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A B S T R A C T   

The numerical simulation of fluid flow through a complex geometry with heat transfer is of strong interest for 
many applications, such as oil-filled power transformers. A fundamental challenge here is that high resolution is 
necessary to resolve the fluid flow phenomena, but this makes simulation of the full geometry very expensive in 
terms of computational power. In this work, we develop a simulation methodology that combines a porous- 
medium approach for simulating some regions of the domain, coupled with fully resolved simulations in those 
regions which are deemed most interesting to study in detail. As one does not resolve flow features like thermal 
boundary layers in the regions modeled with the porous approach, the resolution in these parts can be orders of 
magnitude coarser. This multiscale approach is validated against the use of fully resolved simulations in the 
whole domain, as well as against analytical solutions to the extended Graetz problem. We then apply the 
approach to the study of oil flow and heat transfer in large electric power transformers and demonstrate a 
significant reduction in computational cost compared to a fully resolved approach.   

1. Introduction 

Electric power transformers constitute critical infrastructure, and 
their safe and steady operation manifests a major task with respect to 
modern nations’ security of energy supply. While power transformers 
reach high efficiencies, the power being transformed reaches into the 
tens or hundreds of mega-volt-amperes (MVA), which is equivalent to 
megawatts if the load is purely resistive. This means that even a 1% loss 
dissipated in the transformer represents a large requirement for cooling. 
Power transformers in the grid consist of three legs (for three phase 
power), where each leg is made up of several coaxial windings around a 
ferrite core, and is several meters tall. A typical arrangement is to have a 
low voltage winding, a high voltage winding and a tertiary winding 
around each core. Since the power dissipated is proportional to the 
square of the current, the low voltage winding is usually the main focus 
for cooling purposes. The windings are made up of copper that is turned 
in an overall helical fashion from bottom to top, but the detailed 
arrangement can be very complex for optimizing the electrotechnical 
aspects. The turns are held apart by insulating spacers, and the gaps 
between turns are filled with oil for the sake of electrical insulation and 
cooling. The coaxial windings are also held separated from each other by 

insulating plates and oil. An external metal tank contains the three legs 
and the oil, and supports the total weight of the transformer which is in 
the tens to hundreds of tons. On smaller units, the tank may have 
external fins for cooling of the oil, while on larger units there are 
dedicated heat exchangers that provide the oil cooling against the 
ambient air, with or without forced convection on the air side. 

Fig. 1 shows a section cut of a smaller 40 MVA oil-filled transformer 
(Fig. 1)a, and an idealised transformer winding (half a coil is depicted in 
Fig. 1b). To improve cooling by the circulating oil flow, pass washers are 
installed, resulting in zig-zag motion of the oil as seen in Fig. 1d. A 
typical placement of a modelling domain is shown as the blue cross- 
section in the middle. 

The structure of a transformer resembles a heat exchanger, in the 
sense that it is cooled by allowing the oil to flow between the turns of a 
winding in a suitable fashion. However, since the electrical insulation 
aspects are crucial, it is not feasible to optimize the geometry based on 
the flow requirements. Thus the flow patterns are severely restricted, 
and a typical configuration is that the oil follows a zig-zag path from 
bottom to the top of the winding. This means that as one proceeds to
wards the top of the winding, the incoming oil for cooling has already 
been heated by previous turns, and thus hot spots are often found near 
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the top of the winding. This is further complicated in that the dissipated 
heat is not uniform, as in addition to the uniform resistive losses, there 
are eddy current losses which are typically at their highest near the top. 
In addition, the presence of the remaining transformer-legs (dependent 
on the voltage phasing) affects the azimuthal distribution of power 
dissipated from the different turns of the windings. 

As can be seen from Fig. 1, there is very limited space inside the 
power transformer. It is therefore difficult to install sufficient instru
mentation to find the location and temperature of the hot spot. Natu
rally, one would like to perform numerical simulations of the 
transformer in order to predict the temperature development. However, 
the difference in length scales inside the transformer is a major obstacle 
for such simulations. The total winding height may be greater than two 
meters, but the distance between two turns in the winding is on the order 
of some millimeters. The smallest distance should be resolved with 
several tens of grid cells to capture the thermal boundary layers. Oil 
properties greatly influence the Prandtl number and consequently the 
thermal boundary layer width. Clearly, employing a uniform grid, the 
resolution requirement would result in astronomical number of neces
sary grid cells. 

Determining both the location and the temperature of hot spots has 
been the focus of a significant body of research. We do not aim to give an 
exhaustive review here (see e.g. Ref. [1] for a recent overview); previous 
works focusing on numerical simulations can be found e.g. in Refs. 
[1–14]. The test codes for power transformers (IEEE C57.12.90, IEC 
60076-2), as well as the loading guides for power transformers (IEEE 
C57.91, IEC 60076-7), are also concerned with the hot spot temperature. 
However, previous work has been constrained by the vast computational 
effort required to consider realistic geometries, so the focus has been 
either on construction and validation of more simplified thermo- 
hydraulic network models, or on idealised geometries. 

When faced with a problem featuring physical phenomena at scales 
separated by many orders of magnitude, a powerful technique is to 
employ a multiscale methodology. Morega et al. [15] have shown that a 
stack of heated parallel plates subject to free-stream cooling features an 
optimal geometry in terms of number of plates and plate spacing. For 
suboptimal cooling arrangement (larger number of plates or smaller 
plate spacing), they demonstrate that overall heat-flux and hot spot 
temperature can be accurately captured by representing the stack as an 
anisotropic medium at significantly reduced computational cost. 

The application of a porous-media approximation for modelling the 
thermofluid flow in complex geometries has been widespread for de
cades and has been summarized in several books, e.g. Refs. [16–18]. 
This includes application to power transformer radiators [19,20]. 
Recently it has been applied also for transformers internals, where 

Córdoba et al. [1] were the first to apply a porous-medium approach to 
the three-dimensional simulation of a full power transformer geometry, 
using their in-house code. They achieved overall good agreement with 
experimental results, and showcased that such an approach can give 
important insights into the global flow features. A drawback of that 
approach is that due to some convergence issues, isotropic permeability 
was used in the winding region, leading to vertical flow velocities 
inconsistent with experiments. Earlier work by Gastelurrutia et al. [10] 
considered two-dimensional simulation of the transformer with a porous 
approximation of some sort, but no details are given concerning the 
nature or magnitude of the porous resistance, whether it was isotropic or 
not, or how it was implemented. 

In this contribution, we propose a multiscale resolution approach to 
the problem of thermal flow in transformers. As hot spots are expected 
close to the top of the winding, this top region is fully resolved. The 
remainder of the geometry is modelled as an anisotropic porous-medium 
at coarse resolution. Effectively, the porous region will convey accurate 
averaged macroscopic flow properties as inflow boundary conditions 
into the fully resolved domain. The goal of the approximate model is to 
provide similar quantities for top-oil and averaged-disk temperature, 
compared to a fully resolved stack. This approach promises substantial 
speedups in terms of computational problem-size reduction, and can 
enable simulations of the entire three-dimensional transformer geome
try with full resolution in the regions of interest. The main novelty of the 
present approach is the multiscale combination of a porous approxi
mation in most parts of the domain, which is coupled with highly 
detailed simulations of the hot-spot region. A further novelty is the 
detailed derivation of the permeability used in porous simulations, by 
solving analytically a Poisson equation, which removes the need for 
time-consuming experiments to characterize the pressure drop as a 
function of flow rate. We apply a strongly anisotropic permeability, 
which efficiently cancels out the vertical velocities inside the trans
former windings modelled by the porous medium. 

