
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Simulating heat load profiles in buildings using
mixed effects models
To cite this article: J Palmer Real et al 2021 J. Phys.: Conf. Ser. 2069 012138

 

View the article online for updates and enhancements.

You may also like
Harvesting big data from residential
building energy performance certificates:
retrofitting and climate change mitigation
insights at a regional scale
João Pedro Gouveia and Pedro Palma

-

Post-evaluation of a ground source heat
pump system for residential space heating
in Shanghai China
Y Lei, H W Tan and L Z Wang

-

Wood burning habits and its effect on the
electrical energy demand of a retrofitted
Norwegian detached house
L. C. Felius, M. Thalfeldt, L. Georges et al.

-

This content was downloaded from IP address 109.247.167.60 on 08/12/2021 at 05:52

https://doi.org/10.1088/1742-6596/2069/1/012138
https://iopscience.iop.org/article/10.1088/1748-9326/ab3781
https://iopscience.iop.org/article/10.1088/1748-9326/ab3781
https://iopscience.iop.org/article/10.1088/1748-9326/ab3781
https://iopscience.iop.org/article/10.1088/1748-9326/ab3781
https://iopscience.iop.org/article/10.1088/1755-1315/93/1/012053
https://iopscience.iop.org/article/10.1088/1755-1315/93/1/012053
https://iopscience.iop.org/article/10.1088/1755-1315/93/1/012053
https://iopscience.iop.org/article/10.1088/1755-1315/352/1/012022
https://iopscience.iop.org/article/10.1088/1755-1315/352/1/012022
https://iopscience.iop.org/article/10.1088/1755-1315/352/1/012022
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvq4ShwChqkUr9DvdsMKtrm21F3FreX-O_0mZs5o4Pw69-OOyTvtjBjCpg1fjn58yTPgz4GlXp1ef4eUd0IT-6OtNPWqYLLIipsWptnXOqWAA2I1FAspsuG4pWkMdnKJ2o0KCLHneS9q9ogDxkVrYFKHTpVPPw5hJifF8WhzTaZK3aA93tsjsX7Wr6KivifePuc0RTzBkV2uItVwnpncCwSWFf7qjYLnZvH7l-MirrCNE8LXB80Ne5Ytbj1JizYKewW8qdNsH8EPH83HxUSfXwhHLDZDiMG3sQ&sig=Cg0ArKJSzFyNZ914i6mW&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/241/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DDLAds%26utm_campaign%3D241AbstractSubmit


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

8th International Building Physics Conference (IBPC 2021)
Journal of Physics: Conference Series 2069 (2021) 012138

IOP Publishing
doi:10.1088/1742-6596/2069/1/012138

1

Simulating heat load profiles in buildings using

mixed effects models

J Palmer Real1, J Kloppenborg Møller1, C Rasmussen1, K B
Lindberg2, I Sartori2 and H Madsen1
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Abstract. The landscape of buildings is a diverse one and long-term energy system planning
requires simulation tools that can capture such diversity. This work proposes a model for
simulating the space-heating consumption of buildings using a linear mixed-effects model . This
modelling framework captures the noise caused by the differences that are not being measured
between individual buildings; e.g. the preferences of their occupants. The proposed model uses
outdoor temperature and space-heating consumption measured at hourly resolution; thus, the
model is able to predict the intra-day variations as well as longer effects. Given the stochastic
nature of the simulation, the prediction interval of the simulation can be estimated, which
defines a region where the consumption of any unobserved building will fall in. A whole year
has been simulated and compared to out-of-sample measurements from the same period. The
results show that the out-of-sample data is virtually always inside the estimated 90% prediction
interval. This work uses data from Norwegian schools, although the model is general and can
be built for other building categories. This amount of detail allows energy planners to draw a
varied and realistic map of the future energy needs for a given location.

