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Abstract  Uncertainties in parameters of landslide susceptibility 
models often hinder them from providing accurate spatial and 
temporal predictions of landslide occurrences. Substantial con-
tribution to the uncertainties in landslide assessment originates 
from spatially variable geotechnical and hydrological parameters. 
These input parameters may often vary significantly through space, 
even within the same geological deposit, and there is a need to 
quantify the effects of the uncertainties in these parameters. This 
study addresses this issue with a new three-dimensional probabil-
istic landslide susceptibility model. The spatial variability of the 
model parameters is modeled with the random field approach and 
coupled with the Monte Carlo method to propagate uncertainties 
from the model parameters to landslide predictions (i.e., factor of 
safety). The resulting uncertainties in landslide predictions allow 
the effects of spatial variability in the input parameters to be quan-
tified. The performance of the proposed model in capturing the 
effect of spatial variability and predicting landslide occurrence 
has been compared with a conventional physical-based landslide 
susceptibility model that does not account for three-dimensional 
effects on slope stability. The results indicate that the proposed 
model has better performance in landslide prediction with higher 
accuracy and precision than the conventional model. The novelty 
of this study is illustrating the effects of the soil heterogeneity on 
the susceptibility of shallow landslides, which was made possible by 
the development of a three-dimensional slope stability model that 
was coupled with random field model and the Monte Carlo method.

Keywords  Landslide · Susceptibility · 3D slope stability · Rainfall · 
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Introduction
Landslides are one of the major hazards in the world causing 
adverse consequences to society, such as fatalities (e.g., Haque et al. 
2016; Petley 2012), injuries to people, economical losses (e.g., Nadim 
et al. 2006), and environmental damages. Among the different types 
of landslides, shallow landslides are one of the most detrimental 
types due to their high frequency on hillsides, and the capacity to 
evolve in destructive debris flows. Shallow landslides can be initi-
ated by extreme events of rainfall, snowmelt, or a combination of 
rainfall and snowmelt.

In the landslide hazard and susceptibility mapping, physical-
based models are being increasingly employed as the hydrological 
and geotechnical aspects of the landslide can be explicitly consid-
ered. A wide range of physical-based landslide susceptibility mod-
els have been developed ranging from local (i.e., single slope to 10 
km2) to national scales (i.e., hundreds to thousands of km2). Some 
of the most commonly used models include the distributed Shallow 

Landslide Analysis Model (dSLAM) (Wu and Sidle 1995), the Shal-
low Slope Stability Model (SHALSTAB) (Montgomery and Dietrich 
1994), the Stability Index Mapping (SINMAP) (Pack et al. 2005), the 
Shallow Landslides Instability Prediction (SLIP) (Montrasio and 
Valentino 2008), GEOtop-FS (Simoni et al. 2008), the Transient 
Rainfall Infiltration and Grid-Based Regional Slope Stability (TRI-
GRS) (Baum et al. 2002, 2008) model, TRIGRS-P (Raia et al. 2014), 
the High Resolution Slope Stability Simulator (HIRESS) (Rossi et al. 
2013), and the r.rotstab (Mergili et al. 2014b, a).

Significant uncertainty in the geotechnical and hydrological 
parameters of these models has been reported in the literature (e.g., 
Burton et al. 1998; Mergili et al. 2014b; Arnone et al. 2016). The uncer-
tainties represent one of the major challenges in the accurate spatial 
and temporal prediction of rainfall-induced shallow landslides. The 
uncertainties originate often due to the lack of field and labora-
tory investigations and the inherent natural variability linked to the 
parameters (e.g., Melchiorre and Frattini 2012). Avoiding quantifica-
tion of uncertainty by employing a set of deterministic values for 
the model parameters might result in unrealistic or too conserva-
tive estimates (e.g., Raia et al. 2014). In addition to the uncertainties 
in the geotechnical and hydrological parameters, uncertainties can 
arise from different sources including initial hydrological conditions 
(e.g., Grelle et al. 2014). Bossi et al. (2019) investigated the uncertain-
ties in the slope stability modeling due to soil stratigraphy hetero-
geneity. The results show that soil stratigraphy heterogeneity has a 
significant effect on the safety of slopes. The uncertainties originat-
ing from GIS data sources (Sandric et al. 2019), raster resolution, 
and sample size (Shirzadi et al. 2019) have been also reported to be 
significant in landslide susceptibility assessment.

The uncertainties in the spatially variable model parameters can 
be statistically modeled with random fields (Fenton and Griffiths 
2008). Random fields model spatially variable parameter by assign-
ing a probability density function (pdf) to statistically describe the 
uncertainties in the parameter and using a covariance function 
to account for spatial dependence of the parameter. Variability of 
landslide model parameters (e.g., geotechnical and hydrological 
parameters) has been mainly incorporated by considering dif-
ferent homogeneous geological units over the terrain (Salciarini 
et al. 2006; Baum et al. 2010; Melchiorre and Frattini 2012; Schilirò 
et al. 2021) without explicitly modeling spatial variability within a 
single geological unit. Additionally, some of the abovementioned 
physical-based models, such as SINMAP, GEOtop-FS, HIRESSS, and 
TRIGRS-P, have the capacity to model the variability of the model 
parameters with the single random variable approach, where the 
parameters are uncertain but homogeneous within a single geologi-
cal unit, thus not accounting for spatial variability (Hammond et al. 
1992; Haneberg 2004; Raia et al. 2014; Arnone et al. 2016).
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Spatial variability of physical-based model parameters such 
as cohesion as a geotechnical parameter has been investigated by 
extensive field measurements in Burton et al. (1998). The results 
of the study reveal the significance of the spatial variability on 
the landslide modeling. Additionally, Fenton and Griffiths (2008) 
investigated the effects of spatial variability and showed that non-
conservative results are obtained without accounting for the spatial 
variability.

The need of accounting for the spatial variability of the geo-
technical and hydrological parameters on the susceptibility of 
landslides has been addressed by many researchers (e.g., Burton 
et al. 1998; Mergili et al. 2014a, b; Arnone et al. 2016). In the study 
of Lizárraga and Buscarnera (2020), spatial variability of hydraulic 
conductivity, KS , has been accounted in regional modeling of shal-
low landslide. The physical-based model described in Lizárraga and 
Buscarnera (2019) has been combined with random field approach 
and Monte Carlo realizations to account for the spatial variability 
of KS . The results indicate that accounting for spatially varying KS 
affects the shallow landslide susceptibility assessment significantly. 
However, there is yet to make an attempt to study the spatial vari-
ability of geotechnical parameters on shallow landslide suscepti-
bility using physical-based models. Accounting the variability of 
model parameters without spatial dependence (e.g., Rossi et al. 
2013; Raia et al. 2014), as homogeneous through space, would result 
in an overestimated factor of safety, FS , as the failure might occur 
through weak zones resulting in lower FS in case of heterogeneity. 
This work aims to evaluate the effects of spatial variable model 
parameters on the estimates of susceptibility of shallow landslides 
with the development of a three-dimensional landslide susceptibil-
ity model accounting for the variability of model parameters over 
spatial extent.

The study is presented in such a way that the proposed 3D soil 
column-based limit equilibrium model, capable of modeling the 
spatial variability over the problem domain, is introduced first. 
Details on the hydrological model, the slope stability model, and 
the statistical methods integrated into the model are provided. This 
is followed by the validation of the slope stability model. Addition-
ally, the effects of the spatial variability of the model parameters 
on the susceptibility of shallow landslides will be introduced, and 
the capacity of the proposed model to capture these effects will 
be validated on a simplified problem by performing an extensive 
study in a finite element method software. Finally, the model will 
be tested on a case study in an area prone to shallow landslides, and 
the results will be provided.

