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The increasing amount of flexible load in the energy system represents both a challenge and an op-
portunity. One primary source of load growth is the electrification of the transport sector and the sub-
sequent charging of electric vehicles, which is a load type that can potentially adjust their load profiles.
However, to activate the full potential of end-user flexibility, it is necessary to develop pricing mecha-
nisms that can promote efficient load responses on a larger scale. In this paper, a trading mechanism is
proposed and analysed within a capacity-based grid tariff scheme by formulating a game-theoretic
framework that includes decentralized decision-making by self-interest pursuing end-users. The
model is applied to a real-world case in Norway, and it is demonstrated how electrification of vehicles
can be achieved with the existing infrastructure. It is found that capacity-based grid tariffs have a limited
ability to reduce the coincident peak load in the system since they mainly incentivize individual peak
load reductions. However, by including a capacity trading mechanism within the capacity-based tariff
structure, we demonstrate that it is possible to increase the value of flexibility since the flexible end-
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users are incentivized to coordinate their flexibility dispatch with other stakeholders.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

At the distribution grid level, multiple stakeholders are sharing the
same interconnection capacity. Due to the distribution grid's radial
structure, the capacity needs to be sufficient to handle the coincident
peak load for all the stakeholders sharing the same network
connection point. Changing consumption patterns that increase grid
load due to more power-intensive appliances, electrification of
transport, and decentralized resources poses a challenge for the dis-
tribution grid. The peak load can increase rapidly compared to the
need for energy (see, e.g., [1]). Since the need for grid capacity is
driven by the coincident peak load, coordination across several
stakeholders can increase the local utilization of energy resources and
promote efficient dispatch of flexible load types.

For example, electric vehicle (EV) deployment is considered a
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challenge due to the added demand and an opportunity to increase
grid utilization, given the inherent flexibility regarding when the
charging occurs. Keeping everything else static, electrification of
transport means that the need for electric energy increases. How-
ever, due to the flexibility potential in EV charging, the increase in
energy need does not necessarily imply a significant impact on
peak load [2,3].

Due to these trends at the end-user level, it becomes increas-
ingly important to consider how efficient operation of flexible re-
sources at the end-user level can be facilitated [4]. In a deregulated
electricity market, the individual end-users are billed separately
and can control their assets' operation according to their prefer-
ences. This means that it is necessary to create incentives that can
facilitate an efficient operation of flexible resources to avoid un-
necessary and costly coincident peak load increases. Hence, this
paper’s main objective is to investigate how the amount of EVs in a
geographically confined area can be increased without significant
grid upgrades by designing efficient pricing signals that fit into
existing market structures.
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After this introduction, the paper is structured as follows. First,
section 2 presents the research context and the contributions of
this paper. Next, in section 3 we formulate the modeling framework
that has been developed to carry out the research before the case
study setup is presented in section 4. After that, results and dis-
cussion of these are presented in section 5, including a discussion of
practical implications. Finally, conclusions are drawn in section 6.

2. Related literature
2.1. Modeling of neighbourhood energy systems

Because of increased amounts of decentralized energy resources
(DER) and flexible assets at the end-user level, it is relevant to model
energy systems at the neighbourhood level to investigate how such
systems should ideally be designed and operated. A fundamental
principle that can be used to categorize such models is whether they
assume centralized or decentralized control of end-user assets.

A rather large body of literature assumes centralized control of
neighbourhood assets through the energy hub concept initially
proposed in [5], which has been applied in several scientific studies
[6,7,8,9,10,11]. The energy hub concept does not include grid tariffs
at the end-user level since grid congestion is handled at the
neighbourhood level instead. Since the energy hub concept re-
quires centralized control of all assets at the neighbourhood level, it
is not directly compatible with the current market structure, which
is based on individual metering and end-users making their own
decisions. Centralized control models can assess how the local
system should ideally be designed and operated; however, they are
not suited to evaluate the proper design of incentives within the
neighbourhood.

Representation of decentralized decision-making in neigh-
bourhoods requires game-theoretic modeling approaches. The
literature on neighbourhood energy models with decentralized
decision-making is rather scarce compared to the literature
assuming centralized control. In [12,13,14], the authors formulates
the tariff design problem in game-theoretic settings with cost-
recovery conditions for the distribution grid operator (DSO). We
have previously applied this approach [15,16], and found that there
is a risk that grid tariffs can provide both suboptimal investment
levels and suboptimal operation of the flexible assets. However,
these papers are limited to a simple tariff design structure and
predefined rules for setting the tariff levels.

Game-theoretic aspects concerning stakeholder interaction are
also considered in the smart grid research community. In [17], the
authors recognize the decentralized decision-making structure
within a smart grid and propose an energy management scheme
based on noncooperative game theory while [18] designs an
auction-based scheme for sharing of energy storage. Using a similar
approach, a method to discriminate price per energy unit within a
smart grid is demonstrated in [19]. In the smart grid context, EV
charging is increasingly relevant since it represents a highly flexible
load that can be used to balance the system, and [20] propose a
network model with self-interest pursuing EVs as a means of
transporting energy between districts. Furthermore, a bi-objective
method considering both the overall cost and user convenience for
EV charging is formulated in [21]. These papers have a high level of
abstraction (e.g., related to user preferences) since the focus is on
the design of trading mechanisms within smart grids on a con-
ceptual level without considering existing pricing structures such
as electricity grid tariffs in the model framework. The present study
takes a more practical approach to complement this literature by
investigating pricing mechanisms that fit into existing market
structures and applying them to an ongoing project challenged by
EV integration issues.
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Mathematical programs with equilibrium constraints (MPECs)
can be used to formulate Stackelberg leader-follower games such as
the tariff design problem in a mathematically consistent way (see,
e.g., [22,23]). [24,25], utilize MPEC formulations to optimize a grid
tariff design when considering the reaction from the end-users
[25]. formulates the tariff design problem with regulatory con-
straints for the DSO. Furthermore, in our previous work [24], a tariff
scheme with a time-dependent component was introduced to tune
the capacity-based tariff. However, none of them consider a tariff
component with interaction among the end-users as a tool to
address the inherent flaws of imperfect network tariffs.

It can be argued that end-users with flexible assets will operate
these resources to their own benefit rather than considering the
neighbourhood's objective as a whole. Thus, the operation of assets is
only aligned with the overall system's objective if the incentives are
appropriately designed. This paper fits within the category of game-
theoretic approaches, and we aim to investigate the proper design
of grid tariffs and local trading mechanisms to facilitate efficient uti-
lization of the grid capacity under decentralized decision-making.

