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Abstract 
Monitoring of integrity of plugged and abandoned (P&A'ed) wells is of interest for the oil and gas industry and for 
CO2 storage. The purpose of this study is to develop artificial intelligence (AI)-based approaches to detect anomalies 
or defects when monitoring permanently plugged wells. The studied solution is based on the analysis of 
electromagnetic (EM) data. We consider an offshore setting where the EM signal is generated in presence of a P&A'ed 
well and the resulting electric field is recorded at the seafloor. Numerical simulations are used to train an AI algorithm 
to classify the modelled EM features into predefined well integrity classes. We consider four scenarios: (1) no well, 
(2) well with three 20 meters thick cement barriers of thickness, (3) well with three cement barriers of 60 meters
thickness, and (4) well with three cement barriers of 100 meters thickness. Convolutional neural networks (CNNs) are
tested as the AI algorithm in this study. After training the algorithm on 80% of the data, it shows an accuracy of
95.36% on the test data. P&A'ed well integrity monitoring currently remains limited to local observation and symptom
identification, but this study shows that there is great potential for developing remote non-invasive well integrity
monitoring techniques.
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1. Introduction
A well needs to be permanently plugged and abandoned 
(P&A'ed) when its productive life is over. Several cement 
plugs are installed in discrete sections of the wellbore. 
They seal the well structure both vertically and 
horizontally [1]. Moreover, the wellhead is detached, and 
the top portion of the well is severed several meters 
below the seafloor (Figure 1). Nowadays, this technique 
is used to prevent long-term leakage. 
Heat, pressure, corrosion, seismic activity, subsidence, 
and formation creep exert strong mechanical loads on the 
wellbore construction over time [2]. It is estimated that 
well which reached 15 years of age might have a 50% 
probability of leakage [3]. It is reported that 0.9-3.7 kt 
yr−1 of CH4 is emitted from 1,792 wells in an area of 
20,000 km2 in the UK sector of the central North Sea, 
suggesting that the large number of wells in North Sea 
likely constitute a major source of methane [4]. In 
Pennsylvania, 6% of the methane emissions have been 
associated to leakage from old wells [5]. At the 
Groningen field in the Netherlands, 1 out of 29 wells was 
found to be leaking [6].  
There is a need for monitoring the integrity of P&A'ed 
wells. As the wellhead and top pipes are removed and 
buried in sediments, it is difficult and expensive to use 
logging tools to monitor well integrity. Thus, "post-
mortem" monitoring of leakage is the only possible 
option with observations of bubbles or growth of 

bacterial mats at the seafloor in the vicinity of the well 
[7]. 
Although recent studies emphasize developing non-
invasive well integrity monitoring methods [2][8], all of 
the current methods are variations of permanent sensing 
systems which monitor some parameters such as 
temperature, strain, pressure, chemical and acoustic 
sensing. They can be used both in a point sensing manner 
or in a distributive manner along the entire well.  
There are some options for non-invasive well integrity 
monitoring that can be developed. One of them is 
acoustic systems which use guided waves for high-
resolution imaging. Although these systems are already 
used for monitoring the pipelines in aircraft industry 
[9][10], they have not been customized for well integrity 
monitoring. They can be used at the surface of the casing 
or in the well’s internal casing. As P&A'ed wells are cut 
below the seafloor, these methods are more difficult to 
implement because they require access to well casings. 
Another option for both temporarily and permanently 
plugged wells is based on electric and magnetic fields. 
They have already seen great success in geophysical 
imaging of the subsurface. Magnetotellurics (MT), 
magnetometric resistivity (MMR), electrical resistivity 
tomography (ERT), and controlled-source 
electromagnetics (CSEM) are based on using passive or 
active electric-magnetic fields in different frequency 
bands. These systems have already some commercial 
applications such as hydrocarbon exploration [11], large 
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scale crustal imaging [12], and CO2 storage monitoring 
[13][14]. Nowadays, researchers show their interest to 
use these systems for well integrity measurements. One 
example is using CSEM surveys for casing integrity 
measurements where steel casing is used as electrodes 
during CSEM surveys [15][16]. 
In this paper, we propose an AI algorithm which senses 
changes in a well structure based on seabed electric field. 
In the proposed method detailed in section 2, the electric 
field at the seabed is simulated using a finite-element 
simulator. We consider four scenarios, with no well in 
one of them, and thickness of cement plugs inside the 
wellbore changed for the three others. Then, a carefully 
designed CNN algorithm is trained to discriminate them. 
The methodology is described in section 2 and the results 
presented and discussed in section 3.  

