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Abstract
New Sequential Fully Implicit (SFI) methods for compositional flow simula-

tion have been recently investigated. These SFI schemes decouple the fully cou-
pled problem into separate pressure and transport problems and have convergence
properties comparable to the Fully Implicit (FI) method. The pressure system is
a parabolic problem with fixed overall-compositions and the transport system is
a hyperbolic problem with fixed pressure and total-velocity. We discuss some
aspects of how to design optimal SFI schemes for compositional flow with gen-
eral equation-of-states by localizing the computations. The different systems are
solved sequentially and the Fully Implicit solution is recovered by controlling the
a-posteriori splitting errors due to the choice of decoupling. When the parabolic
and the hyperbolic operators are separated, it is possible to design nonlinear do-
main decomposition schemes taking the advantage of the specific properties of
each operator. Usually, for reservoir simulation models, most of the reservoir is
converged with SFI methods in one outer-iteration. However, in some localized
regions with strong coupling between the pressure and the compositions, the SFI
algorithms may need several outer-iterations. Here we propose a domain decompo-
sition method based on a predictor-corrector strategy. As a first step, the nonlinear
parabolic pressure equation is solved on the whole domain with the Multiscale
Restriction-Smooth Basis (MsRSB) method used as a linear domain decomposi-
tion solver. In a second step the compositions system is solved. At the end of
this first outer-iteration, most of the reservoir is converged. Based on a-posteriori
splitting-errors of the SFI scheme in volume and velocity, we define local regions
where additional global outer-iterations would be required in the conventional SFI
scheme. We then fix Dirichlet boundary conditions for the pressure and the com-
positions and solve local problems in these non-converged regions. After conver-
gence of these smaller nonlinear problems, if the boundary conditions are changed
by the updated regions, the global pressure problem is revisited. An additional
post-processing of local transport iterations makes sure mass is conserved every-
where. The resulting algorithm converges to the same solution as the FI solver,
with all simultaneous updates to composition and pressure in localized regions.
We demonstrate the robustness of this nonlinear domain decomposition algorithm
across a wide parameter range. Realistic compositional models with gas and water
injection are presented and discussed.
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1 Introduction
Sequential implicit (SI) methods for compositional flow have initially being developed
by [1, 32, 27]. These methods are a two-step process: First, the pressure solution is
found by solving a pressure equation, second, a transport step updates the composi-
tions. In general, this splitting relies on fixing quantities and generally local saturation
errors will be present. One approach is to keep these errors bounded in time using
relaxation terms [1, 27]. Sequential methods for compositional flow have recently re-
ceived renewed interest in the context of multiscale reservoir simulation [9, 10, 21] by
the works of [8, 18, 22, 19]. [8] considered a Sequential Fully Implicit (SFI) method
in order to converge to the Fully Implicit (FI) solution. In their work, the pressure is
found by solving a total-mass conservation equation, which can result in many outer-
iterations between the pressure and the composition systems before convergence to an
acceptable tolerance. In [18], the same total-mass pressure equation is used to converge
to any given accuracy by selecting areas of the domain as FI and other areas as SFI. This
method converges with similar properties as the FI method applied to the entire domain
but may be too expensive when the coupling regions become too large. [22] presents
a SI method conserving mass after each outer-iteration. The pressure is computed by
an IMPES-type algebraic reduction similar to [3]. In most cases, the SI solution is
qualitatively very similar to the FI solution in terms of reservoir and well responses.
[19] introduces the nonlinear volume-balance equation that is the generalization of the
previous volume balance equation derived for immiscible [11] and black-oil [14, 20]
fluid. The pressure equations from [22] and [19] converge to the same solution. In
addition to the saturation splitting error, [19] describe the total-velocity splitting error
resulting from the sequential treatment and show the importance of controlling these
error terms in order to converge to the FI solution.

In this work, we are combining ideas from these previous works. We are aiming
at having a scheme reproducing the FI solution at a cost as close as possible to the
cost of a SI method (or a SFI method with a single outer-iteration). We propose a
domain-decomposition strategy based on a predictor-corrector pair of models. For the
predictor-model, we consider the SI method which is known to efficiently converge by
fixing pressure and total velocity, but may in the process neglect important physical
couplings between the flow and the transport. To correct this initial guess, we consider
the FI method, but we could equally well have used a local SFI solver. The key idea is
the FI solver is only applied in areas where significant large splitting errors are detected
after a solve of the predictor-model. This approach is reminiscent of adaptive-implicit
methods [7, 6, 33, 26], where cells are taken to be either implicit or explicit based
on local CFL estimates [24] as a middle-ground between explicit and fully-implicit
schemes. In this work, we do not need to estimate CFL as we couple different implicit
solvers. As we are concerned with controlling splitting errors rather than stability, this
can be considered a complimentary approach which is the middle-ground between a
sequential-implicit and a fully-implicit scheme.

We are using the implementation and formulation from [22]. We have not made
a comparison between the natural-variable formulations from [22] and [19] but the
structures of the splitting errors are similar between the two approaches and the con-
clusions of this study are holding for the two formulations. As a first step, the pres-
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sure equation is solved on the whole domain with the Multiscale Restriction-Smoothed
Basis (MsRSB) method used as a preconditioner for a linear solver. In a second
step, the transport system is solved to update the compositions. At the end of this
first outer-iteration, most regions of the reservoir model are converged. Based on the
splitting-errors of the SFI scheme, we define local regions where additional global
outer-iterations would be required in the conventional SFI scheme. We then fix Dirich-
let boundary conditions for the pressure and the compositions at the boundary of these
local regions and solve the local problems with the FI method. After convergence
of these smaller nonlinear problems, if the boundary conditions are impacted by the
updated solution inside the regions, the global pressure and transport problems are re-
visited. In case where the boundary conditions are not changed by the interior updates,
an additional post-processing of local transport is applied to make sure mass is con-
served everywhere. The resulting algorithm converges to the same solution as the FI
solver within prescribed tolerances for velocity and saturation errors.

