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We describe the use of an optical hyperspectral sensing technique to identify the smoltification status of Atlantic
salmon (Salmo salar) based on spectral signatures, thus potentially providing smolt producers with an additional
tool to verify the osmoregulatory state of salmon. By identifying whether a juvenile salmon is in the biological
freshwater stage (parr) or has adapted to the seawater stage (smolt) before transfer to sea, negative welfare impacts
and subsequent mortality associated with failed or incorrect identification may be reduced. A hyperspectral imager
has been used to collect data in two water flow-through and one recirculating production site in parallel with the
standard smoltification evaluations applied at these sites. The results from the latter have been used as baseline for
a machine-learning algorithm trained to identify whether a fish was parr or smolt based on its spectral signature.
The developed method correctly classified fish in 86% to 100% of the cases for individual sites, and had an overall
average classification accuracy of 90%, thus indicating that analysis of spectral signatures may constitute a useful
tool for smoltification monitoring. © 2021 Optical Society of America under the terms of the OSA Open Access Publishing
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1. INTRODUCTION

The transition from juvenile freshwater fish (parr) to seawa-
ter adapted fish (smolt) is an important event in the life cycle
of Atlantic salmon (Salmo salar). This process is commonly
referred to as smoltification and involves changes in physiology,
behavior, and morphology [1]. In salmon farming, this tran-
sition is controlled using, e.g., lights or functional feed [2,3].
Smoltification control is important for smolt producers to meet
deliveries and to ensure a continuous and predictable supply
of fish to sea farms. A vital aspect in maintaining smoltification
control is the ability to verify the completion of this transition,
since incomplete seawater adaptation means the fish cannot
osmoregulate in seawater [4]. Incomplete smoltification may
therefore result in poor animal welfare and increased mor-
tality. Animal welfare is of increasing importance in Atlantic
salmon farming, as the industry is under pressure to improve
production and farming operations due to ethical and consumer
concerns, and improving smoltification control may be part of
the solution [5,6].

Smolt are produced in either water flow-through or recircu-
lation sites. Conventional smoltification assessments involve

measurement of smoltification indicators such as chloride
content in blood samples after exposing fish to saline water,
or the presence of ion-transporting enzymes through analysis
of tissue samples from gills [7]. Such tests are performed in
combination with an evaluation of fish morphology and skin
features such as color, texture, and light reflective properties.
Challenges associated with these methods include that only few
individuals are tested (typically 10–20) and that these may not
be a representative sample for a population of several hundreds
of thousands of fish. Some conventional test methods are also
time-consuming. For example, chloride determination in blood
samples requires that the fish be exposed to saline water for up
to 72 h before euthanization, blood sampling, and -analysis
[8]. Supplementary evaluations of, e.g., skin color, texture, and
reflective properties are less time-consuming but manual, and
therefore depend on the subjective assessment skills, knowledge,
and experience of the evaluator. Additional approaches facili-
tating automated and objective evaluation of the smoltification
status in smolt production are therefore highly desired and
requested by the industry.

Hyperspectral imaging is an optical, remote-sensing tech-
nique that records the light intensity at different wavelengths
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(i.e., typically>100 color bands) reflected from an object using
a hyperspectral imager (HSI). The recorded data are commonly
referred to as the object’s spectral characteristic and are largely
determined by the object’s surface material composition [9].
This sensing technique is employed in several other areas,
including determination of the composition of celestial bodies
[10], managing terrestrial crops [11], mapping kelp forests [12],
sorting fish viscera [13], and quality assessment of salmon fillets
[14]. In recent years, advances in hardware and signal processing
have enabled analysis of biological samples [15,16], as well as
design of handheld versions of multispectral imagers [17]. Such
advances are interesting within the context of smolt production
because simple and reliable field-applicable solutions that can be
used by production site personnel should be developed.