2.2. Prospective grid tariff designs in Europe and Norway

Traditionally, domestic electricity loads have been regarded as
inflexible, and the electricity grid tariff has served mainly as a
mechanism to share the bill of providing electricity grids among the
users of the grid. For practical reasons, the electricity grid tariffs for
residential consumers have historically consisted of two parts: a
fixed and a volumetric component.

As the amount of flexible loads and automatic control options
increase, there is an ongoing debate in industry, regulatory, and
academic circles regarding how to properly design grid tariffs to
achieve more efficient utilization of the electricity grid through
cost-reflective tariffs. A recent paper from the energy regulators in
Europe [26] suggests that a power-based tariff component is
needed to account for the capacity-based aspect of the grid
connection. The conclusion that capacity-based tariffs are needed is
in line with several scientific findings during recent years [27,28].
Despite the evidence that a capacity-based network component is
needed, there is an ongoing debate regarding how it should be
designed. In this context [13], highlights the problems regarding
sunk cost recovery through capacity-based tariffs when end-users
react to the tariff implemented. Also, in our previous works
[15,16,29] we have demonstrated that an uncoordinated solution
based on capacity-based tariffs may result in sub-optimal flexibility
responses, which motivates the tariff design proposed in this paper.

In Norway, one of the capacity-based tariff structures that the
regulator suggests is the subscribed capacity tariff originally
formulated in [30]. With a subscribed capacity tariff, the end-user
decides on the amount of contracted capacity and then needs to
pay an overcharge fee for any excess load. Another variation of a
capacity-based tariff structure is the measured peak tariff, where
the end-user's maximum load over a given period is subject to a
capacity-based fee.

A reduction of individual peak loads may not necessarily be
effective at reducing the aggregate peak load, and a previous paper
considering tariff designs found that it would be beneficial to
design the network tariff based on several consumers’ combined
load rather than individual loads [29]. However, centralized control
was assumed to achieve coordination among the end-users and do
not consider how to properly remunerate the individual end-users
if a combined tariff is implemented. In contrast, this paper seeks to
address this gap by formulating a model that can determine the
optimal grid tariff structure and handle the coordination aspects as
an integrated part of the grid tariff structure rather than assuming
centralized control.
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2.3. Contributions

Assessment of how individual end-users should be remunerated
when contributing to neighbourhood objectives requires consid-
eration of the noncooperative aspects of neighbourhood stake-
holders when tariff designs are to be assessed. In contrast to
existing literature that assumes centralized control of flexible as-
sets, our methodology captures the end-user's price incentives that
may enable trading between the stakeholders. This paper, there-
fore, formulates a Stackelberg model to investigate individual re-
sponses to prospective grid tariff schemes as a tool to facilitate
efficient utilization of existing grid capacity. Our approach endog-
enously determines the optimal grid tariffs and the design of
optimal remuneration schemes for the individual end-user. This
paper is based on issues that have been raised in our previous work
[15,16,24,29,31,32], and the novel contributions are:

e Formulation of a model suitable for investigating different reg-
ulatory frameworks concerning grid tariff design in smart en-
ergy systems.

e Extension of established pricing structures with a mechanism
for interaction between end-users to incentivize a practical and
efficient allocation of capacity.

e Application of these concepts to a real-life project to analyse
how the grid tariff design can increase the value of flexibility
when integrating EVs in urban areas.

3. Method

This section presents the developed modeling framework to
investigate grid tariff optimization with local capacity trading. First,
the optimization problems of the DSO and the end-users are pre-
sented. After that, the solution procedure for coupling the two
levels is described in section 3.4. A nomenclature is included in
section 3.1, which provides an overview of mathematical symbols
and describes how the parameters and variables relate to each level
in the overall model. In the formulation of the model, the following
core assumptions are made:

e The DSO does not consider the tariff income when making de-
cisions since it is purely motivated by lowering the total system
costs.

e Cost recovery for the DSO is not considered since the focus is on
using capacity-based and volumetric tariffs to activate implicit
flexibility at the end-user level.

e The possibility of load curtailment is a part of the DSOs planning
problem since we do not consider grid investments to avoid
curtailment.

3.1. Model overview

An outline of the bilevel model is presented in Fig. 1. In this
model, some decisions are made at the DSO level, while others
occur at the neighbourhood level, and decision variables at one
level are perceived as parameters for the other level. The DSO de-
termines the tariff structure, and the tariff levels for the chosen
structure are endogenous variables at the DSO level but exogenous
parameters at the neighbourhood level. Also, the DSO can not
directly control operational decisions at the end-user level but can
incentivize a change in consumption patterns through the grid
tariffs. The benefit of formally representing this bilevel structure is
the ability to analyse the feedback effect between neighbourhood
responses, indirect coordination of flexible assets, DSO strategy,
and regulatory frameworks.
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Nomenclature

Sets

well, .., Q] Scenarios

yvell, .., ¥ Transmission segments

cell,..,qC End-users

he|1,.., H] Hours

Parameters

C\JG/ Transmission segment capacity (kW)

Cpgh Energy storage capacity ratio for charging (kW/
kwWh)

cpgis Energy storage capacity ratio for discharging (kW/
kWh)

De o Load profile (kWh/h)

D?;)_ i Outtake from storage (kWh/h)

F Capacity trading fee (€/kW/h)

Gewh Energy resource availability (kW/kWp)

Lg Transmission losses (%)

LES Energy storage converter losses (%)

M Penalty factor (€/kWh)

Py Power market price in hour h (€/kWh)

R¢ Energy storage self-discharge (%/h)

T Excise tax (€/kWh)

UER Energy resource capacity (kW)

UES Energy storage capacity (kWh)

VAT Value added tax (%)

VOLL Value of lost load (€/kWh)

W, Scenario weight (days)

DSO-level variables

ay, ds Artificial variables for network tariff selection
logic

cntﬁj’ Measured peak network tariff (€/kW)

cnt® Subscribed capacity network tariff (€/kW)

dﬁfﬂ'ﬁdﬁf'fﬁ Energy storage penalty terms (kWh/h)

ef‘,h Neighbourhood load (kWh/h)

IS0 Load curtailment (kWh/h)

Itony Transmission segment usage (%)

ntM Capacity trading limit (kWh/h)

n(’ﬂ'*’nffﬁ* Capacity trading penalty terms (kWh/h)

oc® Over-usage charge (kWh/h)

vntf Volumetric network tariff for exports (€/kWh)

vatM, vnt® Volumetric network tariff for imports (€/kWh)

