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Abstract: As climate change in the Nordic region brings an increase in extreme precipitation events,
blue-green roofs have emerged as a solution for stormwater management, hereafter referred to as
“blue-green roofs”. The addition of blue-green layers on a conventional compact roof represents
several multi-disciplinary technical challenges and quality risks that must be managed. This paper
aims to list and address the key building technical challenges associated with blue-green roofs
and to present a framework for managing these risks. Literature and document studies as well as
qualitative interviews and expert meetings have been conducted to collect research data on defects
in blue-green roofs and causes thereof. A list of nine key challenges has been extracted along with
recommendations on how to address them. The recommendations are structured around a framework
developed for practical use in building projects. For ease of use, the nine key challenges are presented
on a general level, with references to detailed recommendations. The framework is intended to be
used to reduce the building technical risks of blue-green roofs, by addressing the most important
quality risk elements.

Keywords: quality risk; blue-green roofs; risk management; building defects

1. Introduction
1.1. Climate Change and Urban Flooding

Climate change is manifesting itself in different ways in different regions of the
globe [1]. In the Nordic countries, the most notable impacts of climate change include
an increase in temperature, increased precipitation, and an increase in the intensity and
frequency of intense rain events [2]. Such events bring a high risk of urban flooding,
with the stormwater drainage systems becoming overloaded due to insufficient capacity,
and generally being in poor condition [3]. The risk of urban flooding is exacerbated
by a densification of cities, where an increasing fraction of ground surfaces are being
paved [4]. As stormwater is prevented from infiltrating into the ground locally, there is a
need for alternative detention and retention capacity such as green roofs, rain gardens, and
bioretention planters to prevent urban flooding [5,6].

The challenges imposed on the built environment by climate change emphasize the
need for climate adaptation of buildings [7]. Climate adapted buildings are defined as
“Structures that are planned, designed, and built to withstand various types of external
climactic stresses” [8]. This ideally includes both the climate in which the building is built
and the climate the building is expected to meet in the future. For this article, climate
adaptation in terms of stormwater management is the main focus.

One climate adaptation strategy to mitigate the risk of urban flooding involves local
retention and detention of stormwater on roof surfaces [9]. Blue-green roofs are roof assem-
blies wherein live vegetation and various substrate layers are used for rainwater detention
as part of a stormwater management strategy [10]. Blue-green roofs can be distinguished
from conventional green roofs in that blue-green roofs provide a larger amount of detention
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(temporary storage) of stormwater in addition to existing retention (evaporation) capacities,
enhancing the roof’s ability to delay and reduce stormwater runoff [11]. However, this
definition is not universal. Some use the terms “retention/detention-based green roof”
instead [12], as they give a more distinctive and accurate description than “blue-green
roof”, but the latter term will be used throughout this article for its brevity.

1.2. Blue-Green Roofs

Blue-green roofs assemblies are typically mounted as outer layers on top of compact,
flat roof structures. The principal layers of the blue-green roofs are the plants themselves,
the substrate in which they grow, and the layers for water storage and drainage. Multiple
conceptual variations exist for each layer, most notably in the method of water storage. Wa-
ter storage may occur in the form of standing water filling cups or boxes (seen for instance
in Hamouz et al. [13]), water absorbed in porous materials (described in [14]), or pooling
directly on the roof membrane [15]. Figure 1 shows an example assembly of a lightweight
blue-green roof where water is stored in cups formed in a plastic dimple membrane.
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Figure 1. Example assembly of a blue-green roof mounted on a conventional, compact roof.

Green roofs may be built for several purposes other than urban stormwater manage-
ment. Their purpose may also be to add green space to urban areas, or for energy savings
in warm climates. The various benefits of green and blue-green roofs have been reviewed
by several authors [16–20].

