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Summary

The interplay of multiphase-flow effects and pressure/volume/temperature behavior encountered in reservoir simulations often provides
strongly coupled nonlinear systems that are challenging to solve numerically. In a sequentially implicit method, many of the essential
nonlinearities are associated with the transport equation, and convergence failure for the Newton solver is often caused by steps that
pass inflection points and discontinuities in the fractional-flow functions. The industry-standard approach is to heuristically chop time-
steps and/or dampen updates suggested by the Newton solver if these exceed a predefined limit. Alternatively, one can use trust regions
(TRs) to determine safe updates that stay within regions that have the same curvature for numerical flux. This approach has previously
been shown to give unconditional convergence for polymer- and waterflooding problems, also when property curves have kinks or
near-discontinuous behavior. Although unconditionally convergent, this method tends to be overly restrictive. Herein, we show how the
detection of oscillations in the Newton updates can be used to adaptively switch on and off TRs, resulting in a less-restrictive method
better suited for realistic reservoir simulations. We demonstrate the performance of the method for a series of challenging test cases
ranging from conceptual 2D setups to realistic (and publicly available) geomodels such as the Norne Field and the recent Olympus
model from the Integrated Systems Approach for Petroleum Production (ISAPP) optimization challenge.

Introduction

Advances in reservoir simulation continuously challenge the underlying solvers. More-accurate reservoir characterization tends to
create grids with high aspect ratios, degenerate cell geometries, small cell interfaces between partially matching neighbors, and orders
of magnitude variations in petrophysical properties. The incorporation of physical effects such as enhanced-oil-recovery (EOR) chemis-
try, temperature-dependent viscosity/density, relative permeability hysteresis, and viscous and gravitational fingering increases the non-
linearities in the flow equations. In addition, realistic reservoir-fluid properties are usually given as tabulated/interpolated data, so that
the flow equations are not necessarily pointwise differentiable. Altogether, these and many other factors contribute to create highly non-
linear (and ill-conditioned) discrete systems, which are difficult to solve efficiently using standard Newton or other gradient methods.

Commercial simulators usually rely on a fully implicit discretization of the multiphase-flow equations. This method is uncondition-
ally stable, but inherent iterative linearization gives a large system of mixed elliptic/hyperbolic character that is expensive to solve in a
fully coupled manner. To reduce the adverse effects of this mixed character, state-of-the-art constrained-pressure-residual (CPR) meth-
ods (Wallis 1983; Gries et al. 2014) use an approximate elliptic equation for the pressure part of the problem as a preconditioner for the
full linearized problem.

Sequential-solution approaches reduce computational time by splitting the overall system into a near-elliptic flow equation for pres-
sure and a set of near-hyperbolic equations for the transport of saturations and fluid compositions. One then solves the two subsystems
sequentially while keeping certain unknowns fixed (Watts 1986; Trangenstein and Bell 1989). For problems with strong coupling
between flow and transport, it is usually necessary to include outer iterations (Jenny et al. 2006; Lu et al. 2007) to ensure that the
sequential solution also minimizes the fully implicit residual. The number of outer iterations dictates the overall computational cost,
and different methods have recently been proposed to improve the convergence of the outer loop (Jiang and Tchelepi 2018; Moncorgé
et al. 2017, 2018). As a viable alternative, one can solve the fully implicit system with the sequential solution as an initial guess and use
suitable error indicators to reduce the full system to a small subset of the grid cells (Møyner and Moncorgé 2018).

It is nevertheless important that flow and transport solvers are as efficient and robust as possible. Much research has resulted in highly
efficient and scalable pressure solvers that use algebraic multigrid methods (Killough and Wheeler 1987; Trottenberg et al. 2000; Gries
et al. 2014) or multiscale methods [see Lie et al. (2017) and references therein] to iteratively and systematically reduce the residual of the
flow equation. For transport equations with fixed pressures, the strong hyperbolic character implies localized updates per timestep, but
this does not necessarily guarantee fast convergence of the nonlinear solver. Poor convergence can indeed be observed for Newton-type
solvers, even for small timesteps and smooth relative permeability curves (Jenny et al. 2009; Møyner 2017). Experience also shows that
as geocellular models become increasingly complex and detailed, it becomes more difficult to converge the transport equations than it
does the flow equation. It is therefore imperative to increase the robustness and improve the efficiency of implicit transport solvers so
that one can either avoid the need to take multiple transport steps per pressure step or do this as efficiently as possible.

A number of methods have been proposed to improve the convergence rates of nonlinear transport solvers, such as use of Appleyard
chopping (Schlumberger 2013) to safeguard updates, or more-sophisticated approaches such as localized nonlinear iterations (Younis
et al. 2010). Jenny et al. (2009) noted that inflection points in the flux function might send the Newton update to different contraction
regions and effectively result in oscillations and convergence issues. One can overcome this using TRs to determine safe saturation
updates using inflection points. The original method detected inflection points using closed-form expressions and proved successful for
various two-phase-flow scenarios with buoyancy effects (Wang and Tchelepi 2013) and capillary forces (Li and Tchelepi 2014) as well
as for compositional flow (Voskov and Tchelepi 2011). Møyner (2017) developed a fully numerical reformulation that detects potential
transitions into new contraction regions using an approximate reconstruction of the flux function along the update direction suggested
by the Newton solver. The method offers unconditional convergence for multiphase and multicomponent problems with general
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property curves but is overly restrictive and can result in unnecessarily small updates and wasted computational effort. In this work, we
improve the method by introducing adaptivity in the TR solver, switching it on and off depending on observed oscillations in the
Newton updates. We demonstrate the performance of the new method on a variety of cases that include realistic geomodels and injec-
tion scenarios, as well as conceptual tests constructed especially to challenge the nonlinear solver.

