator operating
cost are both 100 e/MWh, while the sale price is 50 e/MWh.
The VOLL is 5000 e/MWh. The numerical values of the ESSs
are presented in Table I. Diesel and wind power generation
capacities in this study have been reduced from the original
system to increase the probability of scarcity. This choice is
made to study the impact of ESS operation strategies in critical
periods of the year where ESSs are needed to prevent load
shedding. Time series for historical observed generation and
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TABLE I
NUMERICAL VALUES FOR MICROGRID ENERGY STORAGE SYSTEMS.

Description Unit Lithium-ion Hydrogen

Charge power [kW] 500 55
Discharge power [kW] 500 100
Size [kWh] 500 3300
Charge efficiency [%] 96 64
Discharge efficiency [%] 96 50
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Fig. 3. Accumulated generation and load (a) and weekly average generation
and load (b) for the entire studied period.

load, and historical weather forecasts can be downloaded from
[43].

The system has sufficient power generation from VRESs in
the long run, as shown in Fig. 3a. However, Fig. 3b shows a
significant weekly variability, especially for the wind power,
that must be balanced with ESSs. For an average daily load
above 20 kW, a fully charged lithium-ion battery can meet
the load for maximum 24 hours, while a full hydrogen tank
can meet the demand for around 80 hours. If the dispatchable
generation capacity is low, sufficient stored energy in the ESSs
is crucial to prevent load shedding. The analysis period is
between 2020-01-01 and 2020-12-09.

J. Quantile regression and transition probability

Generation forecasts for the short-term model are deter-
mined based on meteorological weather forecasts from the
Norwegian Meteorological Institute with a 60-hour foresight
updated every sixth hour. Let ψt+k|t denote the weather
forecast for time t+k issued at time t. The goal is to find a set
of scenarios Ωt+k = f(ωt−i, ψt+k|t, k) given previous obser-
vations and forecast variables. Unfortunately, it is difficult to
include the look-ahead as an explanatory variable in a linear
model as the product of two variables is not allowed. Linear
models will therefore require a separate regression model for
each look-ahead value k [44]. Gradient boosting (GB) is a
machine learning technique that can be used for regression
by forming an ensemble of weak decision trees [45], [46].
Moreover, GB is not limited to linear combinations, hence the
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Fig. 4. Example of wind power percentile forecasts (blue) compared to least
square forecast and observed power for a 60 hours interval. Percentile median
values are used as wind power scenarios for the stochastic optimization. Least
square forecast is used for the deterministic optimization.

look-ahead can be used directly as an explanatory variable.
All training data can therefore be used to fit one model
instead of an individual models for each k. This approach
will therefore be less dependent on having a large training
data set compared to linear regression. The regression has
been performed with MLJ.jl (0.16.2) [47] and ScikitLearn
(0.24.0) [48] with regularization constant 1.0 and interior-point
solver. Deterministic point forecasts are generated using a least
square regressor, while scenarios are generated using quantile
regression.

Let ωαi denote the α quantile of a random variable at node
i, and ω̂i an observed value, then P (ωαi ≥ ω̂i) = α. Moreover,
let E[ωαi ] and E[ω̂i] denote the mean value of the respective
quantiles and the observed values over time. The observed
values at the node i are then in the j’th quantile interval if
E[ω

αj−1

i ] ≤ E[ω̂i] < E[ω
αj

i ] where α = [α0, . . . , αn].
The quantile regression model is trained using historical

weather forecasts as explanatory variables and the actual gen-
eration as the outcome variable. For each historical forecast,
the outcome variable is classified into quantile interval and the
number of transitions between the quantile intervals is counted.
Let the matrix Φ denote the transition counts such that Φij
denotes the number of transitions between quantile interval i
and j, then the resulting transition probability matrix φ is given
by φij =

Φij∑n
k=1 Φik

. The resulting quantile intervals compared
to the point forecast and observed wind power are shown for
a random interval in Fig. 4.

III. RESULTS AND DISCUSSION

A. Long-term strategy

As explained in section II-C, generation from VRESs with
zero marginal cost is always preferred if available, while
the priorities between the dispatchable generation, import,
export and ESS charge and discharge varies and are given by
the SMV. Fig. 5 illustrates the resulting long-term operation
strategy for the ESSs based on the SMVs as a function of both
battery SOC (x-axis) and hydrogen SOC (y-axis). The SMV
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Fig. 5. Long-term model strategy for ESS dispatch based on SMV as a func-
tion of battery and hydrogen SOC for the system with 15kW import/export
capacity in May with intermediate wind speeds (Markov state 3 of 5) for (a)
hydrogen and (b) battery. The storage marginal value in the transition between
the different areas are shown in the legend and the numerical values are shown
in Table I and section II-I.

boundaries are based on the charge/discharge cost derived in
(13) and (14).

