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With the recent developments in machine learning and modern graphics processing units
(GPUs), there is a marked shift in the way intra-operative ultrasound (iUS) images can be
processed and presented during surgery. Real-time processing of images to highlight
important anatomical structures combined with in-situ display, has the potential to greatly
facilitate the acquisition and interpretation of iUS images when guiding an operation. In
order to take full advantage of the recent advances in machine learning, large amounts of
high-quality annotated training data are necessary to develop and validate the algorithms.
To ensure efficient collection of a sufficient number of patient images and external validity
of the models, training data should be collected at several centers by different
neurosurgeons, and stored in a standard format directly compatible with the most
commonly used machine learning toolkits and libraries. In this paper, we argue that
such effort to collect and organize large-scale multi-center datasets should be based on
common open source software and databases. We first describe the development of
existing open-source ultrasound based neuronavigation systems and how these systems
have contributed to enhanced neurosurgical guidance over the last 15 years. We review
the impact of the large number of projects worldwide that have benefited from the publicly
available datasets “Brain Images of Tumors for Evaluation” (BITE) and “Retrospective
evaluation of Cerebral Tumors” (RESECT) that include MR and US data from brain tumor
cases. We also describe the need for continuous data collection and how this effort can be
organized through the use of a well-adapted and user-friendly open-source software
platform that integrates both continually improved guidance and automated data
collection functionalities.
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INTRODUCTION

Ultrasound (US) is the most affordable and least invasive modality
for intra-operative imaging of the brain. It is portable, flexible and
provides real time imaging whenever needed during the
procedure. The progress of surgery can therefore be closely
monitored without major delays or interruptions in the
workflow. When combined with neuronavigation, US images
can be acquired directly in the patient’s frame of reference and
are therefore independent of any image-to-patient registration.
Consequently, the most recently acquired US images provide the
most accurate and up-to-date information about the patient’s
anatomy at any given time (1. Despite these advantages, US-
guided neurosurgery is still not widely adopted in routine clinical
practice. The availability of fully integrated US solutions for
neuronavigation systems remains limited. Only a few specialized
centers can afford costly extensions to their navigation systems
such as BrainLab™’s US navigation module 1, and these solutions
only provide a simple display of live US images in the context of
preoperative scans. All other neurosurgeons who use US imaging
must rely on real-time 2D US displayed on the monitor of the
scanner, separate from the neuronavigation system, which makes
it difficult to map the information on the scans back to the patient.
Furthermore, US images present unfamiliar contrast, noise, and
artefacts, which further limits its clinical usefulness.

To address these limitations, more research is needed on the
processing, visualization, and integration of US images with
existing navigation systems. To fuel the next wave of research
on those topics, large amounts of data gathered from real surgical
cases is needed. Over the past 15 years, our respective research
groups have developed world leading expertise in the acquisition,
processing and display of intra-operative ultrasound (iUS) data
through the development of open source software platforms
CustusX (2) and Ibis Neuronav (3). Despite the availability
of such platforms, the efforts to collect and distribute the
resulting data have remained limited to one center. However,
recent efforts from the open source community have enabled the
standardization of interfaces between research software and
proprietary medical equipment installed in different centers
[e.g. the Plus Toolkit (4)], and the interoperability between
existing software platforms for the acquisition and processing of US
images (e.g., IGSIO2). These recent developments open the possibility
for multi-center efforts for large-scale data collection. Such efforts
would provide researchers with the quantity and variability of
ultrasound data required for the technical developments needed for
ultrasound to become a truly widespread and useful tool
in neurosurgery.

In this paper, we describe the development of existing open-
source ultrasound based neuronavigation systems and how these
systems have contributed to enhanced neurosurgical guidance
over the last 15 years. We also review the impact of the large
number of projects worldwide that have benefited from the
existing publicly available datasets “Brain Images of Tumors
1https://www.brainlab.com/surgery-products/overview-neurosurgery-products/
intraoperative-ultrasound/
2https://github.com/IGSIO
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for Evaluation” BITE (5) and “Retrospective evaluation of
Cerebral Tumors” (RESECT) (6) that include MR and US data
from brain tumor cases. Finally, we describe the increasing need
for collecting large amounts of data to meet the requirements of
recently developed machine learning algorithms, the possible
organization of data collection through the use of an open-source
software platform and the potential for new developments in
ultrasound guided neurosurgery.
MATERIALS AND METHODS

In this section, we describe existing open source systems and
how, together with the public datasets they have helped to
acquire, these systems have contributed to the advancement of
iUS-based navigation in neurosurgery.