Neighbourhood-level

variables

;\{‘\f,h Price for renting capacity (€/kWh/h)

d?zih Energy storage charging (kWh/h)

2 Energy storage discharge (kWh/h)

coh Energy exported to grid (kWh/h)

gf"i)_h Energy generation (kWh/h)

impewn Energy imported from grid (kWh/h)

nton Renting of capacity (kWh/h)

L Provision of capacity (kWh/h)

nM, Measured peak capacity (kWh/h)

nd Subscribed capacity (kWh/h)

Ocwh Energy usage above subscribed capacity (kWh/h)

Scuh Energy storage charge level (kWh)

3.2. DSO level

The DSO level describes the optimization problem of the DSO
depicted in Fig. 1 in a regulatory context. In this problem, the
neighbourhood level decisions regarding investments and oper-
ation are perceived as parameters outside the DSOs’ direct con-
trol. However, the end-users decisions can be affected indirectly
through the tariff design. Based on the neighbourhood-level re-
sponses, fixed load curtailment and tariff levels are optimized.
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Input data and assumptions:
e Curtailment cost

e Grid capacity

e Network losses

e Power market prices

Input data and assumptions:
e Flexibility characteristics
Power market prices

PV generation profile
Taxes (incl. VAT)

Initial load profiles
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DSO level

Optimize grid operation and tariffs to minimize
total system costs

Decides:

e Tariff structure

o Tariff levels

e Load curtailment

Optimized
load profiles

Grid tariffs

End-user level

Minimize individual costs

Decides:

e Operation of flexible resources
e Interaction with power grid

e Capacity trading (if allowed)

Fig. 1. Outline of the model structure.

3.3. Cost function of the DSO

The costs faced by the DSO for the considered operational period
are depicted in (1). The first term in (1) quantifies costs related to
losses through a piecewise linear loss function where the DSO
needs to select segments (It,y) with different losses (Lv(f). The
intuition is that losses increase with the utilization of the capacity,
which is further explained in section 3.2.3. The second term in (1)
identifies load curtailment costs as a linear function of curtailed
load (Is,,n) and the value of lost load (VOLL). Potential sunk costs are
not included in the cost function since these are not dependent on
any of the decision variables in the optimization problem.

Q H w
Costpso = D > Wo* ( >ty py*LG*Py p + Isw,h*VOLL> (1)
w=1 h=1 y=1

3.4. Electricity transmission

Given that some end-users might export to the power market
while others import from it, the electricity flow to/from the
neighbourhood is the absolute value of the aggregate net exchange
with the power grid. To maintain the linear properties of the
problem, the network flow is identified through (2a) and (2b).
These constraints will correctly describe the aggregate load as long
as power market prices are non-negative since excess electricity
transmission is penalized when minimizing the cost function (1).

C
eg_’h > Z(impcu)‘h - exPc«,m«,h) Vw,h (2a)

c=1

C

G .
€on = Z(exPc,w,h —impe,p) Yo,h
c=1

(2b)

3.5. Losses and grid capacity

Network losses increase quadratic as the load increases, and (3a)
- (3b) are formulated to represent piecewise linear losses. Losses
incurred are a combination of losses in the different load segments
Y. Furthermore, according to (3a), the DSO needs to choose line
segments with sufficient capacity, Cf;, or incur curtailment (Is,p).
Curtailment is a safety mechanism with higher costs than the cost
of losses, and the DSO will usually exhaust all transmission seg-
ments before curtailing load. It, y is the fraction of usage for each
transmission segment, and (3b) ensure that the sum of these
fractions is equal to 1. Defining It,,  y as an SOS type 2 variable in the
set W, requires a combination of a maximum of two neighbouring
capacity segments to be chosen.

LY
Sty py*CY + s, > €5, Yo.h (3a)
y=1

v
ltw,h,\// =1 Vw, h
v=1

(3b)

3.6. Grid tariff constraints

The DSO needs to choose between a measured peak and a
subscribed capacity tariff structure and decide tariff levels for the
implemented structure. The implementation of these tariffs at the
end-user level is explained in section 3.3.1. The requirement that
only one of the designs can be implemented is formulated ac-
cording to (4a) - (4b). Artificial variables of SOS type 1, ay, and as,
couples the tariff designs and force the cost components of one
design to be zero while the other can take any positive value. If the
DSO wants to implement the measured peak tariff structure, it
means that the variable ay, takes a positive value. The SOS1 relation
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between ay and as then requires that the subscribed capacity tar-
iff's cost components need to be zero and vice versa.

cntM +ontM < ay Vo (4a)

cnt® 4+ vnt® + oc® < ag (4b)

All variables in the DSO problem, except the volumetric export
tariff (vntf), are non-negative. The volumetric export tariff can be
negative, meaning end-users save grid costs by exporting to the
grid. The DSO will choose a negative export tariff if the export it
incentivizes lowers the network losses, e.g., because local exports
can go directly to other end-users. Constraint (5) is included to
avoid situations where simultaneous import and export occur due
to profit from energy looping.

wntM ontS +ntf >0 (5)

3.7. Neighbourhood level

In this section, the problem of the individual end-user in the
neighbourhood is described as an optimization problem. The end-
user can be of different types: Inflexible load, flexible load, EV
charging facility, owner of a power plant and storage, or a combi-
nation of these. The model formulation presented in this section
allows all of these end-users to be represented through parameter
specifications.

Since the optimization problems for the neighbourhood end-users
are linear, their Karush-Kuhn-Tucker (KKT) conditions are sufficient
for global optimality. Hence, to represent their best responses to
changes in other end-users or DSO strategies, the problems for the
end-users are represented through their KKT conditions, which are
formulated as a mixed complementarity problem in A. We indicate
dual variables associated with each of the constraints, which are used
for the complementarity formulation of the problem.

3.8. Objective function of neighbourhood end-users

The objective of the neighbourhood end-users is to minimize
their individual costs according to (6a). Details of the cost compo-
nents are described in (6b) - (6e). These costs consist of energy
purchase from the power market (CostY), electricity taxes and ca-
pacity trading fees (Cost?), grid tariff costs (Cost%), and capacity
trading cost or income (CostY).