While here we focus on the application of power transformers, we 
must stress that the presently developed approach is suitable for a broad 
range of heat exchangers and related devices. The only requirement 
necessary for a significant speedup is that focus can be placed on the 
detailed study of a sub-region of the total domain, and that analytical (or 
otherwise well-known) expressions for the permeability can be ob
tained. In the present work, this sub-region is known a priori, but one 
might well imagine that the fully resolved sub-region is chosen adap
tively according to some criterion. 

The paper is structured as follows. In Section 2, we introduce the 
governing set of equations for thermal fluid flow and the temperature 
dependent oil properties. The distinct geometric features of the model 

Fig. 1. (a) Cross-section of a smaller 40 MVA transformer, with low voltage winding highlighted. (b) Sketch of idealised circular transformer winding. (c) 
Straightened out cross-section between azimuthally adjacent plates. (d) Typical zig-zag flow path. [Fig. (a) adapted from a public domain image of a display at 
Technisches Museum Wien.]. 
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are also presented there. In Section 3, we present the proposed method. 
In Section 4, we validate the method against simulations which are fully 
resolved in all the domain, as well as against analytical solutions to the 
extended Graetz problem. In Section 5, we demonstrate the application 
towards modelling of a representative power transformer geometry. 
Finally in Section 6, some concluding remarks are offered. 

2. Theory 

A section of multiple heated parallel plates between which fluid can 
flow, confined by guiding walls on top and bottom with inlet and outlet 
on alternating sides, is defined to constitute a pass. Fig. 1d depicts three 
passes in that respect. In the following, we distinguish three models: 
detailed model (DM), porous model (PM), and porous-approximate model 
(PAM). The DM refers to a conventional, fully resolved, detailed 
description of a single pass or a stack of passes, depending on context. 
The PM refers to a single pass porous-medium approximation. The PM is 
constructed to approximate the average properties of the single pass DM 
by modelling the stacked parallel plates as a porous medium. The PAM 
refers to a porous-medium approximation of a number of PMs, coupled 
with a resolved DM pass, i.e. the PAM can be understood as a combi
nation of the DM and the PM. Below, the relevant evolution equations 
for mass, momentum and energy are introduced. The equations are valid 
for the listed models above, with geometric distinctions achieved 
through filtering of the corresponding penalization- and source terms in 
the momentum and energy equation, respectively. 

2.1. Equations 

In this work, we consider transformer oil as incompressible, with 
density variations retained via the Boussinesq approximation. The sys
tem at hand is governed by continuity equations for mass, momentum 
and energy: 

∂ρ
∂t

+∇⋅(ρu) = 0, (1a)  

∂ρu
∂t

+∇⋅(ρu ⊗ u) = − ∇p+ ρg+∇⋅[μ(∇u + (∇u)tr
) ] + f , (1b)  

∂ρh
∂t

+∇⋅(ρuh) = ∇⋅
(

k
cp

∇h
)

+ S. (1c)  

Here ρ is density (kg/m3), u is velocity (m/s), h is specific enthalpy (J/ 
kg), p is pressure (Pa), g is the acceleration of gravity (m/s2), μ is the 
dynamic viscosity (Pa s), k is the heat conductivity (W/(m K)), and cp is 
the specific heat capacity (J/(kg K)). Distinction between the DM and 
PM is given by the penalization-term distribution (N), f , and volumetric 
heat generation distribution (W/m3), S. The choice f = 0 and S = 0 se
lects the DM, with heat generation set by boundary conditions on the 
temperature, T (K). In the PM, f and S are constructed as explained in 
Section 2.3. 

We discard contributions of work due to pressure fluctuations in the 
energy equation, since the fluid is taken as incompressible. An equation 
of state is needed to close the above system of equations. We employ an 
Oberbeck-Boussinesq density-temperature relation, 

ρ = ρ0[1 − β(T − T0)], (2)  

with a reference density, ρ0 ≡ ρ(T0) at the reference temperature T0. β is 
the thermal expansion coefficient of the fluid (1/K). The fundamental 
thermodynamic relation between enthalpy, entropy, and pressure is 
given by 

dh = Tds+ dp/ρ, (3)  

where s denotes specific entropy (J/(kg K)). At constant pressure, one 
obtains from this equation, when combined with the definition of heat 

capacity and the second law of thermodynamics, the relation 

h =

∫

cpdT, (4)  

where cp is the specific heat capacity at constant pressure. 
In the remainder of the work, we consider fluid data that corresponds 

to the synthetic ester transformer oil, MIDEL 7131 produced by M&I 
Materials. The physical property data used here are given by the 
manufacturer [21]. The thermal expansion coefficient is β = 7.3×

10− 41/K, and we use a reference density ρ0 = 1007kg/m3 evaluated at 
T0 = 243.16 K. This fully specifies the density through the Oberbeck- 
Boussinesq relation (2). Note that a constant thermal expansion coeffi
cient is sufficient to accurately describe the observed linear relation 
among density and temperature, cf. Fig. 2a. The remaining properties 
are specified through the following regression functions, 

lnν(T) = 20.81369191ln2T − 252.81869067lnT + 755.03026555, (5)  

k(T) = − 7.2 × 10− 7T2 + 3.71 × 10− 4T + 9.75 × 10− 2, (6)  

cp(T) = 2.17T + 1249.29, (7)  

where ν = μ/ρ is the kinematic viscosity (m2/s). See Fig. 2 for compar
isons with measurements. 

2.2. Geometric dimensions 

The governing equations are solved in different geometric domains 
for the DM, PM, and PAM, respectively. The DM is solved on one or more 
detailed passes, where a detailed pass is a “high-resolution zoom” that 
resolves the full transformer pass geometry, see Fig. 3. A detailed pass 
consists of N+1 channels between the turns, where each channel has 
length L and height hc. The distance between the channels is hp and the 
thickness of the left and right legs is l. w denotes the depth of the pass. 
For the present purpose, we assume equidistant channel heights for all 
N+1 channels in the pass. Next, the PM is solved on one or more porous 
blocks. A porous block is a cuboid with dimensions Lp × H× w, where Lp 

and H is related to the detailed pass through Lp = 2l+L and H = Nhp +

(N + 1)hc. Finally, the PAM is solved on three porous blocks stacked 
atop each other, with a single detailed pass on top. 

In Sections 4.2 and 4.3, we consider geometries that can be classified 
as suboptimal in the spirit of Morega et al. [15]: Both geometries feature 
more plates and reduced plate distance, compared to a configuration 
that would maximize the free stream cooling. Consequently, the cases at 
hand constitute good candidates for approximation by an anisotropic 
porous medium. Though fluid properties and flow pattern in the present 
contribution are different from the idealized setting in Ref. [15], we 
demonstrate in the following sections that the porous-medium approx
imation indeed is a viable approach for assessing thermal flow proper
ties in a typical transformer winding geometry. 