The 3‑Dimensional Probabilistic Landslide Susceptibility (3DPLS) 
model
The 3-Dimensional Probabilistic Landslide Susceptibility 
(3DPLS) model is a Python code developed for landslide suscep-
tibility assessment. The 3DPLS model evaluates the landslide sus-
ceptibility on a local to a regional scale (i.e., single slope to 10 km2) 
and allows for the effects of variability of the model parameters on 
slope stability to be accounted for.

The 3DPLS model couples the hydrological and slope stabil-
ity models. The hydrological model calculates the transient pore 
pressure changes due to rainfall infiltration using Iverson’s lin-
earized solution of the Richards equation (Iverson 2000) assum-
ing tension saturation. The slope stability model calculates the FS 

by utilizing the extension of Bishop’s simplified method of slope 
stability analysis (Bishop 1955) to three dimensions, proposed in 
the study of Hungr (1987). The 3DPLS model requires topographic 
data (e.g., DEM, slope, groundwater depth, depth to bedrock, geo-
logical zones), hydrological parameters (e.g., steady background 
infiltration rate, permeability coefficient, diffusivity), geotechni-
cal parameters (e.g., soil unit weight, cohesion, friction angle), and 
rainfall data.

The model can have a grid containing hundreds or thousands of 
cells depending on the problem size and refinement. The smallest 
unit of the grid is called a grid cell having its own model param-
eters. The developed model calculates the FS of an ellipsoidal sliding 
surface consisting of grid cells over a discretized problem domain, 
while equivalent cell-based models, as the name states, perform the 
calculations per each cell individually. The model generates a large 
number of ellipsoidal sliding surfaces centered at each grid cell 
over the terrain and calculates the FS of all sliding surfaces. After 
the calculation, each cell is involved in several ellipsoidal sliding 
surfaces with different FS values. Among all FS values, the minimum 
FS representing the critical ellipsoidal sliding surface is assigned 
to each cell. Each simulation results in a FS map over the terrain. 
After a number simulation, the 3DPLS model provides the FS map 
of each simulation, the mean FS , �FS

 , and the probability of failure, 
Pf  , of each cell.

The 3D slope stability model

The model assumes an ellipsoidal sliding surface, as shown in Fig. 1, 
and calculates the corresponding FS . The ellipsoidal sliding surface 
is characterized by the lengths of three principal semi-axes, ae , be , 
and ce and the inclination of the ellipsoid in the direction of motion, 
� , aspect of the motion, � , and the geographical coordinates of the 
center with a perpendicular offset of the ellipsoid center, ze, above 
the ground, as presented in Fig. 2. The ae is the principal semi-axis 

Fig. 1   (a) 3D illustration of the landslide body and (b) a single grid 
column with the forces inside the ellipsoidal sliding surface
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in the direction of steepest slope, i.e., in the sliding direction, and 
be is the other principal semi-axis perpendicular to the direction of 
the steepest slope. ce is the third principal semi-axis perpendicular 
to the other two principal semi-axes.

After an ellipsoidal sliding surface is specified, the depth to the 
sliding surface is calculated for each cell inside the ellipsoidal slid-
ing zone. Then, the 3DPLS model truncates the ellipsoidal sliding 
surface at the cells where depth to the sliding surface is greater than 
depth to bedrock, i.e., thickness of the cell.

The lengths of three principal semi-axes, ae , be , and ce , are defined 
by the user considering the characteristics of the shallow landslides 
that occurred over the study area. The direction of the motion, � , can 
be obtained by using the aspect of the cells inside the sliding zone 
or using reference points inside the ellipsoidal zone (e.g., Mergili 
et al. 2014b), but it is assigned by the user in the current version of 
the 3DPLS model. The inclination of the ellipsoid in the direction 
of motion, � , is calculated by taking the average slope over a rectan-
gular zone with the dimensions of 2ae × 2be located at the center of 
the ellipsoid. In the 3DPLS model, when the number of cells in the 
slope stability calculation for a single ellipsoid is less than a given 
threshold value, the model can sub-discretize the cells by halving 
the cell size until the threshold value is reached. To have a reason-
able ellipsoidal sliding surface in the analysis, the number of cells 
inside the ellipsoidal zone should be sufficiently high. Otherwise, 
the generated sliding surface represents a combination of discrete 
planes. There is a trade-off between the threshold cell number and 
runtime. Therefore, a reasonable threshold should be selected by 
investigating the effect of cell number on the FS.

The slope stability model of the 3DPLS model employs the 3D 
extension of Bishop’s simplified method of slope stability analysis 
(Bishop 1955), proposed by Hungr (1987). This extended method, 
Bishop 3D, is a three-dimensional soil column-based limit equilibrium 
method. The Bishop 3D relies on the same assumptions of Bishop’s 
simplified model. These assumptions are (i) that vertical shear forces 
acting on the vertical faces of the soil column (both longitudinal and 
lateral) can be ignored and (ii) that the vertical equilibrium of forces 
for individual soil columns and the moment equilibrium of the entire 
system of soil columns are sufficient conditions for the identification 
of unknowns such as the normal force and shear force at the base of 
soil columns and FS.

After placing the ellipsoidal sliding surface, the depth of the 
ellipsoidal sliding surface, de , is calculated using the coordinate and 
elevation data of each cell. The thickness of the sliding for a given 
cell, d , is equal to the de if the maximum depth to bedrock, Zmax , is 
greater than de . Otherwise, the sliding surface is truncated at Zmax 
and d = Zmax . Then, the total weight of the soil column is calculated 
as W = d(ΔxΔy), where Δx and Δy are the lateral soil column dimen-
sions. In the case of truncation, the same aspect of the ellipsoidal 
sliding surface, i.e., � , and the slope angle of the truncated cell are 
assigned to the sliding base of the truncated cell for simplicity.

Considering a single soil column shown in Fig. 1b, the vertical force 
equilibrium equation can be derived as follows:

where Nz and Sz are the vertical components of the total normal 
force and shear force at the base, A is the area of the base slip sur-
face, c is the cohesion, � is the friction angle, u is the pore pressure 
at the base center, �z is the angle between normal force and vertical 
axis, and � is the inclination of soil column base in direction of 
motion. Then, normal force, N , can be derived as follows:

where

The area of the soil column base can be calculated using Δx and 
Δy , and apparent dip angles, �x and �y , as follows:

The angle between normal force, N , and vertical axis can be cal-
culated by the following equation:

(1)W = Nz + Sz = N cos
(
�z
)
+

[
(N − u A)tan(�)

FS
+

cA

FS

]
sin(�)

(2)N =
W − c A sin

(
�y
)
∕FS + u A tan(�)sin

(
�y
)
∕FS

m�

(3)m� = cos
(
�z
)[

1 +
sin

(
�y
)
tan(�)

FScos
(
�z
)

]

(4)A = ΔxΔy

(
1 − sin2

(
�x
)
sin2(�y)

)1∕2
cos

(
�x
)
cos(�y)

Fig. 2   (a) Plane view and (b) 
side view of the 3D ellipsoidal 
sliding surface
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For the entire sliding volume divided into j number of soil col-
umns, the moment equilibrium equation can be expressed as follows:

Then, the FS can be derived by using the equilibrium equation 
(Eq. 1) and normal force equation (Eq. 2):

The above equation is implicit in FS, and this requires one to 
solve the equation iteratively for FS . The details can be seen in Hungr 
(1987).