Existing Systems
Commercial image-guided neurosurgery (IGNS) systems such as
Medtronics™, BrainLab™, Stryker™, Synaptive™, and others
are widely used for surgical planning and guidance worldwide.
These systems are built for routine clinical use and their user
interfaces are designed for easy use by surgeons and clinical staff.
However, these systems are largely closed and are not built for
systematic data collection for research purposes. In general, the
mechanism provided to export data gathered during an
operation is restricted to a certain portion of the information
available and can only be done after the end of the procedure. In
some cases, a software development kit allows for third parties to
develop application that can capture real-time data such as 3D
pose of certain tracked surgical tools using a separate computer
(e.g., Medtronic’s StealthLink™ or BrainLab™’s support for
OpenIGTLink). However, these development kits are either
costly or require specific research agreements between the
hospital and the manufacturer, and their interfaces tend to
change frequently, which is likely to disrupt long-term or
multi-center research projects.

To address the limitations of the commercial systems, our
respective research groups have developed world leading
expertise in the acquisition of various types of intraoperative
data through the development of open source software
platforms. The two systems, Ibis Neuronav, developed by the
Montreal group, and CustusX developed by the Trondheim
group are described in the following sections.

Ibis Neuronav
Ibis neuronav (3) is an open source surgical navigation platform
originally developed at the Montreal Neurological Institute (MNI)
in Canada. The platform provides all the basic functionality
common to most commercial systems mentioned above. It can
visualize a wide variety of 3D brain scans in the operating room
(OR) and register the patient with the scans in order to display the
location of tracked surgical tools in relation to the images
displayed on a computer screen. The goal of the platform is to
enable research projects that aim to improve upon existing
commercial systems by providing an open implementation that
February 2021 | Volume 10 | Article 619274
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can easily be modified and extended. The platform enables the
validation of novel visualization, image processing and human-
computer interaction methods in the OR and can be run in
parallel with state of the art commercial solutions to enable
comparison. Over the years, the Ibis system has been used for a
variety of clinical applications such as brain tumor resection,
neurovascular interventions (7), spine surgery (8), electrode
implantation for deep brain stimulation (9), and the
monitoring of epilepsy (10). However, the most notable
contributions of the platform come from its ability to correct
for brain shift based on intraoperative US imaging (11, 12) and
its augmented reality visualization functionality (3). The system
is able to capture and display images from a tracked US probe. It
can acquire a sequence of such images and automatically
reconstruct a volume from the individual slices. The computed
US volume can then be used to compensate for mis-registration
and tissue deformation by registering preoperative scans to the
acquired US volume. The validation process for the brain shift
correction functionality involved acquisition of tracked US
sequences during a large number of neurosurgical procedures.
Following these acquisitions, it rapidly became clear that the
acquired US images together with other corresponding patient
scans would be of interest for a wider community of medical
image processing researchers, most of whom do not have access
to neurosurgical operating rooms. The acquired data sets were
thus made publicly available as the “Online database of clinical
MR and ultrasound images of brain tumors” (BITE). We will
describe this database in a later section. Figure 1A) shows an
example of the main interface of Ibis Neuronav where the MR
volume, iUS volume and iUS slices for one of the cases in the
BITE database was loaded.

CustusX
The CustusX platform (2) in its current form was initiated in
2007 as the software platform for the Norwegian National
Advisory Unit for Ultrasound and Image-Guided Therapy
(USIGT)3. The platform is built on a number of open source
libraries and toolkits and includes all the key components of a
surgical navigation system. The system includes many of the
same functionalities as Ibis Neuronav such as visualization of
pre-operative MR/CT images in 2D and 3D, image-to-patient
registration with various methods, tracking of ultrasound
probes and surgical instruments, acquisition of 2D freehand
ultrasound images, reconstruction of 3D ultrasound volumes
and rigid MR-to-US registration for correction of brain shift.
The main focus of the development has been intra-operative
ultrasound imaging in different neurosurgical applications such
as of brain tumor resection and neurovascular procedures
procedures (13–15). The platform is also used in other
clinical areas such as broncoscopy (16, 17), vascular surgery
(18), and laparascopic surgery (19). Figure 1B shows how
CustusX is being used in the OR for iUS-based navigation
and Figure 1C presents an overview of the main interface
during an iUS acquisition session.
3https://usigt.org
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Other Systems
A wide variety of open source guidance systems have been
proposed over the years. Although several of them included
some form of support for iUS, it has not been their main focus.
These systems include 3D Slicer (20) and MITK (21). 3DSlicer,
initiated and mainly developed by the Surgical Planning
Laboratory (SPL) at Brigham and Women’s Hospital and
Harvard Medical School in Boston, USA, is an open source
software system for medical image processing and visualization.
In recent years, 3DSlicer has been enhanced to support
intraoperative navigation, ultrasound acquisition and advanced
visualization (22). 3DSlicer is largely built on the same low-level
libraries as Ibis and CustusX but has the additional advantage of
being supported by a large and active community of developers
and users worldwide. Although 3D Slicer has been used in
various research prototypes of guidance systems based on US
imaging, the setup of such systems from the distributed software
components remains technically very challenging and the
interface is not appropriate for use by clinicians. An important
aspect to note however is that the SlicerIGT extension provides a
mechanism to replace the user interface, enabling the creation of
custom applications for specific clinical contexts and more
appropriate for their use by clinicians.