Because smoltification causes changes in both color and
reflective properties of the fish, it is hypothesized that data col-
lected from fish using an HSI could be used to characterize the
two biological stages, thereby laying the foundation for auto-
mated, real-time verification of smoltification. Furthermore,
it is possible that such data sets contain a small subset of wave-
lengths that can be used in future, cost-effective technologies for
scanning fish, thereby supplementing, and possibly replacing,
current methods. Such potential future solutions can then be
developed and integrated as part of existing and future pro-
duction sites, enabling farmers to continuously monitor the
smoltification process for a larger portion of the fish population.
Moreover, unlike conventional methods, HSI-based testing
would not require handling or premature exposure to saline
water (i.e., during chloride testing), thus potentially reducing
the welfare challenges and stress suffered by the fish during
testing. It would also eliminate the need to euthanize fish as part
of the testing regime.

The objective of this study was therefore to investigate
whether smoltification in farmed salmon can be detected using
hyperspectral imaging, and to determine whether the spectral
characteristics for parr and smolt contain wavelengths uniquely
distinguishing the two stages.

2. MATERIALS AND METHODS

A. Ethical Statement

Since the purpose of the study was to map the connection
between physiological changes and spectral characteristics of live
fish, replacing the fish with alternative models was not feasible.
The number of fish used in this study was kept to a minimum
by using animals sampled as part of the normal smoltification
testing regime at the different production sites. The study was
authorized by the Norwegian Food Safety Authority (permit
number 18/27599).

B. Study Design and Timeline

To evaluate the robustness and representativeness of a
hyperspectral-based approach, emphasis was placed on col-
lecting diverse data with expected variations in, e.g., fish color,
patterning, size, and shape from different production sites.
The study was conducted in cooperation with three different
production sites where data were collected weekly in syn-
chronization with the sites’ respective production and testing

Table 1. Summary of Conditions and Principal Data
for the Three Smolt Production Sites

a

Site

Average
Water
Temp.

O2

(Avg.)

Smoltification
Control
Strategy

Data Collection
Period N

1 13.5◦C 90% artificial light 20.04.2018–
17.06.2018

186

2 14.0◦C 90% artificial light 17.01.2019–
14.03.2019

78

3 9.5◦C 92% functional feed 19.09.2019–
24.10.2019

50

aAll three sites produced fish of the Aquagen genetic strain.

schedules. All three sites produced fish of the Aquagen genetic
strain. Site 1 was a water flow-through production site operated
by Mowi ASA. Site 2 was a water recirculation production site
operated by Lerøy Midt AS. Site 3 was a water flow-through pro-
duction site operated by Måsøval Fiskeoppdrett AS. A summary
of the three sites’ conditions and smoltification control strategy
as well as the data collection period and the number of fish used
(N) is shown in Table 1.

C. Sensing Equipment

The sensing equipment consisted of an FX10, sCMOS-V10E
push-broom HSI with 400–1000 nm bandwidth, 2.9 nm
spectral resolution, 30 µm slot, a maximum frame rate of
100 fps and equipped with a 23 mm/f.2.4 (OLE23) lens
(SPECIM, Elektroniikkatie 13, Oulu Finland). The imager was
mounted to a frame with a moving tray (SPECIM LabScanner,
20× 40 cm, 0.1–99 mm/s) including a motor control unit
synchronizing the imager to the moving tray (Fig. 1.) to avoid
over- or undersampling. The table’s step length corresponded to
the camera’s spatial resolution in the scanning direction, while
the scanning speed was automatically determined based on the
exposure settings.

Because data were collected in the field over long periods of
time, exposure settings had to be adjusted depending on local
conditions and the state of the fish. The effect of the former was
minimized during data collection by mounting the equipment

Fig. 1. Hyperspectral camera and moving tray.
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Fig. 2. Spectra for halogen and LED light sources.

in rooms without windows and turning of all lights where pos-
sible, and/or by covering windows with opaque fabric where
necessary. Because the parr–smolt transition involves the fish
becoming increasingly more reflective (i.e., mirror-like), the
latter was addressed by adjusting the shutter speed as required
to keep the exposure within the sensor’s dynamic range to
the largest extent possible. To make all data sets comparable
despite differences in ambient lighting conditions and exposure
settings, all data sets were normalized for comparison using
white and dark reference images recorded for each data set in
combination with the method described below.