Cost, = CostE + Cost! + Cost® + Costl (6a)
o H

Costy => " > Wy* ((1 + VAT)*imp¢ , j, — expmAh>*Pw,h (6b)
w=1 h=1
o H

Costl = > >~ Wo*((1+ VAT)*imp,p*T +nf, ,*F)  (6¢)

g
If
—_
>
[
—_
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0 H
Costy = ng*cnt® + 3 W,* (n%‘)*cntfy +y (impctwth* (vntM
w=1 h=1

+ vnts) + expe, ptontt + oc‘w‘h*ocs>>
(6d)

Q

H
CostN = 2 hz: Ww*lﬁ,h*@zw,h - ”Zw«,h> (6e)
w=1 h=1

The grid costs in (6d) requires some elaboration. There is a
regulatory decision to employ either the measured peak tariff or
the subscribed capacity tariff structures at the DSO level. Note that
it is not feasible to employ a combination of both tariff schemes.
First, if a measured peak tariff is employed, the tariff components
with superscript S will be zero in (6d). Likewise, if a subscribed
capacity tariff is employed, the tariff components with superscript
M will be zero in (6d). Hence, the grid tariff costs are reduced to the
resulting tariff structure. The tariff consists of two components in
the case of a measured peak tariff or three components in the case
of a subscribed capacity tariff:

1. A volumetric fee per kWh (vat¥ or vnt®) for electricity
consumption.

2. A capacity-based fee per kW (cntM or cnt’) for the contracted
capacity.

3. An overcharge fee per kWh above the subscribed capacity (oc’)
in the case of a subscribed capacity tariff structure.

The model includes a trading mechanism between the end-
users. Constraints (6e) describe the income or cost due to capac-
ity trading. The term is calculated for all end-users based on the
amount of capacity bought (nZ<,).h)' sold (n;wyh). and the time-
dependent price of capacity originating from the dual variable of
the neighbourhood capacity market formulated in section 3.3.6

(A p)-

3.9. Energy balance

The energy balance of the end-users is described by (7) and
states that energy imports subtracted exports must be equal to
initial demand modified by storage operation subtracted genera-
tion from PV at each end-user for every hour and scenario.

A+ A— ER .
DC-,fU-,h + dc,w,h - dc,w,h —&Cwh = MDcwh
—expc,n Ve wh </\C,w,h)

3.10. Energy storage

Energy storage makes it possible to shift energy load or gener-
ation temporally. This temporal load shifting is represented in (8a),
which describes how the charge level depends on the storage level
in the previous time step and the operation. Converter losses are
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imposed linearly through the parameter L., while self-discharge
from one time-step to the next is imposed through the parameter
R.. Inventory constraints are computationally challenging since
these link all time-steps together, and therefore the formulation

includes slack terms (a?®", dP°",") that are considered as parame-

ters at the end-user level. These terms are zero in the obtained
solution due to the penalty incurred in the objective function (13)
but speed up the progress of the solver since they allow for the
discovery of solutions that are close to satisfying the inventory
constraints.

Sc.wh = Sc,wh-1 *(1 - RC) - D?ojh + dA+ * <] - Lfs>

c,w,h
— b, (1+LE) + 2 -2 Ve oh>1 (20)
(8a)

c,w,h c,w,h

The formulation allows for representing various kinds of storage,
including a bidirectional battery, unidirectional EV charging, and
DHW heating. Outtake from the storage, for example related to EV
driving or DHW usage, is represented by the parameter D?;‘h. We
specify boundary conditions for the storage charge level, as
described in (8b). The boundary conditions mean that the charge
level in the last time-step is round coupled to the first time step in
each scenario. Thereby, we do not need to specify the initial charge
level since the optimization model calculates it.

Scnt = Scon*(1=Re) = DA,y +di5 *(1 - LF)

c,w,1
_ db- *(1 + Lfs> +dP" —dP Ve (Afsuh)

c,w,1 c,w,1 c,w,1
(8b)

Furthermore, the amount of energy that can be stored, charged,
and discharged by each end-user during each hour and scenario are
limited according to the maximum capacity (9a) - (9¢). In the case
of unidirectional EV charging or DHW heating, the discharging
factor is set to zero.

Scwn SUE Ve,oh (uE2) (9a)
i, < UBCFh vewh (uES3)) (9b)
deon < UBCFES vewh (ufS4)) (9¢)

3.11. Energy resources

Energy output from distributed energy resources, gfffl, is
described by (10) and has the option of generation curtailment by
generating less than the hourly resource availability. The maximum
output is the resource availability in each time-step multiplied with
the installed capacity, where the resource availability is specified
according to, e.g., wind or solar conditions.
geon SUEGeun Ve wh (i) (10)

c,w,h

3.12. Tariff-related constraints

The model allows for one of two different tariff designs, namely
measured peak power and subscribed capacity, billable depending
on different cost components.
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Measured peak power at each end-user is equal to the
maximum power withdrawn from the wholesale power market
and is identified through constraint (11a) where at least 1 h will be
binding for each end-user and scenario in the optimal solution.

impe,p < né‘{’w +nf =N, Ve wh (u’C",’w’h> (11a)
With a subscribed tariff, every end-user's optimal subscribed ca-
pacity level needs to be determined, and consumption beyond this
limit in any hour or scenario will be billed at a higher volumetric
tariff rate than consumption below the subscription. This is ensured

by constraint (11b) where the grid import cannot exceed the end-
user's subscription level and over-usage.

: S — S
IMpeyp <N+ 0cyp + n:jwih —Ncwh Vc,w,h (ruc,w,h)
(11b)

The model allows for trading of grid capacity among the end-users
through presence of the variables néw.h and nZ.n in(11a)and (11b).

Trading removes or adds capacity to the limit and therefore pro-
vides an additional mechanism to contract capacity. However, the
rented capacity needs to origin from other end-users as described
in section 3.3.6. The trading can be limited through the upper-level
variable n"™ according to (11c). When trading of capacity is not
allowed, n™ is set to zero.

Nn + Newn <™ Voo h (g, p) (11¢)

Depending on the tariff design, either constraint (11a) or (11b)
will be binding for at least 1 h for all end-users and scenarios and
thus incur end-user grid costs through the tariff components in the
objective function. This is because the tariff design that is not
implemented will have zero costs in all end-users objective func-
tions according to (4a) - (4b) in the DSO level. For example, if a
subscribed capacity-based tariff is chosen, cntM will be zero in (6d),
and thus n’c‘f’w can take any feasible value in the optimal solution
because it does not affect the objective function of the end-user.
Hence, due to zero costs for the tariff that is not implemented,
only one of constraints (11a) or (11b) will have a positive dual value
for at least 1 h per end-user and scenario. The decision-making
related to the tariff design is further elaborated in the DSO prob-
lem formulation in Section 3.2.