The hydrological model
In the 3DPLS model, Iverson’s linearized solution of the Richard 
equation for tension-saturated soils (Iverson 2000) is employed 
in the hydrological model to calculate pore pressure changes. The 
time-dependent pressure head, �(t, y) , at a given depth, y , and time, 
t  , composed of a long-term head response (steady component), 
�0(y) , and a short-term head response (transient component), 
�1

(
t, y

)
 , is as follows:

The steady component, �0(y) , is defined as a linear function of y 
with respect to the initial groundwater depth, HW , assuming slope-
parallel flow with a background infiltration rate, IZ:

where � is a constant calculated as follows:

where � is the slope angle in degrees, Ks is the saturated perme-
ability. The transient component is based on the reduced form of 
the Richard equation assuming tension saturation with a saturated 
coefficient of permeability:

where D0 is the maximum diffusivity observed when the soil becomes 
saturated. Solving the above equation with the boundary conditions 
defined in Iverson (2000) results in:

(5)cos
(
�z
)
=

[
1

tan2
(
�y
)
+ tan2

(
�x
)
+ 1

]1∕2

(6)
∑j

i=1

(
Ni − uiAi

) tan(�i

)
FS

+
ciAi

FS
=
∑j

i=1
Wisin(�y,i)

(7)
FS =

∑j

i=1

[(
Wi − uiAicos

(
�z,i

))
tan

(
�i

)
+ ciAicos

(
�z,i

)]
m�,i

∙
(∑j

i=1
Wisin

(
�y,i

))−1

(8)�(t, y) = �0(y) + �1

(
t, y

)

(9)
�0

(
y
)

y
=

(
1 −

Hw

y

)
�

(10)� = cos2� −

(
IZ
Ks

)

steady

(11)
��1

�t
= D0cos

2�
��2

1

�y2

(12)
𝜓1(t

∗)

y
=

⎧
⎪⎨⎪⎩

Iy

Ks
R(t∗) , 0 ≤ t∗ ≤ T∗

Iy

Ks
[R(t∗) − R(t∗ − T∗)] , t∗ > T∗

where Iy is the precipitation (surface flux), t∗ is normalized time, 
T∗ is the normalized duration of the precipitation, and R is the 
response function. These parameters are determined as follows:

where D = 4D0cos
2� is an effective hydraulic diffusivity and erfc is 

the complementary error function. As the abovementioned model 
may result in unrealistic pressure heads at shallow depths, calcu-
lated pressure heads are restricted by specifying that it cannot 
exceed the �-line calculated by � = y� as stated in Iverson (2000). 
The details and the limitations of Iverson’s linearized solution of 
the Richard equation can be seen in Iverson (2000).

The statistical framework
Soils exhibit heterogeneity and anisotropy in space due to varying 
deposition and formation processes in geological history. Composi-
tion, strength parameters, and physical and chemical properties can 
vary for the same soil type at the same site because of the inherent 
variability resulting from the randomness of geological processes. The 
soil properties display variability through space, and a continuous 
random field model is often used to model it. The spatial variability 
of the model parameter is defined by a covariance function to account 
for spatial dependence of the parameter and a pdf to describe the 
uncertainties in the parameter.

In the 3DPLS model, the variability of the model parameters is 
modeled in the horizontal directions with two-dimensional Gaussian 
and lognormal random fields. The variability in the vertical direction 
is not modeled for simplicity. As it is relatively straightforward to 
transform a lognormal random field to a Gaussian random field, the 
Gaussian random field is only explained here. A Gaussian random 
field of a model parameter, X =

[
X(l1),… ,X(lk)

]T
 , where the set of 

values, l =
[
l1,… , lk

]T
 , represent the spatial coordinates, defines the 

joint pdf of X as a multivariate normal pdf, fX (X):

where � is the mean values of the random field, � =
[
�(l1),… ,�(lk)

]T
 , 

C is the covariance matrix, and k is the number of elements in X. The 
elements of the covariance matrix, C , are expresses as:

where �(lm) is the standard deviation of the parameter at coordinate 
lm and �

(
lm, ln

)
 is the correlation coefficient between parameters at 

coordinates lm and ln . Depending on the problem size, either the 
two-dimensional ellipsoidal autocorrelation function (Eq. 18) or 
the two-dimensional separable Markov autocorrelation functions 
(Eq. 19) has been employed:

(13)t∗ =
t

y2∕D

(14)T∗ =
T

y2∕D

(15)R(t∗) =
√

t∗∕�exp
�
−
1

t∗

�
− erfc

�
1√
t

�

(16)fX (X) =
1

(2�)k∕2|C|1∕2 exp
{
−
1

2
(X − �)TC−1(X − �)

}

(17)Cmn

(
lm, ln

)
=

{
�2
(
lm
)

,m = n

�
(
lm
)
�
(
ln
)
�
(
lm, ln

)
,m ≠ n
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where �x and �y are separation distances between coordinates lm 
and ln and lx and ly are spatial correlation lengths in the direction 
of x and y, respectively.

To generate random fields, the covariance matrix decomposition 
method (Fenton and Griffiths 2008) with the ellipsoidal autocorrela-
tion function is utilized for problems with a low number of elements. 
The soil property, X , at k locations can be obtained as:

where Lk×k is the lower triangle matrix obtained by the Cholesky 
decomposition method and Uk×1 is a vector of Gaussian random 
variables with zero mean and unit variance.

The computational time and required memory space to gen-
erate correlation matrices and Cholesky decomposition can be 
demanding as the number of elements in the problem increases 
(e.g., 50 × 50 ). To overcome this issue, the stepwise covariance 
matrix decomposition method proposed by Li et al. (2019) is 
implemented in two-dimensional random field generation. The 
stepwise matrix decomposition method uses a separable autocor-
relation function (Eq. 19) which allows the method to disassemble 
the correlation matrix, R , into the number of dimensions used 
in the problem:

where Rx and Ry are the one-dimensional correlation matrices in 
x and y directions and ⊗ is the Kronecker product. Similarly, the 
lower triangle matrix, L , can be written as:

where Lx and Ly are the lower triangle matrices in x and y directions 
satisfying LxL

T
x
= Rx and LyL

T
y
= Ry . Then, using the matrix-array 

multiplication operations, Eq. 21 can be rewritten as:

The method reduces the computational time and required 
memory space significantly. The details of the stepwise covari-
ance decomposition method can be seen in Li et al. (2019). In 
the present study, the stepwise covariance matrix decomposition 
method was implemented when the number of the elements of 
the problem exceeds a limit causing unfeasible run time (e.g., 
more than 500 elements).

The 3DPLS model propagates uncertainties from the spatially 
variable model parameters to the model output in terms of FS . 
The 3DPLS model is relatively flexible and can be coupled with a 
wide range of methods for uncertainty quantification (e.g., Monte 
Carlo, Importance Sampling). For simplicity, the 3DPLS model 

(18)�
�
lm, ln

�
= exp

⎧
⎪⎨⎪⎩
−2

�����
�
�x

lx

�2

+

�
�y

ly

�2⎫⎪⎬⎪⎭

(19)

�
(
lm, ln

)
= exp

{
−2

(
�x

lx

)
− 2

(
�y

ly

)}
= exp

{
−2

(
�x

lx

)}
exp

{
−2

(
�y

ly

)}

(20)C = LLT

(21)X = LU

(22)R = Ry ⊗ Rx

(23)L = Ly ⊗ Lx

(24)X = LxULT
y

was coupled with the Monte Carlo method in this study due to 
its robustness and straightforward implementation. The 3DPLS 
model conducts a series of slope stability analyses, in which the 
values of model parameters are randomly selected based on reali-
zations from statistical models of spatially variable properties 
(e.g., random fields). The result of the Monte Carlo analysis is 
a set of FS values that are statistically analyzed to evaluate the 
resulting uncertainty in model predictions by calculating modes 
(e.g., mean, standard deviation) or estimating failure probability. 
The probability of failure, Pf  , for each cell individually is calcu-
lated as follows:

where NS is the number of simulations, FS,i is the factor of safety of 
ith simulation, and I is the indicator function providing 1 in case of 
failure, when FS,i ≤ 1 , otherwise 0.