For Site 1, the standard halogen lights supplied by SPECIM
as part of the LabScanner system were used to illuminate speci-
mens during scanning. To reduce the risk of heat radiating from
the halogen lights affecting the results, the lights were changed
to a broad-spectrum, programmable LED array (CREE Lumia
5.2) before starting sampling at Sites 2 and 3. Spectra for both
light sources are shown in Fig. 2.

In addition, crossed polarizers were used for Sites 2 and 3 to
reduce specular reflections. The impact of these changes is evalu-
ated in the discussion. For data collection, a Shuttle SH110G
barebone computer with Intel i7 processor, 16 GB D4 2400
memory and solid-state SATA HD for data storage was used. A
Karbon CL2 frame grabber from BitFlow (up to 128 bits input
at 85 MHz) was installed in the PC to grab frames from the
CCD camera stream.

D. Experimental Procedures

For each site, fish were randomly collected from the same tank
per sampling event throughout the data collection period
(Table 1). A sampling event involved collecting a number of
fish and recording (hyperspectral) data from all these fish on the
same day. For Site 1, 20 fish were collected per sampling event.
For Sites 2 and 3, 10 fish were collected per sampling event. For
all sites, a knotless dip net was used and the fish immediately
transferred to a transportation bucket containing water from the
same tank and transported a short distance (<50 m for all sites)
to the HSI.

Individual fish were subsequently transferred from the
transportation bucket to a new bucket containing a knock-
out anesthetic solution (80–100 mg/L Tricaine mesylate).
When the fish was judged to have reached level III anesthesia
[18], it was carefully placed on the moving table below the
HSI and scanned. After scanning, the fish was passed on to the
production site’s personnel for blood or gill tissue sampling.

Chloride testing involved exposing fish to saline water (35 ppt
for 72 hr in Site 1 and 32 ppt for 48 h in Site 2) prior to each
sampling event. During each sampling event, blood samples
were collected from the fish exposed to saline water (test group)
as well as from a reference group containing an equal number
of fish that were not exposed to saline water (reference group).
The measured chloride values were used for classification, as
described in the Data Processing and Analysis section. Gill
tissue sampling involved dissecting a piece of gill tissue for
analysis by a third party. The analysis quantified the prevalence
of freshwater and seawater ATPase [19], i.e., the presence of
chloride-excreting cells in the tissue sample. The difference
between these two was used to classify the parr and smolt
stages, as described in the Data Processing and Analysis section.
Following testing, the fish were euthanized.

E. Data Processing and Analysis

The raw data obtained from the HSI were multidimensional
images of individual fish, including their background. Each
layer of this multidimensional image represented a single gray-
scale image corresponding to the intensity of the reflectance
measurement at a specific wavelength. When stacked, all the
layers and reflectance measurements represented a 3D cube
(hyperspectral cube) with two spatial dimensions (x and y ) and
one dimension for the wavelength (z). A representative example
of a hypercube is given in Fig. 3.

These hyperspectral cubes were stored in the ENVI image
format (a flat-binary raster file with an accompanying ASCII
header file). OpenCV, Scientific Python, and C++ were used
for processing and analysis.

A step-wise procedure was used to process and analyze the
data so the low-dimensional spectral characteristics allowing
observation of the smoltification process could be determined,
and classification of parr and smolt made possible.

Fig. 3. Illustration of the hyperspectral measurements as a 3D
image cube, i.e., a hyperspectral cube. The cube to the right shows a
cross section through the fish lateral axis.
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Step 1 involved labeling each salmon and its corresponding
data set as either “parr” or “smolt” based on the traditional
smolt testing results to obtain a baseline for classification. For
fish having been subjected to chloride testing, the difference
between the chloride value from individual fish in a test group
and the average chloride value from the corresponding ref-
erence group was used. If the difference was lower than the
industry standard of 20 mMol/L, the fish was deemed able to
osmoregulate (i.e., excrete ions from its body) in seawater and
thus, was labeled smolt. Conversely, if the difference was above
20 mMol/L, the fish was deemed unable to osmoregulate in
seawater and thus, was labeled parr. For fish subjected to gill
tissue sampling, the third-party analysis provided numbers for
freshwater and seawater ATPase components, respectively. Fish
with a larger freshwater component were labeled parr, while fish
with a larger seawater component were labeled smolt.