2.3. Porous media approximation 

The PM is constructed by placing a porous medium of dimensions L ×

w × H into the porous block of dimensions Lp × w× H. The (remaining) 
left and right legs serve as transition domains, i.e. the distributions f and 
S vanish in the legs. Modelling of the underlying porous medium is 
contained as velocity-proportional drag in the penalization term f in Eq. 
(1b): 

fi = − μDijuj −
1
2
|ukk|Fijuj, (8)  

where Dij and Fij are the Darcy and Forchheimer coefficients, respec
tively. The latter is relevant for high Reynolds number flows and 
neglected in the following [22]. 

The Darcy coefficient is given by 
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Dij = κ− 1
i δij, (9)  

with the i-component of the permeability tensor, κi (m2), and the Kro
necker delta, δij, which equals unity for like indices and vanishes for 
cross-directions. One can derive Darcy’s law from the Navier-Stokes 
momentum balance (Eq. (1b)) with the penalization term in Eq. (8) if 
one assumes that the drag force is large compared to the inertia term and 
the divergence of the stress tensor, cf. [23]. We provide details on the 
calculation of the permeability tensor in Section 2.4. 

With the momentum penalization in place, it remains to devise a 
proper heat-source distribution. In this work, we only consider the fluid 
part of the problem, thus the temperature evolution in the porous block 
is given as [16] 

∂T
∂t

+∇⋅
(

1
ϕ

uT
)

= ∇⋅(a∇T)+ s′

, (10)  

where ϕ denotes the porosity (-) and s′ (K/s) denotes a generic volu
metric heat source. In this context, the porosity is given by the ratio of 
the fluid domain and the total volumes. The heat diffusivity tensor a 
(m2/s) features distinct components along its diagonal to account for the 
structure of the detailed pass. Its off-diagonal elements are zero. From 
the analogy between electric resistivity and thermal resistance, we find 
that heat conduction parallel to the channels (in the x and y directions), 
is ax = ay = ϕα, where α = k/(ρcp) denotes thermal diffusivity (m2/s). 
Similarly, heat conduction across the channels yields az = α/ϕ. Volu
metric heat production is contained in the source term s′ , which should 
be understood in terms of the heat generation rate from the coils. Eq. 
(10) can be rewritten as an enthalpy balance equation 

∂ρh
∂t

+∇⋅
(ρ

ϕ
uh
)
= ∇⋅

(
k
cp

∇h
)

+ S, (11)  

with the heat-conductivity tensor k (J/(kg K)), and the source term S 
now given in W/m3. In steady state, the total heat provided by the source 
term is given by 

ϕSVpor =

∫

ρuh⋅dAinlet −

∫

ρuh⋅dAoutlet, (12)  

with Vpor = LwH denoting the volume of the porous region where the 
source term is active. Similarly, integrating Eq. (1c), and requiring the 
heat fluxes into and out of the PM and the DM to equate, we find 

S =
k(∇T)|coil Acoil

ϕVpor
. (13)  

Here, the heat-flux at the coil boundaries is controlled by a constant 
temperature gradient, (∇T)|coil, which is active on the coil area Acoil. We 
note that the enthalpy advection velocity in the porous formulation is at 
the Darcy velocity, u/ϕ. Details on how the equations are solved 
simultaneously on the resolved and porous domains are provided in 
Section 3. 

2.4. Permeability for stacked parallel planes 

In the following, we derive expressions for the permeability. At its 
core, the derivations rely on solving the steady-state velocity profile in 
the laminar and incompressible limit of the Navier-Stokes equations. 
This corresponds to solution of a Poisson problem, 

Fig. 2. Properties of MIDEL 7131 as a function of temperature. The black stars denote measurements from Ref. [21] and the solid blue lines correspond to the 
respective regression functions. Note that for viscosity, the y-axis is log-scaled. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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∇p = μ∇2u, (14)  

subject to appropriate boundary conditions. Eq. (14) is also referred to 
as the Hagen–Poiseuille flow problem. Integration of the velocity over 
an area perpendicular to the flow direction, gives the associated volu
metric flow rate, Q (in m3/s), 

Q =

∫

u⋅dA. (15)  

The volumetric flow rate for a single channel i of height hi is, according 
to parallel plane Pouiseuille flow, 

Qi = −
h3

i w
12ν

Δp
L
, (16)  

where Δp is the density weighted pressure difference along channel i, i.e. 
p→p/ρ. Note that Eq. (16) follows from the no-slip boundary condition 
on the velocity in the vertical direction (at the plates) and slip boundary 
condition in the horizontal direction (symmetry). According to Darcy’s 
law, the volumetric flow rate due to a pressure gradient is: 

QD = −
κA
ν

Δp
L

= −
κwH

ν
Δp
L
, (17)  

where A = wH is the area perpendicular to the flow direction. Conse
quently, we find the effective permeability for N channels of aperture 
hi = hc∀i upon equating 

∑
Qi = QD: 

κ =
Nhc

H
h2

c

12
= ϕκ′, (18)  

in terms of the porosity ϕ = Nhc/H and single-channel permeability κ′ =
h2

c /12. 

The above relation for the volumetric flow rate ((16)) is valid for hc/

w≪1 or symmetry of the flow field beyond the channel width. Finite 
channel widths with no-slip boundary conditions on the velocity in both 
transversal directions can be resolved by performing a Fourier series 
expansion of the velocity field in the Hagen–Poiseuille flow problem (cf. 
Eq. (14)). It follows that the volumetric flow rate for a rectangular 
channel of finite aspect ratio is given by 

Qi =
wh3

i Δp
12νL

[

1 −
∑

n,odd

192
π5

(
hi

w

)
1
n5 tanh

(
nπw
2hi

)]

, (19)  

where the index label “n, odd” denotes odd integers, n ∈ {1, 3, 5, …}. 
Accordingly, the effective permeability for N channels of finite width is 
given by 

κ =
Nhc

H
h2

c

12

[

1 −
∑

n,odd

192
π5

(
hc

w

)
1
n5 tanh

(
nπw
2hc

)]

. (20) 

The impact of the no-slip boundary conditions in the transverse di
rection on the steady-state flow rate is vanishingly small as hc/w≪1, 
where Eq. (20) approaches Eq. (18). Typically, this condition is well 
satisfied. For instance, Ref. [24] discusses a transformer leg of radius ̃
300 mm with channel height 4 mim, divided in 18 azimuthal sections. In 
that case, hc/w̃4/100, and Eq. (18) is recovered. It follows that we 
expect pure 2D simulations to constitute a decent approximation to the 
flattened 3D setting. We employ Eq. (18) for 2D simulation. 

2.5. Permeability of stacked annulus segments 

The full 3D case retains curvature. This in turn mandates to solve the 
Poisson equation, Eq. (14), for the steady-state volumetric flow rate on 
an annular domain. In cylindrical coordinates, we take the annular 
channel to extend radially ΔR = R2 − R1, axially h = z2 − z1, and 
azimuthally Δθ = θ2 − θ1. 