2 Governing equations

2.1 Compositional flow
In this work, we consider the coupled flow-transport problem for m hydrocarbon com-
ponents and a water component m + 1 = n. We assume up to three phases present: a
liquid, a vapor and an aqueous phase. In terms of phase composition, we assume that
the hydrocarbon component i is only present in the liquid and vapor phases,

Ri =
∂

∂t
(φ [ρlSlXi + ρvSvYi]) +∇ · (ρlXi~vl + ρvYi~vv)− qi (1)

where φ is the porosity, ρα the phase mass-density, Sα the phase saturation, ~vα the
phase velocity for phase α and qi some component source term. We use Xi and Yi to
refer to the mass-fraction of component i in the liquid and vapor phases, respectively.

The mass conservation equation for the water component is written in residual form
as

Rw =
∂

∂t
(φρwSw) +∇ · (ρw~vw)− qw. (2)

The composition in the liquid and vapor phases are given by the isofugacity constraint
when both phases are determined to be present from a stability test [17],

Rf = f li − fvi (3)

where fαi depends on the phase compositions and pressure. We require that the mass-
fractions of each phase sum-up to unity

RX =1−
m∑
i

Xi, Xi ∈ [0, 1]∀ i ∈ {1, ...,m}

RY =1−
m∑
i

Yi, Yi ∈ [0, 1]∀ i ∈ {1, ...,m}.
(4)
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In addition, the phase saturations sum-up to unity, meaning that the fluids fill the entire
pore-volume

Rs = Sw + Sv + Sl − 1, Sα ∈ [0, 1]∀α. (5)

To relate the phase pressures to each other, we let pαc denote the pressure difference
between phase α and the liquid hydrocarbon phase,

pα = pl − pαc . (6)

As we define the phase pressures relative to the liquid pressure, we will drop the sub-
script and let p refer to the liquid pressure in the following.

We find the phase-velocities using the multiphase extension of Darcy’s law with
gravity for some absolute permeability K and mobility λα defined as the ratio between
the phase relative permeability krα and viscosity µα:

~vα = −Kλα(∇pα − ραg∇z), λα =
krα
µα

(7)

with g the gravitational acceleration and z the depth.
Herein, we use a natural-variables [5] type formulation where phase equilibrium is

solved simultaneously with the flow equations. This specific choice is not essential to
the proposed domain-decomposition scheme. We can define RFI as the fully-implicit
residual made up of the conservation laws for each component, the isofugacity con-
straint and the saturation closure,

RFI =
[
Rw, R1, . . . , Rm, F1, . . . , Fm, Rs

]ᵀ
(8)

where the primary variables are the pressure p, phase saturations Sl, Sv, Sw, liquid
mole fractions x1, . . . , xm−1 and vapor mole fractions y1, . . . , ym−1 after eliminating
the last mole fractions by setting RX = 0 and RY = 0 and using (6) to parametrize all
pressures relative to the liquid pressure.

2.2 Pressure-transport system
We reformulate the system of conservation equations in (1) and (2) in an equivalent
pressure-transport system. The pressure equation is formed by a weighted sum of the
linearized mass conservation equations. It is equivalent to solving for the zero of the
pressure residual,

Rp = βwRw +

m∑
i=1

βiRi. (9)

We solve Rp = 0 keeping the overall composition of each component zi and zw fixed,
with saturations and phase mole fractions changing based on the updated pressure ac-
cording to (3) as predicted by the equation-of-state.

The transport system can be defined from the fully-implicit system in two steps.
We first replace the expression for the phase flux ~vα (7) with the fractional-flow form
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of the phase velocity ~̄vα where we assume a fixed total-velocity,

~̄vα =
λα∑

β∈l,v,w
λβ

~vt + K
∑
β 6=α

λβ(Gβ −Gα)

 , (10)

Gα = ∇pαc − ραg∇z, (11)

where the fixed total-velocity ~vt is defined from ~vα from the pressure system as ~vt =∑
β ~vα. We can now form the transport residual RT analogously to RFI ,

RT =
[
Rw, R1, . . . , Rm, F1, . . . , Fm

]ᵀ
. (12)

The solution variables in this case are phase saturations Sl, Sv, Sw and mole fractions
x1, . . . , xm−1, y1, . . . , ym−1. Comparing to the fully-implicit system, we still have
exact mass-conservation as all mass-balance equations are present, but we have omitted
the saturation closure Rs = 0. This means that we only guarantee that Sα ≥ 0 and
the total-volume is relaxed. The reader is referred to [22] and [19] for the finer details
of the pressure-transport strategy for compositional flow. In particular, for [22] for
the computation of the weights βw and βi used in this work. In [19], the βw and βi
are taken as the partial molar volume (or partial mass volume) of each component.
In addition, the MRST implementation of both the FI and SI solvers used herein are
open-source and available as a part of MRST [25].

3 Discretizations
We discretize (1) to (10) using the typical low-order implicit finite-volume schemes
commonly used in subsurface simulation: We use a two-point flux approximation to
discretize the permeability and pressure gradient and single-point upwinding for the
mobility and density terms. We refer the reader for more details and on specific imple-
mentations used herein to [22] and [13].