Validation of the 3DPLS model

Validation of the slope stability model
The performance of the slope stability model on evaluating the FS of 
slopes has been tested using three validation problems, all of which 
feature homogeneous model parameters in space. The first valida-
tion problem (Fig. 3a, d) involves a spherical sliding surface in a 
purely cohesive slope with a 2:1 inclination. In Fig. 3a, R is the radius 
of the sphere centered 0.5 R above the ground surface. The 3D FS 
was calculated as 1.402 by using the closed-form solution proposed 
by Baligh and Azzouz (1975) and Gens et al. (1988). Using the devel-
oped 3DPLS model, the computed 3D FS ranged from 1.386 to 1.471 
depending on the refinement of the sliding volume. In Table 1, the 
FS values reported for the validation problem by various researchers 
are provided for comparison.

The second validation study was conducted on a spherical slid-
ing surface in a c

�
− �

�
slope (Fig. 3b, e) reported in the study of 

Hungr et al. (1989). In the 3DPLS model, the center of the ellipsoidal 
sliding surface is introduced with an offset perpendicular to the 
ground surface. Therefore, it is not possible to introduce the center 
of the sliding surface shown in Fig. 3b. With a small modification 
to the proposed model, the center could be defined, and the 3D FS 
was calculated as 1.207 using a cell size of 0.01 m. In Table 1, the 
corresponding 3D FS values reported in the literature are given.

The third validation problem is the example from Fredlund 
and Krahn (1977), shown in Fig. 3c and f. The problem has been 
used by many researchers (Xing 1988; Hungr et al. 1989; Lam 
and Fredlund 1993; Huang et al. 2002; Xie et al. 2006; Griffiths 
and Marquez 2007; Mergili et al. 2014b) to verify their proposed 
3D models. This validation problem has been investigated for 
two sliding surfaces shown in Fig. 3f, spherical sliding surface 
in pure homogeneous drained material (Slip-1) and composite 
sliding surface due to the existence of a weak layer (Slip-2). Slip-1 
without water table and Slip-2 with/without water table were ana-
lyzed by using the 3DPLS model. The pore pressures were calcu-
lated assuming hydrostatic conditions for the soil columns with 
a sliding surface below the water table. Negative pore pressure, 
i.e., suction, was ignored. The composite sliding surface, Slip-2, 
was obtained by assigning the maximum depth at the level of 

(25)Pf = P
(
FS ≤ 1.0

)
=

1

NS

∑NS

i=1
I(FS,i − 1.0)
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the weak layer. Then, the soil columns were truncated when the 
sliding spherical surface is below the weak layer, and the slope is 
assigned as zero to those truncated cells instead of surface slopes 
as originally implemented in the 3DPLS model. In the current 
study, the 3D FS yielded 2.276 for Slip-1 without water table, 1.769 
for Slip-2 without water table, and 1.692 for Slip-2 with the water 
table. Table 1 provides the results of the present study and the 3D 
FS values obtained by other researchers.

From Table 1, it can be seen that the 3DPLS model results are 
within the range reported in the literature for the abovementioned 
three relatively simple validation problems with slight differences. 
These differences are attributed to the assumption in the models and 
the level of discretization.

Validation of the model capacity to capture the effects of spatial 
variability
In this study, the capacity of the 3DPLS model to capture the effect 
of spatial variability on slope stability has been validated with an 
extensive study in the finite element method (FEM) based program, 
PLAXIS. Throughout this paper, the 3DPLS model will be compared 
with its equivalent cell-based model utilizing the same hydrological 
model and the statistical framework as the proposed model does, 
but employing widely used infinite slope stability method on a cell-
by-cell basis (e.g., Griffiths et al. 2011). In the infinite slope stability 
method, the FS is calculated at maximum depth for each cell using 
the pore pressure values obtained from the hydrological model. 
Additionally, for the cells with low slope angle, i.e., flat zones, the 

Fig. 3   (a) Validation problem – 1: spherical sliding surface in purely cohesive slope; (b) validation problem – 2: spherical sliding surface in 
c� − �� slope; and (c) validation problem – 3: the problem from Fredlund and Krahn (1977); (a, b, c) 2D center section and (d, e, f) 3D view

Table 1   Comparison of the 3D FS values reported by various researchers for the validation problems

 a Dry: without groundwater table, wet: with groundwater table.
 b Finite element method.

 Reference Validation problem – 1 Validation problem – 2 Validation problem – 3a

Slip-1 (dry) Slip-2 (dry) Slip-2 (wet)

Baligh and Azzouz (1975)
Gens et al. (1988)

1.402 - - - -

 Xing (1988) - - 2.122 1.548 1.441

 Hungr et al. (1989) - 1.23 - 1.62 1.54

 Lam and Fredlund (1993) 1.386–1.472 - - 1.534–1.607 1.447–1.511

 Huang et al. (2002) 1.379–1.412 1.204–1.243 2.072–2.215 1.645–1.757

 Xie et al. (2006) 1.251–1.455 1.180–1.222 2.043–2.302 1.609–1.711 1.485–1.620

 Griffiths and Marques (2007)b 1.39 - - - -

 Mergili et al. (2014a) 1.35–1.43 1.19 2.03 1.58 1.53

 Present study (3DPLS) 1.386–1.471 1.207 2.276 1.769 1.692
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FS values are limited at 10.0 to prevent possible confusion of the 
results. The analyses with the infinite slope stability method will 
be called the “Cell-based model” hereafter.

A simplified case, with a domain of 100 × 100m with 25° inclina-
tion, was examined. The thickness of the soil is 2 m with a ground-
water table at the ground surface. The domain is discretized into 
a grid of 20 × 20 equally sized cells (cell size of 5 m) as shown in 
Fig. 4. The parametric study has been conducted for both drained 
(effective stress-based) and undrained (total stress-based) cases 
with three variability levels: low, moderate, and high. Table 0 shows 
the parameters used for the validation problem in both drained and 
undrained cases. In the analyses, the saturated unit weight of soil 
and the unit weight of water were employed as 20 kPa and 10 kPa, 
respectively. In the drained case, a slope parallel groundwater flow 
was modeled, while total stress analysis was performed for the und-
rained case. The saturated permeability was assigned as 1 ∙ 10−6 m/s.

The two-dimensional Gaussian random field model was 
employed to generate random fields for soil strength parameters, 
c
′
and �

′
 in the drained case and Su in the undrained case. Spatial 

dependence was modeled using the two-dimensional ellipsoidal 
autocorrelation function (Eq. 18) with a spatial correlation length, 
l  , ranged between 0 and 1000 m. The spatial correlation length of 
0 m means no spatial dependence across the study domain. As the 
spatial correlation length increases, the spatial dependence among 
the parameters increases. The spatial correlation length of 1000 m 
is used as an upper limit where the soil approaches homogene-
ous conditions over the 100 m × 100 m study domain. The spatial 
correlation length was assumed to be equal in both directions, 
i.e., lx = ly . Analyses were conducted for a range of coefficient of 
variation, CoV, values with 1000 random field realizations for each 
combination of correlation lengths and CoV values.

There exists a trade-off between the mesh size and the run 
time for each simulation in the FEM model. Due to a large 
number of simulations (1000 Monte Carlo simulations for each 

correlation length for each variability level for both drained and 
undrained cases; 48,000 simulations in total), the mesh size was 
optimized considering the convergence of the FS values and the 
run time.

