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Abstract—Ship motion has significant effects on certain mar-
itime applications like offshore crane operation. In particular,
the vertical heave motion is undesired for safe transferring,
accurate positioning and subsea installation. In recent years,
there have been growing tasks in utilizing ship motion data
for online operation improvement based on the development
of virtual simulation environment, digital twin and automatic
remote-control systems. How to effectively utilize ship motion
data is fundamental to these tasks. This paper presents a
neural-network-based method to predict ship motion and use
the prediction to improve active heave compensation (AHC)
of offshore crane operation. A virtual prototype of the lifting
system is developed including implementation of the proposed
AHC algorithms. A multilayer perceptron model is trained to
predict ship motion. By feeding the future motion of the ship
into the controller, the lifting performance can be tested in
the virtual environment and the result can be applied to its
counterpart. Through simulation with measured sensor data,
the proposed method is verified efficient in improving crane
operation performance.

Index Terms—hybrid simulation, neural network, active heave
compensation

I. INTRODUCTION

In the last few decades, physics-based modelling has been

extensively used for simulation and analysis of dynamic engi-

neering systems. On one hand, such model-based approaches

require comprehensive knowledge of the physical system of

interest. Moreover, it’s often necessary to estimate the model

parameters through observations and measurements in physical

experiments. This class of problems is referred to inverse

modelling and inverse problems in the literature. On the other

hand, efficient simulation of complex multi-domain systems

is one of the major challenges with respects to computational

cost and model interface across various domains. Recently,

significant efforts have been made to develop tool-independent

interface standard for complex cyber-physical systems through

model exchange and co-simulation [1]. It has been proved

in many industrial applications that increments of simulation

efficiency can be obtained with small degrees of accuracy loss.
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Compared with physics-based modeling, data-driven ap-

proaches rely solely on measured data to tackle the afore-

mentioned problems. Data-driven simulation is particularly

effective for analyzing complex non-linear systems whose be-

haviour and structure are difficult to represent mathematically.

For applications within maritime domain like offshore crane

operation, the random ship motion is extremely important, but

efficient modelling and simulation of the ship response in the

time domain is challenging. The performances of pure data-

driven approaches, however, are highly dependent on the size

and quality of the available data. Such data in the maritime

applications are often inadequate and rarely used for such

purposes. Therefore, hybrid simulation is needed to bridge the

gap between the two modeling approaches [2].

The Mechatronics Lab at Norwegian University of Science

and Technology in Aalesund has been investigating intelligent

control and virtual prototyping development for demanding

maritime operations for many years [3] [4]. One of their

ongoing projects aims to develop digital twins of maritime

systems. It will be not only an open virtual simulator as

the next generation of marine industrial infrastructure for

overall system design, allowing configuration of systems and

verification of operational performance, but also integrated

tools for early warning, life cycle service support, and system

behaviour prediction.

In this paper, we present an application of such a digital

twin system to offshore crane operation, specifically, for active

heave compensation (AHC). In order to eliminate environmen-

tal perturbations, we propose to feed the measured ship motion

into the the digital twin system to verify the effects of active

compensation. As far as the performance is in the acceptable

range, the control command could be further fed into the

real counterpart. The contributions of the paper include: (1)

decoupling and devitalizing crane operation system with the

ship dynamics; and (2) applying future ship motion to improve

the control performances of compensation.

The rest of the paper is organized as follows. In Section

II, a neural network (NN) model is employed to produce the

predicted motion of the ship with high accuracy as well as high

efficiency using motion reference unit (MRU) sensor data. In

Section III, an AHC approach with the estimated ship motion

as input is briefly described. Section IV presents the modeling



of the physical system with implementation of the proposed

AHC algorithms. Section V presents the simulation results and

discussions. And finally, Section VI concludes the paper.

II. COUPLING OF SHIP MOTIONS FOR ACTIVE HEAVE

COMPENSATION

How to obtain the motions of the ship dynamically is of

great importance for safe and effective maritime operations.

The majority of past work has been focusing on formulations

in the frequency domain. In [5], Cibicik et. al. presented the

derivation of combined equations of motion for a ship and a

deck crane using screw theory. The ship motion is modeled by

the well-established method where force response amplitude

operators (RAOs) are used to calculate the wave forces on the

ship and the waves are described with the JONSWAP wave

spectrum. The method considers the reaction forces of the

crane to the ship and is used to study the effect of the roll and

pitch compensation platform in numerical simulations. Model-

based simulation is great, however, ship behavior in waves is

complex and nonlinear, and requires extensive model test for

tuning the model coefficients.

Furthermore, using processed measured sensor data in con-

trol always introduces a signal delay with respect to the

true wave motions. The dynamic behaviors of the ship, the

lifting equipment and the suspended load are subject to

random disturbances from the external environment, which

might result in propagation of control errors. Therefore, we

see the motivations for research as first, to propose a hybrid

simulation structure for demanding maritime operations with

consideration of real-time ship motion; second, to reduce the

consequential effects of sensor signal latency and external

disturbances by using prediction in the control loop; third, to

identify the amplitude peaks of relative heave motion where

the AHC system might fail, so that warning and adaptions

can be provided to the controller. The structure of the hybrid

simulation system is shown in Fig. 1.