As noted in the previous section, we let RFI = 0 refer to the converged fully-
implicit solution. Similarly, RSI = 0 refers to the sequential-implicit solution, where
the nonlinear pressure equation RP = 0 is first solved in order to obtain initial esti-
mates of the pressure solution xn+1/2. This is followed by the solution of the transport
system RT = 0 to get xn+1. This strategy is outlined in Figure 1 together with details
on the choice of primary variables.

4 Domain-decomposition strategy
The strategy considered in this paper is a predictor-corrector approach where Rpred(x,x

0,∆t,q,Ω)
represents the predictor and Rcorr(x,x

0,∆t,q,Ω) represents the corrector residuals.
Here, x is the state vector, which defines the solution state uniquely, x0 the state vector
at the previous time-step, ∆t the current time-step, q the boundary conditions and Ω
the solution domain. We seek x such that

‖Rcorr(x,x
0,∆t,q,Ω)‖ < ε
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Solve pressure equation

Solve RP = 0 with fixed over-
all compositions z1, ..., zn and
obtain secondary quantities
(x1, ..., xn, y1, ..., yn, Sα) from
equation-of-state.

Primary: p, pbh

Solve transport equations

Solve RT = 0 with fixed pressure p
and total velocity ~vt

Primary: x1, ..., xn, y1, ..., yn, Sα

Previous ∆t
Outer
loop?

‖RFI‖ < ε Next ∆t

Next ∆t
Fix ~vt, p

Yes

Not converged

Yes

No

Figure 1: Outline of the sequential-implicit algorithm for compositional flow, with
the optional sequential-fully-implicit outer-loop required for converging to the fully-
implicit solution.

for some norm and tolerance, while we avoid solving

Rcorr(x,x
0,∆t,q,Ω) = 0

on the full domain Ω directly.
One pass of the proposed algorithm can be summarized as follows:

1. Solve Rpred(x,x
0,∆t,q,Ω) = 0 to obtain initial estimate of x.

2. Compute error indicators for estimate x and define local domain Ωl.

3. Solve Rcorr(xl,x
0
l ,∆t,q,Ωl) = 0 to obtain better values for xl, the values of

x in local domain Ωl.

4. Check if the corrected x is sufficiently close to the solution on the full domain
Rcorr(x,x

0,∆t,q,Ω) = 0.

The central idea is that the predictor will produce a solution that is fairly accurate
in most respects, with some localized error which can be resolved by the corrector
on smaller sub-domains with the boundary conditions computed from the predictor
solution.

4.1 Sequential implicit predictor-corrector
With the description of the general framework taken care of, we will now consider the
specifics of applying it to a sequential implicit (SI) algorithm. Due to the splitting er-
rors, one pass of the pressure and transport systems only leads to a fully converged FI
residual in a few limited cases. SI approaches rely on time-step selection or smoothing
to keep the splitting errors small. However, it is still challenging to obtain a-priori error
estimates for multicomponent flows and smoothing may remove important properties
of the solution. If we consider SFI approaches where a small FI residual is required, it
will be necessary to perform multiple iterations of the outer loop, with each iteration
consisting of pressure and transport solves. Moreover, repeated outer-loops can some-
times have unsatisfactory convergence for compositional problems. This motivates our
approach, since compositional problems are both computationally intensive to solve
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and has localized error terms due to compressibility, mass-exchange between phases
and generally shorter time-steps than e.g. black-oil type descriptions. We let RSI be
the predictor Rpred and take RFI as the corrector Rcorr.

4.1.1 Error indicators

The main challenges in applying our predictor-corrector strategy are the formulation
of error-indicators and the choice of local boundary conditions. If we consider the
expression for total velocity,

~vt(λα, pα, ρα|α ∈ {l, v, w}) =
∑

α∈{l,v,w}

−λαK(∇pα − ραg∆z),

we observe that changes in mobility and capillary pressure are major contributors. We
note that there are two types of errors [19] present in the solution of our SI scheme: i)
total-velocity errors, where the lagged value for inter-cell flow terms may lead to dif-
ferences in flow field; ii) saturation or pore-volume errors, where phase mass-exchange
or compressibility leads to differences between the pore volume and the fluid volumes
predicted by thermodynamics in cells after the converged transport. The total-velocity
or total-rate error is computed for a given cell i with cell neighbors N(i) by

(ev)i = max
j∈N(i)

∣∣∣Qtij(x
n+1/2)−Qtij(x

n+1)
∣∣∣

which measures the difference between the discrete total-volumetric rate Qtij(x
n+1/2)

used in the transport, and the discrete total-volumetric rate Qtij(x
n+1) defined by the

updated mobilities after the transport. This is the fully-implicit expression for flux, and
indicates if the assumption of fixed total-velocity during transport was reasonable. We
require that the maximum total-rate error is smaller than 1% a reference value equal to
the maximum of the total-volumetric rates and the pore volume Vi of cell i divided by
the time-step

(ev)i < 0.01 max

(
max
j∈N(i)

|Qtij |,
Vi

∆t

)
. (13)

The ratio of pore-volume to time-steps is here included to avoid flagging cells with
negligible flow, even if when the relative error may be larger than 1%. We also consider
the discrete saturation error, which is naturally a per-cell value

(es)i =

∣∣∣∣∣∣1−
∑

β=w,l,v

(Sβ)i

∣∣∣∣∣∣
and we will flag all cells above a certain saturation error threshold,

(es)i < 0.001.