Model Equations

To simplify the description of the new TR method, we only present details for a two-phase oil/water system. Extension to more phases
and components follow in the exact same way, with obvious modifications to the discrete transport equations (described later in this
paper). The starting point is a standard black-oil model. By introducing a backward Euler temporal discretization, we write the mass-
conservation equation for each fluid phase in the semidiscrete residual form,

Ra ¼
1

Dt
ð/qaSaÞnþ1 � ð/qaSaÞn
h i

þr � ðqa~vaÞnþ1 � ðqaqaÞnþ1 ¼ 0; a ¼ w; o; ð1Þ

~va ¼ �
kra

la
Kðrpa � qagrzÞ; ð2Þ

where qa denotes density; pa is pressure;~va is the Darcy velocity; Sa is saturation; la is the viscosity of phase a; / and K are the poros-
ity and permeability of the rock, respectively; z is the vertical coordinate; qa is the sources and sinks (wells); g denotes gravity accelera-
tion; and kra models reduced permeability for one phase in the presence of the other. To close the model, we assume that the phases fill
the pore space completely (So þ Sw ¼ 1) and that the phase pressures are related through a saturation-dependent capillary pressure
[po � pw ¼ PcðSwÞ]. The relationship between density and pressure is modeled using shrinkage factors, qa ¼ baðpaÞqs

a, where qs
a is the

constant surface density of phase a. A similar relationship, /¼ br/0, models rock compressibility. We pick oil pressure and water satur-
ation as primary unknowns, which are henceforth denoted as p and S, respectively. We omit capillary pressure to simplify derivations,
but these terms are included in our simulator.

Sequential Splitting: Pressure and Transport Equations. To reformulate the system, we first define a pressure equation Rp¼ 0 as a
linear combination of the individual residual equations (Eq. 1) weighted by 1=bnþ1

a . This enables us to eliminate the saturations at the
end of the timestep using the relation Snþ1

w þ Snþ1
o ¼ 1. Likewise, we can reformulate the conservation equations by introducing the

total Darcy velocity defined as the sum of the individual phase velocities~v ¼~vw þ~vo, and using a fractional-flow formulation to obtain
new expressions for the fluxes,

~va ¼ fa ~v þ
X
b6¼a

kbðqa � qbÞgKrz

" #
; fa ¼

kaX
b¼o;w

kb

; ð3Þ

where ka ¼ kra=la is the mobility of phase a. To obtain a fully discrete model, we introduce a finite-volume discretization with a two-
point approximation of the interface fluxes. The transport equations now read

Ra;i ¼ ð/baSaÞnþ1
i � ð/baSaÞni

h i
þ Dt

Vi

X
j2N ðiÞ

jCijjðba~va �~nÞnþ1
ij � DtðbaqaÞnþ1

i ¼ 0; a ¼ o;w; ð4Þ

where subscript i refers to cell i with bulk volume Vi, subscript ij refers to the interface between cells i and j with area jCijj, and NðiÞ
denotes the indices of cells sharing a common interface with cell i. Interface mobilities are evaluated from the upstream direction.

The sequential-solution method starts by solving the pressure equation Rp¼ 0 with fixed saturation to obtain pressure and total
velocity. We then solve the transport equation Rw¼ 0 for water to advance saturation a period Dt forward in time, and compute the oil
saturation from the closure relation So¼ 1–Sw. We repeat this procedure until we reach the desired time horizon. For black-oil-type
models (which optionally might contain extra equations to model polymer, alkaline, surfactants, or other chemical species), it is
common to solve for the first n–1 phase saturations and all components simultaneously. Another approach is to use a relaxed-volume
formulation and instead solve for all n conserved quantities simultaneously, allowing for a deviation from unity in the sum of satura-
tions. This has recently proved to be beneficial for sequential solutions to compositional models (Moncorgé et al. 2018; Møyner and
Tchelepi 2018). We can add outer iterations to ensure convergence toward a fully implicit solution for cases with strong coupling
between pressure and transport.

TR Algorithm

To simplify notation, we drop the subscript w denoting water and the superscript denoting timestep nþ 1 and introduce a vector nota-
tion for the water saturation and the water residuals defined over all N cells in the grid,

S ¼ ðS1;…; SNÞ; R ¼ ðR1;…;RNÞ: ð5Þ

Solving the transport equations for a timestep of length Dt consists of finding updated saturations S such that the residuals in all cells
are zero, RðSÞ ¼ 0. We rewrite the residual for the transport equation in cell i as

RiðSÞ ¼ AiðSiÞ þ
X

j2N ðiÞ
FijðSi; SjÞ � Qi ¼ 0; ð6Þ

where the accumulation, flux, and sink/source terms read

AiðSiÞ ¼ ð/bSÞnþ1
i � ð/bSÞni

h i
;

FijðSi; SjÞ ¼
Dt

Vi
jCijj bf ½~v þ koðq� qoÞgKrz� �~nf gnþ1

ij ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Qi ¼ DtðbqÞnþ1
i ¼ 0:

Note that Fij¼ –Fji for a mass-conservative scheme. To solve the residual equation RðSÞ ¼ 0, we use a standard Newton-Raphson
method in which the linearized update to S at iteration ‘ is given by

DS‘ ¼ �JðS‘Þ�1RðS‘Þ; Ji; j ¼ @Ri=@Sj: ð7Þ

We term a full Newton update as S‘þ1 ¼ S‘ þ DS‘. It is well-known that Newton’s method will experience convergence issues when-
ever the update passes inflection points in the residual functions Ri. A standard approach is then to successively shorten the timestep
until the Newton solver manages to converge; the main drawback is that the nonlinear solver might thus waste many iterations before
convergence. Another approach, first introduced by Jenny et al. (2009), is to limit the Newton step using TRs inside which the Newton
map is contractive and thus ensured to converge. As an example, consider a scalar equation h(u)¼ 0, for which a TR is an interval (ul,
ur) on which h(u) is either strictly concave or strictly convex. The idea of the TR method is that the Newton update should not be
allowed to pass from one TR and far into another TR within a single iteration, but rather be limited so that the updated value lies imme-
diately inside the boundary of the next TR. In other words, inflection points in the residual function delineate the TRs, and we want to
determine the damping factors hi 2 ½0; 1� so that the updates do not pass far beyond such points:

S‘þ1
i ¼ S‘i þ hiDS‘i : ð8Þ

Herein, we will follow the approach by Møyner (2017). We consider the interface Cij and assume that we have found the Newton incre-
ments DSi and DSj for the adjacent cells i and j. These increments define a local update direction,

d ¼ ðDSi;DSjÞ
jjðDSi;DSjÞjj

: ð9Þ

By considering possible updates in this direction, the process of identifying TRs reduces to a 1D problem in h.
Inflection points in the residual functions are a primary cause of convergence issues for the Newton solver. For the current two-

phase problem (Eq. 6), the accumulation terms Ai are linear, and in many other cases it is simple to show that Ai contain no inflection
points. We can thus conclude that convergence issues induced by inflection points mainly stem from the flux function Fij. The direc-
tional derivative of this function reads

@dFij ¼
@Fij

@Si
;
@Fij

@Sj

� �
� d; ð10Þ

with the update direction d defined in Eq. 9. We want to find a TR along the Newton update, and therefore define SðhÞ ¼ S‘ þ hDS‘

and write F0ijðhÞ ¼ @dFij½SðhÞ�. In the same manner, we define the second-order derivative in the direction of the update as

F00ijðhÞ ¼ @2
dFij½SðhÞ�.