Fig. 5 shows that it is optimal to use available import
capacity to charge the ESSs when the SOC is sufficiently
low. For slightly higher SOC, the optimal strategy is to import
instead of using stored energy such that the stored energy is
saved for potential future situations with risk of scarcity. When
the SOC is sufficiently high, the stored energy should be used
to meet the demand instead of import, while when the SOC is
close to maximum, the energy should be exported to prevent
potential generation curtailment.

A similar strategy can be extracted from the short-term
strategy giving even more accurate rules which also considers
the short-term generation and load forecasts. Additionally, this
makes the proposed method suitable for integration towards
real-time systems.

B. Simulation of historical observations

The optimal operation of almost a full year with historical
data is summarized in Table II for three conditions of the
system: high dispatchable capacity (75 kW), low dispatchable
capacity (15 kW) and weakly grid connected system (15 kW
import/export capacity). Each condition has been analysed
with seven different methods. The first method (cases 1,8
and 15) shows the results with perfect foresight which can
be considered as an absolute lower bound of the costs. The
remaining methods are different combinations of short- and
long-term models, where the stochastic model is our proposed
model. The outgoing SOC is shown in Table II, but the value
of it is not included in the costs.

The dispatchable generation capacity of 75kW of the cases
1-7 is always sufficient to meet the peak demand. Therefore,
the load shedding is always zero and the difference in oper-
ating cost between the different methods originates from the
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Fig. 6. Snapshot from case 21 where power is imported due to low SOC
despite of positive net generation.

diesel consumption. The fixed end value (rule-based) of the
cases 2-4 is conservative and prioritizes hydrogen for load
shedding prevention, which results in a poor utilization of VRE
compared to the cut end values from the stochastic long-term
model. By also considering the forecast uncertainty in case 4,
the utilization of VRESs increase considerably. The stochastic
cuts of cases 5-7 adapt the strategy both with respect to SOC,
wind state and time of the day and seasonal variations, and
position the SOC such that surplus generation can be absorbed
efficiently.

Given perfect information (case 8), it is also possible to
fully prevent load shedding with a 15kW diesel generator
through early activation upfront periods with low generation
from VRESs to ensure sufficient energy in the system’s ESSs.
The operating costs are actually slightly less than for case
1 due to lower final hydrogen SOC. The rule-based long-
term strategy (cases 9-11), where only surplus generation from
VRESs is stored, causes significant load shedding. In contrast,
the stochastic long-term model (cases 12-14) almost eliminates
load shedding. A key difference is that the stochastic long-
term model provides a state dependent valuation of the stored
energy, while the rule-based method represents fixed valuation.
Therefore, the stochastic long-term model is very thrifty with
the stored energy when the SOC is low, which is essential to
prevent load shedding. Moreover, the use of weather forecasts
(cases 10-11), and in particular with stochastic modeling (cases
13-14), is important to keep both load shedding and diesel
generation low. Also note that case 12 has a high utilization of
wind and solar compared to 14, but still higher operating costs.
The lack of forecast imposes rapid cycling of the hydrogen
storage resulting in high efficiency losses, while the stochastic
model has less frequent cycling of the hydrogen storage and
less losses.

By replacing the diesel generator with a grid connection
with equal capacity, the surplus generation can be exported
(cases 15-21). The export price is set to half of the import
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TABLE II
SUMMARY OF OPERATING COSTS, LOAD SHEDDING, IMPORT, EXPORT, GENERATION AND FINAL EES SOC FOR ALL CASES AND ALL OPTIMIZATION

METHODS. NUMBERS IN PARENTHESIS SHOWS PERCENTAGE OF VRES THAT HAS BEEN UTILIZED.