2. Method

2.1 Geometry 

Here we consider a simplified well geometry consisting 
of a 700-meter cylinder with radius of 20 cm (Figure 2). 
The inner hole is filled with 9 cm brine/sea water, 1 cm 
metal casing, and 10 cm of cement. In addition, 
horizontal elements that simulate the presence of cement 
plugs can be introduced in the well. The well elements 
are placed within a large, cylindrical modelling domain 
with radius of several hundreds of meters. The modelling 
domain is layered horizontally to include a 100 m air 
layer at the top, a 100 m sea water layer below, and a 900 
m layer of rock formation, which can fully enclose the 
well element. The well-head can be placed at any location 
at or below the sea floor. An additional geometric layer 
surrounds the modelling domain to apply Infinite 
Element Domains (absorbing boundary conditions) 
features in the simulation software. 

2.2 Materials 

In the implementation of the model, all material 
properties are frequency independent. This is an 
approximation that will be relaxed in subsequent work in 
order to optimize the detected signal depending on the 
frequency of the source. Furthermore, the materials are 
assumed to be perfectly homogeneous and isotropic. This 
can be easily relaxed by introducing both diffuse 
inhomogeneity and material property gradients, 
especially in the rock formation. Table 1 gives a 
summary of the EM material properties for the well 
elements. 

2.3 Electromagnetic signals 

Electromagnetic signals are excited in the model via a 1 
m long perfectly conducting dipole, which can be placed 
anywhere in the geometry. By simulating tangential and 
radial polarizations for the transmitter, we can take 
advantage of field symmetry to reduce the modelling 
domain to ½ of the original, reducing computational 
requirements. The vertical position of the dipole is a free 
parameter, and it has been fixed to 30 m below the water 
surface. The position of the source and receivers can be 

adapted depending on EM measurements providers. With 
no dependence of material properties on frequency nor 
field strength, the problem is linear with respect to the 
field amplitude, and therefore the transmitter is driven 
with a constant current of nominal amplitude. The 
operating frequency is correspond to 0.5 Hz. A schematic 
representation of the geometry used is provided in Figure 
2. The electrical properties of the different components
are also given in Table 1.

Figure 1: A typical well before (left) and after (right) permanent 
well plugging [2]. Cement barriers are grey in the figure. 

Figure 2: Schematic representation of the model's geometry, 
including well casing, three cement plugs and a well head at the 
sea floor. 

Table 1: Material properties. 

Material 
Electrical properties 

Conductivity 
[S/m] 

Relative 
permittivity [F/m] 

Rock 
formation 0.50 6 

Cement 0.33 2.20 
Steel 62500 1 

Sea Water 3 78.40 
Air 0 1 
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2.4 FEM implementation 

The model is implemented using the commercial Finite 
Element Method (FEM) software COMSOL 
Multiphysics [17]. Given the operating frequency of 0.5 
Hz, resulting in a local wavelength much larger than the 
size of the modelling domain, inductive effects can be 
neglected in the first approximation, and one can take 
advantage of the simplified formulation of Maxwell's 
equations implemented in the Electric Currents interface. 
The Infinite Element Domains feature can be the external 
domains of the geometry, allowing simulated fields to 
vanish at infinity and avoid fields reflections at the sides 
of the simulation model. The electrically thin steel casing 
at the interface between sea water (inside the well) and 
cement is simulated using the dedicated Distributed 
Impedance boundary condition, which effectively 
simulates the 1 cm thick material as a 2D surface, thus 
eliminating the need of meshing the thickness of this 
layer. The interior of the model is meshed using 
triangular elements on the sea floor surface (Figure 3), on 
which a tetrahedral mesh is built in the sea water domain. 
Mesh elements are kept small enough close to the well to 
ensure a sufficient discretization of the immediate 
vicinities of the well itself. The annulus element around 
the sea floor uses a mapped mesh, while the rest of the 
mesh is swept vertically from the top and bottom 
boundaries of the water layer. 