The Medical Imaging Interaction Toolkit (MITK) (21, 23) is
developed and maintained by the German Cancer Research
Center (DKFZ) in Heidelberg, Germany. The platform was
initiated more than 15 years ago as an open-source solution
for image analysis, treatment planning and intervention support.
The system has also been enhanced with support for real time
ultrasound imaging (24). MITK has been used in applications
such as robot-assisted ultrasound-guided radiation therapy (25)
but not for ultrasound guided neurosurgery.

Comparison of Existing Systems
Amongst the existing open source systems, we can distinguish
two categories. Both Ibis Neuronav and CustusX are built
specifically to be used as intraoperative navigation systems and
are designed with a focus on iUS-based navigation, while 3D
Slicer and MITK are general purpose imaging platforms that can
be customized as navigation systems by installing extensions
and/or modifying configuration scripts. Although the interfaces
of Ibis and CustusX are designed by engineers and for engineers,
they are simple enough to envision training clinicians to use
them without technical assistance, but it is not the ideal scenario
for a multi-center research projects. On the other hand, both 3D
Slicer and MITK allow developers to completely overwrite the
default user interface, which opens the possibility of developing a
simplified, clinician-centered interface specialized for iUS-based
navigation and intraoperative data acquisition. In the case of 3D
Slicer, the interface can be overwritten with a simple Python
script, which can greatly ease the development process. One
important aspect to consider in choosing an open source system
is the level of activity in the community of developers and users.
On this aspect, 3D Slicer has the most active community by far,
even though its developers spread their efforts over a much larger
number of features. Table 1 summarizes the differences between
existing systems.
February 2021 | Volume 10 | Article 619274
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Existing Databases
MNI BITE
The “Brain Images of Tumors for Evaluation” (BITE) database
(5) is a publicly available dataset composed of MR and iUS
images captured during 14 surgical procedures to remove
brain tumors.

4

All patients were operated at the Montreal Neurological
Institute (MNI) by two different surgeons, and the iUS data
was acquired using the IBIS Neuronav system described above.
All patients presented with gliomas of varying grades. For each of
the cases, the database contains a preoperative MR, multiple
sequences of iUS and a postoperative MR. Here is a detailed
description of the images:

• Preoperative scans: T1 weighted gadolinium-enhanced MR
images acquired at 1.5T, with 1 mm slice thickness and a 0.5
mm in-plane resolution, except for one case that was acquired
at 3T, with 1 mm slice thickness and 1 mm in-plane
resolution.

• Postoperative scans: T1 weighted gadolinium-enhanced MR
images acquired at 1.5T with 0.5 mm in-plane resolution, but
have varying slice thicknesses (between 1 and 5 mm).
4The BITE database is avilable at http://nist.mni.mcgill.ca/?page id= 672
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• iUS sequences: US images acquired from a Philips HDI 5000
scanner by capturing the analog video output. A P7-4MHz
phased array transducer was used and set for a scanning depth of
6.5 or 8 cm, depending on the size and location of the tumor.
The probe was tracked in 3D using an NDI Polaris optical
tracking system. Each of the acquisitions consists of an
approximately linear sweeps of 200–600 frames where the
probe is moved at approximately 3 mm/s. In addition to the
images themselves, the database contains a rigid transform
obtained from the tracking system for every image. Each
patient has multiple US sweeps and all of them, except for
one, have sweeps pre- and post resection.

In addition to the raw data described above, the database contains
the following processed/manually specified data for each case:

• A set of 10 homologous landmarks identified by a neuroradiologist
that maps one pair of pre and post resection sweeps

• A US volume obtained by concatenating all the slices from a
single iUS sweep.

