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Abstract 
Interpretation of faults in the subsurface hinges on utilizing an optimum picking strategy, i.e. the seismic line spacing. 
Differences in line spacing lead to significant changes in subsequent fault analyses such as fault growth, fault seal and 
fault stability, all of which are crucial when analyzing a fault-bound CO2 storage site.  With the ever-advancing 
technologies, machine learning techniques, such as Deep Neural Networks (DNN), used for fault extraction are 
becoming increasingly common, however their limitations and corresponding uncertainty is still largely unknown. 
Here, we show how fault extraction using DNN compares with faults that have been picked manually, and with using 
different line spacing.  Uncertainty related to both manual and automated fault extraction methods are heavily reliant 
on seismic quality.  As such, faults that are well-imaged show a closer similarity between those that have been 
manually picked and automatically extracted. In cases of poorly imaged faults, DNN picking on narrower line spacing 
creates a fault that is more irregular and with a lower predicted stability than the smoother and simpler fault model 
created by manual picking.  Thereby, DNN creates fault surfaces that are less stable than those that have been picked 
manually, which is assumed to be associated with the increased irregularity of the fault segments.  We conclude that 
fault picking by DNN without in-depth expertise works for well-imaged faults; poorly imaged faults require additional 
considerations and quality control for both manually and DNN picked faults. 
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1. Introduction
In order to achieve targets to reduce emissions of 
greenhouse gases as outlined by the European 
Commission [1], methods of carbon capture and storage 
can be utilized to reach the 2°C goal of the Paris 
Agreement [2].  One candidate for a CO2 storage site has 
been identified in the Norwegian North Sea, which is the 
focus of this study: the saline aquifer in the Sognefjord 
Formation at the Smeaheia site [3] (Figure 1).  The Alpha 
prospect identified for this site is located within a tilted 
fault block bound by a deep-seated basement fault: the 
Vette Fault Zone (VFZ) [3], and hence a high fault 
sealing capacity is required to retain the injected CO2. 
Further, it is necessary for the fault to have no 
reactivation potential.  Both of these parameters hinge on 
generating an accurate geological model, performed 
using suitable picking strategies. 
The process by which seismic is interpreted has 
developed significantly over the years.  Initially, seismic 
interpretation involved the manual picking using printed 
seismic sections [4], which has since developed to 
provide users with the ability to interpret using a suite of 
digital environments [5].  The ease and accuracy of 
seismic interpretation is continually increasing, 
associated with advanced geophysical and rock physics 
tools, as well as the increased use of automated 
technologies.  While technology has progressed to allow 
user to quickly interpret horizons using facilities such as 
auto-tracking, the ability for machine learned algorithms 

for automated fault extraction has, until recently, been 
lacking.  New technology has emerged that uses Deep 
Learning (i.e. Deep Neural Networks inspired machine 
learning) to automatically extract faults from seismic, 
with minimal manual seismic fault interpretation [6]. 
However, it is crucial to understand any uncertainties 
when using these automated methods, and how they may 
impact any further fault analyses.  

Figure 1. Location of the potential CO2 storage site, known as 
Smeaheia. 
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2. Methodology
In this contribution, we compare manual fault 
interpretation with that from supervised DNN fault 
extraction for the prospect-bounding Vette Fault within 
the Smeaheia potential CO2 storage site.  Further, we also 
compare differences between interpretation using 
different line spacing, as this has proven to be crucial for 
in-depth fault analyses such as fault stability analysis.  
Specifically, we have examined how the predicted 
dilation tendency varies when faults are picked on every 
line (25 m), 2nd line (50 m), 4th line (100 m), 8th line (200 
m), 16th line (400 m) and 32nd line (800 m).  Dilation 
tendency is the relative probability of a plane to dilate 
within the current stress field (Table 1), taking into 
consideration the cohesion and frictional coefficient of 
the fault rock, which are set as 0.5 MPa and 0.45, 
respectively.  Dilation tendency is a ratio between 0 and 
1, where the higher the value, the more likely a fault will 
go into tensile failure.   