3.13. Capacity trading mechanism

Since we assume that grid congestion occurs on the neigh-
bourhood level rather than at each individual end-user, (12) spec-
ifies the capacity trading between the neighbourhood end-users.
The capacity market is cleared for every time step, and the dual
variable of the local capacity market becomes the short-term
marginal cost of capacity considered by the end-users.

c
Z(”Zm - ”Ew,h) +npt —nT =0 Voh (/ﬁh) (12)
1

c=

Note that this is the equilibrium condition in the neighbour-
hood, ensuring that demand and supply for the capacity match for
each time step. The dual value of this constraint becomes the hourly
uniform price for renting or providing capacity in the end-user
objective function. The capacity trading couples all end-user
problems together and makes the overall problem difficult to
solve since all end-user KKT conditions need to be solved simul-

taneously. Therefore, slack terms (n’7 ", n’%") are included. The
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slack terms are zero in the final solution due to the penalization in
the objective. Similar to the storage level slack terms, these improve
the computational performance by allowing intermediate solutions
that are close to satisfying the equilibrium condition.

3.14. Solution approaches

The overall optimization occurs at the DSO level, and we assume
that the DSO is interested in minimizing total system costs. As
depicted in Table 1, two main formulations are used: (1) system
optimization and (2) bilevel model.

The objective function for the system is formulated in (13). This
objective includes costs at the DSO and end-user level in addition to
penalty terms for violating the energy storage and market balances.
The penalty terms are included since this was found to enable a
more efficient search for candidate solutions in the MILP tree. Thus,
the penalty factor (M) needs to be sufficiently high to ensure so-
lutions without positive penalty terms. For the analyses in this
paper, a penalty term of M = 10 was found to be sufficient.

c Q H
Cost = Costpso + » (Costf + Cost! ) +MEY N
c=1 w=1 h=1 (.13)

C
e (S0 ) nty ey )
c=1

The system optimization assumes centralized and direct control
of all resources at the end-user level and serves as a benchmark. In
this formulation, we relax the requirement of noncooperative
behaviour and optimize the system as a whole. Therefore, all
technical constraints are included, but the end-user optimality
conditions are excluded from the problem. Since we include the
DSOs costs directly, there is no interaction through grid tariffs in the
system optimization model. The optimization considers all costs at
both the DSO and end-user level and finds the optimal operation of
all assets; thus, grid tariffs are not used. In contrast to system
optimization, the bilevel model captures the aspect of decentral-
ized control of flexible assets and seeks to design the optimal in-
centives. Hence, the optimality conditions are included since the
DSO needs to consider the best response by the end-users when
designing the policy instead of only respecting technical con-
straints. End-user responses are implemented by linearizing the
KKT-conditions using SOS1 variables according to the methodology
proposed by [33].

4. Case study setup and input data
4.1. The Raverkollen housing cooperative

In 2017, the Oslo municipality decided to reduce its greenhouse
gas (GHG) emissions by 95% within 2030 compared to the 2009-
level. Currently, about 50% of Oslo's GHG emissions are caused
by transportation, and hence modular changes of personal
transport (from car to bus, bike, or walking), as well as electrifi-
cation, are seen as one of the main strategies to reach the city's
climate target '. In Oslo, about 70% of inhabitants live in apart-
ments with limited access to charging points at home. Studies
have shown that limited charging possibilities are a significant
barrier for individuals to shift from fossil to electric cars (see, e.g.,
Ref. [34]. Therefore, the Oslo municipality grants investment
support for charging points connected to housing cooperatives.

! www.oslo.kommune.no/politics-and-administration/green-oslo/best-practices/

oslo-s-climate-strategy-and-climate-budget/[Accessed: 2020-12-04].
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This paper has chosen the Reverkollen housing cooperative as a
case study, which is the main pilot in the EU-project GreenCharge.
Reverkollen has 246 apartments and is situated north-east of Oslo.
Each apartment has access to their personal parking space in a 4-
story garage. Currently, 26 charging points are actively in use, but
the garage grid connection should handle the complete electrifi-
cation of all 230 vehicles.

The case study is a neighbourhood of six apartment blocks and a
garage with EVs and a PV system. The blocks have a shared supply
of DHW heated by air-sourced heat pumps (ASHP) coupled with
electric boilers. The apartments at Reverkollen are heated by
electric radiators, creating a prominent peak of the neighbour-
hood's aggregate electricity load during winter. The garage has four
floors, and each floor has an entrance with electric heating cables in
the ground to prevent icing for safety reasons.

4.2. System setup

In our case study, we have defined three end-user types
(described in section 4.4) and one DSO (described in section 4.3) as
depicted in Fig. 2. In addition to the stakeholders involved, the
figure also shows the two different decision-making assumptions
that are investigated: a) the centralized optimization treating all
stakeholders as one joint agent acting to the best for the total
system, and b) the bilevel game with four stakeholders, one upper
and three lower, optimized individually based on their self-interest.
Note that the bilevel model in Fig. 2b has additional system
boundaries compared to the centralized optimization in Fig. 2a
since each stakeholder optimizes individually.

The input data is gathered from the Reverkollen housing
cooperative (see section 4.1) and the local DSO, Elvia. In the
following, the properties of the input data will be described. Based
on the properties of the available data, we employ an hourly time-
step (H = 24).

4.3. DSO and overall system

Table 2 presents the parameters related to prices, taxes, and
existing infrastructure. The power market price is assumed to be
constant because we want to isolate the temporal variations to the
end-users load profiles.

The DSO faces costs related to network losses and load curtail-
ment costs. Based on the load profiles, we specify a maximum ca-
pacity of 1300 kW, sufficient to cover the historical peak load but
not enough for large amounts of uncoordinated EV charging coin-
ciding with the peak load. The specification of the maximum ca-
pacity is a critical assumption for this paper since we aim to
investigate how we can create incentives that allow for EV charging
without significantly increasing the peak load. We represent the
electric losses as a quadratic function of load, and we assume that
an average loss of 6%> occurs when the load is at half the capacity.
The losses are represented by a piecewise linear formulation as
described in section 3 by using four segments, each with a capacity
of 325 kW, as presented in Fig. 3.

4.4. End-users

Table 3 presents the technology parameters for each stake-
holder in the considered system. In addition, there are three sour-
ces of temporally variable data:

2 data.worldbank.org/indicator/EG.ELC.LOSS.ZS?locations = NO[Accessed: 2020-
12-10].
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Table 1
Solution approaches.
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System optimization

Bilevel model

Problem type MILP MPEC reformulated as MILP
Solver CPLEX CPLEX

DSO cost representation Directly Grid tariffs
Decision-making structure Centralized Decentralized

Objective
Constraints at the DSO level (2a) -
Constraints at the end-user level

Minimize (13)

(7)—(10)

Minimize (13)
(2a)- (5)
(A1) - (A23)

Total load

Distribution
system operator
(DSO)

Load curtailment

Apartments Domestic hot Garage with PV
(AP) water (DHW) (EV)

é =

PV generation

Predefined load profile EV charging schedule

Heating of tap water

(a) Centralized optimization.
are controlled directly by the DSO.