Step 2 consisted of black-and-white calibration/
compensation to remove the impacts of systematic variations
due to, e.g., lighting differences. The reflectance measurements
were first normalized using a technique described by Akbari
and Kosugi [20]. Every time a hyperspectral image of a fish was
recorded, two additional images were acquired: the white and
dark references. The white reference was an image of a white
reference tile placed on the moving table below the HSI, while
the dark reference was an image acquired by the system with the
shutter closed (i.e., complete absence of light). The white refer-
ence represented the systematic offset in reflectance as a function
of wavelength caused by the light source and ambient light.
The dark reference represented the spectral noise, i.e., the noise
contribution caused by the imager itself. Using these references,
each pixel in the raw hyperspectral cube was normalized using
Eq. (1),

R (λ)=
Iraw (λ)− Idark (λ)

Iwhite (λ)− Idark (λ)
, (1)

where R(λ) is the corrected wavelength-dependent reflectance
value, Iraw(λ) the raw-data intensity value of a pixel in the raw
data, and Iwhite(λ) and Idark(λ) the white- and dark-reference
intensities acquired for each line and spectral band of the sen-
sor, respectively. This normalization technique resulted in a
reflectance measurement unaffected by spatial variations in
illumination, assuming that the illumination was static, i.e., did
not change during data capture.

Step 3 involved computing the mean spectra R̄(λ) (i.e., mean
reflectance as a function of the wavelength λ) over an area, �,
containing only fish using Eq. (2),

R̄(λ)=
1

|�|

∑
i, j⊂�

Ri j (λ), (2)

where Ri j (λ) is the reflectance measurement at pixel-
position (i, j ), |�| the number of pixels within �, and
λ ∈ [400 nm, 700 nm]. The range between 400 and 700 nm
was selected because λ= 400 nm was the lower limit of
the HSI’s sensing range, and λ> 700 nm was unreliable
for data from Site 1 due to halogen light source instability.
λ ∈ [400 nm, 700 nm] was therefore the region where data
could be reliably compared between sites. To separate fish (�)
from background in the data sets, a random forest classifier was

Fig. 4. Example images of parr and smolt from the three sites.
The fish including background plate is shown in the left column, and
the corresponding computed binary mask (right) is used to separate the
fish from the background.

selected and trained individually for each data set (i.e., site) using
50 estimators, which allowed us to sufficiently separate fish from
background spectra [21]. This classification technique did not
require any parameter tuning [22,23], and was thus suitable as a
trainable preprocessing step. The classifier classified each pixel
in the image as either fish or background based on their spectra,
thereby yielding a binary mask. The random forest classifier was
chosen over a basic image segmenting approach because during
data collection, sedated fish were moved directly from the anes-
thetic bath onto the moving table. To reduce animal harm, this
had to be done efficiently to minimize air exposure time prior to
euthanization. Consequentially, differences in water splattering
on the moving table occurred even when cleaning and wiping
the moving table between each fish. This led to variations in bor-
der conditions (i.e., the border between fish and background),
making more basic segmentation approaches unsuitable. The
binary masks resulting from using the random forest classifier
were further improved in a postprocessing step using binary hole
filling, median filtering, and selection of the largest connected
region, which are well-known concepts from image processing
[24]. Typical segmentation masks obtained by this approach for
the different sites are shown in the right column of Fig. 4.