In the 3DPLS model, the lengths of three principal semi-axes 
that define the ellipsoid were assumed to be 20 × 20 × 2m with-
out any offset from the ground surface, i.e., ze = 0 . The aspect of 
the motion, � , was assigned to be 90◦ as the sliding was through 
the downslope direction. The inclination of the ellipsoid in the 
direction of motion, � , was assigned as 25◦ as the slope is con-
stant over the problem domain. In the 3DPLS model analyses, 
the problem domain was extended so that the ellipsoidal sliding 
surfaces placed close to the boundaries would not be truncated at 
the sides. Then, the FS values within the original problem domain 
were employed in the performance assessment. In the Cell-based 
model, the calculations are carried out per each cell individually, 
and therefore, no extension was needed.

The landslide initiation process is a complex process including 
the formation of the initial weak zone and its propagation prior 
to landsliding. A thin zone of intense shearing, i.e., shear band, 
starts to propagate as the initial weak zone is not able to resist the 
driving load. Then, the driving load exceeding the capacity of the 
initial weak zone is distributed to the surrounding neighboring 
initially stable zones. If the neighboring zones cannot withstand 
this additional load transferred from the initial weak zone, the 
shear band propagates. Then, the propagation of the shear band 
might stop if the excess driving load is compensated by the sur-
rounding neighboring zones; otherwise, it leads to the landslide 
initiation with the movement of upper soil on the shear band. 
In addition to the complex processes of load distribution and 
shear band propagation, the presence of soil heterogeneity adds 
another complexity to the shear band propagation. That is, the 
shear band tends to propagate along the weakest path with low 
capacity to withstand the additional loading.

Without the consideration of these complex processes involved 
in the landslide initiation, relating the predictions of the cell-based 
physical-based models to a single FS representing the whole sim-
plified validation problem, that is called the global factor of safety, 
F
g

S
 , is quite challenging. In the FEM analyses, the load distributions 

and the propagation processes are explicitly satisfied, and therefore, 
reliable and consistent Fg

S
 can be obtained directly from analyses, 

i.e., Fg

S,FEM
= FS,FEM . However, the physical-based limit equilibrium 

models do not consider these complex processes included in the 
landslide initiation. Thus, approximate approaches are required here 
to relate the FS values over the problem domain, 

{
FSi , i = 1,… , n

}
 , 

to the Fg

S
 where n is the number of cells in the discretized prob-

lem domain. In Fenton and Griffiths (2008), the harmonic average 
was empirically demonstrated to be best suited to characterize the 

Fig. 4   Simplified validation problem geometry, (a) plane view and 
(b) side view

Table 2   Simplified validation problem parameters for both drained and undrained cases

CoV levels

 Case Parameter Mean Low Moderate High Distribution Correlation length (m)

 Drained Cohesion, c’ (kPa) 6 0.10 0.20 0.30 Lognormal 0, 10, 20, 50,
100, 200, 500, 1000Friction angle, φ’ (°) 40 0.05 0.10 0.15 Normal

 Undrained Shear strength, Su (kPa) 40 0.10 0.20 0.30 Lognormal
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effects of heterogeneity. This was explained by the harmonic average 
being dominated by the low values similar to the tendency of shear 
band propagation being along the weak zones.

In the Cell-based model, the FS values are calculated for each 
cell individually. Therefore, the Fg

S
 is assumed to be related to the 

harmonic average of the FS values of the cells 
{
FSi , i = 1,… , n

}
 over 

the problem domain based on the empirical observations (Fenton 
and Griffiths 2008):

In the 3DPLS model, the FS is calculated over an ellipsoidal 
sliding surface including spatially varying strength parameters 
inside. The FS of a cell represents the most critical ellipsoidal slid-
ing surface intersecting that cell. Therefore, the Fg

S
 is related to the 

minimum FS , FS,min over the problem domain that represents the 
most critical ellipsoidal sliding surface with the lowest safety for 
the entire model:

Then, the mean global factor of safety, �g , is calculated by aver-
aging the Fg

S
 values of 1000 Monte Carlo simulations for comparison 

of the models.
Both deterministic and probabilistic analyses were conducted 

for the simplified validation problem to validate the capacity of the 
3DPLS model to capture the effect of spatial variability on slope 
stability. In the deterministic analyses, the soil is assumed homoge-
neous over the problem domain, and the mean values are employed 
only. In the probabilistic analyses, the shear strength parameters 
shown in Table 0 are treated as random variables.

Table 3 presents the deterministic results of the simplified vali-
dation problem for the FEM, Cell-based, and 3DPLS models. The 
deterministic model results show that the 3DPLS model results in 
higher FS for both drained and undrained cases compared to the 
Cell-based model.

Figure 5 presents the results of the probabilistic analyses on the 
effects of spatial variability on the �g for drained case in Fig. 5a and 
b and undrained case in Fig. 5c and d. The FEM model results are 
compared with the Cell-based model results in Fig. 5a and c and 
with the 3DPLS model results in Fig. 5b and d. The FEM results indi-
cate that the �g are higher where there exists no spatial dependence 
over the problem domain, i.e., 0 m correlation length. It is less likely 
that there will be large weak zones due to a lack of spatial depend-
ence. As the correlation length increases up to a value of 50 m, the 
�g decreases significantly for both drained and undrained cases. 
This is due to the weak zones having a larger spatial extent and 
low capacity to withstand driving loading. That is, there is a higher 
probability of having a weak zone which can lead to a local failure 
and a lower FS. Further increase of correlation length from 50 up 
to 1000 m causes an increase in the �g as the model becomes more 
homogeneous over space. That is, with high correlation lengths, 
the FS is no longer dominated by local weak zones; eventually, this 
leads to high FS values.

In addition to the effect of correlation length, the effect of vari-
ability level can be also seen in Fig. 5. The FEM model results show 
that as the variability level increases from low level to high level, 

(26)F
g

S,Cell−based
= H

�
FSi ∶ i = 1,… , n

�
=

�∑n

i=1
FSi

n

�−1

(27)F
g

S,3DPLS
= min

[
FSi ∶ i = 1,… , n

]

the �g decreases except for 0 m correlation length. That is, high 
variability level results in higher �g when the correlation length is 
zero. This is attributed to the weak zones having neighboring zones 
with higher shear strength values due to the high variability level. 
Nevertheless, the main trend is that �g decreases with increasing 
variability level. In addition, it can be observed that the effect of 
variability level decreases as the correlation length increases.

The comparison of the FEM model and the Cell-based model 
results in Fig. 5a and c shows that the Cell-based model results are 
not in agreement with the FEM model results. As the undrained case 
has only one parameter treated as a variable, the effect of variability 
level on the �g and the increase in the �g with the increase in cor-
relation length can be observed. For the drained case, the results do 
not vary significantly. As the calculations are performed for each cell 
individually, the effect of weak zones leading to local failure is not 
captured by the Cell-based model. Therefore, the Cell-based model 
is not able to capture the effect of spatial variability on the �g.

When comparing the FEM model and the 3DPLS model results 
in Fig. 5b and d, it can be detected that the trends in both meth-
ods are similar. The �g starts with a high value when the correla-
tion length is 0 m. Then, the increase in correlation length up to 
50 m causes local failures to dominate the Fg

S
 and leading to lower 

�g . When the correlation length increases from 50 to 1000 m, the 
parameters over the problem domain become more homogeneous, 
and local failures stop dominating the Fg

S
 . When there is no spatial 

dependence, i.e., 0 m correlation length, the FEM model results in 
higher �g values for high variability level but not the 3DPLS model. 
This is attributed to that the 3DPLS model does not explicitly model 
the landslide initiation process. The effect of variability level, i.e., 
the decrease in �g with the increase of variability level, is the same 
for both models. Needless to say, there is no perfect fit in the results 
due to the FEM model involving all processes explicitly, and the 
3DPLS model being a simplified soil-column-based limit equilib-
rium model. Besides, the lengths of three principal semi-axes were 
assumed to be 20 × 20 × 2m in the 3DPLS model. A better fit can 
be obtained by changing the dimensions of the ellipsoid. However, 
the main aim here is to show the capacity of the 3DPLS model to 
capture the effect of spatial variability on slope stability not the 
perfect fit in the results.