It can be shown that the radial velocity field is given by 

ur =
1
r

16ΔP
μ

∑

m,odd

∑

n,odd

[
m2

2(Δθ)2

(
1
R2

1
−

1
R2

2

)

+
n2

h2 log
(

R2

R1

)]− 1

sin
(mπθ

Δθ

)
sin

(nπz
h

)
,

(21)  

with the radial pressure drop ΔP = P1 − P2, and P1 = p(R1),P2 = p(R2). 
The permeability is related to the radial flow rate via Darcy’s law 

Qr =
κΔθh

μ
ΔP

log(R2/R1)
. (22)  

Integrating the radial velocity from Eq. (21) over azimuthal and axial 
directions provides the radial flow rate, Qr =

∫
rurdθdz, which equated 

with the radial Darcy law, Eq. (22), yields an expression for the 
permeability characteristic of N vertically stacked annular segments of 
height H: 

κ =
64N
π2

(
h
H

)

log
(

R2

R1

)
∑

m,odd

∑

n,odd

[
m2

2(Δθ)2

(
1
R2

1
−

1
R2

2

)

+
n2

h2 log
(

R2

R1

)]− 1 1
mn

.

(23)  

3. Numerical methods and implementation 

We use the open-source framework OpenFOAM to solve the gov
erning equations. OpenFOAM provides a generic framework for finite- 
volume discretization of partial differential equations. It is written as a 
set of C++ libraries, and its object-oriented structure allows for close 
top-level representation of the mathematical formulations. This enables 
intuitive custom development and modification [25]. The flexibility of 
OpenFOAM for tailor-made applications has received increasing atten
tion recently [26]. 

A typical workflow consists of specifying initial and boundary 

Fig. 3. A sketch of the generic computational domain of a single, detailed pass 
with the characteristic dimensions and inlet/outlet denoted. The number of 
plates, N, in a pass is typically larger than depicted. Here H is the pass height, L 
is the channel length, hp is plate height, hc is channel height, and l is the left and 
right leg lengths. The pass has a depth w into the paper plane. 
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conditions for the field variables at hand in separate files, as well as 
mesh files that contain the discretization domain and configuration files 
to specify the solver with numerical schemes and solution/convergence 
criteria. This work employs the PIMPLE algorithm for pressure-velocity 
coupling. The PIMPLE algorithm is a hybrid SIMPLE–PISO iteration 
scheme that allows larger time steps. Adaptive time steps limited by a 
user defined Courant number1 may be chosen. Summarized, the SIMPLE 
algorithm [27] contains the following steps:  

1. solve for the velocity vector from the momentum equation with an 
initial guess of the pressure  

2. add corrections to the velocity and pressure  
3. solve for the pressure corrections  
4. solve for the velocity corrections  
5. repeat until the convergence criterion is reached 

The PISO algorithm [28] adds a second corrector stage to obtain 
better convergence. Time integration is performed by an implicit, first- 
order Euler scheme. Interpolation of the face fluxes to the cell values 
is achieved by combinations of second-order central-differencing 
schemes. At each time step, the convergence of velocity, pressure, and 
enthalpy is monitored. The algorithm is deemed converged upon 
reaching residuals of 1× 10− 5. 

We have constructed a transient solver transformerFoam based on 
the standard, transient compressible solver buoyantPimpleFoam, 
with consistent handling of thermophysical properties. The presence of a 
porous medium can be represented by modifying the momentum 
equation of the solver via specification of the tensors D and F via the 
fvOptions functionality, which applies the penalization on a defined 
cell region of the mesh. Additionally, heat generation is added as a 
volumetric source term to the energy equation via the fvOptions 
environment. 

The geometry shown in Fig. 3 is constructed with a standard 
blockMeshDict.m4 file. A cellZone porosity has been defined for the 
central (porous) part of the PM block. The velocity and pressure calcu
lations in the porous blocks are handled by adding a penalization term in 
the fvOptions for the momentum equation over the porosity zone of 
the mesh. Still, care must be taken for correct application of the tem
perature equations. As Eqs. (1c) and (11) differ by more than a source 
term (i.e. same structure with different coefficients), the approach for 
the momentum equation cannot be applied. We have chosen to imple
ment the distributions ∊ and δ = 1 − ∊, where ∊ is equal to one in porosity 
and zero elsewhere. The enthalpy equations are then solved together in 
the form 

∂ρh
∂t

+

(

δ + ∊ 1
ϕ

)

∇⋅(ρuh) = δ∇⋅
(

k
cp

∇h
)

+∊
[

S +∇⋅
(

k
cp
∇h

)]

. (24)  

Observe that energy is conserved separately in each domain: In the 
porous domain where δ→0, Eq. (24) reduces to Eq. (11), and in the 
resolved domain where ∊→0, Eq. (24) reduces to Eq. (1c) without the 
source term. 

Eq. (1c) describes isotropic heat conduction, with the scalar heat 
diffusivity α occurring in the conduction term. As the porous medium to 
be considered is highly asymmetrical, the thermal diffusivity a in Eq. 
(10) needs to be cast in tensorial form. Accordingly, the solver is sup
plied a tensorial heat diffusivity of type dimensionedTensor. The 
porous zone is specified by adding explicitPorositySource to the 
fvOptions file. This adds a term that correspond to Eq. (8) to the 
momentum equation. Similarly, scalarSemiImplicitSource 

represents the heat source and corresponds to Eq. (13), applied to the 
temperature equation. 

Temperature-cby constructing a custom thermophysicalModel 
with fluid properties given in Eqs. (5)–(7). 

4. Illustration of the approach 

In this section, we illustrate the core features of the chosen approach. 
The task at hand is to construct a porous block such as to reproduce the 
overall flow state of the detailed geometry. When using numerous 
porous blocks stacked atop each other, we demand that the throughput 
of (i) the pressure differential from inlet to outlet, (ii) the mass flux, and 
(iii) the heat flux align with the detailed geometry. The constraint of 
similar mass- and heat fluxes inherently provides similar average tem
peratures at the outlet of the domain. 

We start by validating numerical simulations of detailed and porous 
blocks in two dimensions. Physically, this situation resembles a cross cut 
far from confining lateral boundaries (block washers), such as illustrated 
by Fig. 1c. 

4.1. Steady-state profiles 

Eqs. (16) and (17) can be used to quantify the steady-state pressure- 
velocity coupling of the numerical calculation. It is desirable to obtain 
quantifiable relations for the temperature in both the detailed and 
porous passes. We first consider 2D normal inflow into the left boundary 
in a generic geometry as sketched in Fig. 3 for the DM. 10 channels of 
height hc = 4 mm and length L = 75 mm are employed. The PM consists 
of a cuboid of corresponding dimensions as explained in Section 2.2. 
Thermophysical properties are assumed to be temperature independent 
in this subsection. In the DM, a parabolic profile for the transverse ve
locity component inside the channels is set up (x and z are the down
stream and transverse coordinates, respectively): u(z) = 4umz(h − z)/h2, 
with the maximum velocity on the centerline given by um = ΔPh2

/8νL. 
Subject to slip-velocity boundary conditions at the top and bottom wall, 
the corresponding velocity profile in the porous block is given by the 
plug flow velocity up = u0/ϕ, in terms of the inlet velocity u0 and the 
porosity ϕ. 

