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ARTICLE INFO ABSTRACT

Keywords: Emotions are quite important in our daily communications and recent years have witnessed a lot of research
Audio works to develop reliable emotion recognition systems based on various types data sources such as audio and

Emotion video. Since there is no apparently visual information of human faces, emotion analysis based on only audio
LMDFEC data is a very challenging task. In this work, a novel emotion recognition is proposed based on robust features
NSL and machine learning from audio speech. For a person independent emotion recognition system, audio data

is used as input to the system from which, Mel Frequency Cepstrum Coefficients (MFCC) are calculated as
features. The MFCC features are then followed by discriminant analysis to minimize the inner-class scatterings
while maximizing the inter-class scatterings. The robust discriminant features are then applied with an efficient
and fast deep learning approach Neural Structured Learning (NSL) for emotion training and recognition.
The proposed approach of combining MFCC, discriminant analysis and NSL generated superior recognition
rates compared to other traditional approaches such as MFCC-DBN, MFCC-CNN, and MFCC-RNN during the
experiments on an emotion dataset of audio speeches. The system can be adopted in smart environments such
as homes or clinics to provide affective healthcare. Since NSL is fast and easy to implement, it can be tried
on edge devices with limited datasets collected from edge sensors. Hence, we can push the decision-making
step towards where data resides rather than conventionally processing of data and making decisions from
far away of the data sources. The proposed approach can be applied in different practical applications such
as understanding peoples’ emotions in their daily life and stress from the voice of the pilots or air traffic
controllers in air traffic management systems.

1. Introduction all directions, eventually creates physical pressure on our ears. These

waves are interpreted as electrical signals once transmitted to neu-

Human computer interaction (HCI) is getting considerable atten-
tions from lots of researchers due to its practical applications in ubiq-
uitous systems (Hassan et al., 2019; Yang et al., 2020; Pace et al.,
2019; Gravina and Fortino, 2016; Zhang et al., 2018). For instance,
adopting HCI systems in a ubiquitous healthcare system can improve

rons (Tarunika et al., 2018). When a sound wave is generated from its
source, it also vibrates the particles such as solid, liquid, and gas in its
environment due to the its energy. Sound waves always need a material
form (i.e., solid, liquid, or gas) in an environment to travel. Sound

it by perceiving people’s accurate emotions and proactively act to help
them improving their lifestyle. Alongside other data sources, research
on emotion recognition from audio is increasing day by day for health-
care in a smartly controlled environment. Speech is a natural way of
humans to communicate each other in daily life. In affective computing
research, speech has a vital role in promoting harmonious HCI systems
and emotion recognition from speech is the first step. However, due to
the lack of an exact definition of emotion, robust emotion recognition
from audio speech seems to be quite complex. Hence, it demands a lot
of research to solve the challenging problems beneath the audio-based
emotion recognition (Sonmez and Varol, 2019).

Sound is a wave of pressure arises out of the vibration of molecules
in a substance. The sound waves from a single source usually spread in
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waves can be divided in to three categories based on their frequencies:
below 20, between 20 and 20 000 Hz, and more than 20 000 Hz. Among
which, sound waves in the middle category are human audible sound
waves. These waves can be generated in various ways (e.g., musical
instruments and vocal cords). Sound waves less than 20 Hz are called
infrasonic sound waves. For example, earthquake waves. Sound waves
of more than 20 000 Hz are called ultrasonic sound waves. Sound waves
are used in different ways in science and technology such as ultrasound
devices are used for imaging internal organs. High frequency ultrasonic
waves are also used to break up stones in the kidneys.

Speech signal carries feelings and intentions of the speaker (Zhao
et al.,, 2018). Speech signal analysis can be done in both time and
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frequency domains to obtain features to model underlying events
(e.g., speaker, meaning of the speech, and emotion recognition) in
the signals. Hence, original speech signal and corresponding spec-
trum diagram can be explored for robust emotion recognition for
both the domains. In Trigeorgis et al. (2016), the speech signal in
time domain was used as input and combined with machine learning
model for emotion recognition. In Sivanagaraja et al. (2017), the
authors simultaneously applied original speech, multiscale, and multi-
frequency signals to predict different emotions. In audio speech signal,
the waveform characteristics vary irregularly. Hence, typical digital
signal processing techniques are typically not directly utilized as audio
signals for a speech are also usually continuous. However, they can
be regarded as short-term stationary and then can be analysed in the
frequency domain. While studying the affective identification of speech
information, the typical approach is to first use the raw audio signal
processing and then followed by learning the extracted features with
some machine learning models, for comprehensive pattern recognition
or event prediction. Spectrogram analysis of the speech signal is also
very common for speech pattern recognition. In that case, the speech
signal is windowed to small chunks and then divided into narrowband
and broadband spectrum (Loweimi, 2016). Emotion recognition from
speech signal based on spectrum may contribute much in feature
engineering process. For instance, the authors in Fujimoto (2017),
Sivanagaraja et al. (2017) and Le and Provost (2013) studied spectro-
gram with deep learning to extract features from the spectrogram of
audio speech for emotion recognition.