1. Introduction
In order to plan and develop strategies for the future power market, it is necessary to create
tools that reliably represent it. Such tools need to be able to predict the energy consumption of
the different systems that form the energy landscape. The current tools dedicated to this task
are often based on trends based on historical data [1; 2; 3]. As the power sector shifts towards
a more flexible framework with high integration of renewable energy sources, it is necessary to
re-visit these methods used for long-term forecasting [4].

Buildings take a significant portion of the total energy use [5]; thus, modelling their
consumption is a key task in order to develop suitable forecasting tools. From the total energy
consumed in buildings, in Europe, the major part is dedicated to space heating [6], and there
exist an extensive literature focused on modelling it [7]. A well-known example is the energy
signature method (ES); a data driven approach that quantifies a building thermal performance
based, mainly, on the outdoor temperature [8]. In general, the ES is a static method, even
though their parameters might change over the course of the year [9].

The proposed model in this work aims to capture the dynamic nature of heat consumption;
given that, when predicting the energy use of a building, capturing the peaks that take place
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during the day is of particular interest. Similarly, it is crucial to see how this pattern changes
as buildings become more efficient.

There are factors that impact the heat consumption of a building that can be specially
difficult to measure. A clear example is the behaviour of the occupants; predicting it is far
from being trivial due to their noisy nature and intrusive measurement set ups [10]. A long-
term forecasting tool needs to account for such phenomena to be general enough to represent
the existing variety of the building stock. This means capturing the inherent differences from
building to building, caused by random unobserved events. In this work, this is done by using a
mixed effects model. We depart from the work done in [11], where a linear fixed model was fit
to generate an hourly profile of the energy consumption in buildings. Then, a random term is
added to the fixed model structure, to account for the individual differences between buildings.
This addition reduces model complexity, quantifies the differences between observed buildings
and facilitates predicting the consumption from unobserved ones.

The outline of this work is as follows: first, in section 2, the mixed effects model structure
is introduced and explained in the context of modelling building energy load; section 3 presents
the data used to fit the model; section 4 displays the results using mixed effects; finally, section
5 discusses the main results and presents the following steps.

2. Method
Mixed effects models allow to quantify the noise introduced by random qualities that are inherent
to the modelled system. This section introduces the main concepts, and later focuses on using
mixed effects for modelling the heat load of buildings.

2.1. Mixed models
Linear mixed effects models, or linear mixed models, are a generalization of the classical linear
model which follows the structure

Y = Xβ +ZU + ε ; (1)

where Y , X and Z are known matrices, ε ∼ N(0,Σ) and U ∼ N(0,Ψ). In Equation (1), β
represents the fixed effects, while U are the random effects. Therefore, these models follow a
hierarchical structure since there is an underlying model structure, defined by X and Z, which
is affected by a higher-level random variable, U . Then, an arbitrary observation of Y , Yij , has
two sources of noise: the random effects Ui ⊂ U , and the noise of the model, εij . Hence, given
the linear structure of Equation (1), Yij can be written as

Yij =
L∑
l=1

Xjlβl + ZiUi + εij . (2)

Notice that the sub-index i denotes a category of observations, which introduces the noise
Ui; whereas j marks the number of available observations. In addition, the term l ∈ {1, . . . , L}
represents the number of fixed effects.

When the measurements of the random variable, Yij , are taken at regular time intervals,
the model in Equation (2) can be interpreted as a time-series. In this case, the sub-index j is
substituted by t, to denote the time dependency. This formulation, has been extensively used in
pharmaco-kinetics, when testing a medicine in a subset of a population [12]. The metabolism of
each tested individual might affect the response to the medicine; however, there are latent effects
that are common to all subjects. In this simplified example, the latent effects are captured by β,
whereas U characterizes the variability of the results introduced solely by the individuals that
are part of the experiment. For more details and examples on mixed models, see [13].
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2.2. Mixed models for buildings
There are factors that affect the energy consumption of buildings that are difficult to identify and
measure; such as the preferences of the building users. Such factors cause random differences
between the energy behaviour of individual buildings. The cause of those differences can be
understood as a random effect. Then, using a mixed model, it is possible to identify the
distribution that characterizes the differences between individual buildings. As summarized
in Figure 1, estimating the distribution has two different outcomes:

• Profiling. Using the observations to estimate the random effects of each particular building
from the measured ensemble of buildings, i.e. estimating Ûi ∀i ∈ {1, . . . , k}.
• Sampling. Simulating a representative realization of a building that has not been observed,

using random effects sampled from the estimated distribution Û .