The addition of blue-green layers to a compact roof will change its physical operating
conditions and add elements of quality risk. Most notably, the roof membrane is buried
under the blue-green layers and will hence be unavailable for inspection once the blue-
green roof assembly has been mounted. All layers in a compact roof have a very low water
permeability, so water intruding through a defect may accumulate in the roof for months
or years before any damage becomes visible on the internal side. This may allow defects to
cause significant damage before they are discovered, as exemplified in [21]. For the same
reason, the costs of membrane repairs for a blue-green roof will be substantially higher
than for a conventional roof. Nevertheless, there are building technical advantages to
blue-green roofs as well. The roof membrane is shielded from sun exposure, which limits
ultraviolet degradation [22] and stabilizes the surface temperature of the membrane [23].
These various changed conditions represent an element of building technical risk that must
be accounted for in the planning, construction, and operation of blue-green roofs for their
benefits to be fully realized.
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A review of the literature shows a lack of attention to the practical challenges asso-
ciated with blue-green roofs [10]. The technical risks and challenges of green roofs have
been given some attention in research literature, but not holistically as the primary focus of
research. Porsche and Köhler [24] reviewed life cycle costs of green roofs and mentioned
some concerns of their durability and life span, but without going in detail on defects.
Björk [22] investigated the effect of green roofs on roof membrane durability, but only in
the context of the aging and decay of materials. Wilkinson et al. [25] reviewed technical
considerations of blue-green roofs in Australia, charting perceived risks on a conceptual
level as “barriers to uptake”. Thodesen et al. [26] described the main challenges in adapting
blue-green roofs to a Nordic climate. There is evidently a need to gather known information
on the technical challenges, risks, and defects of blue-green roofs across several disciplines,
organized in such a way that it becomes useful to practitioners in the building sector.

1.3. Risk and Building Defects

The building of a blue-green roof is a complex process involving several technical
disciplines both in the planning, design, and construction phases. The different viewpoints
of the various disciplines do not necessarily overlap to create a complete picture for risk
management [27].

Risk is commonly described as a combination of the (primarily negative) consequences
of events and their probability of occurring [28]. Quality risk, sometimes called technical
risk, relates to the risk of occurrence of building defects. The term is neither universally
adopted nor rigidly defined. In this article, quality risk is understood as “the likelihood of
the occurrence of building defects, and their consequences on the building’s quality”. Qual-
ity is defined as “meeting the legal, aesthetic, and functional requirements of a project” [29].
The direct financial aspects of risk are not directly considered in this article, nor are personal
safety risks.

Building defects are known to have a large impact on the economic activity of the
building sector. Government reports and whitepapers from, for instance, the United
Kingdom [30] and Norway [31], highlight the prevalence of defects in the building sector
and an ambition of reducing their prevalence. However, the prevalence of building defects
has not been fully understood or charted, presumably because of a lack of data [32]. It
has, however, been estimated that building defects account for 10% of the turnover in
the Danish construction sector [33]. In Australia, it has been estimated that defect costs
account for 4% of the contract value of new dwellings [34]. Schultz et al. [35] list several
other estimates of defect costs, most finding that extra costs related to defects comprise
between 2.4 and 12% of the total costs of a project. In Norway, despite ambitions and a
government mandate, a national database of building defects has not been established (the
latest mention of such a database in research literature dates to 2009 [36]).

Certain trends can however be observed in research conducted on limited datasets of
building defects that are compiled by single actors such as insurance companies or consult-
ing engineers. Gullbrekken et al. [37] examined defects in roofs in Norway and found that
precipitation moisture was the primary cause of damage in 49% of investigated cases. For
compact roofs, 73% of examined defects were caused by precipitation or condensation of
moisture. The relative number of compact roof defects attributed to precipitation moisture
was found by Bunkholt et al. [38] to have increased over the past decade, for a complex
variety of reasons. In addition to compromising the quality of the building, building defects
represent an element of resource inefficiency and poor sustainability. The repair of defects
requires materials and work hours additional to what is necessary to construct the building.
This is both a waste of resources and a source of literal waste, both of which place unneeded
strain on the environment [39].

In their review of technical considerations for green roofs, Wilkinson et al. [25] noted
a need for professionals from several disciplines to cooperate to arrive at optimal design
solutions for green roofs. It is evident that systematic and multidisciplinary management of
moisture protection in roofs will be imperative to reduce the quality risk of blue-green roofs.
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1.4. Research Questions

Addressing the general problems outlined above, this article will examine the follow-
ing research questions:

• What are the main quality risks associated with blue-green roofs?
• In which stages of the building process may the different quality risks be mitigated?
• What are the main challenges to be addressed by a quality risk reduction framework?