• A set of between 19 and 37 homologous landmarks that maps
preoperative MR and pre-resection US.

• The patient to preoperative MR transform obtained by
aligning a set of homologous points identified on the scans
prior to the operation and acquired on the patient using a
tracked pointer during the operation.
FIGURE 1 | (A) The main interface of Ibis Neuronav where a case from the BITE databased was loaded, (B) iUS-based navigation in the OR using the CustusX
system. (C) The main interface of CustusX during the acquisition of a US image sequence.
TABLE 1 | Comparison of features provided by different open source navigation platforms in regard of acquisition, rendering and navigation using US imaging (NT, Non-trivial).

Feature CustusX IBIS Slicer MITK

Configurable 2D/3D graphic window layout Yes No Yes Yes
Comprenhensive 3D Transforms system Yes Yes Yes Yes
Overwrite user interface No No Yes Yes
2D Slice rendering Yes Yes Yes Yes
3D Surface rendering Yes Yes Yes Yes
Volume Rendering Yes Yes Yes Yes
Augmented Reality No Yes No No
US capture Yes Yes NT NT
3D Display of US slice Yes Yes NT NT
US Volume Reconstruction Yes Yes (GPU) No No
Linear MR-US or CT-US registration Yes Yes (GPU) NT NT
US probe calibration NT Yes No No
3D tools tracking Yes Yes NT NT
February
 2021 | Volume 10 | Article 6
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Following the success of the BITE database, 25 more tumor
cases were acquired to form the basis for a second version of the
database. An initial set of 9 cases have already been released and
described in (26). The new version of the database contains
essentially the same information as the first version and has
been complemented with preoperative FLAIR and T2 weighted
MR scans when available. In addition to the various sets of
homologous landmarks that can be used as ground truth for the
registration of the different imaging modalities, the new version of
the database contains a segmentation of the tumor based on all
preoperative modalities available, namely the T2 tumor
hyperintensities (edema), the enhancing tumor core and the
non-enhancing tumor core. The complete database comprising
all 25 cases is in preparation and will be released shortly.

RESECT
The “Retrospective evaluation of Cerebral Tumors” (RESECT)
database (6) consists of MR and ultrasound images of 23 low
grade gliomas that have been resected at St. Olavs University
Hospital, Trondheim, Norway by one neurosurgeon. 5The
database includes pre-operative contrast enhanced T1-weighted
images, pre-operative FLAIR images and 3D ultrasound images
acquired before, during and after tumor resection. More
specifically, the database contains:

• Preoperative MR images: T1 weighted gadolinium (Gd)-
enhanced and fluid attenuated inversion recovery (FLAIR)
MR images acquired at 3T, both with 1 mm isotropic voxel
size. For three patients, pre-operative images were acquired at
1.5T with a slice thickness of 1 mm and a 0.5 mm in-plane
resolution for the Gd-enhanced T1 images and 1mm isotropic
voxel size for the FLAIR images. The MR images include the
patient registration transform.

• Intra-operative US images: US images acquired using the
Sonowand Invite neuronavigation system (Sonowand AS,
Trondheim, Norway) which includes a digitally integrated
ultrasound scanner. A 12FLA-L linear transducer with a
frequency range of 6–12 MHz was used. Depth and gain
were adjusted depending on the size and location of the
tumor. The probe was tracked in 3D using the NDI Polaris
optical tracking system integrated in the Sonowand Invite
system. The raw ultrasound data were reconstructed into 3D
volumes using the reconstruction method included in the
Sonowand Invite system. For all patients, the database
includes one ultrasound volume acquired before resection
(after opening of the dura), one ultrasound volume acquired
during the resection and one ultrasound volume acquired
after the resection.

In addition to the images, the database contains for
each patient:

• Two sets of between 10 and 34 landmarks mapping the first
(before resection) ultrasound volume and the second (during
resection) and third (after resection) ultrasound volumes.
5The RESECT database is available at https://archive.norstore.no
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• Two sets of between 12 and 16 homologous landmarks
mapping the pre-operative FLAIR volume to the first
(before resection) ultrasound volume or the third (after
resection) ultrasound volume.