If we have a closed-form expression for Fij, we can use F00ijðhÞ to locate the inflection points of Fij as a function of the damping
factor h. However, second-order derivatives of the flux function are not always well-defined, such as in the case of piecewise linear rela-
tive permeabilities. Moreover, they might vanish over large regions of saturations for which the fractional-flow functions are linear or

constant. We therefore use a monotone interpolation scheme (Fritsch and Carlson 1980) for F0ijðhÞ to obtain an interpolation F̂
0
ijðhÞ. A

TR is then determined by using a modified bisection method in which we evaluate the second-order derivative F̂
00
ijðhÞ at a small number

of sample points (typically three). If F̂
00
ijðhÞ changes sign between two sample points, we add a sample point at the midpoint of the two.

By repeating this procedure a number of times, we obtain estimated inflection points. In all examples herein, we repeat the procedure
three times. Kinks stemming from changes in the upwind direction will also result in convergence issues. Therefore, we also identify
upwind changes along the update direction, and only allow the upwind direction to change once for each interface during a single
iteration. This gives us the information necessary to choose the largest-possible safe update parameter hij for our nonlinear iteration.
Ideally, this update ends just on the other side of an inflection point or kink.

Local and Global Chopping. In the existing literature, it is common to set the damping factors hi of the TRs equal to the smallest
damping of all interfaces,

hi ¼ min
j;k
fhjkg: ð11Þ

This global chopping strategy offers unconditional convergence, and is the only approach guaranteed not to modify the increment direc-
tion d. However, it might be far too restrictive. Herein, we follow the approach of Møyner (2017) instead and apply a local chopping
procedure, motivated by the observation that transport equations have a strong hyperbolic character. In practice, this means that the
largest saturation updates in each nonlinear iteration will (mostly) be localized around displacement fronts, whereas the updates are typ-
ically very small when the saturation has small variations in the rest of the domain. As a result, the Newton solver might converge
faster in some parts of the domain than in others. To exploit this property, we start by identifying cells that depend strongly on each
other using a connectivity matrix C, defined as

Cij ¼
1; if jJi;jDSjj � ejJi;iDSij
0; otherwise:

�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð12Þ

That is, the connection across the interface Cij is strong if the effect of DSj on the residual relative to the effect of DSi is larger than a
given threshold e. Herein, this threshold has been set to 10�6jjDSjj1. The matrix C describes a directed graph, and the procedure of
finding the global relaxation factors can be summarized with the following steps:

1. Find all cycles (or connected components) in C, and combine all the nodes in each cycle into a single supernode. [This decompo-
sition is inexpensive to compute using the Tarjan (1972) algorithm or two depth-first traversals that each visit each node (i.e.,
cell) in the graph once.]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2. Assign a relaxation factor to each node. For single-cell nodes, this factor equals the smallest relaxation factor of all interfaces with
nonzero flux connected to that cell. Nodes consisting of multiple cells are assigned the minimum value of all cells in the cycle.

3. Perform a topological sort of the resulting modified connection matrix with nodes and supernodes. (This is a depth-first traversal
of the reduced graph that has N nodes at most.)

4. Traverse the graph and assign to each cell the minimum relaxation factor of itself and all its upstream nodes.
Fig. 1 illustrates the connectivity matrix for a simple example in which we inject a heavy fluid in one corner and produce fluids in

the opposite corner. We clearly see the formation of cycles because of the density differences. In the original connectivity matrix
shown in the lower left in Fig. 1, we have marked cells that belong to the same cycle using distinct colors. These cells show up as
blocks on the diagonal in the reordered connectivity matrix shown in the lower right. The localized chopping procedure treats each of
these blocks as a single node in the connectivity graph, as described in Step 1.

Adaptive TR (ATR) Using Oscillation Detection. Although the TR method ensures that the Newton solver always converges, it
might reduce the update even when it is not necessary. This is illustrated in Fig. 2 for a case where the initial guess and the solution are
on the far-opposite sides of an inflection point. In Fig. 2a, the full Newton step passes the solution and the method diverges, whereas the
TR solver converges successfully. In Fig. 2b, the solution is shifted slightly to the right so that taking the full Newton step converges
much faster than using TRs because the initial (unclipped) linearized update steps over the inflection point and by chance ends up in the
same contraction region as the final solution.

Problematic points in the residual function can be identified by oscillations in the Newton updates. To do so, we look at the direction
of the Newton increment from Eq. 9 across the interface Cij. We say that we have an oscillation over this interface in iteration ‘ if the
update vectors d‘ and d‘�1 point to opposite sides of the normal plane defined by d‘�1,

d‘ � d‘�1 < 0: ð13Þ

For a simple two-phase system, d is a 2D vector, and the oscillation condition (Eq. 13) means that the angle between the two update
vectors is greater than p=2. This information can be used in several ways to determine whether TRs should be invoked. The obvious
option would be to invoke TRs over an interface from the first oscillation and keep it on for this interface throughout the timestep.

In practice, TRs are only necessary for a few iterations, and we might want to turn them off again to speed up the solution process.
In the worst case, we will have to pass all problematic points in the interface flux function before the solver converges, and we therefore
suggest a simple adaptive approach: Denoting the number of observed oscillations over an interface by nosc, we invoke TRs if any of
the last nosc þ 1 iterations (including the current) resulted in an oscillation. The observed oscillations nosc will then be a lower bound on
the number of problematic points passed by the solver, and the resulting solver will be better suited for the general case. It will be close
to the standard Newton method when it performs well and will approach the static TR solver for particularly challenging
residual functions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 1—Cycles and sparsity pattern of the connectivity graph C for a problem in which a heavy fluid (blue color) is injected into a
lighter fluid (red color). Element Cij is nonzero if an update in cell j has a significant effect on the residual in cell i. Smaller blue dots
correspond to cells that are not part of a cycle, whereas cycle cells are indicated by larger dots, with a unique color for each cycle.
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The iterations might still fail to converge for very peculiar flux functions because the Newton updates can follow a closed path
around the solution as long as d‘ � d‘�1 is always positive. We can overcome this by invoking regular TRs for all interfaces if the solver
has not converged after a predetermined maximum number nmax of iterations, or we can check the oscillation condition (Eq. 13) for the
current update direction against the update directions for several iterations back in time. That is, we invoke TRs if

d‘ � d‘�k < 0 for any k ¼ 1;…; nchk: ð14Þ

We set nchk ¼ 1 initially and increase the parameter each time the solver has performed a multiple of nmax iterations without converg-
ing. Algorithm 1 summarizes the complete procedure.