Figure 3: Example of meshed modelling domain for FEM 
simulations. 

2.5 AI algorithm 

CNN [18] is the AI algorithm which is used in this study 
for classification among four different scenarios 
including: (1) Case A: No well, (2) Case B: A well with 
three 20-meter cement plugs inside the wellbore, (3) Case 
C: a well with three 60-meter cement plugs inside the 
wellbore, and (4) Case D: a well with three 100-meter 
cement plugs inside the wellbore. The aim of the AI 
algorithm is to discriminate among these four scenarios 
using as input the electric field simulated at the seabed. 
The CNN structure used in this research consists of 3 
blocks of convolution and 2 fully connected layers with 
64 and 4 neurons respectively (Figure 4). Each of the 
convolutional blocks has Relu activation function [19], 
and a Max-Pooling of 2 by 2 [20]. The last layer has 

SoftMax activation function to report the uncertainty 
associated with the obtained classification. For more 
generalization of the network, Dropout is employed [21]. 
Dropout rate is 0.2 in each convolutional block (between 
convolution and Max-pooling layer), and it is 0.5 before 
the last layer. 

Figure 4: Proposed convolutional neural network structure. 

2.6 Preprocessing and data augmentation 

Since neural networks need some data to learn, different 
orientations of transmitter dipole antenna are used to 
augment the data. For each scenario, the antenna 
direction is changed from x-direction to y-direction with 
a step of one degree. Thus, there are 91 electric field data 
for each scenario (364 samples overall). 12 features are 
taken out from these electric fields including: real part, 
imaginary part, magnitude, and phase of electric fields in 
each direction. Since it would be hard to measure electric 
field at the seabed, we constrain the span of received 
electric field. We do this by cropping an area with the 
size of 250 by 100 meters around the well. Then, all 
features get sparse by setting 7/8 of values in x direction 
and 4/5 of values in y direction to zero (meaning no 
measurements at those locations). Finally, values are 
scaled between -1 and +1 to allow for better training in 
our neural network (Figure 5). These data are labeled and 
used to train and test our classification method. One 
feature map of an input sample is provided in Figure 6 
for illustration. 

Figure 5: Preprocessing workflow. 
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Figure 6: Example of an input feature to the CNN. 

3. RESULTS
After simulating electric fields with FEM, CNN is trained 
in 50 epochs with batch-size of 16. To ensure that no 
overlap occurs between training and test content, the 
augmented data was divided into 80% (291 samples) for 
training and 20% (73 samples) for testing. Since artificial 
neural networks use randomness (random initial weights, 
shuffling, etc.) during each training epoch, a repeated 
stratified five-folded cross-validation is introduced to 
build more robust results. It means that training and 
testing were implemented 5 times with different test data 
each time. Moreover, the whole process is repeated and 
implemented 30 times, resulting in a more reliable 
evaluation of the model performance. The overall 
confusion matrix for all the test data after repeated 
stratified five-folded cross-validation is shown in Table 
2. This table tells how our classification method predicts
each class label after training is performed.

Table 2: Derived confusion matrix. A: no well, B: a well with 
three 20-meter cement plugs inside the wellbore, C: a well with 
three 60-meter cement plugs inside the wellbore, and D: a well 
with three 100-meter cement plugs inside the wellbore. 