Gradient 
(MPa/m) 

Stress 
(MPa) 

Depth 
(m) 

Direction 
(degrees) 

SHmin 0.0146 23.07 1699.5 090 
SHmax 0.0146 23.07 1699.5 180 
Sv 0.0215 32.37 1699.5 
PP 0.01 16.94 1699.5 

Table 1: In situ stress data used for geomechanical analysis, 
from [6]. 

GN1101 3D seismic survey was used in this study. The 
survey has a 25x12.5 m inline and cross line spacing and 
4 ms vertical sampling interval. Data is prestack time 
migrated. Data quality is overall good. Seismic imaging 
challenges caused by large faults (i.e. the Vette Fault 
Zone) caused some poor imaging around fault zones. 
Wells around the survey were used to build a simple 
velocity model for depth conversion purposes.  

3. Results

3.1 Manual Fault Interpretation 

Although fault stability is influenced by external factors, 
specifically the in situ stress conditions, it is also heavily 
influenced by intrinsic fault attributes, namely strike and 
dip.  Since the stress conditions used in this study are 
isotropic, fault dip has a primary control on fault stability 
over fault strike.  Here, we show how fault dip, and hence 
geomechanical analysis, varies with picking strategy. 

3.1.1. Dip 

Fault dip varies down the VFZ.  There is low fault dip 
within the top 1000 m, particularly in the Northern 
section, where the fault penetrates younger stratigraphy, 
specifically the Cromer Knoll and the Shetland Groups. 
Here, the dip decreases to approximately 35 degrees, but 
can be as low as 15 degrees at the very top of the fault 
(Figure 2).  The fault then steepens in dip to 
approximately 70 degrees at 1500 – 4000 m depth, 

beyond which the dip decreases again to approximately 
40 degrees at the base of the fault. 
Fault dip is also shown to vary according to picking 
strategy.  The shallowly dipping portion at the top of the 
fault is smoothed with increasing picking distance, such 
that the lowest dip for faults picked on every 400 m and 
800 m line spacing is 35 degrees.  However, the 
shallowest dip for faults picked on every 25 m and 50 m 
line spacing is 15 degrees.  Further, small, bulls-eye areas 
of steeper dip are also removed and smoothed when line 
spacing is increased (Figure 2, red circles).  Similarly, the 
steeper portion of the fault is smoothed as the line spacing 
used for picking is increased.  This decreases the range 
of dips, and smooths any bulls-eye patches of steeper or 
shallower dip (Figure 2, black circles). 
Although rigorous quality control has been performed to 
improve continuity between each inline, there remains 
several places where slight differences in picking has 
occurred between lines.  This human error leads to an 
increased irregularity of the fault surface, often creating 
these bulls-eye areas of inconsistent dip, associated with 
the triangulation algorithm trying to honour each point 
along the fault segments.  Since fault stability is 
influenced by fault dip, these areas will be brought 
through to geomechanical modelling.  The uneven nature 
of the fault surface is most severe when every inline line 
has been picked on.  The irregularity decreases with 
increased picking spacing. 

Figure 2. Fault plane diagrams showing fault dip attribute 
displayed on the fault surfaces for each manual picking 
strategy: 1, 2, 4, 8, 16 and 32 lines.  Fault dip is observed to 
vary with line spacing used for fault picking.  A highly irregular 
fault surface is observed when every line is used for picking, 
when compared to the overly smooth surface when every 32nd 
line is used for picking.  X- and y-axes represent the lateral and 
vertical scales in metres, respectively.  Note that unconstrained 
triangulation is used for fault surface generation. 
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3.1.2. Dilation Tendency 