[e] Energy [MWh]

Case Short-term
model

Long-term
model Cost Load

shedding Diesel Import Export Wind
generation

Solar
generation

H2 end
SOC

Batt. end
SOC

D
ie

se
l

ca
pa

ci
ty

:
75

kW

1 Perfect - 1957 0.00 19.6 - - 109.0 (57%) 55.8 (78%) 3.30 0.00
2 None Rule-based 2917 0.00 29.2 - - 83.6 (44%) 50.6 (70%) 3.30 0.00
3 Deterministic Rule-based 2988 0.00 29.9 - - 88.6 (47%) 52.6 (73%) 3.29 0.00
4 Stochastic Rule-based 2219 0.00 22.2 - - 102.4 (54%) 58.6 (82%) 0.58 0.00
5 None Stochastic 2341 0.00 23.4 - - 107.6 (57%) 59.8 (83%) 0.00 0.00
6 Deterministic Stochastic 2055 0.00 20.5 - - 108.3 (57%) 59.3 (83%) 0.00 0.00
7 Stochastic Stochastic 1929 0.00 19.3 - - 105.4 (56%) 56.9 (79%) 0.00 0.00

D
ie

se
l

ca
pa

ci
ty

:
15

kW

8 Perfect - 1954 0.00 19.5 - - 108.9 (57%) 55.6 (77%) 3.15 0.00
9 None Rule-based 9267 1.42 21.6 - - 96.0 (51%) 52.3 (73%) 0.10 0.00

10 Deterministic Rule-based 5563 0.61 25.3 - - 95.6 (50%) 53.5 (74%) 1.33 0.00
11 Stochastic Rule-based 3424 0.24 22.2 - - 104.1 (55%) 58.6 (82%) 0.08 0.00
12 None Stochastic 3288 0.00 32.9 - - 107.6 (57%) 61.5 (86%) 1.73 0.13
13 Deterministic Stochastic 2746 0.07 23.9 - - 106.7 (56%) 55.8 (78%) 1.41 0.00
14 Stochastic Stochastic 2354 0.00 23.5 - - 103.0 (54%) 55.3 (77%) 1.99 0.00

Im
po

rt
/e

xp
or

t
ca

pa
ci

ty
:

15
kW

15 Perfect - 632 0.00 - 24.7 36.8 120.2 (63%) 65.2 (91%) 3.15 0.00
16 None Rule-based 8610 1.42 - 21.6 13.1 104.3 (55%) 57.1 (79%) 0.10 0.00
17 Deterministic Rule-based 4023 0.54 - 26.0 25.2 107.1 (56%) 61.7 (86%) 1.33 0.00
18 Stochastic Rule-based 2260 0.27 - 26.5 34.5 117.8 (62%) 64.8 (90%) 0.10 0.00
19 None Stochastic 3302 0.11 - 41.9 28.5 115.5 (61%) 64.1 (89%) 1.63 0.13
20 Deterministic Stochastic 1918 0.13 - 28.6 32.3 117.5 (62%) 64.8 (90%) 1.13 0.00
21 Stochastic Stochastic 1185 0.00 - 28.2 32.9 117.8 (62%) 64.8 (90%) 2.05 0.00
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Fig. 7. Comparison of hydrogen SOC for rule-based (case 18) and stochastic
long-term model (case 21) with stochastic short-term model through the entire
optimization period for the weakly grid connected system.

price, for example due to grid tariffs. The trends are similar
to previous cases (8-14), but the differences are even more
pronounced. The stochastic short-term models (cases 18 and
21) have both the lowest load shedding and the highest export
compared to the equivalent deterministic and no-forecast short-
term models. Cases 19 and 21 also have higher outgoing SOC
than the corresponding fixed end value cases (16 and 18)
making them better prepared to prevent future scarcity.

The snapshot from case 21 in Fig. 6 shows positive import
although the net generation (generation from VRESs minus
demand) is positive. If the SOC is sufficiently low, it is
important to increase the SOC to prevent potential future load
shedding. This is also reflected by the brightest area in the
long-term strategy shown in Fig. 5.

Fig. 7 shows how the stochastic long-term strategy adapts
to seasonal variations compared to the rule-based method. The
risk of scarcity is higher through the winter due to higher load
and increased probability of sustained low generation from

wind compared to solar power. Therefore, the SOC is higher
in the beginning and the end of the year for the stochastic long-
term model compared to the rule-based long-term model. The
stochastic long-term model also permits lower SOC through
the summer to enable buffering surplus generation.