Algorithm 1—Adaptive Oscillation Detection Over an Interface

1. ‘ 1 " Iteration counter
2. nchk  1 " Number of update directions back in time we compare with current
3. nosc  0 " Number of observed oscillations over the interface
4. nTR  0 " TR invoked for this interface if nTR > 0
5. while Solver has not converged do
6. if d‘ � d‘�k < 0 for any k ¼ 1;…; nchk then " Oscillation condition
7. nosc  nosc þ 1 " Update number of observed oscillations
8. nTR  maxðnosc; nTRÞ þ 1 " Invoke TR for the next nosc þ 1 iterations
9. else

10. nTR  maxðnTR � 1; 0Þ " No oscillation, reduce nTR

11. end if
12. if nTR > 0 then
13. Invoke TR " TR is invoked if any of the last nosc þ 1 updates had oscillations
14. else if mod ð‘; nmaxÞ ¼ 0 then
15. nchk  2nchk " We seem to have convergence issues, so we double nchk

16. end if
17. ‘ ‘þ 1
18. end while

Fig. 3 shows a schematic example of how the ATR solver works. With the default setting (shown in the lower gray box), TRs are
not active initially and the first step thus jumps across several inflection points. The second Newton iteration results in an oscillation,
and we invoke TRs. For the third iteration, we check Iterations 2 and 3 for oscillations. Because Iteration 2 had an oscillation, we
invoke TRs for Iteration 3 as well. Neither Iteration 3 nor 4 resulted in oscillations, and hence no TR check is used in Iteration 4. This
takes us past the solution, and Iteration 5 gives a new oscillation. From this iteration, we check the last three iterations for oscillations,
and the method successfully converges after seven iterations.

The example also illustrates that more-efficient strategies can be formulated if we know the location of the problematic points or
expect that the solver will encounter problems in the first iterations and decide to use the adaptive algorithm in a more-defensive
manner. If TRs were turned on for the first step (e.g., by setting nTR ¼ 1 initially), the iteration will converge in two steps, as shown in
the upper gray box. By adjusting the initial setting of the nTR parameter, we can determine how restrictive the algorithm is; the original
TR method is obtained by setting nTR to a large positive number. In general, the adaptive algorithm is aimed at handling tabulated prop-
erty curves typically encountered in real models, for which one will not generally know the location of problematic points a priori. In
our experience, the numerical TR algorithm from Møyner (2017) is overly cautious and has a tendency to identify points along the
Newton path as problematic even if they are not. Likewise, the damping factor hi is determined as the minimum over all upstream cells,
which might be overly restrictive for some of the interfaces. The adaptive approach is a way to improve performance and present an
algorithm that is flexible, robust, and reasonably efficient.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2
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(a) Newton’s method fails to converge
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Sw
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(b) TR solver is overly restrictive

Fig. 2—Illustration of how Newton’s method and the TR solver may choose very different iteration paths when applied to the same
problem. (a) Newton’s method passes the inflection point and fails to converge, whereas the TR solver converges successfully.
(b) Both methods converge, but the TR solver is overly restrictive.
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For simulations using (very) large timesteps, the initial updates will be large and are likely to pass problematic regions in the flux
function. In such cases, it might be safer to start with TRs on and rather disable them if no problems are detected. This is achieved
when the initial value of nTR is set to a positive number. With more-modest timesteps, the Newton solver will usually experience con-
vergence issues only for a few timesteps, and it is better to start with nTR ¼ 0 so that TRs are enforced as a reaction to convergence
issues rather than as a default for every iteration. This way, we obtain a solver that is equally robust, but more efficient in the general
case. We note that for all examples we have run, it has been sufficient to compare the current update direction with the previous one, so
that nchk never gets a value greater than unity for any interface in any iteration. That is, the fallback strategy in Line 15 in Algorithm 1
has never been reached. One can also think that for very long timesteps, it might be beneficial to invoke TRs for more than nosc þ 1 iter-
ations when nosc is small because it is likely that TRs are needed for almost all iterations and all interfaces. However, in all the examples
we have run with very long timesteps, we have found that it is sufficient to always invoke TRs for nosc þ 1 iterations to closely
match the number of nonlinear transport iterations used by the static TR method. This will be illustrated in Polymer Example 1 in the
next section.

Numerical Experiments

This section validates the static TR algorithm and the ATR algorithm on several different cases, ranging from simple conceptual
models to field models. The test cases feature two-phase-flow and compressible three-phase-flow physics, as well as a standard Todd
and Longstaff (1972) type of model for polymer flooding. Detailed descriptions of the corresponding sequential-solution procedures are
provided by Hilden et al. (2016) and Møyner and Lie (2016).

The TR method of Møyner (2017) and our new ATR method were both implemented in the open-source MATLAB
VR

Reservoir Sim-
ulation Toolbox (MRST) (Lie 2019; Krogstad et al. 2015). Although not a commercial simulator, MRST implements many of the same
models, discretization methods, and solution algorithms seen in commercial reservoir simulators. Using MATLAB introduces certain
computational bottlenecks not seen in simulators written in a compiled language, but MRST has been extensively validated and bench-
marked against leading commercial simulators and has been shown to converge to the correct solution at expected rates on a wide vari-
ety of test cases, from simple benchmarks to field-scale asset models. We thus believe that MRST constitutes a reliable and
representative test bench for new nonlinear-solution algorithms.

As a baseline for the comparisons, we consider a plain Newton solver and an improved Newton solver with line search along the
Newton path to reduce the residual when experiencing convergence problems; we refer to these as Newton and LS, respectively. Nei-
ther of these solvers is guaranteed to converge for any timestep, and to remedy this we incorporate parts of the well-known modified
Appleyard-chop algorithm by ensuring that saturations are between zero and one and that changes in saturations are kept to less than
0.2. However, to keep the comparison as straightforward as possible, we do not cut back the updates when saturations move from an
immobile to a mobile state, or vice versa. In all dynamic simulations, except in the first example, the Newton solvers are also set to
halve the transport step if the iteration does not converge within a prescribed number of iterations.