Since dip varies with picking strategy, as does the 
predicted fault stability.  Along fault-strike there are 
minor patches where the fault is more stable than the 
surrounding values and patches where the fault is less 
stable.  These patches are most apparent when every line 
is picked on, with irregularity decreasing in severity until 
every 100 m to 200 m line spacing is used for picking, 
where the frequency of these irregular patches is reduced. 
Since the fault surface is smoothed with greater picking 
spacing (i.e. >200 m line spacing), the results for fault 
stability are also smoothed, reducing the range of values 
of the predicted dilation tendency (Figure 3).  Hence, 
interpretation of fault stability will vary with picking 
strategy, and may in fact lead to incorrect fault stability 
assumptions.  For example, areas where the fault is close 
to failure are only observed when a narrower line spacing 
picking strategy is used (Figure 3).  These areas are 
smoothed out and not visible when a coarser line spacing 
picking strategy is used.  However, if these irregular areas 
are not a product of human error or triangulation method, 
the overall stability would be overestimated within this 
location if a coarser line spacing was used.  Patches 
where the fault is more or less stable than the average 
surrounding values that occur when a narrower line 
spacing picking strategy is used, could be a product of 
human error and/or triangulation method, but may also in 
fact be geologically plausible due to the inherent 
irregularity of faults in nature.  Therefore, a question is 
presented regarding optimum picking strategy that 
retains sufficient detail but remove any data that is caused 
by human error and/or triangulation method.  Human 
error combined with triangulation method complications 
are most apparent at narrower line spacing.  Conversely, 
over-smoothing occurs at coarser line spacing.  For the 
studied fault system, we propose an optimum picking 
strategy of every 100 m line spacing.  Best-practice is 
however likely to be case-dependent. 

Figure 3.  Top: plots showing dilation tendency with depth, for 
scenarios manually picked on every line (left), every 4th line 
(middle) and every 32nd line (right).  Colour intensity reflects 
the frequency of those values, where blue is 1% and red is 100% 
frequency.  Bottom: Histogram showing frequency of dilation 
tendency for scenarios picked on every line (red), every 4th lines 
(orange) and every 32nd line (green).  Note that when every line 
is picked, a large portion of the values are above 1 (i.e. in 
failure).  This decreases as the spacing decreases. 

3.2. Deep Learning Fault Interpretation 

For the DNN approach, we used supervised learning 
which means providing some fault picks to be used for 
training with seismic full stack data. The trained DNN 
models are checked against input picked faults through 
confusion matrix and visual review. We have also 
predicted faults using a pretrained fault model which 
trained on 20 surveys (excluding the GN1101 survey). 
We have then generated ensemble fault results of four 
DNN models. This enables us to see the confidence of 
predicted faults. Such information is useful when used to 
verify fault geometric attributes such as dip in this study. 
Comparisons have been made between fault surfaces that 
have been picked using traditional manual picking 
methods and machine learning techniques, at different 
picking intervals.  Here we show how fault surfaces and 
the subsequent attributes and fault analyses vary when 
picked on every line, every 4th line and every 32nd line.  
We then describe how faults identified by different 
seismic quality influence the results from machine 
learned automated fault extraction.  The Vette Fault Zone 
has relatively poor seismic resolution, with a wide fault 
zone shown by decreased seismic quality.  Conversely, 
minor faults surrounding the Vette Fault Zone show 
significantly improved seismic resolution.  Differences in 
seismic quality show variations in the results of DNN 
models. 

3.2.1. Vette Fault Zone: Poorly imaged fault 

Starting with the coarse picking strategy of every 32nd 
line, we can see significant disparities in the modelled 
fault surfaces between manual verses machine learned 
fault picking (Figure 4).  Despite the overall smoothing 
that tends to exist when a coarse line spacing is chosen as 
the picking strategy, there remains a high propensity of 
the fault to appear highly irregular when machine 
learning techniques are used, compared to manual 
picking.  The irregularity of the fault surface increases 
when the spacing for the picking strategy is decreased, as 
seen when examining the results for picking on every 4th 
line and on every line.  As shown previously, when fault 
segments are manually picked using every crossing line, 
this can lead to a rugose fault surface, despite rigorous 
fault QC’ing.  However, a fault surface with increased 
irregularity is formed when machine learned techniques 
are used.  This is observed by the increased triangles, 
wider spread in triangle size as well as clustering of 
different sized triangles that is formed through machine 
learned techniques, related to irregular fault segments. 
The increased irregularity formed from both used 
machine learned techniques and also a narrower line 
spacing may lead to potential inaccuracies during any 
further fault analyses performed if not real. 
Not only does the irregularity of the fault surface vary 
with picking strategy and between machine learning and 
manual methods, the extents of the fault surface produced 
is also observed to differ.  Specifically, there are places 
where the height of the fault surface is observed to be 
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increased or decreased when machine learning methods 
are used.  For example, the top of the fault is observed to 
extend to shallower levels in only a portion of the 
Southern section of the fault when machine learning 
methods are used, which is not observed through manual 
interpretation.  Since identifying the location of the base 
of the fault is highly ambiguous due to poor seismic 
resolution, machine learned techniques creates a fault 
surface with an increased irregular fault base, where the 
depth of the fault base varies more across the entire fault 
(as seen in figures 4 and 5). 