In addition, we flag cells that are perforated by wells which are not converged after
transport.
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Solve pressure equation on Ω

Solve RP = 0 with fixed over-
all compositions z1, ..., zn and
obtain secondary quantities
(x1, ..., xn, y1, ..., yn, Sα) from
equation-of-state.

Primary: p, pbh

Solve transport equations on Ω

Solve RT = 0 with fixed pressure p
and total velocity ~vt

Primary: x1, ..., xn, y1, ..., yn, Sα

Define local domains Ωl

Where saturation and velocity er-
ror indicators es, ev are larger than
threshold

Solve fully-implicit equations on Ωl

Solve RFI = 0 locally with bound-
ary conditions outside Ωl taken
from global solution

Primary:
p, x1, ..., xn, y1, ..., yn, Sα, pbh

Boundary
conditions

valid?

Post-process: Solve transport on Ω

Solve RT = 0 with fixed pressure p
and total velocity ~vt

Primary: x1, ..., xn, y1, ..., yn, Sα

Previous ∆t

Next ∆t

Yes

Flux at ∂Ωl changed too much

Figure 2: Algorithmic outline for the domain-decomposition sequential-implicit solver
for compositional flow.

4.1.2 Corrector

As mentioned before, we intend to use the fully-implicit discretization to correct the
sequential-implicit solution. After the local sub-domains Ωl have been selected by the
error indicators, we pose a local problem with boundary conditions taken from the
global state. We use a Dirichlet boundary condition with fixed pressure, mobility and
composition at the boundary, allowing the fluxes themselves to vary,

{~vα(x)|x ∈ ∂Ωl} = −λαK(∇pα − ραg∇z).

We note that other choices are possible: Using for example total volumetric or
mass fluxes as the inflow or outflow boundary conditions. There is little difference be-
tween the choices if the error indicators successfully captures part of the domain where
significant errors are present. For the fully converged solution, taking either type of
boundary conditions around some sub-region will obviously have the same local solu-
tion. Fixed pressure boundary conditions have the advantage of producing continuous
pressure in incompressible regime where the solution becomes non-unique for pure
Neumann boundary conditions, or when there is changes in mobility at the boundary.
After the local problem has been solved to convergence, we now have a continuous
pressure and regions with significant errors has been resolved by the corrector. In order
to assess if the boundary conditions were accurate, we check the now updated fluxes
at the boundary against their values before the local variables were updated. If this is
below the threshold of (13), we can continue to the next time-step. While both our
sequential implicit and fully-implicit solvers are exactly mass-conservative, these lo-
cal boundary conditions may introduce small mass-errors unless ‖ev‖ is exactly zero.
For this reason, we apply a post-processing transport-solve with the updated velocity
field on the global domain. This is simply the re-application of the transport-solver
with essentially a converged solution as initial guess. The final algorithm is shown in
Figure 2.
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5 Numerical examples
We will consider a number of different test cases, demonstrating the behavior of our
proposed algorithm in several scenarios. The compositional module of the Mat-
lab Reservoir Simulation Toolbox (MRST) [25] is used in all examples, with Peng-
Robinson as the equation-of-state for the hydrocarbon phases. Comparisons are made
between several different solvers. The fully-implicit solver is referred to as FIM, and
will be our reference solution. SFI1 refers to a pressure solve followed by a transport
solve in the sequential-implicit solver. The solution from SFI1 is in most cases close to
the fully-implicit solution but splitting errors due to mobility or mass-exchange effects
may be present in regions with strong pressure-transport coupling. SFIO refers to the
SFI solver with outer loops enabled: For each step, the solver iterates between solv-
ing the nonlinear pressure and transport equations until the FIM residual is sufficiently
converged. Finally, SFIDD refers to our new predictor-corrector domain decomposi-
tion solver.

For each case, we report the pressure and transport iterations for all solvers, except
for the fully-coupled FIM where we report Newton iterations of the coupled system.
For SFIDD, the additional transport iterations of the post-processing of a completed
outer loop is separated out and flagged as ”SFIDD-post”. We report the number of
outer-loops for all sequential solvers and compare them with the Newton iterations
of the FIM. For SFI1, when there is no time-step cut, there is always one outer-loop
per time-step. We note that the computational cost of one outer loop varies between
algorithms:

• For the fully-implicit solver, it amounts to one solution of a mixed-hyperbolic-
parabolic linearized system with n degrees of freedom per cell, where the pres-
sure leads to strong inter-block connections. Here, a CPR-type preconditioner is
generally the most efficient strategy [31, 2].

• In the case of SFIO, each iteration will entail the solution of both a nonlin-
ear parabolic system with one degree of freedom per cell for pressure which
is amenable to e.g. multigrid or multiscale methods. In addition, the transport
corresponds to a nonlinear system with n degrees of freedom. These variables
are of the same hyperbolic [29, 28] type and do not require tailored precondi-
tioners. Generally, the cost of the outer iterations becomes smaller as the initial
guess for compositions improves during the iterations.

• SFIDD corresponds to the essentially the same solution process as SFIO, with
the additional cost of solving a smaller fully-implicit system in the correction
step.

For our prototype Matlab implementation, we do not report runtime results. Although
we do observe speed-up for the SFIDD solver, it is difficult to reliably assess the ef-
ficiency when the solver is implemented in an interpreted language. We leave this
comparison for future work. In each example, we also plot detailed information on
the magnitude of the local domains taken as fully-implicit for SFIDD together with the
fraction of the domain where CFL is larger than unity. While the solvers under con-
sideration are not explicit, we also plot both the maximum CFL for saturations (CFLS)
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and compositions (CFLX ) using the form given by [24] to give some impression of the
time-step length relative to the dynamics of the problem.