The solvers use the same convergence criteria in all experiments, and it is thus natural to use the number of nonlinear iterations
required for convergence as an indicator of computational performance. Using modern linear solvers, the cost of solving the
linear system is nearly N1.2 for N unknowns. In our 3D experiments (Norne and Olympus), we use the C++ AMGCL solver library to
solve the linear systems regardless of the nonlinear-solver choice (Demidov and Rossi 2017; Demidov 2018). One can thus argue that
the computational cost is comparable with the cost of residual evaluations and that the number of residual evaluations hence can be
used as a measure of computational performance.

Two-Cell Problems for Different Fluid Models. We start by comparing the solution paths taken by the Newton solver, Newton with
chopping depending on the saturation increment, LS, the original numerical TR method, and the ATR with initial parameters nTR ¼ 0
and nTR ¼ 3 on a simple two-cell problem with injection in the left cell and production in the right cell. We mimic the process of water
displacing oil by injecting a large volume of water during a single timestep for various two-phase-fluid models. After the timestep, both
cells will be at irreducible oil saturation. In this particular example, we limit saturation updates to 0.1. To contrast the Newton and the
LS solvers, we allow infinitely large saturation updates in the latter and use line search for each iteration.

The first fluid model samples relative permeabilities from the SPE1 benchmark (Odeh 1981), but sets krw equal to kro to make water
mobile. Fig. 4 shows solution paths taken by the six solvers, each with four different initial guesses, plotted on the residual surface. The
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Fig. 3—Schematic example of the ATR solver using oscillation detection. The gray boxes show possible sequences of Newton
updates over an interface obtained with two different algorithmic settings for a flux function with five inflection points. The table
on the right-hand side shows the number of oscillations (nosc) and the number of iterations (including the current) for which TR is
active over the interface (nTR).
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solvers generally follow quite different paths. For the Newton and the LS methods, some solution paths are not shown because they did
not converge within 100 iterations. Fig. 5 reports the number of iterations, limited upward by a maximum of 25 iterations, for 2,500 dif-
ferent initial guesses, sampled at the midpoint of each cell in a 50� 50 mesh that covers the unit square. As expected, the Newton
method only converges in a small subset of the unit square. Introducing line search doubles the size of the convergent subset, and by
chopping saturation increments, we obtain convergence in the whole domain. Compared with the TR solvers, we see that TR is less effi-
cient than Newton with chopping, and ATR with nTR ¼ 0 (the default setting) converges rapidly in large, contiguous patches and is over-
all the most efficient. In contrast, ATR with nTR ¼ 3 has many of the same characteristics as TR but is more efficient in many points with
low SL or SR values.

The second model describes a two-phase, three-component system with polymer that mixes with water according to the Todd and
Longstaff (1972) model for miscible flooding. The relative permeabilities are Brooks-Corey with an exponent of 3 and residual satur-
ation of 0.15 for oil, and exponent of 2 and residual saturation of 0.1 for water. We inject a polymer slug together with water and set
the water saturation and polymer concentration in the right cell equal to the injected saturation and concentration. Because the water/
polymer mixture will eventually fill both cells, we can plot the residual in the left cell as a function of water saturation and polymer con-
centration. Fig. 6 shows the residual and solution paths for four different initial guesses. The Newton and LS solvers do not limit the
concentration update. We clearly see that the introduction of polymer makes the transport problem highly nonlinear. Although the
unmodified Newton solver only converges for one of the four initial guesses, the Newton solver with the maximum saturation update
converges for all starting points. The solution paths are similar for LS and ATR with nTR ¼ 0, as are most of the paths taken by TR and
ATR with nTR ¼ 3. Notice, however, that ATR avoids the unnecessary use of TRs by switching them off after Iteration 2 for the path
starting at the origin, and as a result converges in nine iterations instead of 16.

Fig. 7 reports iterations for a 50� 50 mesh of different initial guesses for Sw and ĉ. The unlimited Newton solver only converges in
a small region where Sw is close to the solution. Likewise, because the Newton solver with DSmax¼ 0.1 does not limit the concentration
update, the iteration surface is made up of vertical patches of width DSmax. We also see that LS and ATR with nTR ¼ 0 use approxi-
mately the same number of iterations as the unlimited Newton solver within its convergence region. Overall, ATR with nTR ¼ 3 is the
most efficient solver in this example, but ATR with nTR ¼ 0 is more efficient inside the region of mobile water.
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Fig. 4—Newton paths taken by six different nonlinear solvers from four different initial guesses for a two-cell problem with the
SPE1 fluid. Solution paths are not shown if the solver did not converge within 100 steps.
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The main purpose of this example was to illustrate that nonlinear solvers might take quite different solution paths even in simple
cases. On the basis of these few samples, we cannot draw a firm conclusion, but the results indicate that the ATR solver will also be effi-
cient in more-complex multidimensional scenarios where the saturations and concentrations depend on values in upstream cells.

Quarter-Five-Spot Pattern. The next example is a quarter-five-spot pattern posed on a quadratic domain of 2000� 2000 m2 with
homogeneous permeability and porosity. The rock is completely filled with oil, and a total of 0.2 pore volumes (PV) of water are
injected at a constant rate over a period of 2 years. The producer operates at a fixed bottomhole pressure (BHP) of 50 bar. The fluids are
incompressible and follow the first model from the previous example. We use 24 evenly spaced timesteps of approximately 30 days to
simulate 2 years of production.

Fig. 8 reports the cumulative number of iterations used by the Newton, LS, TR, and ATR solvers for all transport steps. The TR
solver uses the fewest iterations in the first step, during which the first water-displacement fluid enters the reservoir. The Newton solver
then uses fewer iterations than the other three in the second and third timesteps, but in Timesteps 4, 6, and 14, it does not converge
within the maximum allowed number of iterations. As a result, the timestep is halved until the solver converges, giving several wasted
iterations for which partial results are discarded; these are reflected as jumps in the cumulative iteration count. The total number of
wasted iterations obviously depends on the prescribed maximum iterations performed before chopping the timestep: If set too high, a
large number of iterations are wasted while the solver oscillates between two values, and if set too low, timesteps might be cut unneces-
sarily. In all examples presented herein, we set the upper iteration limit at 25, which we believe is a reasonable compromise. The reader
should keep this in mind when studying the examples herein. Fig. 8 also reports the number of successful iterations performed by the
Newton solver. Iterations are termed successful if they were part of a timestep that did not need to be reduced to achieve convergence.
These steps represent the idealized case in which we know a priori how long we can choose the timesteps and still obtain convergence.
Using LS avoids timestep chops, but requires more iterations than the successful Newton steps.