In Step 4, a machine-learning classifier able to search for a
low-dimensional spectral characteristic to distinguish between
the two fish classes (i.e., parr and smolt) was implemented. A
dimension of three wavelengths was chosen to aid visualization
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and improve understanding of the observable changes dur-
ing the parr–smolt transition. The low-dimensional spectral
characteristic was derived by first selecting a set of three wave-
lengths (λ1, λ2, λ3) and then extracting the corresponding
reflectance tuple (R̄(λ1), R̄(λ2), R̄(λ3)) for each fish. The
reflectance tuple then represented a 3D point describing the
mean reflectance for the three wavelengths across fish pixels.
A labeled point cloud could then be obtained by attributing
the label of the fish (parr or smolt) to their corresponding 3D
reflectance point. The resulting data set was then used to train a
classifier and evaluate its performance in accurately predicting
fish as parr or smolt. For this, a support vector machine classifier
was used [25]. Using a step size of 10 nm, an iterative search
for the best classification accuracy over the three wavelengths
(λ1, λ2, λ3)within the range of 400 to 700 nm was performed.
Using this approach, optimal wavelengths (λ∗1, λ

∗
2, λ
∗
3) resulting

in the best classification accuracy were determined for all sites.
Using the optimal wavelengths, color-coded plots were created
to visualize the transition from parr to smolt, as shown in the
Results section.

In Step 5, the performance of the classifier was evaluated
by removing one data point from each training data set and
using this point for validation, thereby testing whether the
machine-learning approach was able to classify the salmon cor-
rectly or not. By doing this “leave one out” cross validation for
all fish, a metric for the expected performance of the approach
was obtained. The criteria accuracy, sensitivity, and specificity
were computed for the outcomes of the classification approach,
i.e., the true-positive (TP), true-negative (TN), false-negative
(FN), and false-positive (FP) numbers. Note that smolt was
defined as the positive class and parr as the negative class. The
accuracy, sensitivity, and specificity were computed as given in
Eqs. (3), (4), and (5),

Accuracy=
TN+TP

TN+TP+ FN+ FP
, (3)

Sensitivity=
TP

TP+ FN
, (4)

Specificity=
TN

TN+ FP
. (5)

The sensitivity represented the probability that a smolt was
correctly identified as a smolt. Similarly, the specificity repre-
sented the probability that a parr was correctly classified as a
parr, while the accuracy represented the proportion of over-
all correctly classified results and was used to determine the
wavelengths that led to the best performance.

Fig. 5. Typical spectra for parr and smolt, respectively, for Site 1.
The mean spectra were derived from the 10 first (parr) and 10 last
(smolt) in the data set.

3. RESULTS

A. Individual Sites

Table 2 summarizes the results from each individual site, where
Np and Ns denote the number of labeled parr and smolt used
in the analysis, respectively. The tuple (λ∗1, λ

∗
2, λ
∗
3) denotes the

three wavelengths giving optimal separation between the parr
and smolt classes.

Figures 5, 7, and 9 illustrate typical spectra for parr and smolt
for each site. Figures 6, 8, and 10 illustrate the time development
of the parr–smolt transition by a 3D plot rotated to show the
best possible separation of parr and smolt for each site.

B. Overall Assessment

Table 3 summarizes the results from an overall assessment,
including all labeled fish from all sites. In Table 3, Np and
Ns denote the number of labeled parr and smolt used in the
analysis, respectively. The tuple (λ∗1, λ

∗
2, λ
∗
3) denotes the three

wavelengths giving optimal separation between the parr and
smolt classes.

Figure 11 illustrates the time development of the parr–smolt
transition by a 3D plot rotated to show the best possible separa-
tion of parr and smolt.

4. DISCUSSION AND CONCLUSION

This study has shown that optical measurements have the
potential to be used for identification of smoltification status of
Atlantic salmon. It may thereby serve as an additional or new
tool for smoltification assessment to improve animal welfare and
reduce mortality in salmon production.

Table 2. Summarized Results from Individual Sites

Site TP/FP/TN/FN Accuracy Sensitivity Specificity Np Ns (λ∗
1, λ

∗
2, λ

∗
3)

1 29/4/149/4 0.96 0.88 0.97 153 33 (460, 550, 600)
2 11/5/56/6 0.86 0.65 0.92 61 17 (410, 540, 700)
3 40/0/10/0 1 1 1 10 40 (410, 540, 630)
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Fig. 6. 3D plot of data from Site 1 during 11 measurement dates
(11 colors). Each point represents one fish, and the color represents the
measurement date. Salmon classified by traditional methods as parr are
represented by circles, while smolts are represented by triangles. Note
that the reflectance values R̄(λ) are normalized to [0,1].