Deep learning algorithms have been getting huge attention by pat-
tern recognition and artificial intelligence researchers these days (Fuji-
moto, 2017; Sivanagaraja et al., 2017; Le and Provost, 2013; Hinton
et al., 2006; Fischer, 2014; Asl et al., 2008; Uddin, 2016; Uddin
et al.,, 2017; Li et al.,, 2008; Wang et al., 2012; Yang et al., 2012;
Uddin et al., 2020). Deep neural network is typically better than the
conventional neural networks. However, they often result in overfitting
problem and take much time during training. Deep Belief Network
(DBN) was a pioneer deep learning approach which utilizes Restricted
Boltzmann Machines (RBMs) for training (Hinton et al., 2006). Use of
RBM makes DBN faster than typical neural network (Fischer, 2014).
Later, Convolutional Neural Networks (CNN) became very popular be-
cause of its improved discriminative power compared to DBN. A typical
CNN algorithm consists of convolution, pooling, tangent squashing,
rectifier, and normalization. CNN consists of feature extractions and
some convolutional stacks to create a progressive hierarchy of useful
features, especially effective for image processing tasks (Uddin et al.,
2017). Basically, it follows a hierarchical neural network structure
where convolutional layers are followed by subsampling layers. Finally,
they are followed by fully connected layers that are identical to typical
multilayer perceptron-based neural network. CNN-based deep learning
approaches are very much used in visual scenery-based applications
e.g., object detection in a large image achieve. Though CNN is used
for many applications such as computer vision, most of the analy-
sis of temporal events in time-sequential applications are adopt as
Long Short-Term Memory (LSTM)-based Recurrent Neural Networks
(RNNs) (Uddin et al., 2020). Hence, RNNs have become very popu-
lar for time-sequential event analysis. Besides, it can provide better
discriminative power over DBN and CNN so far, for sequence-based
pattern analysis. Amongst the available deep learning tools, TensorFlow
is one of the famous tools for deep learning-based event modelling tasks
such as classification, prediction, and perception. Very recently, Google
has introduced Neural Structured Learning (NSL) (Anon, 2020), an
open-source framework to learn neural networks. NSL can be utilized
to construct robust models for in a wide range of research fields such
as vision, natural language processing, and prediction in general. It can
be applied for training deep neural networks by leveraging structured
signals with feature inputs. An NSL algorithm basically implements
neural graph learning to train neural networks with the help of graphs
and structured data (Bui et al., 2018). The graphs can be obtained from
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Fig. 1. A schematic picture of audio-based emotion recognition for human machine
interaction in a room.

different sources e.g., knowledge graphs, medical records, genomic
data, and multimodal relations. Besides, NSL generalizes to adversarial
learning (Aghdam et al., 2017). Structured data usually contains good
relational information among the data samples. During the training
process of a deep learning model, leveraging the structured signals pro-
vide supports to obtain better model accuracy. The structured signals
are primarily applied to regularize the training of a neural network by
driving the model towards learning as much as accurate predictions
along with maintaining the input structural similarity. Thus, training
with structured signals can lead to more robust deep learning models.
Hence, NSL is adopted in this work from audio speech for better emo-
tion recognition than the traditional approaches. Besides, the approach
seems to be fast and accurate enough to be applied on edge devices
(e.g., Raspberry Pi®) for smart audio-based emotion recognition system
with a limited number of training samples. Fig. 1 shows a schematic
setup of an audio-based emotion recognition in a smart room.