Fig. 1. Model structure diagram of hybrid simulation of offshore operation
using ship motion prediction.

AHC aims to stabilize the suspended payload during oper-

ation to minimize the effects of ship movements. A flexible

approach for heave compensation in offshore crane operation

is proposed and presented in [4]. It relies on solving the

kinematic structure of the manipulator, for example, the crane.

To keep the suspended load in position, the crane joints move

inversely to compensate the motion of the ship, therefore

stabilize the crane tip position. In the case study, the Palfinger

crane consists of four joints as shown in Fig. 2. The joint

velocity for the crane tip to remain stabilized can be calculated

by (1). Accordingly, the velocities of the joint actuators can be

derived. This approach is able to compensate the tip motions

in three degree of freedoms depending on the kinematic

structure of the manipulator. Considering only the vertical

heave motion, compensation for the load position can be

done by actively spooling in and out the wire through the

winch drum. Limitations with heave compensated using winch

include the response characteristics of the actuation system and

wire related issues.

Fig. 2. The Palfinger crane in lifting operation.

θ̇ = J−1q̇ (1)

where J is the velocity Jacobian, θ̇ denotes the joint velocity

and q̇ denotes the crane tip velocity.

For the suspended payload, a spring-damper system is

assumed for the relative motion between the crane tip and the

load. Since the load position cannot be measured directly, the

load speed is estimated from the winch speed. The estimation

is suitable as the oscillations of the wire are expected to

be small. Using classic PID-controller, the reference speed

for the crane and the winch controller to compensate the

heave motion is given by the inversion of the heave speed.

In Section V, the simulation results of using delay sensor data

and predicted heave motion based on the aforementioned two

AHC approaches are presented.

III. SHIP MOTION PREDICTION

Several prediction techniques have been proposed for ship

motion predictions [6]–[10]. A comparison of these prediction

methods are summarized in [11]. The main weighting factor

for selecting a prediction method for such applications is its

ability of producing real-time predictions beyond 5 seconds up

to 60 seconds ahead of measurements. Vessel response predic-

tions more than 30 seconds ahead usually cannot be improved
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Fig. 3. Multilayer perceptron model for time series prediction.

by conditioning the prediction on measured data alone [12]. In

general, statistical algorithms tends to be more computational

expensive compare to NN algorithms. Online, offline and

hybrid learning procedures are the most often used strategies in

conjunction with NN structures. Different strategies affect the

ability of generalization as well as prediction accuracy. Since

the learning strategies of different NN algorithms produce

similar results, evaluation of the performance of different

prediction algorithms is not the focal point of this paper. In

the case study, we used multilayer perceptron (MLP) network

to predict the future motion the ship.

Fig. 3 depicts the structure of the predictive model for time

series ship motion prediction. It consists of an input layer with

r neurons, several hidden layers and an output layer with a

sole output neuron. This implies the inputs are from the r
steps of time series data from sensors, whereas the output is

the predicted motion output in q time ahead. By using the

backpropagation technology, the weight of the MLP NN is

adjusted to minimize the error between the sensor data and

the MLP NN output. In general, 80% of data will be used for

training and the rest can be used for testing.

IV. CASE STUDY: KINEMATICS AND DYNAMICS OF THE

CRANE LIFTING SYSTEM

The kinematics analysis of the Palfinger crane is derived

using the Denavit-Hartenberg method [13] which is commonly

used in robotics. A good alternative for kinematics and dy-

namics derivation is based on the screw theory [14]. The line

sketch of the reference frames and the link dimensions for the

Palfinger crane are shown in Fig. 4. The last telescope link

which consists of 8 parts is consider as one prismatic joint.

The velocity Jacobian matrix for the crane tip frame to the base

frame is given by (2). The variables s1, c1, s23, c23 denote

sin(θ1), cos(θ1), sin(θ2 + θ3) , sin(θ2 + θ3) respectively.

Dynamics of the crane is derived using the Lagrange’s

equations by analysing the energy properties of the system.

Lagrange’s equations provide an elegant formulation of the

dynamics of a robot-like multi-body system, because it re-

duces the equations needed to describe the motion of such

systems using generalized coordinates instead of every single

body with mass and inertia. These equations are particularly

convenient for implementation using energy-based modeling

methods such as bond graphs. The equation of motion of

the multi-body system can be formulated by (3). For the

controllers, we use classic PID-control for the actuator’s output

of the crane and winch. The coefficient to the maximum output

force or torque, depending on the actuators.

Fig. 4. The kinematics structure of the Palfinger crane.

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = τ (3)

where M(θ) is the generalized inertia matrix, C(θ, θ̇) denotes

the Coriolis matrix which gives the Coriolis and centrifugal

force terms in the equations of motion, N(θ, θ̇) is the gravity

terms and τ is the vector of actuator torques.