Figure 1: Schematic representation of the outcomes of fitting a mixed effects model

2.2.1. A mixed energy signature. The energy signature (ES) is a method to evaluate the energy
performance of buildings. The ES model is a linear model that, using coarse data aggregation,
returns the heat loss coefficient (HLC) and the base temperature (Tb). The former coefficient
quantifies the energy efficiency of a building, and the latter is the outdoor temperature at which
that building is in thermal balance. Thus, both parameters characterize the energy efficiency of
a single building. In its simplest form, the ES has the following structure

Φ =

{
α0 + β0Tout + ε if heating period

Φ0 + ε otherwise
, (3)

where Φ is the heat load, Tout is the outdoor temperature. The independent term, α0, represents
unmodelled heat losses; β0 is the HLC, and Tb = α0/β0; lastly, Φ0 represents the residual heat
load during periods where there is no weather dependence, i.e. Tout > Tb. Working with multiple
buildings, it is fair to assume that there will be differences in their parameters, {α0, β0,Φ0}, due
to un-measured differences across the building population. Then, the model in Equation (3) can
be extended to a mixed effect formulation to capture those differences as random effects. Hence,
the heating regime of Equation (3) becomes

Φi = α+ βTout︸ ︷︷ ︸
Fixed effects

+Ui,0 + Ui,1Tout︸ ︷︷ ︸
Random effects

+ε , (4)

where Ui,0 ∼ N(0, σ0) and Ui,1 ∼ N(0, σ1). Re-writing Equation (4) into

Φi = α+ Ui,0 + (β + Ui,1)Tout + ε , (5)
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it can be notice that, the unmodelled heat losses now contain the random effects Ui,0; similarly,
the heat loss coefficient, depends on Ui,1. Then, using the model described in Equation (5),
it is possible to retrieve the heating performance parameters from each of the buildings of the
population. In other words, for each building, it is possible to obtain its heat loss coefficient,
βi = β + Ui,1, and its base temperature, Tb,i = (α+ Ui,0)/βi.

2.2.2. The simulation model. The objective of this work is creating a stochastic simulation tool,
that predicts the hourly consumption of buildings given the weather conditions. The model needs
to be dynamic and be able to predict consumption for the whole year. The proposed model for
simulating the heat load is

Φi,t =

Fixed hour effects→

 24∑
j=1

%jI{t∈j} +Wt

24∑
j=1

ρjI{t∈j}

 I{t∈ΩWD}+

Fixed seasonal intercepts→ θ1 + θ2Wt+

Fixed weather effects→ θ3∆Ti,t+ (6)

Random effects→ Ui,2 + Ui,3Wt + Ui,4∆Ti,t+

Residuals→ εi,t = ϕ1εi,t−1 + ξi,t ,

where, I{·} is the indicator function, which equals to 1 when the condition in {·} is fulfilled and
equals 0 otherwise. St = I{Tb,i<Tout,t}, Wt = I{Tb,i>Tout,t} and ∆Ti,t = (Tb,i − Tout,t)I{Tb,i>Tout,t};

lastly, ΩWD is the subset of work days. Hence, the model in Equation (6) uses the previously
introduced Tb,i, to discern between heating and non-heating season. The model accounts for
a fixed hourly schedule, which depends on the season. Additionally, each season has a fixed
heating baseline. Then, the weather effects are introduced through the variable ∆Ti,t, that is
positive during heating season, and zero otherwise. Furthermore, the variables {St,Wt,∆Ti,t}
have a random effect over the heat load; i.e. the seasonal heating intercept and the effects of
the weather might vary from building to building. Finally, given the hourly sampling, an auto-
correlation term has been added in the residuals. Thus, in the model described in Equation (6),
the estimated fixed parameters are β = {ρ1, . . . , ρ24, %1, . . . , %24, θ1, θ2, θ3, ϕ1}.