5.1 Immiscible one-dimensional displacement
In this first test case we are considering an immiscible test case from [30], which is also
considered in [22] as a validation of the MRST compositional solvers with respect to
a commercial simulator. We inject a gas mixture of Methane and Carbon dioxide in a
100-cell 1D reservoir initially in a pure liquid state containing n-Butane, n-Decane and
Methane. The solution of this problem, shown in Figure 3 contains both a single-phase
liquid region before the displacement front, a two-phase region where the front is mov-
ing and a pure gas phase behind the front. For this reason, it is a natural first example,
demonstrating the proposed solver to a problem with multiple phase transitions. Figure

Figure 3: The displacement front for the immiscible test case part-way through the
simulation. The gas saturation is plotted in black, with different components shown in
red. Light blue indicates cells for which a local update was performed for this specific
time-step.

4 show the cumulative number of iterations as well as the maximum CFL number [4]
as a function of time. We observe in Figure 4c that SFIO uses on average 2.55 outer
loops to converge. In this example, there are no time-step cuts. Consequently, the
SFI1 solver will only perform a single outer loop per time-step and is the best case in
terms of efficiency for any sequential solver. Our SFIDD has a number of outer-loops
between the optimal number of SFI1, which always uses a single pass, and the upper
limit of SFIO. On average, the SFIDD converges in 1.87 outer-iterations per time-step.
Similar trends are observed when comparing the pressure iterations in Figure 4a and
the transport iterations in 4b. While the fully-implicit system is difficult to compare
directly to the pressure/transport system, we consider about one pressure and transport
iteration per fully-implicit iteration for the same time-step to be a promising decou-
pling strategy: The cumulative number of iterations for the SFIDD method amounts to
82% of the FI method Newton iterations for the pressure and 70% of the FI method
Newton iterations for the transport. Figure 5a shows that each local FI solution is con-
verging in an average of 2.5 Newton iterations for the first half of the simulation and
1.5 Newton iterations for the second half of the simulation. Figure 5b shows that the
areal extension of the FI domains for this challenging 1D test case can amount up to
50% of the simulation domain for the first outer-iterations and then never goes beyond
15% for the following outer-iterations. If we consider the blue regions in Figure 3, we
observe that the FI updates are located near the producer, the leading rarefaction/shock
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and the trailing shock. As the displacement is covering a significant part of the domain,
the localized regions correspond to a fairly large fraction of the total domain. Note that
the major contributor to the local regions in Figure 3 is the extent of the rarefaction
wave from cells 40 to 55: We would expect that the localized regions would be much
smaller for a stable displacement with more favorable viscosity ratio and consequently
smaller multiphase region.
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Figure 4: Iterations, time-steps and CFL numbers for the one-dimensional immiscible
test case.
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Figure 5: Statistics for the SFIDD solver for the immiscible test case.

5.2 Quarter five-spot CO2 injection
In this second test case we are using the quarter five-spot test case where we inject a
Carbon dioxide rich gas into a 2D reservoir with dimensions 1000 by 1000 meters and
uniform permeability of 50 mD as shown in Figure 6a. The initial state of the reservoir
contains a mixture of Methane, Carbon dioxide and n-Decane. Again, we plot the
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(a) Gas saturation (b) Local updates

Figure 6: Gas saturation (left) and local update count (right) part-way during the
quarter-five-spot test case. We observe that the localized updates for this step are cen-
tered around the phase transitions and near-producer regions.

cumulative iterations, time-step and maximum CFL in Figure 7. We again observe
in Figure 7c that SFIO requires more than twice as many outer-iterations as SFI1 to
converge. Our SFIDD has a number of outer-loops between the optimal number of SFI1
and the upper limit of SFIO. In average, the SFIDD converges in 1.85 outer-iteration,
indicating that for later time-steps, the total-velocity decoupling is very accurate. We
see a significant improvement in the number of pressure iterations shown in Figure 7a
for the SFIDD solver. For the transport iterations shown in Figure 7b, SFIDD and SFIO
gives comparable number of iterations. This is due to later time-steps using generally
few transport iterations for either solver, and a few early time-steps where the transport
solver in SFIDD uses additional iterations. The cumulative number of iterations for the
SFIDD method corresponds to to 86% and 104% of the FIM method Newton iterations
for the pressure and transport, respectively. The local FIM iterations seen in Figure 8a
shows an average of 2 Newton iterations during the simulation, and the largest number
of iterations is observed during the initial injection dynamics. Figure 8b shows that
the areal extension of the FI domains for this challenging 2D test case can amount
up to 45% of the simulation domain the first outer-iterations at the beginning of the
simulation. When a second outer iteration is required, the localization is limited to a
very small amount of cells.

Figure 6a shows the gas saturation after 60 time-steps and figure 6b shows the
domains for the local update. We see a large distribution of the two-phase region,
with localized updates limited to the trailing shock, the producer inflow regions and a
segment of the front. We remark that as the problem is symmetric, the local domains
are symmetric as well.