The database does not contain any post-operative data
or segmentations.
RESULTS—IMPACT OF EXISTING
DATABASES BITE AND RESECT

Together, the BITE and RESECT databases have been downloaded
more than 1,000 times and have enabled the publication of more
than 110 (number of citations as of Oct 2020) research articles,
which illustrates the need and interest from the research
community. Most of theses articles concerned the development
and evaluation of registration algorithms for correction of brain
shift, which is in line with the initial intended use. The public
availability of the databases has enabled the development of
alternative approaches to brain shift correction by groups with
different expertise. The availability of BITE and RESECT has also
enabled research on previously unforeseen applications.

MR-US and US-US Registration
The main purpose of the RESECT and BITE database was to
provide a public dataset with real clinical data for evaluation of
MR-US and US-US registration algorithms for correction of
brain shift. These methods include the use of different similarity
metrics (27–33), segmentation-based registration (34), and deep
learning (35–37). So far, the conventional registration methods
using similarity metrics well adapted to ultrasound images have
proven to be the most successful (38). The work of Machado
et al. (32) is particularly interesting in the way it focuses on
robustness, and not only accuracy, of the registration and
validate their results on BITE and RESECT in addition to
MIBS, a proprietary database from Brigham and Women’s
Hospital. The article highlights the need for larger publicly
available datasets collected from different centers as robustness
is key to the adoption of iUS-based correction of brain shift in the
standard of care.

As the databases do not contain any segmentations of tumors
or other structures, segmentation-based approaches require the
authors to perform their own segmentations to obtain a ground
truth. This is challenging and time consuming, and limits the
development of such methods. Several groups have tested deep
learning approaches. However, the databases only contains data
from 46 patients, which is probably insufficient for these
methods to perform well and presents a high risk of
overfitting. The RESECT database has also enabled the
organization of registration challenges (CuRIOUS 2018 and
2019, Learn2Reg 2020) in conjunction with the International
Conference on Medical Image Computing and Computer
Assisted Interventions (MICCAI) where a number of different
approaches have been benchmarked. The methods and results
from the CuRIOUS 2018 challenge are summarized in (38).
February 2021 | Volume 10 | Article 619274
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The provided images have also been used together with other
available databases for evaluation of registration metrics. Luo
et al. analyzed the validity and distribution of landmark points
provided with both RESECT and BITE (39). The paper
highlights the need for a mechanism that allows users of such
databases to contribute back improved data generated by users,
in this case an improved version of landmark positions for points
with a potentially high fiducial localization error (FLE).

Segmentation
One of the most promising avenues to facilitate the
interpretation of iUS images is to automatically segment
anatomical structures to enhance the visualized image with
annotations. Several projects have used the data in BITE and
RESECT to develop and validate segmentation methods for
different structures. Canalini et al. used data from both
databases to segment sulci and falx cerebri in US volumes
using a convolutional neural network (CNN) (34). The
segmented structures were then used to register together
multiple US acquisitions at different stage of the resection
and study the evolution of the procedure. It is interesting to
note that for this paper, a manual segmentation of the sulci and
falx cerebri has been performed using a custom tool built
into the MevisLab platform6. Unfortunately, the current
distribution systems for BITE and RESECT do not include
functionality to contribute back this kind of annotation, which
might be useful for other research groups. In many situations, it
is important for a surgeon to determine the location of the
boundary between gray and white matter. In Demiray et al.,
(40), authors use a CNN to perform the segmentation of gray
and white matter from the 3D iUS images of the RESECT
database. Given the difficulty for a clinician to manually
segment those structures from iUS images alone, a ground
truth segmentation was obtained automatically from the co-
registered MR images distributed with RESECT. Another
structure that has been segmented from the RESECT data is
the resection cavity. This information can not only facilitate
modeling of tissue deformation during surgery, but it can also
help to identify residual tumor tissue that needs to be resected
in order to prevent the recurrence of a tumor. Carton et al. used
both BITE and RESECT to train a U-NET based model to
perform surgical resection cavity segmentation in US images
(41). For their work, they produced a manual segmentation of
the resection cavity in US images. Again, this sort of annotation
of the data could be beneficial to many other research teams if
it could be contributed back to the databases. A more difficult,
but very important problem in US image processing is that
of segmenting brain tumors. This type of tissue can have a
variety appearance depending on tumor type. Golb and al.
used the RESECT database to develop and validate a tumor
segmentation method based on US images (42). Maani et al.
use the MR images from the BITE database to validate their
tissue classification method based on volumetric texture
analysis (43).
6https://www.mevislab.de/
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Other Applications
The availability of the open databases has also enabled research
in other areas related to US guided neurosurgery. One example is
the work of Sagheer et al. (44) who used the BITE database to
validate their US image denoising algorithm. Other examples
include a US probe calibration method (45) where the authors
used the BITE database in the validation process, simulation of
2D US from 3D MR (46) and sorting of DICOM images (47).
Open image databases such as BITE and RESECT can also be
used for more clinically oriented research. Petrecca et al. (48)
used images from BITE to analyze the patterns of recurrence
of glioblastomas.
DISCUSSION