3.2.1. Dip 

Fault surface irregularity is significantly higher when 
machine learning techniques are employed over manual 
interpretation, as described above.  This is reflected in the 
increased number of irregular ‘bulls-eye’ patches of 
varying dip values displayed on the fault, observed on all 
three line spacing scenarios: every line, every 4th line and 
every 32nd line (Figure 4).  Moreover, these patches of 
irregular dips tend to be steeper than the surrounding. 
Conversely, the patches of irregular dip when manual 
interpretation is performed is a combination of both 
steeper and shallower dips than the surrounding.  The 
fault is smoothed such that no patches of irregular dip is 
observed when the fault is picked manually using a 
picking strategy of 32nd line spacing.  The irregularities 
remain at the 32nd line spacing when machine learned 
techniques are used. However, they show both lower and 
higher dip compared to the background and are larger in 
size compared to irregularities observed in dip images of 
every 4 lines (Figure 4). 

Figure 4. Fault dip attribute displayed on the fault surfaces for 
manual interpretation verses machine learned techniques 
picking on every line, every 4th line and every 32nd line.  Fault 
dip is observed to vary with line spacing used for fault picking. 
A highly irregular fault surface is observed when every line is 
used for picking, when compared to the overly smooth surface 

when every 32nd line is used for picking.  Moreover, fault 
extraction using DNN creates an increased irregularity to the 
fault surface when compared to manual interpretation.  X- and 
y-axes represent the lateral and vertical scales in metres,
respectively.  Note that unconstrained triangulation is used for
fault surface generation.

3.2.2. Dilation Tendency 

Upon examining how the predicted dilation tendency of 
the Vette Fault Zone changes with manual verses 
machine learned picking techniques, we can see distinct 
differences.  Regardless of picking strategy spacing, we 
can observe an increased predicted dilation tendency 
when machine learned techniques are employed over 
manual interpretation (Figure 5).  Manual interpretation 
using different line spacing shows a gradual increase in 
predicted dilation tendency with a decrease in line 
spacing, where a fault is predicted to be at the failure 
envelope at 25 m line spacing, and further away from the 
failure envelope at 800 m line spacing.  This trend of a 
decrease in fault stability with a decrease in line spacing 
is also observed when machine learned techniques are 
used.  However, in all scenarios the fault is predicted to 
be at the failure envelope, regardless of line spacing used 
for fault surface generation.  Specifically, all three 
scenarios (25 m, 100 m and 800 m line spacing) show 
areas on the fault where the dilation tendency is 1 or over. 
This means that any increase in pore fluid pressure, e.g. 
through CO2 injection, is likely to cause the fault to fail 
(under these specific input parameters). 
We can observe that the bulls-eye patches of higher dips 
correspond to those areas of high dilation tendency 
(Figure 4 verses Figure 5), and hence it is these areas that 
have an increased likelihood of failure upon injection of 
CO2.  Since these irregular high dip patches occur to a 
lesser degree when manual interpretation occurs, the 
likelihood of the fault to fail is interpreted to be lower 
through manual interpretation, particularly for those 
scenarios where the fault has been picked using a coarser 
line spacing. 
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Figure 5. Dilation tendency attribute displayed on the fault 
surfaces for manual interpretation verses machine learned 
techniques picking on every line, every 4th line and every 32nd 
line.  Since fault dip varies with line spacing and with picking 
technique (manual verses machine learned), as does dilation 
tendency.  The increased irregularity to the fault surface when 
DNN methods are used leads to a fault that would be interpreted 
to be more unstable in all cases.  X- and y-axes represent the 
lateral and vertical scales in metres, respectively.  Note that 
unconstrained triangulation is used for fault surface generation. 