Fig. 7. Typical spectra for parr and smolt, respectively, for Site 2.
The mean spectra were derived from the 10 first (parr) and 10 last
(smolt) in the data set.

In this study, a total of 314 fish from 3 different production
sites were measured and labeled based on common traditional
smoltification evaluations. By sampling production sites using
flow-through or water recirculation, the project aimed to
capture a range of representative fish traits found in smolt pro-
duction. Because data were collected in the field, several factors
may have an impact on the results.

The clustering of the results from the three different sites
implies that the classifier was able to distinguish between parr
and smolt using the optimum wavelengths for each site (Figs. 6,

Fig. 8. 3D plot of data from Site 2 during eight measurement dates
(eight colors). Each point represents one fish, and the color represents
the measurement date. Salmon classified by traditional methods as parr
are represented by circles, while smolts are represented by triangles.
Note that the reflectance values R̄(λ) are normalized to [0,1].

Fig. 9. Typical spectra for parr and smolt, respectively, for Site 3.
The mean spectra were derived from the 10 first (parr) and 10 last
(smolt) in the data set.

8, and 10). When all data are combined (Fig. 11), we see site-
specific clustering likely caused by differences in, e.g., average
water temperature and dissolved oxygen, water opacity, and
color, as well as lighting and feeding regimes. Despite this, an
overall classification accuracy of 90% was achieved. It is impor-
tant to note that the clusters for parr and smolt seen in Fig. 11 are
segregated, indicating that the two biological stages can be iden-
tified for the range in fish traits and measurements conditions in
these data sets.

For Site 1, parr cluster well for the first six sampling events
(Fig. 6). However, for the remaining sampling events, the

Table 3. Results from Data Combined for All Sites

TP/FP/TN/FN Accuracy Sensitivity Specificity Np Ns (λ∗
1, λ

∗
2, λ

∗
3)

66/6/218/24 0.90 0.73 0.97 224 90 (410, 610, 680)
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Fig. 10. 3D plot for data from Site 3 during five measurement dates
(five colors). Each point represents one fish, and the color represents
the measurement date. Salmon classified by traditional methods as parr
are represented by circles, while smolts are represented by triangles.
Note that the reflectance values R̄(λ) are normalized to [0,1].

Fig. 11. 3D plot of all data collected at the 3 sites containing 24
measurement dates (24 colors). Each point represents one fish, and the
color represents the measurement date. Salmon classified by traditional
methods as parr are represented by circles, while smolts are represented
by triangles. Note that the reflectance values R̄(λ) are normalized
to [0,1].

distinction from smolt became less clear. A similar trend was
observed for Site 2 (Fig. 8), where good separation is evident
prior to 14 February 2019, while both classes are present in the
same cluster following this date. Classification accuracy depends
on the smoltification tests provided by the sites. For chloride
testing, the industry standard for the relative chloride difference
between the reference and test groups is 20 mMol/L. As such,
chloride testing does not evaluate smoltification based on an
absolute value for chloride content in blood. Consequently,
it is possible that fish with a low chloride difference could
have been mislabeled as parr, resulting in the mixed clusters.
Interestingly, this is not the case for Site 3, where tissue sampling
was employed (Fig. 10), thus indicating that tissue sampling

may be a more accurate method for smoltification control, and
that the industry standard of 20 mMol/L chloride difference
may be conservative (i.e., some fish classified as parr are actually
smolt).

The accuracy of the results may also have been affected by
imperfect masking/background removal. Such imperfections
were likely caused by differences in color and patterning of the
fish in combination with differences in water spill on the moving
tray between data sets. The setup also used a fixed focus distance
and because a variation in condition factor [4] between fish
(i.e., thickness in this case) must be expected, focus may not have
been perfect in all data sets due to limited depth of field. These
factors all contribute to different boundary conditions (Fig. 4),
allowing a varying amount of background pixels to propagate
into the analysis which, in turn, may have affected classification
accuracy.