In this work, a novel emotion recognition method is proposed
combining NSL with the Mel Frequency Cepstrum Coefficients (MFCC)-
based robust features obtained from audio speech. The MFCC features
are first extracted from the raw speech data and then followed by dis-
criminant analysis to represent a feature space highlighting to minimize
the inner-class discrimination while maximizing the inter-class discrim-
ination of different emotions. For the person independent emotion
recognition modelling, the robust features are followed by a combina-
tion of neural graph learning of structured data as well as adversarial
learning (i.e., NSL). The proposed emotion recognition method com-
bining MFCC-based robust features, discriminant analysis, and deep
learning by NSL was compared with the traditional deep learning
approaches such as DBN, CNN, or RNN where it showed the superior
recognition performance over all the conventional methods. Since the
approach is fast and robust on small datasets, it can be also adopted in
various smartly controlled environments such as edge devices in smart
homes or clinics to provide better affective healthcare. The proposed
system can be adopted in various practical applications. For instance,
such systems can be applied in a smart home for understanding the
emotions in the daily life of people (e.g., elderly in smart old homes or
clinics) or for predicting the mental stress of the pilots and air traffic
controllers in the air traffic management systems.

2. Methods

In the proposed emotion recognition method, the audio sensor data
of all emotions is acquired for feature extraction and then applied
for training an NSL model. For recognition process, an edge device
obtains the features from a small chunk of audio speech and apply



M.Z. Uddin and E.G. Nilsson

Training Flowchart Testing Flowchart

An Audio
Speech

! !

Feature Extraction

Audio Speechs

Feature Extraction

v v

Test an Emotions
via the Trained NSL
Model

Train Emotions via
Neural Structured
Learning (NSL)

v v

Trained NSL / Recognized

/ Emotion

End End

Fig. 2. Training and testing flowcharts of the proposed system.

on the trained model for emotion recognition. Fig. 2 shows the basic
architecture of the proposed method from signal data collection to the
recognition process via feature extraction and training.

2.1. Signal pre-processing

A sound signal is an electrical form of sound. An analog sound
signal is the same copy of the sound whereas a digital sound sig-
nal is a numerical form derived from the analog sound followed by
sampling and transforming them into digital ranging between 1 and
0, as shown in Fig. 3. Speech signals are basically complex signals
in different frequencies where the spectrum analysis is done using a
spectrogram (Uddin et al., 2018; Fleury et al., 2008; Li et al., 2010,
2011, 2012; Popescu et al., 2008; Popescu and Mahnot, 2009; Vacher
et al., 2011; Zhuang et al., 2009). The Fast Fourier Transform (FFT) is
most popular for spectrogram analysis in this kind of signals.

FFT is applied to a window of signals to convert a sound signal
from the time domain to the frequency domain. FFT is often used to
measure of the frequencies of a signal using spectrogram. Spectrogram
shows the intensity of vibrations based on frequencies. FFT can adopt
a fast algorithm to reduce the time complication in the measurement
of Discrete Fourier Transform (DFT). This transformation is done as

(N=D _.*<27rkn)

Oy = Z Q,e "\W k=0,1,2,...,(N-1) @
n=0

e'C = cosQ + isinQ 2)
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Fig. 3. A sample anger audio file from the experimental dataset.
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where k represents the subsequent frequency element, N the number
of samples, i the square root of (1), Q the sampled signal data, and n
the index of the subsequent sample to be processed.

2.2. Feature extraction with Mel Frequency Cepstrum Coefficients (MFCC)

Mel Frequency Cepstrum Coefficients (MFCC) (Zhang et al., 2018)
are coefficients of a short-time windowed signal that is obtained
through FFT. MFCC provides better results than the operations in time
domain. MFCC utilizes the Mel scale based on the sensitivity of the hu-
man ear. MFCC is very popular and often used for feature extraction in
the frequency domain for different sound-based applications (Sonmez
and Varol, 2019).