3.2.2. Well imaged minor faulting 

While machine learning techniques have shown to be 
challenging for areas of poor seismic quality, other 
smaller faults that are better imaged show improved 
identification.  Specifically, minor faults (up to 100 m 
displacement) within the footwall of the Vette Fault Zone 
show accurate identification and have a significantly 
reduced segmentation (Figure 6), despite in several 
places not showing any sharp cutoffs, but rather 
identified by subtle folding.  To qualitatively and 
quantitatively assess this improved fault extraction of the 
minor faults, we compare calculated dilation tendency 
using machine learning techniques with manual 
interpretation for one fault within the footwall of the 
Vette Fault Zone: fault ‘FW 01’ (see [3] for location 
details of this fault).  We can observed that FW 01 has 
significantly less segmentation than those picked for the 
Vette Fault Zone, and in fact, the majority of lines pick 
only one segment for this fault.  Moreover, the predicted 
dilation tendency is very similar between the machine 
learned and manually interpreted faults, which would 
lead to the same overall interpretation of fault stability 
(Figure 6).    The only slight difference between machine 
learned and manual interpretation is the size of the fault: 
machine learned techniques do not extrapolate deeper 
than manual interpretation, which is simply a product of 
the poor seismic resolution at greater depths. 

Figure 6. Comparison of manual interpretation verses machine learned interpretation of a fault in the footwall of the Vette Fault 
Zone.  Bottom left: Fault surface produced through manual interpretation.  Bottom right: Fault surface produced through machine 
learning.  Highly similar surfaces are produced from both techniques, with the interpretation of the fault stability being almost 
identical. 

4. Discussion
Ensuring the correct picking strategy has been chosen 
when manually interpreting faults, and understanding the 

uncertainties involved in both manual and automated 
fault extraction methods, is crucial to provide the most 
likely estimate of any subsequent fault stability analysis.  
Manual picking on every line creates significant 
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irregularities to the fault surface, which is brought 
through to such analysis.  Choosing this method will lead 
to the assumption that the fault is at/near failure, which 
may be inaccurate, despite any assumptions that picking 
using every available data may provide the best-case 
example.  Conversely, picking using a wide line spacing, 
such as every 32nd line, creates an overly smoothed fault, 
which is interpreted to be more stable, which is likely to 
be incorrect.  Since differences in picking strategies can 
over- or underestimate the fault stability, it is crucial to 
get the picking strategy correct for accurate predictions 
of fault stability analysis when assessing a storage site for 
CO2 storage.  We have shown that picking using every 
4th line spacing is likely to create the most geologically 
accurate representation of the faults in the subsurface; 
incorporating inherent irregularities of the fault surface, 
while adding some smoothing to reduce the impact of 
human error (Figure 7).  Further, an important factor to 
be considered is the line spacing of surveys that are used 
for interpretation. In our case with 4 line spacing, we are 
ignoring any irregularity less than 75 m in inline 
direction. 
It is important to note that although injecting CO2 into the 
Sognefjord Formation will increase the pore pressure, 
which in turn increases the likelihood of the fault to fail; 
such analysis will not have the ability to indicate 
precisely where on the fault failure may occur.  This 
analysis simply provides an indication of the likelihood 
of failure. 

Figure 7. Differences in fault surface generation depending on 
picking strategy: 25 m, 50 m, 100 m, 200 m, 400 m or 800 m 
line spacing.  Picked fault segment shown as red line.  Note the 
smoothing that occurs at greater line spacing, and the 
irregularity at narrower line spacing. 