Case study: “Kvam landslides”
The performance of the 3DPLS model, capable of accounting for 
the spatial variability of soil parameters in landslide susceptibility 
assessment, will be tested on the Kvam landslides that took place in 
2011. For the comparison purpose, the analyses were also conducted 
with the Cell-based model utilizing the same hydrological model to 

Table 3   Deterministic model results for the simplified validation 
problem for both drained and undrained cases

 Model Drained case Undrained case

 FEM 1.22 2.73

 Cell-based 1.29 2.61

 3DPLS 1.34 2.69
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calculate the pore pressure build-up due to rainfall infiltration and 
employing an infinite slope stability model to calculate FS value for 
each cell individually.

In the 3DPLS model, the values of the ellipsoid dimensions were 
determined by considering the observations of previous land-
slides. The lengths of three principal semi-axes were selected as 
100 × 20 × 2.5m without any offset from the ground surface. The 
aspect of the motion, � , was assigned to be zero considering the 
aspect of the study area being dominantly in the direction of east. 
The inclination of the ellipsoid in the direction of motion, � , was 
calculated by taking the average slope over a rectangular zone 
( 2ae × 2be) located at the center of the ellipsoid.

Study area
Kvam is a village in central southern Norway, situated along the 
Gudbrandsdalslågen River, within the Gudbrandsdalen Valley. The 
valley has been re-shaped by glaciers, featuring steep edges cov-
ered with glacial deposits, during the Quaternary period. Based on 
the available geological quaternary map (NGU 2020), the materials 
present at the terrain surrounding Kvam are classified as moraine, 
glaciofluvial deposits, fluvial deposits, humus/peat cover, and sub-
cropping bedrock (Fig. 6). The valley is characterized by fluvial 
deposits at the base and by moraine cover at the hillsides. Above 

the zone covered by moraine material, there exists sub-cropping 
bedrock with a thin layer of humus and peat.

The area surrounding the Kvam has high landslide susceptibil-
ity as the landslide scars are visible on the hillsides mainly in the 
moraine type geological unit as shown in Fig. 6. This study will 
focus on the shallow landslides that occurred following the rainfall 
event in 2011 (Fig. 9) causing multiple landslides in the valley and 
the flooding of the village. For the detailed study, the study area 
shown in Fig. 6 is selected as the landslides following the rainfall 
event in 2011 concentrated inside the selected zone ( 0.57 km2) . The 
average slope of the study area is 26.20° with a maximum value of 
45.71°.

Aerial photos in Fig. 7 show the studied area in Kvam before the 
rainfall event in 2010 and after the event in 2011. From Fig. 7a, it can 
be observed that the hillside is covered by dense vegetation with the 
existence of channels through the slope. After the rainfall event in 
2011, several shallow landslides occur in the studied zones as shown 
in Fig. 7b. The landslide initiation and runout zones were identified 
considering high-resolution aerial pictures and orthophotos (Schilirò 
et al. 2021). The runout zones were not included as the 3DPLS model 
cannot model the post-failure behavior of the sliding mass. Then, the 
landslide initiation zones are discretized with respect to the DEM 
discretization as shown in Fig. 8.

Fig. 5   The effect of spatial 
variability on the mean global 
factor of safety, �g : the FEM 
model results for the drained 
case (a) with the Cell-based 
model results, and (b) with the 
3DPLS model results, and for 
the undrained case (c) with 
the Cell-based model results, 
and (d) with the 3DPLS model 
results
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Between June 9 and 10 in 2011, the Kvam area receives total pre-
cipitation of 61.72 mm/day as presented in Fig. 9. Hourly precipita-
tion amounts are presented within the period of 24 h starting from 
the beginning of the rainfall event on 9 of June, with the averaged 
value of IZ = 2.572 mm∕h . In the analyses, the average value of pre-
cipitation over the 24-h period was used to simplify the implemen-
tation of the developed model. The rainfall is assumed to be con-
stant over the study area. The background infiltration rate, 

(
IZ
)
steady

 , 

was obtained from the Norwegian Water Resources and Energy 
Directorate (NVE) as the average inflow (source: nve.no).

Digital elevation model (DEM) with a resolution of 10 m was 
obtained from hoydedata.no and utilized for the application of 
the model. The slope and aspect were derived using the DEM. The 
thickness of the soil, i.e., depth to bedrock, Zmax , was calculated 
using an empirical relationship between the soil thickness and the 
tangent of the slope angle in degrees, tan(δ) , derived based on the 
field data from Holm (2012) and Edvardsen (2013). The empirical 
equation was utilized as follows:

(28)Zmax = max
{
Zmin,�Z

}

(29)�Z = −2.578 ⋅ tan(δ) + 2.612

where Zmin is the minimum thickness and �Z is the mean defined 
with a linear trend function. Based on the field data, the minimum 
thickness was assigned as 0.4 m to represent surficial cover at the 
steep slopes. Considering the estimated thickness of the water table 
and the degree of saturation according to the gridded water balance 
model of NVE-Xgeo (source: xgeo.no), the groundwater table was 
assumed to be at half of the thickness of soil at each cell.

The model parameters are provided in Table 4. Due to the lack 
of field investigations and laboratory tests, the values in Table 4 are 
selected from literature sources for the considered moraine type 
geological unit. Only soil strength parameters, cohesion, and fric-
tion angle were treated as random variables, and the others were 
kept constant at their mean value (i.e., treated as deterministic). The 
normal and lognormal random field models were employed for the 
friction angle and cohesion, respectively. In the analyses, the satu-
rated soil unit weight of 20 kPa was employed with a 10 kPa unit 
weight of water. The random fields were created according to the 
DEM discretization of the studied area in the Kvam area by using 
the two-dimensional separable Markov autocorrelation function 
shown in (Eq. 19). Correlation length was assumed to be equal in 
both horizontal directions with a value of 50.0 m for both cohesion 
and friction angle considering the values reported in Phoon and 
Kulhawy (1999).

Results and discussion
The studied area in the Kvam area was analyzed by the 3DPLS 
model and the Cell-based model. Both models performed 1000 
Monte Carlo simulations while accounting for the spatial variabil-
ity of soil strength parameters. The results include the mean factor 
of safety, �FS

 , and probability of failure, Pf  , maps of the study area 
before and after the rainfall event shown in Fig. 9, for both mod-
els separately. The comparison of the models is done by using the 
metrics in the confusion matrix shown in Fig. 12 and the receiver 
operating characteristic (ROC) graph (e.g., Baum et al. 2010; Mergili 
et al. 2014b; Raia et al. 2014).

Figure 10 presents the �FS
 map of the studied area for the 3DPLS 

model in Fig. 10a and b and for the Cell-based model in Fig. 10c 
and d. The results are presented for the study area before (Fig. 10a, 
c) and after (Fig. 10b, d) the rainfall event. From Fig. 10a and b, it 
can be observed that the 3DPLS model smooths the transition of 
the FS values that are calculated for an ellipsoidal sliding surface. 
In the Cell-based model, however, the calculations are performed 
on a cell-by-cell basis, and therefore, there are rapid transitions 
between FS values over the study area (Fig. 10c, d). For both models, 
the �FS

 values are higher than unity. Comparison of Fig. 10b and 
Fig. 10d shows that more critical value of the �FS

 , between 1.0 and 
1.1, was obtained using the 3DPLS model for the study area after the 
rainfall event although 3D models are thought to provide higher FS 
values. Similarly, Zhang et al. (2013) reported that 3D FS might be 
less than the 2D FS for specific conditions. One can also observe 
that the 3DPLS model results in a greater number of cells with FS 
values closer to unity.