Human ears usually pick up sound frequencies until 1000 Hz in
Mel scale. A triangular filter is applied in the Mel spectrum where the
bandwidth varies according to the Mel scale. A normal frequency E is
converted to Mel frequency F as
F = 12595 log,, (%o 1), 3)

Furthermore, DFT coefficients are explored according to the ampli-
tude frequency response of the Mel filter bank. The amplitude spectrum
of the signal is distributed along the Mel scale. The spectrum contains
equal intervals and multiplied by the triangular filter. Then, the loga-
rithm of the remaining energy is calculated. As the logarithm of the Mel
spectrum coefficients are real numbers, the time domain values can be
returned using the discrete cosine transform. The coefficients obtained
via this process are called MFCC and can be represented as

1 (log Sy) cos ln (k - %) %J (€]

L
M, =
k=
where S, represents the Mel spectrum coefficients. Fig. 4 shows some
MEFCC for a sample audio speech from the audio speech clip shown in

Fig. 3.
2.3. Discriminant Analysis (DA) on MFCC features

For visualization of the MFCC features, linear discriminant analysis
(LDA) was adopted. LDA basically based on an eigenvalue resolution
problem that tries to minimize the inner-class scatterings while maxi-
mizing the inter-class scatterings. The formulas for the within, Cy;, and
between, Cp scatter matrix can be represented as follows:

Cw =2, Y, (me—ri)m =), ®)

i=1 meC;
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Fig. 4. MFCC co-efficients of a sample audio speech.
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u
Cp = 2 Ny, =m0, = m))' 6)

i=1

where u represents the number of classes, N; the number samples in
class C;, m; the MFCC feature vectors from all feature vectors M, m;
the mean of class i, and m ; the mean of all feature vectors.

The optimal discrimination matrix can be obtained from the maxi-
mization of the ratio between the determinant of the between-class Cp

and within-class Cy, scatter matrix of MFCC features as
W CgW |

JW) =
W) WTCyW |

(7)
where W is the set of discriminant vectors of C and Cy, corresponding
to the (u — 1) largest eigenvalues. Thus, the discriminant ratio can be
obtained by solving the following eigenvalue problem as

CyW = ACy, W (8)

where A represents the eigenvalue matrix. Fig. 5 shows a 3-D plot of
the MFCC features in LDA features space, shows good separation among
the samples of different classes.

2.4. Emotion modelling

Neural Structured Learning (NSL) is a deep learning approach that
focuses on training the neural networks by leveraging structured signals
along with the input features. As introduced in Bui et al. (2018),
the structured signals are used to regularize the training of a neural
network that forces to learn accurate predictions with the help of
minimizing supervised loss. At the same time, it tries to maintain the
input structural similarity with the help of minimizing the neighbour
loss. The approach is very generic and can be utilized on any arbitrary
neural architectures such as typical Feed-forward neural networks, CNN
and RNN. Fig. 6 shows the basic structure of an NSL with features as
input combined with structured signals.

The generalized neighbour loss equation can be represented as

w w
loss = ZL(y,-,f/,-)+o< ZL(yl-,x,-,N(x,-)). 9
k=0 k=0
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According to the above equation, NSL basically generalizes the
network using two different ways. First one is by using neural graph
learning (NGL) where the data points are represented by a graph.
Graph-based method provides a versatile, scalable, and effective so-
lution to solve a wide range of problems. It constructs a graph over
labelled as well as unlabelled data. Besides, Graph is a natural way
to describe the relationships of data elements where connections in
the graph connect semantically similar data. If there is connection in
the data and its neighbours, the edge weights of the nodes in the

graph reflect strength of the similarities. Thus, NGL refines the node
labels in the graph by collecting and combining the information from
neighbours and propagate the labels to the neighbours. NGL methods
quickly converge and hence, can be applied in small dataset but also,
can be scaled for large datasets consisting of a large label space (Bui
et al., 2018). NGL architectures are basically inspired by the objective
function of label propagation which enforces similarity between nodes
in the graphs. This results in graph-augmented training for a wide range
of neural networks and can be used in both inductive and transductive
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learning. The NGL framework can also handle multiple forms of graphs
such as natural or developed from the knowledge bases in data. Thus,
NGL framework can be adopted for organizing the relations in data
based on the neighbourhoods.

The second one is by using adversarial learning (Aghdam et al.,
2017) if neighbours are induced by the adversarial perturbation.

Traditional machine learning models including state-of-the-art neu-
ral networks are usually vulnerable to adversarial examples. More
clearly, these models basically misclassify examples that are a little
different from correctly classified examples drawn from the given data.
In many cases, a wide range of different models with distinguished

architectures trained on different subsets of the training data mis-
classify even the same adversarial example. Hence, this suggests that
adversarial examples indicate blind spots in our typical adversarial
training methods. The cause of these adversarial examples may be
due to extreme nonlinearity of deep neural networks. Perhaps, due to
insufficient model averaging or regularization of the purely supervised
learning problems. Thus, in this work, linear behaviour of the models
in high-dimensional spaces seems to be sufficient to cause adversarial
examples. This view makes it possible to design a fast method of
generating adversarial examples that makes adversarial training more
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practical than before. Besides, general regularization strategies in com-
mon deep learning models such as dropout, pretraining, and model
averaging do not usually reduce the models’ vulnerability to adversarial
examples.