Tr
ue

 L
ab

el
 

Predicted Label 

A B C D 

A 2526 71 1 132 

B 19 2685 1 25 

C 13 5 2651 61 

D 96 56 27 2551 

The classifier is tested on 10920 test samples which 
consists of 364 unique test samples. These unique test 
samples are evaluated on 30 different CNNs. Table 2 
shows a very low misclassification rate as most samples 
are classified correctly. Although the AI algorithm shows 
more misclassification in class (D), it shows a robust 
performance, and it can classify each scenario very well. 
In order to understand how well each scenario is 
classified, a normalized confusion matrix (based on each 

row) is drawn in Table 3 with the corresponding 
percentages. 

Table 3: Normalized confusion matrix. Numbers are provided 
in percentage in the table. A: no well, B: a well with three 20-
meter cement plugs inside the wellbore, C: a well with three 60-
meter cement plugs inside the wellbore, and D: a well with three 
100-meter cement plugs inside the wellbore.

Tr
ue

 L
ab

el
 

Predicted Label 

A B C D 

A 92.53 2.60 0.03 4.84 

B 0.70 98.35 0.03 0.92 

C 0.48 0.18 97.11 2.23 

D 3.52 2.05 0.99 93.44 

Table 3 shows how well our method classifies each 
scenario. For instance, 92.53% of real data in scenario 
(A) is predicted as scenario (A). Similarly, 2.60% of real
data in scenario (A) is classified as scenario (B). By
looking at this table, it is obvious that scenario (A) and
(D) are more prone to misclassification as the
misclassification error is higher. Evaluation metrics of
our classifier are provided in Table 4 (numbers in
percentage). Table 4 shows classification metrics not
only in each class but also in average which is based on
macro- and micro-average method. Since micro-average
method is more reliable than macro-average, we report
our final results based on it. The overall accuracy of our
classification method is 95.36% with standard deviation
of 1.45% after training 30 times on different initialized
models.

Table 4: Evaluation metrics of our classifier (percentages). A: 
no well, B: a well with three 20-meter cement plugs inside the 
wellbore, C: a well with three 60-meter cement plugs inside the 
wellbore, and D: a well with three 100-meter cement plugs 
inside the wellbore. 

Precision Recall F1-score Accuracy 

A 95.18 92.53 93.83 96.96 

B 95.31 98.35 96.81 98.38 

C 98.92 97.11 98.00 99.01 

D 92.13 93.44 92.78 96.36 

Macro-Ave 95.38 95.36 95.37 97.68 

Micro-Ave 95.36 95.36 95.36 95.36 

4. Conclusions
Remotely inspecting a subsea well and its structure 
remains limited to symptom identification around the 
well. By using a simple geometry and the power of deep 
neural networks, this study shows that it would be 
possible to classify plugging thickness under the seabed 
from recorded EM fields. The accuracy of 95.36% in our 
neural network-based classifier proves this claim. Our 
proposed method can distinguish among four different 

155



TCCS-11 - Trondheim Conference on CO2 Capture, Transport and Storage 
Trondheim, Norway - June 21-23, 2021 

Seyed Ehsan Hosseini, NTNU, Trondheim, Norway 

scenarios related to changes in a wellbore by using just 
finite sparse electric fields at the seabed. 
We aim at developing a generalized AI anomaly 
detection algorithm that uses different types of data 
(seismic, EM, etc.) recorded remotely to detect the 
changes in the cement plugs of a well and not just 
classifying some scenarios. Moreover, we will not limit 
the method to one specific well and we will consider 
more realistic models. The effects of data noise and 
uncertainty related to the rock formation properties will 
be analyzed in the future work. Evaluating other types of 
data, like acoustic data for well monitoring and analyzing 
the method in detection of some leaking scenarios will 
also be considered. 
Although the assumptions used like considering a simple 
geometry or using known medium properties in this 
study, we believe that it will pave the way for further 
investigating the potential of non-invasive well integrity 
monitoring techniques that would be applicable also for 
P&A'ed wells. Accordingly, it would take the industry 
from a reactive state (symptom detection) to proactive 
state (take action before leakage occurs).  
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