5.3 Three-phase displacement in a channelized medium
In this example, we consider layer 45 of the SPE 10 model 2 benchmark, which corre-
sponds to the channelized fluvial Upper Ness formation. This specific layer was chosen
due to the dual flow channels which meet near the end of the domain as can be seen
in Figure 9. We place two injectors in the upper and lower channel, injecting gas and
water respectively. The capillary pressure is taken from the Norne field model [23] and
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(c) Outer iterations
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(d) Time-steps and maximum CFL number

Figure 7: Iterations, time-steps and CFL numbers for the quarter five-spot test case.
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Figure 8: Statistics for the SFIDD solver for the quarter five-spot test case.

is plotted in Figure 9c. The phases are assumed to be immiscible, with viscosities of
1, 5 and 0.1 cP for water, oil and gas. The corresponding Corey exponents are 2, 3 and
1, with compressibility factors of 10−6, 10−4 and 10−3 bar−1, respectively. We inject
one pore-volume in total over 10 years divided into 150 time-steps. The resulting CFL
maximum CFL numbers in Figure 10d are large in magnitude as a consequence of the
channelized structure.

When we examine the iterations in Figure 10 we observe that SFIDD again falls
somewhere inbetween SFIO and SFI1 in terms of the number of iterations. SFIDD
is closer to SFI 1 when considering the outer iterations in Figure 10c and observes a
significant reduction in the number of pressure iterations when compared to SFIO. We
note that a significant amount of cells (up to 38%) are flagged as fully-implicit before
breakthrough in Figure 11b, but this number drops sharply after breakthrough even as
50% of the domain has CFL larger than unity.
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(a) Permeability (b) Saturations
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(c) Water-oil capillary pressure

Figure 9: Permeability, phase saturations and capillary pressure function for the chan-
nelized SPE10 test case.
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(c) Outer iterations
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Figure 10: Iterations, time-steps and CFL numbers for the channelized SPE10 case.
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(b) Average percentage of fully-implicit cells

Figure 11: Statistics for the SFIDD solver for the three-phase displacement in a chan-
nelized layer of SPE10.

5.4 Unstructured grid
In this unstructured test case from [22] we consider an unstructured 2D reservoir with
fractures, where the fluid model and resident/injection compositions are taken from
the SPE 5 benchmark [12]. The permeability and final gas saturation are plotted in
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(a) Gas saturation (b) Local updates

(c) Permeability (d) Final gas saturation

Figure 12: Permeability, gas saturation at different times and local updates for the
unstructured fractured test case.
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Figure 12, indicating that the permeability contrasts significantly impact the flow field.
The different nonlinear iterations are plotted in Figure 13. We observe that the CFL
numbers after the gas reaches the fractures rises to 60. We observe in Figure 13c that
SFIO needs more than three times as many outer-iterations as SFI1 before convergence
is achieved. On the other hand our SFIDD needs only 30% more outer-iterations than
the optimal number of SFI1. In average, the SFIDD converges the time-step in 1.50
outer-iteration. Generally, the reduced number of iterations for SFIDD is also observed
for the pressure and the transport shown in Figures 13a and 13b, only requiring a few
more iterations than the optimal SFI1. When comparing the total number of FIM it-
erations to the pressure/transport systems, SFIDD uses 63% iterations for the pressure
and 85% of the total FIM iterations.

When we consider the localized solves plotted in Figure 14b, we note that the local
updates are limited to a smaller region than in the previous test-cases. As the two
previous examples were homogeneous 1D and 2D displacements, it is not surprising
that the large permeability variations leads to a more complex flow field where the
largest errors are localized near fracture-matrix interactions. The largest local domain
during the initial injection is about 17% of the global domain, with later steps taking
less than 5% of the cells as local. When a second loop is required, the local cells is
always a small fraction of the domain. If we consider the early-time gas front shown in
Figure 12a together with the corresponding local updates in Figure 12b, we can verify
that the error is localized around the fractures and near the producer. Apart from a
single step in the early injection period, the number of local Newton iterations always
around 2, as shown in Figure 14a. It is clear that in this heterogeneous case, SFIDD is
much more efficient than SFIO. We expect this kind of localized behavior as a result
of heterogeneities to be more typical of realistic heterogeneous simulations than the
previous two test-cases.
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Figure 13: Iterations, time-steps and CFL numbers for the unstructured test case.
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Figure 14: Statistics for the SFIDD solver for the unstructured test case.

5.5 Gas injection in a corner-point model
For this case, the model is a synthetic, but realistic shallow-marine reservoir taken
from the SAIGUP project [16] and upscaled to 6980 grid cells. The fluid model is
taken from [15], and is a system made up of six lumped pseudo-components. The
reservoir is initialized at 100 bar pressure at the shallowest point, with a temperature of
387 degrees K. A gas-cap is present, containing mostly light hydrocarbon components,
initially segregated due to gravity. Three producers operating at 80 bar are present
in the four upper layers of the model – one in the gas-zone, and two in the oil-zone
near the gas. Four injectors in the lower four layers inject a fixed rate of CO2 near the
producers over 3000 days, resulting in significant pressure build-up and free gas in the
lower layers. We use just over 100 time-steps in total. We have plotted the permeability
field, the final gas saturation and the well configuration in Figure 17

The iteration results are reported in Figure 15. As in the previous cases, we ob-
serve a significant improvement in the number of pressure and transport iterations for
SFIDD compared to SFIO. The wells are in this case limited to a smaller part of the
domain, typical of many real-field simulation models. Figure 16b shows the fraction
of cells that are solved with the local FI solver. The maximum is 17% of the active
cells. We expect this number to be smaller on larger field-scale models. Apart from
a few of the early time-steps, the local Newton iterations shown in Figure 16a main-
tain values below 5 and going as low as 1 from the middle of the simulation. For this
case, SFIDD uses 177% and 108% of the fully-implicit iterations in the pressure and
transport, respectively. The reason for the generally high number of pressure iterations
in the sequential solvers may be a combination of the injection scenario itself and the
relatively challenging fluid model. A possible reason could be that the decoupling of
the pressure system may not take into account all the derivatives as described in [19].
This will be investigated as a part of future work.