The overall workflow for NSL is depicted in Fig. 7 where the black
arrows indicate the conventional process of training while the green
arrows show the workflow in NSL to take the advantage of structured
signals. In NSL, the training samples are augmented to include struc-
tured signals and if structured signals are not explicitly provided, they
are either constructed or induced by adversarial learning. Later, the

augmented training samples including original and neighbouring sam-
ples are fed into the neural network for calculating their embeddings.
The distance between the embedding of a sample and its neighbour
is obtained and used as the neighbour loss. This process is treated as a
regularization term and later added to the final loss. During the explicit
neighbour-based regularization, any layer of the neural network may
however be used to compute the neighbour loss. On the contrary, for
induced neighbour-based regularization (i.e., adversarial), neighbour
loss is calculated according to the distance between the ground truth
and output prediction of the induced adversarial neighbour.
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3. Experiments and results

An audio speech database was collected for this work containing
four expressions: namely neutral, angry, happy, and sad (Burkhardt
et al., 2005). There were 339 audio clips where the duration of each
clip was around 2 s. For the experiments, five-fold cross validation was
applied. The summary of the results is shown in Table 1. To achieve a
good audio quality, the recordings was done in an anechoic chamber
of the Technical University Berlin, Technical Acoustics Department.
Each audio consists of a sampling frequency of 48 kHz, which later
was made to 16 kHz by down sampling. The actors stood before the

microphone and spoke in the direction of the microphone from about
the distance of 30 cm. Three phoneticians supervised the recording of
each session of the users where two of them were giving instructions
and one was monitoring the functions of the recording equipment. For
some emotions, there were several variants of the same emotions. The
actors were also instructed about not to unnecessarily shout to express
anger or to avoid whispering while expressing their anxiety during the
audio recording. This was done due to maintain and analyse the voice
quality. In addition, the recording levels were adjusted between very
loud speech and very quite speech. Finally, twenty subjects evaluated
the speech data with satisfactory results, ensures the emotional quality
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and naturalness of the utterances of the audio data. The experiments
were done on a mobile workstation with the configurations of CPU as
Intel Core i7-7700HQ, memory: 32 GB, and 2 graphics processing units
(GPUs): Intel HD 630 and NVIDIA Quadro M2200. The deep learning
platform TensorFlow version 2.2.0 was adopted to apply deep learning
algorithms.

We first started with the typical artificial feed forward neural net-
work (i.e., ANN)-based experiments that achieved the mean recognition
rate of the five folds is 0.69, the least recognition performance. The
mean recognition of the emotions from five folds are 0.75, 0.82, 0.37,
and 0.82. The ANN model consisted of three hidden layers with 500,

200, and 100 neurons, respectively. Though the approach showed more
than average performance for neutral, angry, and sad expression but it
failed for happy emotion by achieving less than 40% mean recall rate.
Figs. 8 and 9 show the ANN model characteristics based on epochs and
confusion matrices for different folds, respectively.

Then, the experiments were continued to CNN-based ones, better
approach than typical ANN. CNNS has had good results over last some
years in a variety of fields of pattern recognition. A very important
aspect of CNN is that CNNs have reduced number of parameters than
ANN. This aspect has attracted a lot of researchers to solve complex
tasks, which are apparently not possible using classic ANN. Also, CNN
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Layer (type) Output Shape Param #
flatten (Flatten) (None, 7722) 0
dense (Dense) (None, 128) 988544
dense 1 (Dense) (None, 64) 8256
dense 2 (Dense) (None, 4) 260
Total params: 997,060
Fig. 16. A sample NSL model summary.
H Neutral Angry mHappy Sad
1 - pu
0.8 ]
0.6
0.4
0.2
0
ANN CNN LSTM NSL
Fig. 17. Mean of the recalls of the emotions using four different approaches.
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
ANN CNN LSTM NSL

Fig. 18. Overall mean recognition rates using four different approaches.

Table 1
The mean recall rates of the emotions for all the folds using different approaches.