Neglecting axial conduction, the steady state temperature profile 
satisfies the nonhomogeneous boundary value-problem 

∂xT = γ∂2
z T + s′

, (25a)  

∂zT(x, 0) = ∂zT(x,ℋ) = f , (25b)  

T(0, z) = T in, (25c)  

where γ = az/u with the z-dependent velocity given by the parabolic 
profile in the detailed case, and the uniform plug-flow velocity in the 
porous case. For the detailed case, the source term s′ = 0 and heat 
generation is due to heat provided from the coils at z =ℋ = hc, with f =

∂nT|boundary = (∇T)|coil. Here ∂nT|boundary denotes the temperature 
gradient normal to the boundary, evaluated at the boundary. For the 
porous approximation, there is no influx at the boundaries at z = ℋ =

H, leaving f = 0, but volumetric heat generation, s′ = S/ρ0cpu0, with S 
according to Eq. (13). This is equivalent to a homogeneous (detailed) or 
non-homogeneous (porous) diffusion problem in z direction (x→t) with 
non-homogeneous (detailed) or homogeneous (porous) boundary con
ditions and initial value Tin. 

In case of two-dimensional parabolic channel flow (i.e. hydrody
namically fully developed) with uniformly applied heat-flux at the 
transverse boundaries, one encounters an extended Graetz problem, 
whose solution for the thermally developing channel wall temperature is 1 The Courant number gives a necessary stability condition that relates the 

time step and spatial discretization. It can be understood as a constraint on the 
minimum allowable propagation velocity of numerical waves. We also refer to 
the Courant number as the CFL number. 
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given by2 

Twall = T in +
qwalla
kfluid

[
4
Pe

x
a
+

17
35

+
∑∞

n=1
cnYn(1)exp

(

−
8
3

β2
n

Pe
x
a

)]

. (26)  

Here, x measures the downstream distance inside the parallel-plate 
channel and a = hc/2 is the channel half-width, whence qwall = k(∇T)
|coil denotes the wall heat-flux. The first three eigenvalues βn and asso
ciated values for Yn(1), as well as asymptotic relations for large n can be 
found in [29]. Eigenvalues and values for the eigenfunctions evaluated 
at the wall, up to n = 10 can be found in [30]. 

The porous case is far simpler, as the velocity field is uniform in z- 
direction: 

T(x, z) = T in + s′ x. (27)  

It should be noted that, for this particular boundary value-problem, the 
eigenvalues and eigenfunctions are given by λn = (nπ/H)

2 and ϕn(z) =
cos

̅̅̅̅̅
λn

√
z) for n = 0, 1, 2, …, annihilating the conventional exponential 

terms arising in solutions of the heat equation.3 

4.2. Comparison to analytical predictions 

In the following, we consider an idealized detailed geometry with 
constant and uniform inlet flow from the left and uniform heat flux 
trough the channel walls. The front and back channel walls are taken 
adiabatic for comparison with the Graetz problem. We consider a pass of 
N = 10 plates with dimensions L = 75 mm,l = 12.5 mm,hc = mm,hp =

8 mm, and w = 10 mm. The width of the top and bottom channels are 
half the width of the remaining channels (hc). We also consider a cor
responding porous block. 

The thermophysical state of the fluid is assumed isothermal and the 
respective oil properties are: Kinematic viscosity ν = 4.27× 10− 5 m2/s, 
density ρ = 9.6× 102 kg/m3, thermal conductivity k = 1.5×

10− 1 W/(mK), specific heat capacity at constant pressure cp = 1.9×

103 J/(kgK). A typical mass flow rate at the inlet, ṁ = 2.167×

10− 3 kg/s, is considered. This is the same as one of the cases considered 
in [8], and a representative value for oil flow in insulated transformers 
[24]. Taking the channel length L as the characteristic spatial scale, the 
thermofluid is characterized by Reynolds number Re = umeanL/ν = 4, 
Prandtl number Pr = ν/α = 520, and Péclet number Pe = RePr =

2080. The thermal diffusivity is α = k/(ρcp) = 8.2× 10− 8 m2/s. Note 
that the Reynolds and Péclet numbers are evaluated at the mean channel 
velocity, which for the porous case is given by umean = uinlet/ϕ. The large 
Péclet number indicates that heat conduction is essentially negligible 
compared to heat advection. For the channels under consideration, we 
find that the flow field is hydrodynamically developed (the hydrody
namic entrance length xhy

en = 0.05DHReDH ≈ 2× 10− 3L, with the Rey
nolds number evaluated at the hydraulic diameter) and thermally 
developing (the thermal entrance length xth

en = 0.05ReDH Pr ≈ 306L). 
Gravity is neglected and uniform velocity loads onto the channels are 
obtained by invoking slip boundary conditions on the top and bottom 
walls. The porous block also features slip velocity constraints on the top 
and bottom boundary. 

This case is analogous to the extended Graetz problem discussed in 
Section 4.1, to which an analytical solution for the downstream wall 
temperature profile exists. The detailed simulations are verified against 
this analytical solution to assess necessary grid cells inside the channel 
domain. We then construct the corresponding porous block and show 

that the required constraints on its output can be satisfied at reduced 
total grid count. 

The detailed block computes the correct downstream pressure profile 
to approximately 1 Pa for a downstream grid resolution of Δx = 2.5 ×

10− 1 mm and channel resolution Δz = 1.25× 10− 1 mm, cf. Fig. 4a. At 
this resolution, the L2 error norm for the wall temperature profile is well 
converged as shown in Fig. 4b. Fig. 5 (left) shows temperature contours 
inside a channel at steady state in relation to the mesh discretization. 
Smooth development of the thermal boundary layer can be observed. 
Fig. 5 (right) provides the corresponding comparison of analyical and 
computed wall temperature as a function of channel-downstream co
ordinate. The maximum difference between computed and analytical 
solution for the wall temperature is 0.2 K. As the purpose of this work is 
that detailed simulations can be reproduced by the porous approxima
tion, we consider the detailed block resolved at this resolution. A future 
experimental validation study of the detailed simulations may be per
formed at increased near-wall resolution, similar to [8,9], which is 
outside the scope of this contribution. 

Results for the detailed block at downstream grid resolution of Δx =

2.5 × 10− 1 mm and channel resolution Δz = 1.25 × 10− 1 mm are 
compared with a porous block of Δx = Δz = 2 mm. The detailed block 
then consists of 88,000 cells whilst the porous block is constructed of 
2,500 cells (97.2% reduction). Fig. 6a shows that the porous approxi
mation matches the downstream pressure profile very closely, while 
Fig. 6b presents the time evolution of the average outlet temperature. 
The porous block matches the steady-state outlet temperature of the 
detailed block, by construction of the source term. In this simple case, a 
surprisingly close agreement in terms of transient temperature evolution 
can also be observed, with small deviations around 1 K at the maximum. 