3. Description of the data set
The data set used in this work contains hourly measurements of the heat load of 33 different
Norwegian schools. The heating has been split into electric heating and space heating. In this
work, only the space heating is used. In addition, the outdoor temperature for the different
schools is available. For each building, the measurements span from 1 to 3 years with no gaps
in the data. Other general information about all buildings is known, this information contains
details like location, efficiency label and built area. In the following results, all schools have
the Regular efficiency label, which means that they do not comply with the TEK10 efficiency
standards and above. Lastly, to normalize the data, the heat load of the schools has been divided
by the area of each building, i.e. [Φi,t] = kWh/m2.

In order to validate the results of the stochastic simulation, the data has been split into two
sets: one for training and one for testing. The training set contains data from 25 buildings. In
order to have a balanced data set for training, one year has been chosen arbitrarily for each of
the 25 buildings. The final training set contains data from 2009, 2010, 2011, 2012 and 2017. On
the other hand, the test set contains data from 8 different buildings. The data from the test set
is all from 2010, to ensure consistency with the time stamps and weather data.



8th International Building Physics Conference (IBPC 2021)
Journal of Physics: Conference Series 2069 (2021) 012138

IOP Publishing
doi:10.1088/1742-6596/2069/1/012138

5

4. Results
As explained in the method section, mixed effects models can be used to study the differences
between the measured buildings (profiling), or to simulate the behaviour of a new unobserved
building (sampling). In this section, both outcomes are presented: first, the results of fitting
model in Equation (5) are shown, which allows computing the variable Tb,i ∀i ∈ {1, . . . , 33}.
Then, the model in Equation (6) has been fit using the training set and the simulated
consumption has been compared to the test data.

4.1. Profiling energy performance
All buildings in this work have the same energy efficiency label, implying that their response to
weather conditions should be similar. Using the model in Equation (5) it has been possible to
retrieve energy performance parameters, {βi, Tb,i}, from all individual buildings and compare the
population of available buildings. The results can be seen in Figure 2, where it can be noticed
that, the base temperature, as well as the HLC, vary significantly from building to building. For
reference, a global Tb has been computed fitting the classical fixed effects ES, using data from
all schools simultaneously. Notice that, even though numerous buildings signature lie close to
the global one, the differences between individual buildings vary significantly, with the HLC of
some of the worst performers doubling the HLC of the best ones.

Distribution of Tb,i

Outdoor temperature [C]
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Figure 2: Energy signature for the total building population of regular schools. Two arbitrary
buildings have been highlighted in red. It can be seen that the performance parameters change
significantly from building to building.

4.2. Sampling energy profiles
The previous section showed that mixed models allow us to assess the differences across
individual buildings that are present in the building population. This section, shows the results
simulating the consumption of an unobserved school. This simulation is based on the model in
Equation (6), that has been fit using data from 25 schools.

Figure 3 shows the model prediction given the temperatures of the month of February 2010;
where, it can be noticed that the model simulation follows closely the trend of the test data.
As expected, this trend shows clear peaks during the work days and a flatter trend during the
weekends. The simulation under-predicts the highest peaks taking place in the morning of work
days. When the morning peaks are captured, the valleys at night are over-predicted, which
highlights the difficulty of capturing sudden changes in heat consumption.
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Since the simulation is stochastic, the prediction interval (PI) of the simulation has been
computed. As expected, this prediction interval shows a constant width during the whole time-
series due to the assumption of normally distributed noise. It is easy to see that, in this February
example, the prediction interval includes practically all test data points.
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Test data
Simulation
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0:00 12:00 23:00

Typical day curve

Figure 3: Comparison of the simulated data and a test set for the month of February 2010.