Fig. 9 shows the water saturation in four selected timesteps, with the interfaces on which TR/ATR are active indicated in magenta.
The ATR algorithm reduces the number of active interfaces to as little as 10 to 20% percent of the number used by TR. The effect of
this is twofold. First, the algorithm is less restrictive in the sense that it allows for larger saturation updates on many of the interfaces,
resulting in faster convergence. Second, it reduces the computational cost because TRs are only used on a very small subset of the grid
interfaces, requiring fewer evaluations of the flux function. Note that TR and ATR have no problem converging for the problematic
timesteps, and as a result use much fewer iterations overall than standard Newton chopping. In particular, using TR and ATR reduces
the total number of nonlinear iterations by 18 and 53%, respectively. In total, ATR uses fewer iterations than the number of iterations
over the successful Newton steps. ATR uses fewer or equally many iterations for many of the timesteps that were not chopped. This is
an important property because it means that ATR will not use significantly more iterations than a standard Newton solver when this
solver performs optimally.
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Fig. 5—Number of iterations required to converge on a 50 3 50 mesh of different initial guesses for the two-cell problem with the
SPE1 fluid. White color indicates that the solver did not converge within 25 iterations.
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Layered Permeability. Our next example is a conceptual test aimed to challenge the nonlinear solver. The problem is posed on a
2000� 50 m2 vertical cross section in which the permeability is made up of a highly heterogeneous repeating pattern consisting of three
rows of cells with permeability of 1,000, 100, and 10 md, respectively. The in-place fluid has a density of 800 kg/m3, and we inject a
total of 0.2 PV of a fluid with density of 1000 kg/m3 through the upper half of the leftmost boundary and 0.2 PV of a light fluid with
density 100 kg/m3 through the lower half over a period of 2 years. The fluid phases are incompressible and described by a black-oil
model with quadratic relative permeabilities. A producer at the rightmost boundary operates at constant BHP of 50 bar. This will
induce a complex flow pattern with a combination of viscous fingering in the lateral direction because of the permeability anisotropy
and rapid gravity segregation in the vertical direction because of high density differences. Such a problem is very challenging for
the Newton solver, which we allow to perform 50 iterations before chopping. Fig. 10 shows the saturation of the light fluid at
selected timesteps.

To investigate the robustness and applicability of the TR solvers, we use four simulations with timesteps of 1/3, 1/6, 1/12, and 1/24
of a year, respectively. Fig. 11 reports the number of nonlinear transport iterations used by the Newton, LS, TR, and ATR solvers. The
Newton solver struggles significantly for the two longest timesteps and wastes a large number of iterations. The TR and ATR solvers,
on the other hand, waste no iterations. We also observe that using adaptivity improves the TR solver significantly and that the effect is
better for shorter timesteps, when TR is only needed for a few iterations. Indeed, using ATR gives significantly fewer active interfaces
in Fig. 10. Notice also that ATR outperforms the Newton solver in terms of iterations, even with timesteps of 15 days. The LS solver
performs comparably or slightly better than ATR, except for the setup using the longest timesteps, where it has to halve the timestep
to converge.
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Polymer Example 1: Subset of SPE 10 Model 2. As an example of an EOR process, we consider polymer flooding described by a
Todd and Longstaff (1972) model for miscible flow as specified in the ECLIPSE commercial simulator (Schlumberger 2013). We pick
a horizontal layer from SPE 10 Model 2 (Christie and Blunt 2001), which describes a weakly compressible waterflood problem, and
inject 1 PV of water over a period of 2,000 days from an inverted-five-spot well pattern with the four producers in the corners operating
at constant BHP. We inject a single polymer slug between Days 400 and 800. Because of the interplay between the global flow field
with diluted polymer and local variations in petrophysical properties, different regions will experience very different nonlinear behav-
iors. Buoyancy effects are not included because the single layer is completely horizontal.

Fig. 12 shows permeability and porosity together with water saturation and polymer concentration after 1,000 days. We simulate the
same problem with three different timestep selections. The first uses 100 timesteps of 20 days each, the second uses 20 timesteps of
100 days each, and the third consists of only three timesteps: one for the initial waterflood, one for the polymer injection, and one for
the period after the polymer slug has been injected, as an extreme test of robustness. We simulate all three setups with the Newton, LS,
TR, and ATR solvers, with Newton and LS set to perform 25 iterations before chopping. Fig. 13 reports the total number of iterations
for each phase of the injection schedule, whereas Fig. 14 reports the cumulative number of iterations.

Again, we observe that TR and ATR do not need to cut timesteps. Furthermore, even when we only consider successful Newton iter-
ations, TR uses fewer iterations for the two longest timesteps, whereas ATR uses fewer iterations for all setups. We also see that LS
wastes iterations even with 100 timesteps, performs worse than TR for all setups except the one with 100 timesteps, and worse than
ATR for all setups. Comparing successful iterations, LS also requires more iterations than TR for the setups with three and 20 steps,
and more iterations than ATR for all setups. Finally, we note that adaptivity reduces the number of iterations to 59% for 100 timesteps
and 86% for 20 timesteps compared with static TR, whereas the iteration count increases by 2% with three timesteps. This is in line
with our previous discussion of how the ATR method should be configured: For very long timesteps, TRs are needed for most of the
iterations and interfaces and should be invoked by default as a precaution. We can also obtain an exact match between TR and ATR if
we invoke TRs for more than nosc þ 1 iterations when nosc is small (see Algorithm 1).
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Fig. 11—Iterations for the different timesteps and solvers in the layered-permeability example.
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Fig. 14 also reports the cumulative number of residual evaluations. With this as a measure of efficiency, ATR clearly outperforms
the other solvers, except with three timesteps, for which TR is insignificantly better.

Polymer Example 2: Norne Field Model. Polymer flooding has never been used in the oil/gas Norne Field, and herein we only use
parts of the simulation model (Open Porous Media Initiative 2015) to create a difficult test for the four nonlinear solvers. We keep the
grid geometry and petrophysical data, except for the three nearly disconnected top layers, giving a model with 37,702 active cells.
Instead of using the wells from the real simulation model, we set up a completely artificial well pattern consisting of eight vertical injec-
tors and six vertical producers distributed throughout the whole reservoir volume and completed in all layers. To ensure that the water/
polymer mixture sweeps a large portion of the reservoir so that the evolving displacement fronts pass through as much of the heteroge-
neity and complex cell geometries in the model as possible, we simulate an injection horizon of 75 years with polymer injected between
Years 15 and 30 in all injectors. Fig. 15 shows reservoir geometry and petrophysical properties along with the water saturation and
polymer concentration at the end of the simulation period.