The results of the 1000 Monte Carlo simulations enable one to 
calculate the standard deviation of the FS value, �FS , for each cell. 
For flat zones, the �FS values are almost zero for the 3DPLS model 
(~ 0.09) or even zero for the Cell-based model in which the FS is 
restricted by 10.0 as an upper limit. Besides, the average �FS val-
ues over the study area were calculated as 0.128 and 0.123 for the 

Fig. 6   Study area location and quaternary map of the terrain sur-
rounding Kvam (NGU 2020)
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3DPLS model before and after the rainfall event, respectively, while 
they were calculated as 0.312 and 0.306 for the Cell-based model. 
It is observed that the 3DPLD model results in less variability of 
FS values, meaning more stable results. This is mainly due to the 

smoothing effect of the 3DPLS model, i.e., spatial averaging that 
occurs over the ellipsoidal failure surface.

Figure 11 shows the probability of failure, Pf  (%) maps of the 
studied area before (Fig. 11a, c) and after (Fig. 11b, d) the rainfall 
event using the 3DPLS and Cell-based models. For the 3DPLS 
model, the values of Pf  range from 0.0 to 8.8% before the rain-
fall event (Fig. 11a) and from 0.0 to 22.5% after the rainfall event 
(Fig. 11b). The ranges of Pf  for the Cell-based model are 0.0–22.8% 
before the rainfall event (Fig. 11c) and 0.0–31.9% after the rain-
fall event (Fig. 11d). It has been detected that the Cell-based model 

Fig. 7   Aerial photos of the 
study area in Kvam, (a) in 2010 
and (b) in 2011 (source: norgei-
bilder.no)

Fig. 8   DEM discretization of the study area in Kvam with the land-
slide initiation zones Fig. 9   Rainfall event between June 9 and 10, 2011
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results in quite high Pf  values, up to 22.8%, even before the rainfall 
event when the study area is stable. Figure 11a shows that the val-
ues of Pf  before the rainfall are fairly low using the 3DPLS model. 
From Fig. 11c and Fig. 11d, one can observe that there exist sharp 
changes in the Pf  values over the study area as the Cell-based model 
analyzes each cell individually without consideration of the neigh-
boring zones. However, the FS value is calculated for an ellipsoidal 
sliding surface in the 3DPLS model; i.e., a zone is analyzed instead 
of a single cell. Therefore, the transition of the Pf  values in Fig. 11a 
and Fig. 11b is smoother.

If the results of a landslide susceptibility model can be converted 
to binary results, i.e., stable or unstable, the receiver operating char-
acteristic (ROC) graph can be utilized to evaluate the performance 
of the model in predicting stable and unstable zones over the study 
area (Fawcett 2006). The model performance is measured, in this 
study, using the parameters in the confusion matrix (Fig. 12) calcu-
lated by comparing the model predictions and discretized landslide 
initiation map shown in Fig. 8. If a cell is predicted to be unstable 
by the model, and the field observation is consistent with the model 
prediction, it is considered as “true positive, TP”. However, it is con-
sidered as “false positive, FP”, if the cell is outside of the discretized 
landslide initiation zone. Similarly, if a cell is predicted as stable and 
the cell is outside of the discretized landslide initiation zone, it is 
a “true negative, TN”. Otherwise, it is a “false negative, FN”. Out of 
these four possible outcomes assigned to each cell, an additional 
set of parameters, namely “true positive rate, TPR”, “false positive 
rate, FPR”, “accuracy, AC”, and “precision, PR”, can be also calcu-
lated to assess the performance. The TPR is the proportion of the 
correctly predicted unstable cells inside the discretized landslide 
initiation zone to the total number of cells in the initiation zone 
(P) and calculated as TPR = TP∕P where P = TP + FN  . The FPR 
is the ratio of cells predicted as unstable outside of the discretized 
landslide zone to the number of cells without landslide observation 
(N) and calculated as FPR = FP∕N where N = FP + TN . The ROC 
curve is plotted by using TPR and FPR as shown in Fig. 13. The 
upper left corner of the plot ( TPR = 1 and FPR = 0) represents the 
perfect performance, and the diagonal line, or the reference line, 
represents the random classification or “no skill”. As the predic-
tion skill plotted on the ROC graph is closer to the upper left, the 
prediction capacity of the model is better. Another metric to assess 
the performance of the model is the AC that is the proportion of 
correctly predicted cells to the total number of cells and calculated 
as AC = (TP + TN)∕(P + N) . In addition to AC, the metric PR rep-
resents how precise the model predicts the unstable cells and is 

calculated as PR = TP∕(TP + FP) . Both AC and PR vary in the range 
of [0, 1] where a higher value means a better model performance of 
accuracy and precision.

In the literature, there exist both deterministic (e.g., TRIGRS, 
SHALSTAB) and probabilistic (e.g., SINMAP, GEOtop-FS, HIRESSS, 
TRIGRS-P) landslide susceptibility models providing the results 
mainly in terms of either FS or Pf  to assess the stable and unstable 
zones. In deterministic models, the stability of each cell is evaluated  
based on the value of FS . That is, a cell is considered to be stable  
if FS > 1.0 and unstable if FS < 1.0 . Unlike deterministic models,  
the probabilistic models might employ different assessment cri-
teria to determine the stable and unstable zones. In the study  
of Rossi et al. (2013), a zone was considered to be unstable if a 
sub-zone has more than 1% area with a Pf  higher than 80.0%. 
Different classification systems were also employed to assess the 
stability, such as the reliability index (Haneberg 2004) and the 
stability index (Michel et al. 2014). However, there are no widely 
recognized assessment criteria for the probabilistic models. In this 
study, the performance of the 3DPLS model has been evaluated by 
employing different levels of probability limits, Pf ,limit , to estimate  
landslide stability such that a cell is considered as stable if the 
Pf < Pf ,limit and unstable if Pf > Pf ,limit.

As the values of Pf  obtained by the 3DPLS model and the Cell-
based model are relatively low due to utilizing the model param-
eters from literature (Table 4) and the bias in the model itself,  
lower values of Pf ,limit were employed for the comparison. For differ-
ent Pf ,limit values from 2.5 to 15.0%, the Pf  results were converted to 
binary values, i.e., stable or unstable, and the metrics in Fig. 12 were 
calculated. Figure 13 shows the ROC curves of the 3DPLS and the 
Cell-based models using different Pf ,limit values. The metrics such as 
TPR, FPR, AC, and PR are tabulated in Table 5 for each Pf ,limit value 
for both models. In the ROC graph, a point has better performance 
than the other if the TPR value is higher and FPR is lower. From 
both Table 5 and Fig. 13, it can be detected that the TPR values of  
the Cell-based model are higher than that of 3DPLS for each Pf ,limit , 
but the FPR values are also very high. This means that the Cell-
based model overpredicts the spatial extend of the unstable zones, 
and therefore, the Cell-based model can predict nearly all cells of 
the landslide but with a high FPR. The performance of the models 
can be compared by the ratio of TPR∕FPR . The larger the ratio, the 
better the model performance is (e.g., Baum et al. 2010). The 3DPLS 
model has a higher ratio of TPR∕FPR than the Cell-based model 
for all values of Pf ,limit . This indicates that the performance of the 
3DPLS model is better although it has lower TPR. From Table 5, it 

Table 4   Model parameters 
used in the case study analyses

 Sources: [a]Melchiorre and Frattini (2012), [b]Lacasse and Nadim (1996), [c]Janbu (1989)

Distribution parameters

 Parameter Distribution μ CoV

 Depth to bedrock, Zmax (m) -  − 2.578 · tan(δ) + 2.612 -

 Cohesion, c (kPa) Lognormal 4[a] 0.3[b]

 Friction angle, � (°) Normal 32[a] 0.2[a]

 Saturated permeability, KS (m/s) - 1.0 · 10−6[c] -

 Diffusivity, D0 (m2/s) - 5.0 · 10−6 -
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can be seen that the 3DPLS model has higher AC and PR values than 
the Cell-based models for all Pf ,limit values. Therefore, the 3DPLS 
model is more accurate and more precise in predicting despite its 
low TPR values.