To(a\ load
D|str|but|on
system operator’

|
’—| (DSO)

Load Load curtailment
Grid tariff levels |

Load / generation

Load

v
Apartments " Domestic hot | Garage with PV
(AP) | water (DHW) | (EV)

é | -

PV generation
EV charging schedule

[

Predefined load profile Heating of tap water

Capacity trading

All operational decisions (b) Bilevel game where decisions are made based on the
stakeholders own self-interests.

Fig. 2. System boundaries for the different modeling approaches.

1. Load profiles
2. Outtake from storage
3. PV generation

The load profiles are gathered from the central electricity
metering data hub in Norway, Elhub®. The following subsections
describe how the properties of each end-user have been specified.

4.5. Apartments (AP)

The load of the apartments consists of electricity use for lighting,
electric appliances, and space heating demand. Hot tap water is
provided through a shared system and is not included in the
apartments’ load profile. Although space heating, in theory, could
be controlled flexibly, suitable equipment for flexible load activa-
tion is currently not present. It can be argued that the apartments
may have implicit flexibility due to a potential behaviour change,
but such effects are outside the scope of this paper. Therefore, the
only decisions relevant for this end-user is renting/provision of grid
capacity. Hence, the apartments are represented as an inflexible
load based on aggregated load data provided by the DSO.

4.6. Garage (EV)

The garage's load consists of electricity use for lighting, heating
cables, and charging of EVs. We assume the EV charging to be
flexible and the rest of the load as inflexible.

To identify the fixed load related to lights and snow melting, this
data was obtained from the period before the PV system and EV

3 https://elhub.no/.

Table 2

Input data related to the overall system.
Parameter Symbol Value
Maximum network capacity C@ 1300 kW
Network segment capacities C\f See Fig. 3
Network segment losses L‘f See Fig. 3
Consumption excise tax T 1.713 ¢/kWh
Local capacity trading fee F 1 ¢/kW/h
Power market price Pyn 5 ¢/kWh
Value of lost load VOLL 2 €/kWh
Value-added tax VAT 25%

charging in the garage was introduced. Also, the garage has a
flexible load related to EV charging, but there were no temporal
load profile data of EVs being charged inside the garage available at
the time of this work. Therefore the aggregate EV load from 4 semi-
fast EV chargers situated outside the garage was used as a proxy.
Furthermore, this EV load profile was scaled to reflect the current
26 EVs currently being charged inside the garage, assuming a
driving distance of 14000 km per year. Based on information of the
actual cars, the average storage capacity of the EVs’ batteries is
assumed to be 30 kWh per car, and for simplicity, we assume that
25% of the capacity is available for smart charging at any time.
The garage also has a PV system of 70 kW. Since the PV system
did not yet have metering data available at the time of this work, PV
data was simulated using renewables.ninja* [35] for the location of
the Reverkollen housing cooperative using properties of the
existing system with 50% east/50% west orientation and 10° tilt.

4 https://www.renewables.ninja/.
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Table 3

Input data related to each stakeholder in the local system.
Parameter Symbol AP EV DHW
Charging converter losses [%] LES - 5 0
Charging ratio [kW/kWh] Cpgh - 0.467 0.50
Discharging ratio [kKW/kWh] Cpgis - 0 0
Energy storage self-discharge [%/h] Rc — 0.1 1
Energy resource capacity [kW] UfR 0 70 0
Energy storage capacity [kWh] UES 0 195 406

4.7. Domestic hot water (DHW)

The DHW load reflects electricity use for heating of domestic hot
water in a shared facility that provides hot tap water from a central
unit to each apartment. Also, some electricity is used to light the
staircases inside the apartment blocks and electric heating cables to
avoid ice on the walkways between the blocks. The DHW end-user
does not have any generation resources.

Parts of the load related to tap water heating have been char-
acterized as flexible since the hot water tanks allow for some
temperature deviation without negatively affecting the users.
Based on an assumed AT of 30 °C, the total volume of the tanks, and
the heat capacity of water, the tanks’ energy storage capacity is
estimated to 406 kWh. The charging ratio was calculated by
assuming the charging capacity to be equal to the peak load and
dividing this by the storage capacity.

4.8. Identifying the critical day

We identify the critical day as the day containing the highest
total load in the system based on an entire year. In general, the peak
load for residential buildings in Norway occurs during the winter
due to significant heating needs covered through electricity. In our
dataset, the critical day was found to be on the 31st of January. In
the following, the critical day load profiles are used as a basis for the
analyses in this paper and are provided in Fig. 4.

4.9. Cases

Based on the presented input data, five different cases are
analysed:

1. Case FIX: No activation of flexibility, decisions are fixed to the
underlying input data.

2. Case SO: All decisions are controlled directly by the DSO to
minimize the system's total costs.

3. Case MP: Neighbourhood-level decisions are decentralized
while the DSO decides a measured peak tariff for indirect load
control.

4. Case SC: Neighbourhood-level decisions are decentralized while
the DSO decides a subscribed capacity tariff for indirect load
control.

5. Case MPT: Like case MP, but also includes a capacity trading
mechanism between the end-users.

Here, SO is calculated using the system optimization setup
outlined in Fig. 2a, while MP, SC, and MPT are calculated using the
bilevel approach outlined in Fig. 2b. FIX yields the same result
regardless of the setup since all operational decisions are fixed.

In the MP and SC cases, the only information exchange between
the stakeholders is the grid tariffs imposed on the end-users by the
DSO. In case MPT, there is also an interaction between the end-
users since a capacity market with a uniform price is established

Smart Energy 3 (2021) 100034
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Fig. 3. Network losses (Lg) as a function of the aggregate load (Cg).

where each end-user decides how much capacity it wants to pro-
cure from or sell to the market at each time step. This imple-
mentation differs from a peer-to-peer market since each end-user
interacts with the local pool rather than directly with other end-
users, but it is similar at a conceptual level. The information
required to clear this market is bids with capacity and prices from
the participants for each time step. Since it is not realistic that end-
users will engage directly in such a market, this trading process can
be handled by optimization software on behalf of the end-users or
through an aggregator.