In the previous sections, we have demonstrated that the public
availability of US image databases such as BITE and RESECT has
had an impact far beyond the initial intended purpose of the data
collection process. Despite the relatively limited number of cases
released in the databases, their availability has enabled significant
progress in the development of algorithms that increase the
usefulness and accuracy of iUS-based neuronavigation. First and
foremost, a wide variety of MR-US registration algorithms have
been proposed to compensate for brain shift and restore navigation
accuracy at any moment during an operation. The databases have
also enabled early successes in the development of multiple US
image segmentation algorithms and a variety of other algorithms
that are key to increasing the usefulness of US imaging in
neurosurgery. In this section, we review the limitations of existing
data sets, we show the importance of open source software to
accelerate and standardize the acquisition process and we lay out a
plan for the next generation of publicly available US imaging data.

Current Limitations and Future
Needs for Technical Development
and Data Collection
Registration
Despite the great advances in the iUS-based correction of brain
shift we have seen with the previous generation of databases, the
technology has yet to be adopted in commercial navigation
systems and to be used as the standard of care. As a result,
surgeons tend to simply stop relying on navigation systems once
tissues have moved and deformed beyond a certain threshold.
One of the reasons for this slow adoption by the major
commercial systems is the lack of scientific evidence on the
robustness of existing registration algorithms. Several questions
remain as to the quantity, quality and acquisition protocol that
will guarantee a stable and accurate correction of brain shift in
every case. To be able to validate the robustness of MR-iUS
registration algorithms, future data collection efforts will need to
include a much larger number of patients from several centers
and clinicians with different levels of training. Such data sets will
not only enable the validation of the robustness of registration
algorithms but will also allow for the development of iUS image
acquisition guides that will help ensure that the quality and
February 2021 | Volume 10 | Article 619274
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quantity of data is sufficient to result in a stable registration
every time.

Segmentation
With the recent developments in machine learning, we have
started to see some progress in the area of segmentation of US
images, a problem that was previously considered notoriously
difficult. Segmented structures can be used to either improve
image registration and further correct for brain shift, or improve
visualization by highlighting different structures in real-time. For
deep learning methods to perform well, large amounts of data are
needed for training and testing. The number of cases needed
depends on the difficulty of the segmentation problem (the image
contrast between the structure to be segmented and its
surroundings), the morphological variability of the structure to
be segmented and the required accuracy. The training dataset
needs to cover the full spectrum of anatomical and pathological
variability in addition to differences due to scanners type,
settings, and operators. Examples of segmentation of US using
deep learning in other clinical areas are 1) Smistad et al. (49),
where the authors segmented nerves for guiding regional
anesthesia using data from 49 subjects and, 2) Anas et al. (50)
where they segmented the prostate for targeted biopsies using
data from 18 patients. These and other studies show promising
results, but the number of included subjects is still limited. It is
unlikely that the variability is fully covered, and the external
validity of the results might therefore be limited. So far, there are
no studies on the amount of ultrasound data required to detect or
segment brain structures using deep learning methods. However,
a study of deep learning for automatic segmentation in
echocardiography suggests that 2D ultrasound images from
250 patients are needed for accurate segmentation of the left
ventricle of the heart (51). As part of this study, a dataset with
images from 500 patients, including expert annotations, was
made publicly available (CAMUS data set) and it is now widely
used for deep learning in the field of echocardiography (55
citations since 2019 as of Oct 2020). Even in cases with poor
image quality in echocardiography, the image contrast is higher
than in many ultrasound images of brain tumors. For
segmentation of brain tumors, where contrast might be low
and high accuracy is needed, it is reasonable to expect that at
least a comparable number of cases is needed. For other relevant
brain structures such as the lateral ventricles, the sulci and the
falx that usually have higher contrast, fewer cases might be
needed. These structures are important landmarks for the
neurosurgeons, and automatic delineation would greatly ease
the interpretation of the ultrasound images and thus address one
of the main hurdles for widespread use of ultrasound in
neurosurgery. However, as ultrasound images do not typically
cover the entire brain, not all patient datasets will contain
information about all structures. To collect several hundred
data sets from brain tumor patients, multi-center data
collection is the only possible way forward.