Seismic data quality is an issue, which influences both 
manual and DNN results. The survey used in this study 
is prestack time migrated which is not the best imaging 
approach in cases with structural complexity as well as 
large lateral variations in velocity. Fault shadow effect is 

observed in the data which deteriorate the quality of 
seismic data underneath fault planes and causes 
challenges for both manual and DNN based fault picking. 
Utilising modern advances in fault picking, i.e. 
automated fault extraction using supervised DNN, is a 
fast approach to the normally time-consuming manually 
interpretation strategy.  However, as with any new 
technology, it is crucial to understand the influence of 
how, and to what extent, machine learning may influence 
subsequent fault analyses such as fault stability. In our 
case study, DNN based results showed more irregularity 
for the fault surfaces, especially for the poorly imaged 
Vette Fault. It could be argued that fault surfaces are 
highly irregular in nature and hence the overly irregular 
faults produced could be due to automated extraction 
picking every kink or bend in a fault, that may be missed 
by manual interpretation.  Large amounts of data exist in 
geophysical studies, hence a neural network might find 
hidden irregularities in the data that manual interpreters 
may have overlooked [8].  However, it may also be due 
to areas of false positive interpretation by the DNN 
models that we applied, particularly in areas of poor 
seismic resolution.  As with manual fault picks, errors 
associated with machine learning techniques will be 
integrated in the fault model.  Identifying short-comings 
through quality control may indicate the need for 
continued machine learning retraining to improve the 
model, by either further hyperparameters tuning and/or 
improving the input labels. 
Our applied DNN models provided vertically segmented 
images for the Vette Fault. The networks use features on 
seismic data that can represent discontinuity. This 
segmentation can happen, for example, in areas with 
weak discontinuities on seismic data (e.g. packages with 
very low reflectivity).  Hence, this could be an 
explanation for the increased irregularity. In manual 
interpretation, we usually ignore such weak reflectivity 
areas and extend picks over them. One approach to 
overcome this issue was to take ensemble of multiple 
DNN results. Figure 8B and D show the improvement of 
vertical and lateral continuity by using ensemble results.  
Areas with a severe decrease in seismic quality, creating 
a high degree of ambiguity often lead to poor picking 
through machine learned techniques.  For example, areas 
surrounding the relay zone to the Southern end of the 
Vette Fault (known as Vette_2, see [3]) have been poorly 
identified (Figure 8B).  The high complexity assumed for 
the basin-scale Vette Fault results in a poorer seismic 
resolution at the fault.  This leads to poor predictions of 
the location of the fault, and some areas of the fault being 
missed. In areas of poor quality seismic, manual 
interpretation is also model-based and can be non-unique.  
On the contrary, well-imaged minor faulting show 
excellent correlation between manual and machine 
learned fault picking, with the resulting predicted dilation 
tendency being very similar between these two methods. 
Hence, improved seismic quality will reduce the 
uncertainty of DNN based fault picking. 
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Figure 8. Examples of fault predictions using the supervised DNN models. The predicted faults are ensemble of four different models 
and the colour represents the confidence of predicted faults. The yellow colour means that all four models predicted faults. A) Inline 
without predicted results B) Inline with predicted faults. The area inside the ellipse shows poor quality seismic zone. C) Time slice 
without predicted faults D) Time slice with predicted faults. Note the segments of the Vette fault with less confidence in the prediction. 

5. Summary
Line spacing chosen to pick fault segments will influence 
any subsequent analysis, e.g. fault stability, with the 
results varying with picking strategy.  Manually 
interpreting using a wider line spacing creates a fault that 
is predicted to have an increased stability.  Conversely, 
picking using every line spacing creates a highly irregular 
fault, such that the stability is predicted to be significantly 
reduced, and in fact will lead to the prediction of an 
unstable fault. 
Automated methods of fault extraction is sensitive to the 
quality of seismic data.  Poorer imaging of faults creates 
fault surfaces with increased irregularity when compared 
to manual interpretation, leading to higher predicted 
dilation tendency values in all line spacing scenarios. 
Using ensemble models, a larger coverage of faults was 
imaged using DNN with additional information of the 
confidence of predicted fault.  Further fine-tuning of 
hyperparameters and fault label picks can potentially 
improve the results.  On the contrary, picking of well-
imaged, smaller faults show noticeable similarity in 
results between manual and automated methods. 
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