5. Results and discussion
5.1. Current situation

We start by solving the model based on the historical data for
the critical day as described in section 4, with the load profiles as
described in Fig. 4a where the amount of EV charging is relatively
modest (26 vehicles). In these initial analyses, the total costs do not
vary between different tariff structures because the peak load is
always lower than the grid's capacity and the DSO is unable to shift
load from peak load periods to when the total load is lower.

When tariffs are implemented instead of the direct control of
decentralized assets, the DSO prefers to either employ zero tariffs in
the case of the measured peak tariffs or a very low capacity-based
tariff in the case of a subscribed capacity tariff.> This DSO choice
indicates that, when there is no risk of curtailment, the DSO cannot
improve the system operation by employing a measured peak tariff
and only marginally improves the system's operation when a
subscribed capacity tariff is employed.

Compared to the overall costs, the losses only contribute to a
small amount, and therefore the difference is small when the total
load is not close to the capacity of the grid connection (C%).
However, this paper's primary motivation is to assess how various
tariff schemes can handle increased EV load in the system, which
we explore next.

5.2. Electrification of vehicles
In Norway, it is expected that within 2030 most cars will be
5 We investigate the outcome for each of the tariff designs by exogenously

specifying as = 0 to study a measured peak tariff or ay = 0 to study a subscribed
capacity tariff.
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(a) Current load profiles of the housing cooperative, with (b) Load profiles with full electrification of vehicles, EV
charging is scaled up by a factor of 10.

electrification of 26 EVs.

Fig. 4. Load profiles for the critical day. The end-users DHW and EV are separated in two load types to represent fixed and flexible load.

electrified. To assess this situation for the Reverkollen housing
cooperative, the EV load is scaled up by a factor of 10, representing
complete electrification of all vehicles in the garage as presented in
Fig. 4b.

5.3. Cost distribution and value of flexibility

Key results on costs, load curtailment, and tariff levels are re-
ported in Table 4. Net costs are calculated according to (6a) for the
end-users, and (1) for the DSO. The cases FIX and SO represent a
worst and best case, respectively, since FIX represents the case
without flexibility activation while SO represents the case with
optimal activation of flexible assets from a system optimization
perspective. Therefore, the value of flexibility is calculated based on
the cost difference to the case without any activation of flexibility
(FIX). Regardless of the decision-making structure, we see that
flexibility is useful for reducing the total costs and that the obtained
value of flexibility is dependent on the tariff structure. The SO so-
lution provides an upper bound for the value of flexibility since all
flexible resources are controlled directly to minimize the total
system costs. Without centralized control, we see from Table 4 that
it is beneficial to introduce a local trading mechanism (MPT) as this
gives a significantly higher value of flexibility than the pure indi-
vidual tariffs (SC and MP).

The SO case demonstrates that load curtailment is avoidable
under centralized control. The main reason for the higher cost in
MP and SC is that although load curtailment is reduced compared
to FIX, the incentive structures fail to avoid it altogether. Case MPT
demonstrates that it is possible to completely avoid the load
curtailment and achieve total costs close to the system optimal
solution also under decentralized control. In the next section, we
explain further how load profiles are affected by the various
decision-making assumptions and regulatory frameworks.

5.4. Load profiles and flexibility potential

The total load and load profiles for the different stakeholders are
presented in Fig. 5. The aggregate load is plotted in Fig. 5a, which
reveals that although all cases have the same underlying load
profiles, the optimized load profiles are different for the different
cases. The only stakeholder with a constant load pattern is the
apartment load in Fig. 5b, which is unchanged because it does not
have any flexibility. Hence, it cannot adapt the load pattern to
changing regulatory frameworks. Fig. 5¢c and d plots the optimized
load profiles for the garage and the water heating, and since these
stakeholders have flexible assets, the optimized load profiles
changes depending on the regulatory framework. A key observa-
tion is that the MP and SC tariff structures mainly reduces

10

individual peak loads, while the coincident peak load is reduced by
lowering the garage load when the apartment load is high for the
MPT tariff structure, which is more in line with the optimal oper-
ation represented by the SO case.

The maximum capacity of the connection is 1300 kW, which is
exceeded when there is no flexibility activation with 679 kWh of
curtailment in case FIX. Furthermore, the tariff structures in cases
MP and SC reduce the curtailment to 130 kWh (—81%) by incen-
tivizing a flattening of the flexible end-users’ load profiles. It is
technically possible to avoid curtailment entirely as, presented in
SO, where centralized control is assumed. Furthermore, when the
assumption of centralized control is removed, and capacity trading
among end-users is allowed in the MPT case, curtailment is avoided
also under decentralized control. The coordination between
stakeholders in case MPT highlights the fundamental impact of
introducing capacity trading: Rather than incentivizing all end-
users to flatten their load, it is more efficient to create an incen-
tive that induces those with the flexibility to support a flattening of
the aggregate load.

5.5. Capacity trade and flexibility operation

The effect of a capacity trading scheme can be observed in Fig. 6,
which presents the capacity trading between the end-users and
compares the storage operation for the measured peak tariff with
and without capacity trading for the MPT and MP cases, respec-
tively. Fig. 6a illustrates that there is no capacity trading for most of
the hours since the potential benefit does not justify paying the
trading fee. However, during the evening, there is a scarcity situa-
tion that induces the AP end-user to procure capacity, mainly from
the EV end-user. Thus, it can be observed that when the overall grid
capacity is scarce, the trading mechanism can allocate the available
capacity to where it is needed by providing an incentive for the
flexible stakeholders to adapt their storage operation.

Even though capacity trading only occurs when there is a scar-
city situation, the trading mechanism between the end-users in-
duces a change in the operational patterns for the entire day. Fig. 6b
compares the EV and DHW end-users storage operation for the MP
and MPT cases, and it is evident that the capacity market has a
significant impact on the filling of the storage. For the EV end-user,
we see that the storage filling is higher in the MPT case until the AP
end-user procures capacity, which is done to prepare the storage in
anticipation of the load reduction needed in the evening.