In addition, Figure 3 includes the daily profile of the prediction and the test data. It can
be observed that the typical day curve of the simulation is lower than the testing data during
the working hours. This damped trend in the simulation might be due to the range difference
between the training and testing set. As it can be seen that the hourly range of data points of
the training set is significantly wider than test set.

This model is fitted with data from all year round, so it has been possible to simulate heat
consumption for every month. Figure 4 shows the typical daily consumption for every month of
2010. The simulated curve and the test curve follow a similar pattern during the colder months.
Notice that the daily baseline consumption decreases during the summer, where only the hour
effects are present. During June, July and August the test consumption is virtually zero, and
the simulation still shows a low periodic hourly pattern. Nevertheless, Figure 4 also includes
the percentage of test data points that fall inside the 90% prediction interval of the simulation.
It can be seen that, for the whole year, practically all test data falls inside the expected region.
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Figure 4: Typical days for every month of the year 2010. Every month includes the % of test
data that falls inside the 90% prediction interval, denoted by ”In P.I.”.
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5. Discussion
The results in this work show the potential of mixed effects models to be used to forecast long-
term energy consumption of buildings. These models are a natural extension of fixed effects
models, that have been proven successful in past work. Mixed effects are able, not only to
generate a representative prediction of the heat consumption in buildings, but also they estimate
the inherent uncertainty of the simulation due to non-measured events.

Fitting a mixed effects version of the energy signature, has showed that the range of energy
performance varies significantly, even though all schools have the same efficiency label. This
result highlights the importance of working with stochastic simulations, given the wide variety
of energy performance in the building stock.

There is still room for improvement in the current version of the model. Although all
test values fall inside the prediction interval, the simulation mean shows damped peaks, when
compared to the test data. In addition, practically 100% of test data falls inside the 90%
prediction interval; which hints that such interval should be narrower. Similarly, it can be
seen that the interval is symmetric and constant. However, a more realistic model would have
a prediction interval that: i) is asymmetric since consumption can only take positive values;
and ii) is wider when consumption is expected to be higher. These limitations come from the
assumption that the modelled data follows a gaussian distribution. In the future, different
distribution families will be used, to take into account such issues. In addition, the dependence
of the weather can be improved, to make the base temperature variable over the year, and then
skip the need for fitting first the mixed effects energy signature. Despite the aforementioned
issues, the results are promising enough and the next steps well defined to pursue further this
methodology with a more complete model. Ultimately, given the generality of modelling with
mixed effects, the work presented here can be extended to other building categories to simulate
a broader energy landscape.
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[5] Pérez-Lombard L, Ortiz J and Pout C 2008 Energy and Buildings 40 394–
398 ISSN 0378-7788 URL https://www.sciencedirect.com/science/article/pii/

S0378778807001016

https://ideas.repec.org/a/eee/enepol/v119y2018icp410-422.html
https://www.sciencedirect.com/science/article/pii/S0142061512002645
https://www.sciencedirect.com/science/article/pii/S0142061512002645
https://www.sciencedirect.com/science/article/pii/S0957178719300116
https://www.sciencedirect.com/science/article/pii/S0957178719300116
https://www.sciencedirect.com/science/article/pii/S0378778807001016
https://www.sciencedirect.com/science/article/pii/S0378778807001016


8th International Building Physics Conference (IBPC 2021)
Journal of Physics: Conference Series 2069 (2021) 012138

IOP Publishing
doi:10.1088/1742-6596/2069/1/012138

8

[6] Taylor P G, d’Ortigue O L, Francoeur M and Trudeau N 2010 Energy Policy 38 6463–
6474 ISSN 0301-4215 energy Efficiency Policies and Strategies with regular papers. URL
https://www.sciencedirect.com/science/article/pii/S0301421509003280
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