Although the results originate from a small-scale power
system, they are also relevant to large-scale power systems. To
reach net zero emissions towards 2050, 63% of the energy will
originate from VRESs with 74% of the total generation capac-
ity [49]. The high share of variable and uncertain generation
makes prevention of scarcity and extreme prices increasingly
important. The stored hydro-dominated Nordic power system
which has been operated as a competitive market where the
price has been influenced by the risk of scarcity since the early
1990s [50] shows that this is a feasible direction.

IV. CONCLUSIONS

The work presented in this paper shows the importance of
accounting for uncertainty in power systems when more of
the dispatchable generation capacity in autonomous systems
is replaced by VRESs and ESSs. The proposed multi-stage
stochastic programming model has demonstrated a reduction
in the operational costs associated with import, export and
thermal generation while at the same time increasing the
security of supply for the presented isolated microgrid com-
pared to a deterministic point-forecast model and a no-forecast
model. The results show a 70% cost reduction when using the
stochastic model compared to a deterministic point-forecast
model with fixed storage end value for the weakly grid con-
nected system, where 95% of the improvement originates from
reduction in load shedding. The model is also able to export
excess energy while keeping the risk of load shedding low.
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The benefits of the proposed model were most significant for
weakly connected systems and systems with low dispatchable
generation capacity.

Managing generation and load uncertainty is particularly
important in MGs where stored energy is the limiting factor
rather than installed capacity. Realistic and robust scheduling
models are a key component in the efficient and secure
operation of systems with a high share of VRESs and ESSs.

A. Future work

Possible steps towards a more applicable model could be
to add more details such as: generation cost curves and
efficiency as a function of charge/discharge for ESSs, ESS
degradation costs, start/stop costs for generators and ESSs, as
well as power flow equations. The proposed improvements will
impose new challenges with respect to convexity which can
be handled both with convex relaxations and integer variables,
and by using stochastic dual dynamic integer programming as
solution method [51].

Although SDDP is capable of handling several hundred state
variables [52], the use of discrete Markov states to represent
uncertainty has clear limitations with respect to dimensionality.
Moreover, adding new types of random variables, such as
new generation or demand, increases the number of scenarios
rapidly. Therefore, random variables must be chosen carefully
and can be managed with principal component analysis to
reduce the dimensionality, and by using a linear model for-
mulation of the random variables to enable the method to also
scale up for larger systems.
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Magnus Korpås received his Ph.D. degree from the
Norwegian University of Science and Technology
(NTNU), Norway, in 2004 on the topic of opti-
mizing the use of energy storage for distributed
wind energy in the power market. He is currently
working as Professor at the Department of Electric
Power Engineering, NTNU, where he also leads the
Electricity Markets and Energy System Planning re-
search group. He is a leader and active participant in
several large energy research projects at national and
European levels. He is a former Research Director of

the Department of Energy Systems at SINTEF Energy Research, Norway. He
was a visiting researcher in the MIT Laboratory for Information & Decision
Systems (LIDS) in 2018-2019. He is also the leader of the scientific committee
and the leader of the work package on flexible resources in the power system
in the Centre for Intelligent Electricity Distribution (CINELDI).

Michael M Belsnes has a M.Sc. from Techni-
cal University of Denmark 1995 and received his
PhD degree from NTNU in 2008 on the topic
”Optimal Utilization of the Norwegian Hydropower
System”. In SINTEF Energy Research where he
was employed from 1995, he has worked with
power system modelling and hydropower scheduling
both as researcher and research manager. He is
currently managing development and deployment of
the scheduling tools deployed by: power producers,
the Norwegian regulator, and Nordic TSOs. He is

active as sub-program manager in EERA JP HydroPower and JP e3s.

Olav B Fosso is Professor at the Department of
Electric Power Engineering of the Norwegian Uni-
versity of Science and Technology (NTNU). He has
previously held positions as Scientific Advisor and
Senior Research Scientist at SINTEF Energy Re-
search, and Director of NTNUs Strategic Thematic
Area Energy from September 2014 - September
2016. He has been Chairman of CIGRE SC C5
Electricity Markets and Regulation and Member of
CIGRE Technical Committee (2008 – 2014). He
has been expert evaluator in Horizon2020 and in a

number of science foundation internationally. His research activities involve
hydro scheduling, market integration of intermittent generation and signal
analysis for study of power system’s dynamics and stability.

This is the accepted version of an article published in IEEE Transactions on Sustainable Energy 
https://doi.org/10.1109/TSTE.2022.3156069

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 