The DHW storage operation also changes when the capacity
trading is available, but not to relieve grid stress. In fact, the DHW
load increases during the evening peak of the aggregate load, and
this occurs because the EV end-user has enough flexibility to even
out the total grid load. Furthermore, since the self-discharge is high
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Table 4

Overview of key results.
Case FIX SO MP SC MPT
Decision-making structure - Fig.2a  Fig.2b  Fig.2b  Fig. 2b
Total costs [€] 3957 2609 2871 2871 2613
Net costs AP [€] 1554 1554 1784 1765 1625
Net costs EV [€] 479 480 541 541 499
Net costs DHW [€] 374 374 424 424 390
Net costs DSO1 [€] 1550 201 122 141 98
Value of flexibility [€] 0 1348 1086 1086 1344
Load curtailment [kWh] 679 0 130 130 0
Volumetric tariff [¢/kWh] - - 0 0 0
Capacity-based tariff [€/kW] — - 0.2522  0.2522  0.0794
Over-usage charge [¢/kW] — — — 21822 -
Export tariff [¢/kKW] - - 0 0 0

1 Positive net DSO costs are not covered through the capacity-based and volumetric
tariffs. These costs can be collected through e.g., a fixed tariff component, but this
consideration is outside the scope of this paper.

at the DHW end-user relative to the EV end-user, DHW tries to
avoid preheating more water than necessary. These observations
show that flexibility dispatch, in this case by EV, has effects beyond
reducing peak load; it also allows DHW to reduce its operational
costs.

5.6. Practical implications

The game-theoretic aspects considered represent a significant
computational complexity. Therefore, it was necessary to limit the
temporal horizon and focus the analyses on one day to demonstrate
how tariffs can relieve grid congestion and provide a more efficient
allocation of resources. Also, the flexibility potential is character-
ized by using a simplified formulation due to a lack of more detailed
data and the need to limit the computational complexity. Our re-
sults might overestimate the value of flexibility since more details
in the modeling of flexibility might introduce additional opera-
tional constraints not captured by our model. However, we have
tried to limit the flexibility potential by assuming that only 25% of
the EVs are controllable at any time, and it is possible that we
underestimate the share of controllable EVs and that our results
underestimate the flexibility potential. Despite this limitation, our
model provides a general formulation of flexibility that can be used
to assess the efficiency of different pricing mechanisms in a
comparative way.

Our analyses conceptually demonstrate the efficiency of a
capacity-based tariff in relieving grid congestion when trading of
capacity is allowed between the end-users. In practical applica-
tions, the peak measurement period may be longer than one day,
e.g., one month. Nevertheless, if the end-users are interested in
lowering their measured peak for a period different than one day,
the incentive structure remains the same. The capacity trading can
both reduce the occurrence of unnecessary load shifting and lower
the peak load for the aggregate system depending on the situation
in the grid:

e Low-load periods: If the network capacity is not challenged,
end-users will have an unused capacity that can be rented out
without any inconvenience. Thus, this capacity can be rented at
low or zero costs and removes unnecessary behaviour changes if
some end-users prefer high usage of capacity during such
periods.

e High-load periods: If the network capacity is challenged, most
or all end-users will fully utilize their capacity either due to their
underlying load or due to renting out to other end-users. Hence,
rental of capacity will be costly, and the capacity will be allo-
cated to those with the highest willingness to pay.

1
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Based on this, a capacity-based tariff with trading of capacity
among end-users provides efficient incentives for flexibility oper-
ation regardless of the measuring period for the tariff. The chal-
lenges facing the Reverkollen housing cooperative are
representative of a general trend, and to avoid sub-optimal solu-
tions on the neighbourhood scale, a mechanism to incentivize
resource coordination is needed in a multi-stakeholder system. In
principle, a similar outcome can be achieved by centralized control
and an allocation scheme for the obtained savings, but such a setup
is not compatible with the current market structure in Norway.

The case-specific properties that drive our results are network
capacity, underlying load profiles, and the technologies present in
the system. However, our implemented tariff designs are generic
fees per unit of energy usage (kWh) and per unit of capacity (kW)
and could therefore be tested on different cases. In this work, we
assumed the tariff components to be fully adjustable, but some
countries may have regulations regarding the level of tariff
components.

Introducing capacity trading in addition to a capacity-based grid
tariff is beneficial for both grid companies and end-users. First, grid
companies can reduce their costs by introducing capacity trading
since the coincident peak load is reduced, and the daily operation
becomes more efficient. The peak load reduction is the most crucial
aspect in this regard since grid infrastructure upgrades can be
reduced or postponed. Secondly, the end-users will also save costs
since they ultimately need to bear the grid costs. On the end-user
level, the capacity trading mechanism can be beneficial for inflex-
ible end-users since they can reduce their costs by procuring ca-
pacity from flexible end-users, while flexible end-users can create
an income stream by adapting their load patterns.

6. Conclusion

This paper investigates prospective tariff schemes, including
capacity trading between end-users in a game-theoretical
modeling framework. The model is applied to a real-life project
with different stakeholders involved to investigate how we can
design a regulatory framework that facilitates an increasing
amount of EV charging in the system by efficiently exploiting the
flexibility potential. Different regulatory frameworks are compared
to extract information regarding how tariff schemes can enable a
favorable outcome for the system compatible with the individual
stakeholders’ self-interest.

Integration of EVs in multi-stakeholder electricity systems ne-
cessitates a smarter design of the pricing mechanisms because the
need for grid capacity is based on the coincident peak load rather
than individual peak loads. Based on this study, we conclude that a
combination of capacity-based grid tariffs and a capacity trading
mechanism within the tariff structure is a feasible solution to in-
crease the EV hosting capacity. The main advantage of adding a
capacity-trading mechanism between end-users is the ability to
efficiently incentivize temporal load shifts to allocate the capacity
to where it is most needed.

It is vital to consider the applicability of pricing mechanisms,
and in this regard, capacity trading can be implemented as a part of
capacity-based grid tariffs. The mechanisms proposed in this paper
are compatible with the current market structures in many coun-
tries if the regulatory framework is adapted according to the
following two steps:

e Step 1: A grid tariff structure where the peak load significantly
affects the cost of using the grid.

o Step 2: Possibilities for trading flexibility across different end-
users as a tool to adjust the individual peak load.
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Fig. 6. Capacity interaction between end-users and storage filling operation.

Although the regulators in many countries currently adapt the
regulations according to step 1, we conclude that step 2 is also
required to reap the full potential of end-user flexibility. Trading of
flexibility can take many forms, and an important area for further
research is how trading schemes can be implemented in practice to
benefit both grid companies and end-users. In this context, the
end-users motivation and behaviour are vital aspects to consider in
future research, and the concepts presented in this paper can be
tested in neighbourhood-scale systems. Also, future research could
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go in the direction of investigating the end-user willingness to
participate in trading schemes and the possibility of flexible
stakeholders exercising market power in local electricity systems.
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Appendix A
MCP formulation of local energy system

We derive the KKT conditions of the neighbourhood level based
on the optimization problem described in section 3.3. Since our
original problem is linear and has a convex feasible area, the KKT
conditions are necessary and sufficient for optimality.
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