V. SIMULATION RESULTS

We obtained data measured by MRU mounted at the crane

tip for prediction. The sampling rate of the sensor data is

recorded at every 0.03 second. An MLP NN was built with

J =

⎡
⎣
−s1(−a− cc23 + l2c2 + s23(l3 + d4))− bc1 c1(−l2s2 + (l3 + d4)c23 + cs23) c1((l3 + d4)s23 + cs23) c1s23
c1(−a− cc23 + l2c2 + s23(l3 + d4))− bs1 s1(−l2s2 + (l3 + d4)c23 + cs23) s1((l3 + d4)s23 + cs23) s1s23

0 l2c2 + (l3 + d4)s23 − cc23) (l3 + d4)s23 − cs23 −c23

⎤
⎦ (2)



TABLE I
RMSES OF PREDICTED SHIP MOTION IN DIFFERENT TIME STEPS

Prediction Time [s] RMSE [m/s]
1 0.042
2 0.094
3 0.105
5 0.149
8 0.176

10 0.217

r = 20 and trained for a variety of horizon p ∈ [1, 350]. The

prediction of the heave velocity with 35 steps (approximate

1 second) ahead of measurement is shown in Fig. 5. More

results show that the performance of the prediction algorithms

beyond 5 seconds is not good enough and the result cannot be

used as control input. The root-mean-square-errors (RMSEs)

of the predictions with different time steps are shown in

Table I. Since the overall delays in such systems are usually

below 2 seconds, this is not a problem. The prediction of

the heave velocity with 350 steps (i.e., 10 seconds) ahead of

measurement is shown in Fig. 6. As can be seen, the prediction

performed poorly between 10 second to 30 second and 110

second to 120 second. In these time periods the amplitude

of the ship motion is small. As the purpose for longer time

prediction is to detect the extreme motion amplitudes where

the system operation failure is likely to happen, this is not a

major concern.

Typical MRU signal latency is about 9 milliseconds plus

the transmission delay. Simulation of the crane operation is

implemented in the digital twin ship simulator as shown in

Fig. 7. The simulation scenario is defined as: simulation starts

with the crane at a fixed position at the starboard side, AHC

using the crane joints activated from 20 seconds to 60 seconds,

and AHC using the winch activated from 60 seconds to 120

seconds. The initial crane tip position in the vertical direction

is 7.37 meters above the center of gravity of the ship. The

default wire length is 5 meters from the crane tip. Accordingly,

the initial load position is set at 2.37 meters above the center

of gravity of the ship.

Fig. 8 shows the simulated crane tip position in vertical

direction compared with the MRU sensor data. As can be

seen the simulation result matches with the measurement. The

overall delay between the measured signal and the control

input is set to 0.5 second [8]. The load position using MRU

sensor data with 0.5 second delay and using predictions with

1 second ahead of measurement is shown in Fig. 9. The result

clearly shows that without AHC the peak value of the relative

load motion is about 2.1 meters. AHC using the MRU sensor

data with 0.5 second delay to the controller reduces the peak

value to 0.8 meter. AHC using predictions overcome the delays

and the peak value of the relative load motion is about 0.13

meter.

As mentioned, the results with longer time predictions

cannot be used as control input. The simulation results of the

load position using predictions with 5 and 10 seconds ahead

of measurement are shown in Fig. 10. The variations of the

Fig. 5. Predictions of the heave velocity with 1s time ahead of measured
data.

Fig. 6. Predictions of the heave velocity with 10s time ahead of measured
data.

load displacement are up to 0.27 and 0.38 meter respectively.

However, simulation with longer time predictions is useful to

detect the extreme values of variation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an application of utilizing the

prediction of ship heave motion to offshore crane operation.

The approach successfully decoupled the ship dynamics in

simulation using only measured MRU sensor data to predict

the ship motion for crane AHC control. Using the predicted

data for control helps to overcome the signal delay of the

measured sensor data. An MLP NN model is utilized in this

paper for motion prediction. We take the MRU data as the

input for the MLP model to predict the heave velocity ahead

of the measured data from 1 second up to 10 seconds. The

results show increased RMSE with the growth of prediction

time.

In the case study, the dynamic model of the operation

system is developed, which consists of a four-joints crane,

a winch and a suspended payload. AHC using the crane and

the winch to compensate the crane tip and load motion is



Fig. 7. 3D visualization of the Palfinger crane operation. Time 0 ∼ 60s: AHC using crane; 60s ∼ 120s: AHC using winch.

Fig. 8. Crane tip position when AHC is off.

Fig. 9. Load position using delayed and predicted ship heave motion in AHC
operation.

Fig. 10. Load position using longer time predictions of ship heave motion in
AHC operation.

implemented based on the analysis of the system’s kinematic

structure. The effectiveness and performance are evaluated

by simulation and measurement. It is shown that using ship

motion prediction in the control algorithm improves the AHC

performance. Longer time predictions can also provide on-

board support and early warning to prevent system failure.

In order to do this, predictions using combination of sensor

data and real-time dynamic models of wave and ship response

is needed. As part of the future work regarding ship motion

prediction, more sensor data can be utilized such as weather

forecast, radar and wind sensors that are already available

on ships. These can be used to generate time series of wave

spectrum and combined with a ship response model.
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