Visualization
One of the usability problems of iUS most often reported by
neurosurgeons is the difficulty to simultaneously acquire and
Frontiers in Oncology | www.frontiersin.org 7
visualize the images. When imaging other parts of the anatomy
such as abdominal organs, experienced ultrasonographers
typically look at the screen of the scanner to locate the
anatomy of interest and rely mostly on their sense of
proprioception to physically position the US probe on the skin
of the patient and maintain the appropriate amount of pressure.
Imaging the brain is different because acquisition has to be
performed on the very limited surface of the dura or cerebral
cortex exposed by a craniotomy and almost no pressure can be
applied to the delicate tissues of the brain. Thus, the surgeon’s
attention has to remain on the surgical field at all time, which
results in an acquisition being performed without visual feedback
first, and then visualized. This can force a surgeon to perform
multiple cycles of acquisition and visualization to obtain the
desired information. Several groups have proposed the use of
augmented reality (AR) to solve this problem. The technology of
AR enables the display of US images in-situ, allowing
neurosurgeons to visualize the images being acquired while
maintaining their attention on the surface of the operating
field. So far, most of the research on neurosurgical AR has
focused on the integration of hardware and software
components required to accurately overlay virtual content such
as US images, with a live view of the operating field. However,
one of the main obstacles to the adoption of AR remain the
various depth perception problems generated by the live mix of
real and virtual content. In order to accelerate research on
neurosurgical AR and in particular on live in-situ display of
iUS images, a future intraoperative image database should
include live video of the operating field allowing researchers
working on the improvement of AR rendering techniques to
evaluate their method on realistic models of the operating field.
Images can be captured from a variety of sensors. For example,
the Ibis Neuronav system includes a built-in module to produce
AR images from a surgical microscope that has the ability to
record live images (3). An extension of Ibis called MARIN adds
similar capabilities to produce AR image from a tablet
computer (52).

Interrelationship of Software and Data
The development of the Ibis Neuronav system and the following
acquisition of the BITE dataset exemplify the interrelationship
between software and data and the value of an open source
surgical navigation system in the data acquisition process and in
the advancement of iUS based surgical navigation. The version of
the Ibis system used to acquire iUS images for the BITE database
included only rudimentary functionality to reconstruct a 3D
volume for 2D iUS slices, a process which took on average 10
min (5). Similarly, Ibis implemented a well-established method
to linearly register an iUS volume with preoperative MR scans
(53) to correct for brain shift, which also ran in approximately 10
min. Overall, the process of correcting for the patient-to-image
misregistration took on average 20 min once the surgeon had
finished a US image sweep. Given such delays, it was difficult to
convince clinicians of the benefits of the method. It also made the
data acquisition process error prone as once the reconstruction
and registration process finished, it was already too late to
perform a second acquisition if it turned out the first one did
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not contain enough information to obtain a reliable registration.
The release of the first BITE database stimulated the research on
registration algorithms that were more appropriate for MR-US
registration. One of the most robust methods proposed was
based on the alignment of image gradient (33) and provided a
GPU implementation that authors agreed to contribute to the
source code of Ibis as an extension of the platform, together with
a GPU implementation of iUS volume reconstruction. The new
volume registration algorithm ran in under 5 s, while MR-iUS
registration took under 1 s (3). The improved system generated
much more interest on the part of the clinicians as they were able
to appreciate the results of the registration correction algorithm
as soon as they finished acquisition. It also provided instant
feedback on the quality of the acquisition, allowing them to
improve faster on their acquisition skills, resulting in an
increased pace of data acquisition. As a result, a second version
of the BITE database (soon to be released), containing double the
number of cases of the first one (25), has been acquired in a
shorter time frame.

Similarly, a GPU implementation of a MR-iUS registration
algorithm (54) was integrated into CustusX and validated intra-
operatively in a series of 13 brain tumor cases (14). This method
provided registration results within a few seconds and ran
seamlessly within the CustusX software.

While research platforms such as Ibis and CustusX have been
useful and successful in a large number of research projects, they
might not be suitable for a large scale data collection effort. The
systems have clearly improved over the years, but they are still
highly complex. The use of these systems requires the presence of a
dedicated technical researcher in the operating room during every
single procedure in order to ensure the correct functioning of the
system. The complexity of their numerous options and
configurations combined with a sub-optimal user interfaces
makes these systems unsuited for clinical users, and thus
unsuited for efficient collection of high volumes of intra-
operative data from hundreds and possibly thousands of patients.