4.3. Turning flow 

With the analytical comparisons in place from the previous subsec
tion, we now consider a more realistic geometry and flow pattern: 
turning flow induced by pass washers mimicked by inlet at bottom left 
leg and outlet at the top right leg. Gravity is no longer neglected. We 
consider both an idealized oil with constant thermophysical properties 
as listed in Section 4.2, as well as the MIDEL 7131 where the 
temperature-dependent expressions are given in Section 2.1. For the 
geometry, we use a left and right leg spacing of l = 7 mm, channel gap 
hc = 4 mm, disk height hp = 15 mm, disk length L = 51 mm, with N =

19 disks, and consequently 20 channels in a single pass. All channels are 
of the same width, hc, for the remainder of this contribution. These di
mensions correspond roughly to the CIGRE cases [24]. They have also 
been studied in [8,9], though with different thermophysical oil 
properties. 

At the inlet, we again apply the same prescribed mass-flow rate, ṁ =

2.167× 10− 3 kg/s. No-slip boundary conditions are specified on the 
walls, and a constant heat-flux q = 2336.4 W/m2 is applied on the sides 
of the winding turns, i.e. the channel walls. The choice of heat-flux is 
motivated by characteristic values from [8,9,24]. Temperature is kept at 
its fixed initial value of 300 K at the inlet. The pressure is fixed at 1 ×

105 Pa at the outlet, with a zero-value Neumann boundary condition at 
the inlet. The boundary conditions consequently resemble a realistic 
transformer winding flow setting. 

The top-oil temperature is a measure that can be used to compare the 
DM and PM. It can be calculated as the time trace of the mass-averaged 
temperature at the outlet patch, 

Ttop =

∫
ρcpTu⋅dA(t)
∫

ρcpu⋅dA
. (28)  

For constant oil properties, the top-oil temperature can be calculated 
directly from energy conservation and the integrated power supplied to 
the fluid, Q = ṁcpΔT. In particular, we find a top-oil temperature of 
Ttop = T(t = 0) + ΔT ≈ 314.2 K. 

2 This is also valid for wide channels, hc/w→0, with no-slip boundary con
dition in the depth-direction.  

3 Integrals over the eigenfunctions over the width of the channel vanish: 
∫H

0 
cos(nπz/H)dz = 0. 
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Fig. 7 shows a comparison of the top-oil temperatures computed by 
the DM and the PM for both constant (a) and temperature-dependent (b) 
oil properties. In both figures, there is a difference between the topoil 
temperature for the porous and resolved simulation during the transient 
evolution. This is as expected, since the resulting flow pattern is different 
by construction: in the porous block, heat is transferred by a plug-flow 
velocity profile, which on average yields the same throughput as in the 
resolved geometry, where the velocity profile is of parabolic shape in
side the channels. However, as the flows tend towards steady state, a 
good agreement between the traces is observed. Specifically, the 
calculated outlet heat flux for constant oil properties agrees well for the 
detailed and porous pass, respectively. With temperature-dependent oil 
properties there are nonlinear effects which give rise to small-scale 
temperature fluctuations, such as hot-plumes. These are captured by 
the DM, but absent in the PM. Nonetheless, the maximum deviation 
between the DM and PM is 1.5 K in the transient phase, while in steady 

state, the top-oil temperatures agree. Further, the outlet heat fluxes 
align. We stress that a mere 5040 cells are necessary to produce similar 
outlet heat fluxes to the detailed pass at 212 320 cells resolution – a 
97.7% reduction. 

5. Demonstration 

In the previous sections, we have illustrated that the method is 
capable of reproducing analytical wall temperatures in simple laminar 
channel flow in fully resolved simulations. The porous approximation to 
a number of micro-channels stacked atop each other can equally well 
provide the averaged pressure drop, mass flux, and heat flux over the 
domain. We have shown that the transient and steady-state top-oil 
temperature measured at the outlet agrees well for a fully resolved pass 
and its porous approximation. Further, temperature-dependent fluid 
properties have been introduced, and we have indicated that the porous 

Fig. 4. Error estimates for (a) pressure drop, and (b) channel wall temperature. Results are presented for two different downstream grid resolutions: Δx = 5 ×

10− 1 mm (blue stars) and Δx = 2.5 × 10− 1 mm (orange circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 5. Top: Comparison of analytic (blue) and numerical (green) solution to the extended Graetz problem. Bottom: Temperature contour plot inside a channel, 
showing the smooth emergence of a thermal boundary layer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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approximation holds to a reliable degree also in this case. 
Building on that, we here construct stacks of detailed and porous 

blocks to show the significant problem-size reduction that can be ob
tained by the method presented in this work. The output from coupled 
porous passes is used to deliver boundary conditions to a fully resolved 

pass. Section 5.1 considers 2D simulations of a four-pass winding, 
qualitatively corresponding to series of flow transitions as discussed in 
Section 4.3. In Section 5.2, we present a full 3D numerical simulation of 
a whole transformer leg consisting of 72 passes. The transformer leg 
measures 4 passes in vertical direction, with the turns of the winding 

Fig. 6. Comparison of (a) downstream pressure profiles, and (b) average outlet temperature for the PM (dotted orange lines) and DM (solid blue lines) under normal 
inflow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Time traces of the mass-averaged top-oil temperature for the PM (dotted orange lines) and the DM (solid blue lines). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Mesh details of the 2D joint DM-PM computational domain. The top horizontal column depicts the four-pass arrangement (bottom to the left), with the color 
indicating typical temperature fluctuations (blue-cold, red-warm). The coarse cells in the mesh zoom are placed in the porous domain. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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azimuthally separated by 18 block washers. 

5.1. 2D four pass winding 

A 1.460 m transformer winding that consists of 4 passes and 80 
channels between turns is computed fully resolved by four detailed 
blocks. This detailed stack then consists of 849280 cells with a resolution 
of 0.25 mm per cell in the x direction and 0.25 mm and 0.125 mm per 
cell in the z direction for the legs and channels, respectively. The same 
winding is also approximated by three porous passes with a fully 
resolved pass on top. Fig. 8 illustrates changes in the mesh as the 
computational model switches between the porous approximation 
(bottom) and the detailed model (top). With a porous resolution of 1 cell 
per mm, and identical detailed resolution, the approximated winding 
then consists of 283495 cells. This gives a cell reduction of 67%. Note 
that the single detailed pass accounts for 75% of the necessary cells. Both 
simulations employ the same numerical schemes and solution criteria. 
Boundary conditions are those of Section 4.3. 

In terms of computational run times, the detailed model computes 
1–3 timesteps per physical second when the code runs on 2 nodes with 
dual-socket Intel Xeon 4116 processors, corresponding to 48 physical 
cores in total. The porous model achieves the same run-time perfor
mance when running on a single node with 2 physical cores, a reduction 
in the computing-power requirement of 95%. Clearly, the porous model 
outperforms the detailed model in terms of run time and resource 
allocation. 