Emotion/Model ANN CNN LSTM NSL
Neutral 0.75 0.94 0.89 0.92
Angry 0.82 0.90 0.92 0.95
Happy 0.37 0.71 0.84 0.85
Sad 0.82 0.94 0.8 0.97
Mean 0.69 0.87 0.88 0.93

represents features spatially independent features. A CNN basically

consists of multiple layers: convolutional, pooling, and fully-connected
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layer. Among which, the convolutional and fully-connected layers have
parameters whereas pooling layers do not have any. We applied a CNN
consisting of consists of three convolution layers, three pooling layers,
and one fully connected layer. The CNN-based approach achieved the
mean recognition rate for the five folds as 0.87, a better performance
than ANN. The mean recognition of the five folds are 0.94, 0.90, 0.71,
and 0.94 for all the emotions, respectively. Figs. 10 and 11 depicts the
CNN model characteristics based on epochs and confusion matrices for
different folds, respectively.

Furthermore, LSTM-based experiments were done. LSTM units are
basically recurrent modules with the ability to learn the data in se-
quence. LSTM units consist of hidden states with gating functions. A
typical LSTM unit is represented by three gates: input, forget, and
the output gate. The input gate basically contains weight matrix, bias,
and a logistic function. Forget gates usually allow the neural network
to forget the memory, where applicable. At last, the output gates
determine the information to transfer in between the hidden states.
The output unit takes the decision of forgetting hidden states or update
hidden states with the memory. We used 50 and 20 LSTM units for two
layers to model the emotions in the audio speech data. The LSTM-based
experiments achieved the mean recognition rate 0.88, further better
recognition performance than ANN and CNN. The mean recognition
rate of all the folds for the emotions are 0.94, 0.90, 0.71, and 0.94,
respectively. Figs. 12 and 13 illustrate the LSTM-based RNN model
characteristics based on epochs and confusion matrices for different
folds, respectively.

Finally, we proceeded to the proposed NSL-based experiments for
emotion modelling and recognition. NSL is a quite new learning
paradigm than other existing deep learning algorithms such as LSTM
and CNN. One advantage of NSL is to train the networks by leveraging
structured signals in addition to the available feature inputs to the
model. Two kinds of structures are incorporated in NSL: graph and
adversarial perturbation. Structured signals can basically represent the
similarity among labelled or unlabelled samples. Thus, leveraging struc-
tured signals during training process harnesses both kind of data, which
can improve model accuracy. NSL obtained the mean recognition rate
of 0.93, the highest among all the approaches. The mean recognition
rate of all the folds for the emotions are 0.92, 0.95, 0.85, and 0.97,
respectively. Figs. 14 and 15 represents the NSL model characteristics
based on epochs and confusion matrices for different folds, respectively.
Fig. 16 shows the summary of a simple and small NSL model parameters
used in this work, indicating good scope of its implementation in low
performance devices. To show a clear picture of the performances of
different approaches, Fig. 17 shows the mean of the recalls of the
emotions using four different approaches and Fig. 18 the overall mean
recognition rates using four different approaches where NSL shows
its leading performance over others. The training time for each fold
consisting of features from 271 audio clips took on an average of
37.08 s and the testing of features from an audio clip from a testing
fold took 0.006 s only, indicates the suitability of the implementation
of the proposed approach in real-time.

4. Concluding remarks

A basic audio-based emotion recognition system consists of three
major parts: acquisition of audio signals, feature processing that tries
to obtain distinguishable robust features for each emotion so that
each expression can be represented as much different from each other,
and emotion recognition that recognizes emotion by applying robust
features on a strong pre-trained expression model. In this work, we
have proposed a novel approach for emotion recognition from audio
speech signals where MFCC features are tried with discriminant analy-
sis and a state-of-the-art deep learning approach i.e., neural structured
learning based on neural graph learning and adversarial learning. The
proposed emotion recognition approach was compared with traditional
approaches where it showed its superiority over others. The proposed
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system could be adopted to contribute in any smartly controlled en-
vironment for audio-based emotional healthcare. The system can also
be tried on edge devices with a limited audio-based emotion dataset
collected from sound sensors in edges. Furthermore, the approach can
be extended in future with more efficient deep learning methods such
as applying LSTM or CNN under NSL structure (i.e., neural graph
and adversarial learning) to develop more robust emotion recognition
model.
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