Requirements and Architecture for the
Software and Database of the Future
In order to efficiently collect a large number of patient cases, a
simplified software solution better adapted to brain tumor
surgery is required. The software needs to include all the basic
components of a neuronavigation system like Ibis and CustusX,
but the user-interface should be redesigned and adapted with
clinical users in mind. This means a highly intuitive interface
with only the essential components, fewer buttons, menus, and
configurations than the existing systems.

The user-interface should be designed to provide the right
information at the right time and to fit into the clinical workflow
in neurosurgery. The system should be adapted to run in parallel
with commercial navigation systems without imposing additional
preparation or manipulation by the surgeon. More specifically, the
following steps should be performed simultaneously for
both systems:

• Calibration of tools such as navigation pointer and ultrasound
probe
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• Pre-operative image-to-patient registration
• Ultrasound acquisition (when available in commercial

systems)
• Pointer-based navigation

In addition to replicating the functionality of the commercial
systems, the proposed platform should provide a fast mechanism
to reconstruct a 3D volume from a sequence of iUS images and
register preoperative scans to the reconstructed volume to
correct for brain shift. From a developer’s point of view, it
should be straightforward to replace the default volume
reconstruction and registration algorithm with newly
developed methods as they become available.

The proposed system should also include improved visualization
capabilities to provide visual feedback during the acquisition of iUS
images. It should be capable of displaying the result of real-time
automatic segmentation of arbitrary structures during the
acquisition. For developers, a simple software development
interface should allow to easily integrate new segmentation
algorithms as they become available, without having to deal with
the visualization aspect that would be natively supported by the
system. The proposed system should also include modules to
produce AR views of the operating field in order to provide visual
feedback to the surgeons during the acquisition process, while
allowing them to keep their attention focused on the operating
field. The additional data captured during the AR visualization
sequences should be automatically recorded. For example, when
creating AR images with a tracked tablet computer like it is done
with the MARIN system mentioned earlier, live video and tablet
tracking transforms should be recorded to enable the improvement
of AR rendering techniques in the laboratory.

The proposed system should automate the process to transfer
the collected datasets from different centers to a common cloud-
based database. In addition to various national and local
solutions, large-scale international solutions for such cloud-
based systems include:

• The “Imaging Data Commons” (https://imagingdatacommons.
github.io/)

• ELIXIR Data Platform (https://elixir-europe.org/platforms/
data)

• HRIC (55)

This infrastructure must ensure data storage and processing
within the relevant ethical, legal, and regulatory frameworks such
as EU’s General Data Protection Regulation (GDPR). Following
data collection, all datasets should be automatically anonymized
and controlled for completeness and quality. The format of the
database for each case should be flexible enough to take into
account differences in imaging protocols at different centers. For
example, certain centers might not acquire FLAIR images in their
standard protocol for brain tumor cases, so the database should
support uploading data without this type of image. The database
should allow users to filter cases based on the information
available. The proposed database should also support the
addition of new types of data that were not planned for
during development.
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In order to be used for image analysis and machine learning,
different levels of data annotation is needed. Annotation needs to
be performed by clinical experts through the use of dedicated
software solutions such as a secure web-based platform for
example. The images, video, position information etc. should
be made available in widely used open formats directly
compatible with the most commonly used open source
imaging and machine learning toolkits and libraries such as
TensorFlow and Keras.
CONCLUSION

In this paper, we have reviewed the impact that the open source
neuronavigation platforms Ibis Neuronav and CustusX and their
associated databases BITE and RESECT have had on the progress
iUS-based navigation. We have particularly emphasized how the
synergy between open source software and publicly available
data has contributed to accelerate this progress. Building on these
successes, we have proposed to combine the effort of multiple
research groups to build a simplified and improved combination
of open software and tumor case database that is likely to enable
gathering the large amounts of data needed to train new machine
learning models to improve iUS-based navigation. The main goal
of this data collection effort is to provide the international
research community with high quality data. This will accelerate
research in the field, especially among research groups who do
not have the possibility to collect their own data but rely on
publicly available datasets. With more research groups working
actively in the field, the development of new tools and methods
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will also accelerate. New, innovative, and well validated tools can
then be included in the open software platform which will
enhance the usefulness for clinician and thus accelerate data
collection through an increased rate of new cases. This cycle can
thus be a positive self-reinforcing process that will lead to more
robust and accurate tools, acceleration of the translation from the
laboratory to industry and more accurate, safer, and more
minimally invasive procedures for patients.
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