Figure 18a shows the BHP profiles of the 4 injection wells for SFI1, FIM and
SFIDD and Figure 18b shows the gas volume fraction of the 3 producing wells for
SFI1, FIM and SFIDD. We observe a significant discrepancy between SFI1 and FIM
for both the early injector bottom-hole pressures and gas cut in the producers. This
difference is not present for SFIDD, which accurately reproduces the FIM solution.
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(d) Time-steps and maximum CFL number

Figure 15: Iterations, time-steps and CFL numbers for the SAIGUP test case.
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Figure 16: Statistics for the SFIDD solver for the SAIGUP test case

5.6 Alternate gas-water-gas 2D case
For our final test case, we consider the alternate gas-water-gas injection problem from
[19]. The final saturation distribution is plotted together with the permeability field
sampled from SPE 10, model 2 in Figure 19. We inject gas for the first period of 5000
days, resulting in CFL values up to 140. For the second injection period of additional
5000 days, inject water in the reservoir from the same injector. As the viscosity of
water is higher than the previously injected gas, the displacement is now stable and
is dominated by a self-sharpening shock between the gas phase and the water phase.
The resulting well responses are shown in Figure 20. The time-steps are initially quite
small and increase until a CFL of around 150 is reached. Finally for the last period,
gas is again re-injected for 5000 days. CFL for this period is around 80.

Figure 21 contains the plots of iterations and time-steps. We observe in Figure 21c
that SFIO needs more than four times as much outer-iterations than SFI1 to converge.
On the other hand our SFIDD needs twice as much outer-iterations than the optimal
number of SFI1. In average, SFIDD converges the time-step in 2.01 outer-iteration.
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(a) Vertical permeability (b) Final gas saturation

Figure 17: Vertical permeability and final gas saturation for the SAIGUP corner-point
model with CO2 injection.
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Figure 18: The bottom-hole pressure in the injectors for the first 250 days and gas-cut
for the injectors for the SAIGUP corner-point model.

(a) Permeability (b) Final saturation distribution

Figure 19: Permeability and final saturations for the SPE 10 subset with gas-water-gas
injection. Note that green, blue and red correspond to vapor, aqueous and liquid phases
respectively.

The same applies for the pressure and the transport iterations of SFIDD in Figures 21a
and 21b that converge in a few more iterations than SFI1, which has best possible outer
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Figure 20: Injector bottom-hole pressure and producer oil-rate for the SPE 10, model
2 subset.

convergence rate, albeit without any control on the solution error relative to FIM. We
observe that the cumulative number of iterations for the SFIDD method corresponds to
72% of the FIM iterations for pressure and 108% of the FIM iterations the transport.
Figure 22a shows that each local FIM solution is converging in an average of 2.5 New-
ton iterations for each time-step. Figure 22b shows that the areal extent of the local
domains for this highly heterogeneous 2D test case can amount up to 15-20% of the
simulation domain for the periods with gas injection. For the water injection, only a
few percent of the domain are flagged as local, reinforcing the conclusion that errors are
localized around the high-flow segment of the multiphase region. The errors are more
localized for stable displacements where a more viscous fluid displaces a less viscous
fluid than for unstable displacements where a less viscous fluid displaces a more vis-
cous fluid. This occurs as the displacement is dominated by the leading shock, and the
transition between gas and water is sharp. The assumption of fixed total-velocity is
very accurate in single-phase regions, occurs on either side of the shock. We observe
that after a first local FI processing has been performed during the first outer-loop, the
additional local FI solves only involve a few cells. In most time-steps, the cost of the
FI corrector algorithm is equivalent to a small fraction of SFI1 solver, making SFIDD
method competitive with respect to SFIO and FIM.

5.7 Displacement and pressure error
In the preceding we have measured error with the well responses. This is sufficient
for many purposes, as the well-responses such as rates and/or bottom-hole-pressures
correspond to the externally observed effect of injection or production when applied
to a subsurface reservoir. Consequently, in an engineering context, these are often
the most important outputs from a reservoir simulator. We generally observe perfect
agreement when SFIO, SFIDD and FIM converge to similar tolerances, with some
differences seen relative to SFI. These errors, while not always significant, are usually
a delayed breakthrough when the mobility of the system is increasing, leading to an
under-estimation of total velocity in each pressure step.

In order to assess the error between the solvers more systematically, we will con-
sider two types of error. The last step in either of the four methods is always the solu-
tion of the mass-balance equations and they are therefore exactly mass-conservative to
within the same tolerance. The mass-distribution in the domain, however, differs be-
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(d) Time-steps and maximum CFL number

Figure 21: Pressure, transport and outer iterations as well as time-steps and estimated
maximum CFL for the different solvers for the SPE 10, model 2 gas-water-gas case.