Also, due to the mirror-like, curving surface of the fish, specu-
lar reflections may have saturated pixels in different regions
of different fish, thereby camouflaging areas that may contain
information unique for parr and smolt, respectively. This effect
was minimized by adjusting the angle of incidence for the light
source in Site 1, and by adding crossed polarizers to the setup for
Sites 2 and 3. These polarizers were linear in the wavelength area
of 400–700 nm, thereby only affecting intensity and not the
spectral characteristic. Hence, data could be compared across
sites despite the addition of crossed polarizers for Sites 2 and 3.
When looking at the data, specular reflections occurred as a line
along the center of the fish. This is an area usually containing
repeating patterns on the fish; hence, the spectral information
lost due to specular reflections was expected to be captured from
neighboring areas without reflections. Thus, it is expected that
the small amount of specular reflections has had minimal impact
on the results.

The default light source for the HSI consisted of light fix-
tures using halogen bulbs. During data collection on Site 1,
concern related to the stability of the light source in the IR area
arose, as a rapid time-varying change in the measured spectral
characteristic above 700 nm was observed. This instability may
have originated from variations in the air flow and temperature
around the halogen bulbs caused by the integrated lighting
fixture cooling fans. The halogen bulbs also radiated heat onto
the fish being measured. To eliminate the risk of heat affecting
the surface of the fish, lights were changed to programmable
LEDs, as described in the Materials and Methods section. To
ensure that data could be compared between all sites, data for
wavelengths>700 nm were omitted from the analysis.

The number of different sites (3) and the number of sampled,
and also labeled, fish (314) is relatively low. The number of
sites and fish was constrained by time, resources, and accessible
production sites, as well as their production cycles and test
regimes. The site numbering corresponds to the site order in
which data were collected. Due to an initial uncertainty related
to how fast the parr–smolt transition occurs, data were collected
for a longer period before the transition was expected to occur
in Site 1 compared to Sites 2 and 3. Based on the results from
Site 1 and dialogue with the producers, it was concluded that the
parr–smolt transition was of limited duration, and that collect-
ing data for a long time prior to the expected transition would
not add crucial information to detect the transition because the
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number of fish measured around the time of transition was not 
so different. Therefore, the impact on the results is expected to 
be minimal. In addition, the reduction of the time span where 
fish were monitored helped to remain compliant with ethically 
responsible animal experimentation (3 R [26]), as it reduced the 
number of animals used in the experiment.

5. FURTHER WORK AND PROSPECTS

In further work, additional measurements, possibly at different 
times of the year, would be beneficial to get an insight into the 
consistency of the results over time. During future data collec-
tion, emphasis should be placed on using tissue sampling over 
chloride difference as a baseline for classification, as the former 
seems to provide the better accuracy of the two.

The results obtained by using the average spectra of the 
whole fish has the potential to be improved by optimizing the 
region used for analysis. In addition, alternative techniques 
for dimension reduction of the full hyperspectral data to a few 
characteristic wavelengths should be investigated. Furthermore, 
it could be considered to investigate which external factors 
(i.e., environmental conditions, feed composition, or others) 
have an impact on salmon in general and specifically during 
the parr–smolt transition using an HSI in more controlled 
laboratory conditions.

Although the results from this study have the potential 
to increase the ability of the industry to better monitor and 
detect smoltification, t he i ssue o f d esmoltification remains. 
Desmoltification m ay o ccur i f a  s moltified fis h is kep t too 
long in fresh water after the metamorphosis and thus loses its 
osmoregulatory capacity. This reversal is not accompanied by 
changes in morphology and camouflage and is therefore more 
difficult t o a ssess u sing c onventional m ethods. Investigating 
whether an his-based approach could be employed to determine 
if desmoltification h as o ccurred s hould t herefore b e subject 
to further work. Future work should also consider a search for 
spectral characteristics that are specific for certain body parts 
of the salmon and may be even more discriminative than the 
low-dimensional characteristic considered in this work.

Finally, we have shown that three wavelengths are sufficient to 
identify parr and smolt. This enables development of low-cost 
instruments that can potentially be used in production tanks or 
integrated in existing sorting and vaccination systems to support 
smoltification control in the future.
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