Cf. Fig. 9, which shows that deviations are identifiable throughout 
the transient evolution and most pronounced close to the onset of the 
statistical steady state for the detailed stack. The maximum discrepancy 
in top-oil temperature amounts to 4 K (relative error 1.2%) in the 
transient phase, with the steady state values overlapping to within 1 K 
(relative error 0.3%). Referring to Fig. 7b, we note that this is likely due 
to the transient nature of the hot-streaks, which are absent in the porous 
part of the porous-approximate model. Precisely, as discussed in Section 
4.3, the velocity profile through the porous domain is locally different 
from the combined effect of parabolic profiles from the channels. The 
time averaged heat flux in statistical steady state, is accurately repro
duced in the porous-approximate model. The goal of the approximate 
model is to provide similar quantities for top-oil and averaged-disk 
temperature, compared to a fully resolved stack. Fig. 9 shows the evo
lution of the top-oil temperature (outlet averaged temperature). Clearly, 

the temperature field is more inhomogeneous in the DM, with the 
summed effect of the hot-streaks from each pass appearing through 
“bursts” in top-oil temperature. Fig. 9 shows the mass-averaged top-oil 
temperature, with temperature inhomogeneity further pronounced 
through the temperature dependence of the density, resulting in fluc
tuations. In an experimental setup, usual measurements of top oil tem
perature do not show these fluctuations, due to the finite thermal 
response time of the temperature sensors. As the details of the hot- 
streaks are absent in most of the PAM, a smoother temperature time- 
trace is observed. Overall, and particularly in steady-state, the agree
ment between the models is promising. 

In Fig. 10, we compare the average plate temperatures for the top 
pass in both models at t = 1200 s. To this end, the temperature of plate- 
adjacent cells is sampled along four line segments, constituting a closed 
contour around each plate. The relation among cell-centre and face- 
value temperature is provided via 

Tface = Tcell +
1
2

Δ∇T|face, (29)  

with the face-to-centre distance Δ and the fixed temperature-gradient 
boundary condition at the plate walls entering via ∇T|face. The 
contour-averaged plate temperature is then found by integration of the 
face temperature along the sample. From Fig. 10, it is evident that the 
flow pattern in the top pass differs predominantly around the pass 
centre. Deviations in plate temperature vary between 1 K (plate 13) and 
11 K (plate 9). We note that the hot-spot location is accurately predicted 
by the porous-approximated model, with a problem size reduction of 
67%. The observed discrepancies in flow pattern and resulting plate 
temperature distribution are attributed to the sensitivity of these 
quantities with respect to the porous-detailed transition temperature 
profile. This is similar to the findings of Skillen et al. [8], who have 
found flow-pattern sensitivity with respect to inlet temperature profile 
in their simulations. 

5.2. 3D four pass transformer leg 

Full 3D simulations are immensely costly for fully resolved flow 
calculations: 72 passes of resolution as described in Section 5.1 account 
for at least 15 000 000 cells. Following the modelling strategy outlined 
in this work, a reasonable assessment of selected top passes can be 

Fig. 9. Mass averaged top-oil temperature for the PAM (dotted orange line) and the DM (solid blue line). Small fluctuations seen for the DM are a result from 
averaging over the thermal fluctuations in the unsteady flow exiting the transformer. With the PAM, these fluctuations are not resolved, and the top-oil temperature is 
smoother. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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achieved at significantly reduced computational cost. Clearly, the 
number of detailed top passes is dependent on the specific design. In 
Section 5.1, we have shown that the approximate model can confidently 
reproduce hot-spot location and corresponding plate temperature, as 
well as top-oil temperature and top oil heat-flux, as compared to the 
fully resolved stack. Here, we illustrate the model’s three-dimensional 
capability by considering top passes at two distinct azimuthal loca
tions. In total, 18 azimuthal stacks consisting of 4 passes each are 
considered. This represents the transformer leg geometry in [24], taking 
into account the azimuthal block washers/sticks. Fig. 11 illustrates a 
resolved block with the computational domain adapted to the physical 
presence of plates, immersed in surrounding low-resolution porous 
blocks, representing the majority of the transformer leg. 

As this section mainly serves illustrative purposes, we reduce the 
resolution to 0.5 mm in x direction and 0.25 mm in z direction, and a 
resolution of 1 cell per 3 degrees in the azimuthal direction. Fig. 4 (blue 
dots) show that this resolution should capture larger scale phenomena, 

but at less accuracy than the more resolved results presented in Section 
5.1. The total number of cells for a transformer leg resolved at this level 
then amounts to 777400 cells This is approximately 10% that of a 
comparable fully resolved leg and 5% of a fully resolved leg at the res
olution employed in Section 5.1. In the following, we employ the steady- 
state permeability given by Eq. (23). The double-infinite sum for h =

4 mm,H = 365 mm,N = 20,R1 = 307 mm,R2 = 358 mm, and Δθ = π/9 
converges to 

κ ≈ 5.66 × 10− 5 m2. (30) 

To demonstrate the model’s capability in terms of non-uniform 
azimuthal heat generation, we distribute the heat flux and heat source 
from Section 5.1 azimuthally according to 

P = P0

[

sin2θ +
1
2

cos4θ
]

. (31)  

This results in a normalized power distribution as shown in Fig. 12. 

Fig. 10. Contour-integrated plate temperature in the top pass at t = 1200 s for the DM (blue circles) and the PAM (orange stars). Constant time step of Δt = 1×

10− 3 s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Mesh details of the 3D joint DM-PM computational domain. The 3D simulation domain corresponds to an entire leg, as shown in the leftern part of the 
figure. Colors correspond to the pressure, with red denotion high values, and blue low values. The right part of the figure shows the transition between the part 
modelled by the PM, and the details associated with the DM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Recall that the supplied heat enters the model formulation as heat-flux 
boundary conditions in the DM and as a volumetric heat-source in the 
PAM/PM. Consequently, the heat flux and heat source are modulated by 
P/P0 described in Eq. (31). P0 denotes the respective power for the cases 
considered in Section 5.1. The mass-flow rate from the 2D case is scaled 
by the 3D inlet area. We consider both uniform heating at each 
azimuthal stack (UH) and nonuniform, azimuthally distributed heating 
(NH) according to Eq. (31). The UH and the NH cases resemble the 2D 
PAM stack from Section 5.1 at the azimuthal sections, were top passes 
are fully resolved, i.e. at θ = 40◦ and θ = 280◦. The remainder of the leg 
is modelled fully porous. The dissipated heat in the NH case, found from 
averaging Eq. (31), is on average 31.5% less than the UH case. 

Fig. 13a shows a comparison of the top-oil temperature for the 2D 
PAM, UH and NH case. The temperature rise in the NH case is approx
imately 29% less than for the UH, in agreement with the averaged 
dissipated heat being less in the NH case. Comparing the 2D PAM and 
UH top-oil temperature, we observe agreement to within 0.8% 
(approximately 2.8 K) in steady state. It should be noted that the ratio of 
dissipated heat to fluid volume from the 2D PAM case of Section 5.1 is 
approximately equal to the UH 3D setting. Deviations are likely due to 
the average calculation across the entire outlet, which consists of 2 
resolved top passes, and 16 porous passes in the UH case. 