50 100 150 200 250 300 350

Time step #

1

1.5

2

2.5

3

3.5

A
v
e
ra

g
e
 l
o
c
a
l 
F

I 
it
e
ra

ti
o
n
s

(a) Number of local iterations

50 100 150 200 250 300 350

Time step #

0

5

10

15

20

P
e

rc
e

n
ta

g
e

 o
f 

d
o

m
a

in
 a

c
ti
v
e

0

5

10

15

20

25

P
e

rc
e

n
ta

g
e

 o
f 

d
o

m
a

in
 w

it
h

 C
F

L
 >

 1

Iteration 1

Iteration 2+

CFL > 1

(b) Average percentage of fully-implicit cells

Figure 22: Number of local iterations and average number of fully-implicit cells in
each local solve for the SFIDD solver for the 10, model 2 gas-water-gas case.

tween the solvers. We let the mass of component c in cell i after time-step k be defined
as

Mk
ic =

{
φiρwSw at tk if c = m+ 1

φi(XcρlSl + YjρvSv)i at tk otherwise.
(14)

In the following we let Z̃ refer to the value of a functionZ which is to be compared with
the reference. The total mass-discrepancy error is then the sum of mass-discrepancy
for each component, integrated over all nt time-steps and nc cells, relative to the com-
ponent mass at each time-step,

Em =
1

tend

nt∑
k

∆tk

m+1∑
c

nc∑
i

|M̃k
ic −Mic|

nc∑
i

Mk
ic

. (15)
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Example SFI1 SFIO SFIDD
1) Immiscible 1D 6.037e-03 2.367e-03 3.404e-03
2) Quarter-five-spot 1.454e-03 9.504e-05 1.475e-04
3) Channelized SPE10 8.071e-04 2.401e-06 4.546e-05
4) Unstructured fracture 1.856e-03 2.844e-04 3.108e-04
5) SAIGUP 3.496e-03 2.302e-05 4.041e-05
6) Alternate gas-water-gas 2.455e-03 7.099e-05 1.032e-04

Table 1: Total mass-distribution error Em relative to FIM for the different examples

Example SFI1 SFIO SFIDD
1) Immiscible 1D 2.562e-03 7.349e-04 7.754e-04
2) Quarter-five-spot 8.797e-04 1.258e-05 5.861e-05
3) Channelized SPE10 4.523e-03 5.710e-06 4.901e-04
4) Unstructured fracture 6.548e-04 1.056e-04 9.883e-05
5) SAIGUP 2.551e-03 1.734e-05 4.159e-05
6) Alternate gas-water-gas 1.333e-04 2.523e-06 5.222e-06

Table 2: Pressure error Ep relative to FIM for the different examples

Although it is not likely that a correct mass distribution is obtained with the wrong
pressure, we also compute the pore-volume weighted pressure error,

Ep =
1

tend

nt∑
k

∆tk

nc∑
i

|(φ̃p̃)ki − (φp)ki |
nc∑
i

(φp)ki

. (16)

Table 1 containsEm for SFI1, SFIO and SFIDD. We generally observe that the error of
SFIDD is around one order of magnitude smaller than for the SFI1 solver and compa-
rable to SFIO. SFIO generally has slightly lower error than SFIDD as it exactly checks
the relatively expensive fully-implicit residual rather than the indirect error indicators,
but both are within the acceptable ranges where they are visually indistinguishable
from the fully-implicit solution. For the pressure error in Table 2, we see a larger dif-
ference between SFI and SFIO and SFIDD. Here, the pressures of SFIO and SFIDD are
comparable, indicating that we observe no ill-effects from our chosen local boundary
conditions.

6 Conclusion
A full compositional description is a computationally intensive approach for reservoir
simulation, but may be required in order to model reliably important processes like
miscible flooding and CO2 sequestration. Sequential-implicit methods are one class of
proposed solution strategies which allows a decoupling of the parabolic pressure from
the (nearly) hyperbolic composition variables. By separating the equations according
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to their mathematical structure, it is possible to design specialized solvers which target
specific problems, increasing accuracy and efficiency. However, the decoupling strate-
gies employed to design separate pressure and transport systems may introduce errors
in the solutions which must be resolved in order to produce reliable predictions for en-
gineering decisions. In this work, our goal is to develop a scheme which reproduces the
FI solution at a cost as close as possible to the cost of a SI method or a SFI method with
a single outer-iteration. We have proposed a domain-decomposition strategy based on
a predictor-corrector pair of models together with problem-specific error indicators.

The predictor model is applied globally and corresponds to the regular SI method.
The local corrector model is the FI method, where the local domains are chosen accord-
ing to both saturation and velocity error indicators with a clear physical interpretation.
After convergence is achieved, an additional post-processing with a local transport
solve is followed to ensure strict local mass-conservation in all cells. In several chal-
lenging two and three-phase test cases, including stratigraphic corner-point and fully
unstructured grids, we observe that the proposed algorithm generally converges in one
or two outer-iterations where the SFI would need up to four iterations to converge. The
areal extension of the local FI domains varies from negligible to up to 50% of the sim-
ulation domain for the different test cases, depending on the dimension and physical
effects. We note that the errors are generally very local for stable displacements, while
the invaded two-phase regions and the associated errors are larger in extent for unsta-
ble displacements. Generally large local domains are only observed in a few time-steps
throughout a longer simulation. They correspond to specific events such as start of wa-
ter or gas injection and the domains for local solves are small or non-existent for most
of the time-steps.

We consider the described method to be a promising approach for field-scale com-
positional simulation: Typical models often have smaller interaction domains between
wells where nonlinear dynamics is present for a given time-step, while most of the
domain can efficiently be solved by a single pass of the SI method. We believe that
the SFIDD solver will be an ideal strategy for problems where SFI is not sufficiently
accurate and SFIDD may outperform its constitutive SI and FI parts.
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