Overall discussion
Investigating the effect of spatial variability on the safety of slopes 
necessitated the implementation of a 3D model as the parameters 
vary over the space. Therefore, the 3DPLS model was developed to 
capture the effects of spatial variability in landslide susceptibility. 
The 3DPLS model couples the hydrological model calculating the 
transient pore pressure changes due to rainfall infiltration and the 

slope stability model utilizing a 3D extension of Bishop’s simplified 
method of slope stability.

In the 3DPLS model, the failure surface is assumed to be at a 
depth that is not necessarily the critical path in the soil volume. 
Therefore, the assumption of the ellipsoidal sliding surface with 
given dimensions may result in an overestimated FS or underes-
timated Pf  (Griffiths et al. 2011). In the present study, the analy-
ses were performed by placing the ellipsoidal sliding surface at 
the center of each cell over the discretized problem domain for 
each simulation. As the number of analyzed ellipsoidal sliding 
surfaces increases over the study area, there is a higher chance 
of a cell intersecting a more critical ellipsoidal sliding surface. 

Fig. 10   Mean factor of safety, 
�FS

 , map of the study area: (a) 
before and (b) after the rainfall 
event using the 3DPLS model; 
(c) before and (d) after the rain-
fall event using the Cell-based 
model
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Further investigation of the number of ellipsoids sufficient to 
cover a region can be done to improve the efficiency of the model. 
Another limitation is that the 3DPLS model currently does not 
support cross-correlation among model parameters which may 
be important in certain situations as shown in Javankhoshdel 
and Bathurst (2016).

In this study, the uncertainties associated with meteorologi-
cal, environmental, and geomorphological factors have not been 
considered. These uncertainties originating from other sources 
than the model parameters might affect the results significantly 
(e.g., Bossi et al. 2019; Sandric et al. 2019). The 3DPLS model is very 
flexible, and with minor modifications, it allows for modeling of 

uncertainties in a wide range of parameters including meteorologi-
cal (e.g., rainfall), hydrological (e.g., permeability), and geomorpho-
logical (e.g., depth to bedrock) parameters.

The slope stability models in the 3DPLS model were first vali-
dated using the example problems in the literature. Then, the capac-
ity of the 3DPLS model to capture the effects of spatial variability  
of the soil strength parameters was validated by an extensive 
study in the FEM-based software. The results given in Fig. 5 reveal  
that the 3DPLS model is able to capture the effects of spatial vari-
ability on the �g contrary to the Cell-based model. From Fig. 5, one 
can also detect that the effect of the spatial variability on the �g 
lowers when the correlation length increases up to 1000 m where 

Fig. 11   The probability of fail-
ure, Pf  , map of the study area: 
(a) before and (b) after the 
rainfall event using the 3DPLS 
model; (c) before and (d) after 
the rainfall event using the 
Cell-based model
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the soil approaches homogeneous conditions. This shows that the 
models in the literature attempting to include the variability of 
the model parameters without spatial dependence of the param-
eters might overestimate the �g depending on the degree of spatial 
dependence.

The performance of the 3DPLS model was tested on the Kvam 
landslides that took place in 2011. The rainfall was assumed to be 
constant over the study area which is a reasonable assumption con-
sidering the spatial extent of the study area. However, it should be 
noted that the effect of spatial variation of rainfall can be significant 
for problems with a larger extent.

From the results of the case study, it is seen that more critical 
zones with lower �FS

 can be obtained using the 3DPLS model when 
the spatial variability is included in the analyses. Despite the lower 
values of �FS

 with the 3DPLS model, the Pf  values are lower due to 
the results having less variability. The Cell-based model, however, 
has a much higher Pf  values over the study area although it has 
higher �FS

 . From Fig. 13 and Table 5, one can detect that the 3DPLS 
model has better performance, accuracy, and precision than the 
Cell-based model. While the Cell-based model classified nearly all 
positives correctly regardless of Pf ,limit , it has a higher false-positive 

rate. This indicates that the Cell-based model overpredicts the 
extent of the unstable zones. On the contrary, the 3DPLS model 
predictions are more accurate and precise regardless of hav-
ing low TPR. In addition, the 3DPLS model has a higher ratio of 
TPR∕FPR than the Cell-based model, meaning better performance 
in prediction.

Despite its capacity to improve the landslide prediction, and its 
better performance than the cell-based approach, one of the main 
limitations of the 3DPLS model is the computational efficiency. 
The 3DPLS model performs a high number of Monte Carlo simu-
lations, and this process is time-consuming and computationally 
demanding. Likewise, the excessive time and memory requirement 
of probabilistic analysis with Monte Carlo simulations were also 
addressed in the literature (Rossi et al. 2013; Raia et al. 2014).

Another possible improvement of the 3DPLS model is to uti-
lize parallel computing using the message passing interface (MPI) 
libraries (e.g., Alvioli and Baum 2016). In this study, the 3DPLS 
model was implemented on a detailed scale case study to show its 
power and capacity in prediction. Nevertheless, it is possible, in the 
future, to implement the model on large-scale problems by optimiz-
ing the computational time using parallel computing (e.g., Rossi 
et al. 2013; Sandric et al. 2019).

Conclusions
This study presented the 3-Dimensional Probabilistic Landslide 
Susceptibility (3DPLS) model  which is a Python-based three-
dimensional soil-column-based limit equilibrium model being 
able to model the spatial variability of the model parameters on 
the susceptibility of shallow landslides. The study presented the 
importance of the spatial variability on the safety of the shallow 
landslides, and the capacity of the 3DPLS in capturing these effects 
was validated. The study demonstrated that the spatial variabil-
ity of the model parameters might lower the overall safety of the 
slopes and affect the landslide susceptibility analyses significantly. 

Fig. 12   Confusion matrix with performance parameters (Fawcett 
2006)

Fig. 13   Performance comparison of the 3DPLS model and the Cell-
based model using different Pf ,limit on the receiver operator charac-
teristic (ROC) graph

Table 5   Performance parameters for different Pf ,limit

 Model Pf,limit(%) TPR FPR AC PR

 3DPLS 2.5 0.810 0.473 0.571 0.238

5 0.604 0.333 0.657 0.249

7.5 0.410 0.200 0.740 0.273

10 0.295 0.107 0.801 0.336

12.5 0.217 0.066 0.823 0.375

15 0.152 0.032 0.842 0.465

 Cell-based 2.5 0.945 0.732 0.373 0.191

5 0.920 0.651 0.437 0.205

7.5 0.876 0.581 0.490 0.216

10 0.809 0.516 0.534 0.223

12.5 0.720 0.451 0.576 0.226

15 0.613 0.391 0.609 0.223
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Additionally, it was shown that the conventional cell-based 
approach is not capable of capturing the spatial variability effect 
as the analyses are performed on a cell-by-cell basis.

The 3DPLS model was tested on the Kvam landslides that 
occurred in 2011, and the results indicated that the proposed 3DPLS 
model leads to more realistic results with a better prediction per-
formance than its cell-based equivalent model. The study showed 
that the 3DPLS model contributed to the landslide susceptibility 
analyses by considering the spatial variability as higher TPR/FPR 
ratio, AC, and PR were calculated for the model.
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