Fig. 13b depicts the contour-integrated plate temperatures in the top 
pass at t = 800 s for the UH and NH cases. Contours are taken along the 
plates in the azimuthal planes at θ = 40◦ and θ = 280◦, respectively. The 
UH case shows two distinct regions of enhanced temperature, with a first 
peak at plate 8 and a second, higher peak in the vicinity of plate 15. In 
the NH case at θ = 280◦, corresponding to P ≈ 0.97P0, two hot-spots are 
observed close to plate 9 and plate 15. At θ = 40◦, corresponding to 
P ≈ 0.59P0, the highest temperature is measured near plate 3, with the 
temperature profile significantly changed. Contrasting Figs. 13b and 10, 
we note that the 2D profiles are elevated in temperature and feature only 
one hot-spot, located at plate 13. Naturally, the three-dimensional flow 
patterns are different, most notably due to the no-slip boundary condi
tion on the velocity at the azimuthal block washers (”sticks”). 

Fig. 14 shows a 3D volumetric rendering of the temperature field 
(red/blue) in a half section of the transformer for the NH case. The 
dissipated power (heating) is lowest at the centre and highest at the sides 
of this plot. The azimuthal evolution of the hot-spot location can be 
recognized also here, with discrete jumps due to the azimuthal block 
washers. More research is needed to clarify the role of three-dimensional 
effects on the emergence of the observed double hot-spot at locations 
with highest heating. 

Finally we show in Fig. 15 a close-up view of the hot spot location 
and the channel below it, in the resolved region of the NH case. This 
figure indicates that flow reversal can occur between two channels in the 
same pass, and that flow patterns driven by thermal convection can be 
seen in the channels. 

6. Conclusions 

In this work, we have proposed a simulation methodology that 
combines a porous-medium approach with fully resolved simulations for 
studying complex flow and heat-transfer problems. The novel approach 
has been applied to study oil flow and heat transfer in large electrical 
power transformers and we have demonstrated a significant reduction in 
computational cost compared to a fully resolved approach. 

The main idea is to approximate the flow through complex geome
tries as the flow through a porous medium. In particular, by approxi
mating a typical transformer pass with an anisotropic porous medium, 
the number of grid cells can be reduced by up to two orders of magnitude 
when compared to a fully resolved geometry. We have shown that the 
porous description retains the important characteristics of the macro
scopic quantities of the fully resolved steady-state flow of a transformer 
pass, in agreement with previous studies. Consequently, we propose a 
novel approach in which a transformer winding is modelled as a com
bination of porous blocks together with full-resolution passes for the 
regions in which the main phenomena of interest arise. This approach 
allows for numerical simulations of an entire transformer leg at 

Fig. 12. Polar plot of normalized azimuthal power distribution. The resolved 
passes are inserted at θ = 40◦ and θ = 280◦, indicated by an orange star and a 
green triangle, respectively. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. (a) Top-oil temperature time traces and (b) average plate temperature derived from 3D simulations with uniform and nonuniform heating.  
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considerably reduced computational effort as compared to a fully 
resolved simulation. 

Our approach has been demonstrated for both a 2D and a full 3D 
representation of a transformer leg. In the 2D case, the transformer leg 
consisted of 4 winding passes, where the top pass is fully resolved and 
the bottom three passes are approximated as porous blocks. When 
compared to a fully resolved simulation, we observe that the plate- 
surface temperature-distribution profile in the top stack is accurately 
captured despite the reduction in resolution in the bottom passes. Our 
approach accurately reproduces both the magnitude and the location of 
the hot spot located in the top pass. 

In 3D, a fully resolved simulation would require an excessive amount 
of computation resources. We have demonstrated that our approach 
allows computations of an entire transformer leg at a significant 
reduction of the required computational resources. The 3D simulations 
with azimuthally uniform heating show similarities with the 2D com
putations in terms of the top-oil temperature; however, flow patterns 
and temperature distribution differ significantly. Going further and 

considering an azimuthally non-uniform heating, the vertical location of 
the hot-spot is found to vary in a non-linear fashion, and a double hot- 
spot emerges in some locations. Whether the emergence of the double 
hot-spot and sensitivity of the temperature profile with respect to heat 
load can be attributed to three-dimensional effects should be investi
gated further in future work. In future work, the method will be verified 
against experimental measurements presently being conducted. 

It has been demonstrated that the approach presented here can 
significantly reduce the computational expense of simulating a full 
power transformer, while still resolving the key physics. This will enable 
larger scale parameter studies on e.g. coolant properties, geometric 
features, or forcing flow rates in a transformer. It also paves the way for 
developing optimization methods on top of the fluid dynamics models. 
One may also envision an extension to the porous approximation that 
models the resulting temperature profile at the transition based on 
averaged heat-flux. Another related avenue is to use the porous-medium 
solution as a preconditioner to the fully resolved solver. For highly 
complex geometries or highly transient cases, this might provide a 

Fig. 14. Volume render of the temperature field (red/blue) in a half section of the transformer, with velocity magnitude (yellow/green) at the cut plane shown at the 
sides. The red lines indicate the blocks separating the four passes in the vertical direction. The distinct jumps in hotspot positions are due to the nonuniform heating 
load combined with the azimuthal block washers that separate the flow into 9 distinct regions per 180◦ azimuthally. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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fruitful approach. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

This work was performed within the project “Thermal Modelling of 
Transformers” (project number: 255178) funded by the Research 
Council of Norway, Statnett, Hafslund and Lyse Nett. 

References 

[1] P. Córdoba, E. Dari, N. Silin, A 3D numerical model of an ONAN distribution 
transformer, Appl. Therm. Eng. 148 (2019) 897–906, https://doi.org/10.1016/j. 
applthermaleng.2018.11.098. 

[2] E.J. Kranenborg, C.O. Olsson, B.R. Samuelsson, L. Lundin, Numerical study on 
mixed convection and thermal streaking in power transformer windings, in: Fifth 
European Thermal-Sciences Conf., The Netherlands, 1–8, 2008, http://www.kr 
anenborg.org/jurjenCV/EuroTherm2008_CFD_TFO_diskwinding_study_ABB.pdf. 

[3] R.B. Fdhila, J. Kranenborg, T. Laneryd, C. Olsson, B. Samuelsson, A. Gustafsson, L. 
Lundin, Thermal modeling of power transformer radiators using a porous medium 
based CFD approach, in: Second International Conference on Computational 
Methods for Thermal Problems THERMACOMP2011, Dalian, China, 2011, pp. 1–4. 

[4] T. Laneryd, A. Gustafsson, J. Kranenborg, P. Duarte, W. Calil, J. Zacharias, J. 
Mendes, Hot spot determination in transformer windings through CFD Analysis, in: 
VII Workspot – International Workshop on Power Transformers, Equipment, 
Substations and Materials, 2014, pp. 1–8, http://www.kranenborg.org/jurjenCV/A 
ccurate_Hot_Spot_Calc-VII_CIGRE_Workspot_2014.pdf. 

[5] X. Zhang, Z. Wang, Q. Liu, Prediction of pressure drop and flow distribution in disc 
type transformer windings in an OD cooling mode, IEEE Trans. Power Deliv. (2016) 
1–1. ISSN 0885–8977, 1937–4208, doi: 10.1109/TPWRD.2016.2557490. 

[6] H.M.R. Campelo, M.A. Quintela, F. Torriano, P. Labbé, P. Picher, Numerical 
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