Viscosity is 1 cp for pure water and 10 cp for the oil phase. Relative permeabilities are Brooks-Corey with exponent of 3 and resid-
ual saturation of 0.15 for oil and exponent of 2 and residual saturation of 0.1 for water. The densities of oil and water are 600 and
1000 kg/m3, respectively. Both phases are assumed to be incompressible, with weak rock compressibility of 10–6 psi–1. The polymer is
assumed to be fully mixed with water, giving a water/polymer viscosity of 100 cp at the maximum injected concentration.

We simulate the scenario using 200, 100, and 20 uniform timesteps, respectively, and let the Newton and LS solvers perform
25 iterations before chopping. Figs. 16 and 17 report the total and cumulative number of iterations for the Newton, LS, and ATR
solvers during each stage of the injection. Fig. 17 also reports the cumulative number of residual evaluations.
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Fig. 12—Petrophysical properties and solution profiles for water saturation and polymer concentration for the SPE 10
subset example.
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With 200 prescribed timesteps, the standard Newton solver works well during the initial waterflood and the final polymer-dispersion
periods and only wastes a moderate number of iterations. During polymer injection, the residual equations become more nonlinear and
the number of wasted iterations increases significantly. We can avoid chopping timesteps by using LS and end up with approximately
the same number of nonlinear solves as for the successful Newton steps. The ATR solver is more restrictive and requires 13% more iter-
ations than the successful Newton steps. The solver also requires more residual evaluations than LS and slightly fewer than the
Newton solver.

With 100 prescribed timesteps, we see a dramatic increase in the number of wasted iterations for the standard Newton solver, but
not for the LS solver, which requires fewer iterations than ATR overall and during the first and third parts of the simulation. The

Initial Waterflood Polymer Injection Polymer Dispersal
0

500

1,000

1,500

2,000

2,500

T
ra

ns
po

rt
 It

er
at

io
ns

Nt = 200

Nt = 100

Nt = 20

Nt = 200

Nt = 100
Nt = 20

Nt = 200 Nt = 100

Nt = 20
Newton
Newton, wasted
LS
LS, wasted
ATR

Fig. 16—Total number of iterations per solver for each part of the schedule for the Norne Field example.
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the Norne Field example. Vertical red lines indicate the polymer-injection period.
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number of residual evaluations, however, is slightly fewer for ATR than for LS. With 20 timesteps, Newton has to cut the majority of
the steps and hence wastes a large number of iterations. The LS solver also wastes iterations and is overall outperformed by ATR, even
though the successful steps of the two Newton solvers consume fewer iterations in total. In terms of residual evaluations, ATR is never-
theless superior to the other two.

The TR solver converges for all timestep lengths, but consumes approximately three times as many iterations as the successful
Newton steps (but fewer overall iterations) in the 100-step simulation, and seven times as many (and more iterations overall) for the
200-step simulation. TR also consumes more iterations than LS in both simulations. With 20 timesteps, however, TR outperforms both
the Newton and LS solvers. For brevity, neither of these results are reported in Fig. 17.

Convergence issues for the Newton solver are usually a sign that there are dynamics in the reservoir that need to be resolved using
smaller timesteps. To show the effect of using TRs to force the solver to converge for the prescribed timestep, Fig. 18 reports the total
oil-production rate from all producers for the 100- and 20-step simulations, with the 200-step solution as a reference. Fig. 18 also
reports the number of extra timesteps the Newton solver had to perform to advance the solution the prescribed timestep lengths. The
discrepancy between ATR and Newton is remarkably small in the 100-step simulations, although the Newton solver had to chop several
timesteps to converge. On the other hand, with almost all the 20 prescribed steps chopped, Newton predicts a production profile that
matches the 200-step simulation more accurately than the ATR solver. This should come as no surprise because cutting the timesteps
effectively makes the numerical diffusion in the simulation closer to the 100-step case.

Field Model 2: Olympus. The recent ISAPP (2017) optimization challenge is posed on an artificial model inspired by a virgin oil field
in the North Sea that spans a lateral area of 9� 3 km2. The reservoir thickness is 50 m and is made up of 16 layers of compressible rock
with different petrophysical properties. Permeability and porosity range from 1 md and 0.03 in shale layers to 1,000 md and 0.35 in the
channeled sand layers (Fig. 19). The model has seven faults: one that makes up the reservoir boundary at one of the sides and six minor
internal faults. The computational grid consists of 197,750 cells, each with approximate resolution of 50� 50� 3 m3. The well pattern
consists of seven injectors and 11 producers. The fluid model describes a compressible oil/water system with oil and water viscosities
of 2.59 and 0.395 cp and densities of 850 and 1020 kg/m3, respectively. The model has four different facies, each with its own relative
permeability curves and residual saturations. The reservoir is initially filled with a mixture of oil and water, and the injectors and pro-
ducers operate at fixed BHPs of 235 and 150 bar, respectively. Unlike the other test cases in this paper, this constitutes a highly realistic
reservoir model.

We use two different setups: one with timesteps starting at 2.8 hours and increasing to the target step length of 30 days during the
first eight steps, and one with timesteps staring at 5.6 hours and increasing to 60 days. The Newton and LS solvers are both set to per-
form a maximum of 25 iterations before chopping the timestep. Fig. 19 shows the initial and final water saturations.

Fig. 20 reports the number of nonlinear transport iterations and residual function evaluations performed by the Newton, LS, and
ATR solvers. On the basis of the performance of the TR solver in the previous example, we have chosen not to include it in this exam-
ple. For a targeted timestep of 60 days, Newton experiences convergence issues in the beginning and wastes a large number of itera-
tions. ATR converges successfully for every timestep and uses approximately 14% more iterations than the successful Newton steps,
and approximately one-half as many iterations overall. LS requires approximately the same number of iterations as the successful
Newton steps, and overall consumes approximately the same number of residual evaluations as ATR. For a targeted timestep of
30 days, the Newton solver struggles to converge only in one step, and as a result uses approximately 7% fewer iterations than ATR.
Again, LS wastes no iterations, and uses approximately the same number of iterations as the successful Newton steps and slightly fewer
residual evaluations overall. Water-injection and oil-production rates show insignificant discrepancies between the Newton and
ATR methods.
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because the Newton solver cuts timesteps in the transport solver and thus introduces less numerical diffusion. The bar plot
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model, whereas the right column shows the bottom seven layers. Injectors and producers are shown in red and blue, respectively.
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Conclusions

Summary of Results. We have presented an adaptive algorithm that improves the efficiency of the fully numerical TR method pro-
posed recently by Møyner (2017). The method can be made less restrictive if we only invoke TR checks when we detect oscillations in
the Newton updates. A variety of numerical examples demonstrate that our new adaptive method is robust for nearly any timestep, both
for contrived test cases designed to stress test the nonlinear solver and for more-realistic simulation scenarios. For reference, we have
compared the new solver with the standard optimized Newton solver in MRST. This solver uses the same ad hoc chopping methods as
industrial simulators, except for special treatment of transitions to/from mobile/immobile regions, which we disregard to keep the com-
parison as straightforward as possible. As an option, the Newton solver can use LS to combat convergence issues.

At its best, the Newton solver requires slightly fewer, or equally as many, nonlinear iterations as the ATR solver but is much more
sensitive to the choice of timesteps. The number of wasted iterations often increases dramatically if we choose the timestep to be too
large in the Newton solvers. This has a strong adverse effect on efficiency and might cause the simulator to slow down and eventually
halt completely if the chopping mechanism reduces the timesteps too much. Timestep chopping is particularly evident for cases with
strong media contrasts and complex reservoir geometries. These same tendencies are also evident when using Newton with LS,
although this solver is not as susceptible to the timestep length.

For the TR solvers, on the other hand, the iteration count per timestep only increased moderately with the timestep in all experiments
we have performed (only a few are reported herein). ATR typically uses approximately the same number of iterations as that which the
Newton solver consumes in the chopped timesteps. Compared with TR, we see a significant reduction in the number of nonlinear itera-
tions for short to moderately long timesteps, and a close match in iterations for very long timesteps when TRs are active for almost all
interfaces throughout the whole simulation. The observed robustness and efficiency of ATR and the efficiency of LS for reasonable
timesteps suggest that development of a combined LS/ATR solver is a future possibility.

We also note that the process of finding interface damping factors is inexpensive because it mainly requires us to evaluate relative
permeabilities a few extra times, which is significantly less costly than evaluating the full residual. Moreover, most of these evaluations
can be performed independently, and we thus believe that the method is well-suited for parallelization.

Future Perspectives. The increased robustness of ATR (or future ATR/LS solvers) can be beneficial in various applications. One
example is the simulation of highly detailed geocellular models with strong media contrasts and complex grid geometry and topology,
for which standard methods often struggle to converge properly because of large variations in Courant-Friedrichs-Lewy (CFL) numbers
between cells and small intercell areas. With the unconditional convergence of TRs, the solver is guaranteed to converge even for cells
with very large CFL numbers, thereby providing the robustness necessary to get a simulation through. As such, the method might be
attractive as a complement to contemporary multiscale pressure solvers (Lie et al. 2017).

Absolute control of the timestep length is also important to compare different model parameters: Because the TR algorithm guaran-
tees that all models are simulated with the prescribed timesteps, one can disregard differences in temporal discretization errors and
attribute observed discrepancies to differences in model parameters. Another example is ensemble simulations, for which it is important
that the simulator manages to simulate all ensemble members (with comparable timesteps) to avoid introducing bias in the ensemble
averages. A third example is optimization methods, which might perturb the system outside of the parameter region in which the
Newton solver works well. The ability to take large timesteps is also beneficial in reduced-physics simulations, in which one might use
a single or a few very large timesteps to obtain representative flux fields to quickly estimate how different injection setups affect sweep
and displacement efficiency (Krogstad et al. 2017).

Herein, we have only discussed the new ATR method with parameter settings that remain constant throughout the simulation. How-
ever, one can easily imagine a more-adaptive algorithm that uses the observed convergence history from previous timesteps to deter-
mine whether TRs should be imposed in a cautious or reactive manner. Likewise, the adaptive algorithm has only been applied for
global Newton updates that solve for all cells simultaneously. The method can also be combined with more-localized approaches for
the transport equations. One such approach is to reduce the fully implicit system by a priori estimation of nonzero update regions
before each Newton iteration (Sheth and Younis 2017). Another approach is to reorder the grid cells either according to fluid potential
(Kwok and Tchelepi 2007) or by using topological traversal of the interface flux graph (Natvig and Lie 2008) to develop highly efficient
iterative Gauss-Seidel solvers that repeatedly sweep through the cells in a predefined order and solve single-cell problems (Lie et al.
2014; Raynaud et al. 2016; Klemetsdal et al. 2018).

Nomenclature

Ai ¼ discretized accumulation term in cell i
ba ¼ shrinkage factor of phase a [qa¼ ba( pa)q

s
a], dimensionless

C ¼ connectivity matrix
d ¼ normalized Newton update direction

Fij ¼ discretized flux across interface Cij

g ¼ gravity acceleration, m/s2

J ¼ Jacobian matrix of R
kr,a ¼ relative permeability of phase a, dimensionless

K ¼ permeability, md
nchk ¼ number of update directions back in time we compare with current in ATR
nosc ¼ number of observed oscillations over an interface in ATR
nTR ¼ counter to determine if TR should be invoked over an interface in ATR

N ¼ number of grid cells
pa ¼ pressure of phase a, Pa
Pc ¼ capillary pressure, Pa
qa ¼ sources/sinks of phase a, m3/s
Qi ¼ discretized sources/sinks in cell i
R ¼ vector of cell residuals

Rq ¼ residual equation for quantity q
S ¼ vector of cell saturations

Sa ¼ saturation of phase a, dimensionless
Vi ¼ volume of cell i, m3
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~v ¼ total macroscopic Darcy velocity ~v ¼
P

a~va
� �

, m/s
~va ¼ macroscopic Darcy velocity of phase a, m/s
la ¼ dynamic viscosity of phase a, cp
ka ¼ mobility of phase a (ka¼ kr,a/la), cp�1

qa ¼ density of phase a, kg/m3

qs
a ¼ density of phase a at surface conditions, kg/m3

Cij ¼ common interface of cell i and j
Dt ¼ timestep, s
N (i) ¼ indices of cells sharing common interface with cell i

hi ¼ damping factor for cell i
@d ¼ derivative in direction of Newton update
/ ¼ porosity, dimensionless

Subscripts and Superscripts

i, j ¼ cell and interface subscripts
n ¼ timestep
a ¼ phase subscript
‘ ¼ Newton iteration counter
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