The work has primarily been carried out in a Norwegian context to exemplify the
framework approach to a specific setting. However, the framework is believed to be
valid for blue-green roofs across cold-climate regions in general, both for new builds and
renovations. A limitation of the study is that risks pertaining to personal injuries, costs,
or delays in the building process are not covered. Blue-green roofs are multidisciplinary
structures, and the perception of risk may be influenced by the perspectives and biases of
the authors. Notably to this work, bias may influence the perception of which challenges
to give priority in a risk reduction framework and should thus be noted. The background
of the authors of this article is primarily that of building science, except co-author Tone
Muthanna who specializes in hydrology.

2. Theoretical Background
2.1. Risk and Quality Risk

To effectively manage risk, one must first establish a definition of the term to use as a
baseline for the work. There exists a multitude of proposed definitions of risk, but none
appear to be universally adopted [40]. ISO 31000:2018 [41] defines risk as “the effect of
uncertainty on objectives”. The Project Management Institute defines uncertainty as “An
event that, if it occurs, has a positive or negative effect on a project’s objectives” [42,43].
Note that in this definition, “risk” only encompasses the negative effects of uncertainty.
The debate of whether risk and uncertainty are synonymous terms has been going since at
least the 1970s [40], but in this article, the term risk is preferred. “Uncertainty” also covers
the positive outcomes of risk, which are not considered in this article.

Quality risk is a type of risk related to building defects. Arditi and Gunaydin [29]
define quality as “meeting the legal, aesthetic, and functional requirements of a project”. A
building defect is understood as a technical defect in the building that compromises the
quality of components beyond what is expected from aging and use. These definitions form
the basis of quality risk, which is defined in this paper as “the likelihood of the occurrence
of building defects, and their consequences on the building’s quality”. Other terms syn-
onymous or related to quality risk include “defect risk” [44,45], “quality deviations” [46],
and “defect management” [47].

2.2. Blue-Green Roof Assembly

The term “blue-green roof” has not been rigidly defined. Generally, they can be
considered a sub-set of green roofs (roofs covered in vegetation) that are designed and
built specifically for the purpose of stormwater management. Proposed definitions that
separate blue-green roofs from green roofs include that blue-green roofs provide retention
(stormwater evaporation/transpiration) capacity in addition to the detention (delayed
runoff) capacity of green roofs [13] or that blue-green roofs have additional water storage
capacity beyond what is needed to sustain the vegetation [10]. However, as the term
“blue-green roof” is not widespread or universally adopted, exact definitions have yet to
be agreed upon.

Most blue-green roofs are assembled on top of compact roof structures. These are roofs
without air gaps, consisting of sandwiched layers of insulation between the roof membrane
and the load-bearing structure [48]. Compact roofs are generally air- and water-tight when
assembled correctly, but moisture can still intrude in the form of precipitation or humid air
condensation in the case of defects [37].
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2.3. Common Roof Defects

Ingvaldsen [49] and Kvande and Lisø [50] define three categories of building defects:
defects due to flawed building, defects due to lack of maintenance, and defects due to
erroneous use. Various sub-categories exist for each category. “Process-caused building de-
fects” comprise the two former categories, sans the sub-category “neglect of maintenance”.
It is generally held that process-caused defects will be dominant early in the building’s life
cycle, while use- or wear-caused defects will become more prominent as the building ages.
This principle is generally illustrated with the “bathtub curve”, although this model has
received some criticism for not being generally applicable in practice [51].

The most prominent risk element to the long-term integrity of a building envelope
is that of moisture intrusion [52]. Moisture fosters biological growth in organic materials
that could in turn deteriorate materials and affect indoor air quality, may act as a solvent
affecting the properties of materials, may cause corrosion, and may exert mechanical loads
due to frost expansion or weight [53]. Moisture control strategies often use a two-pronged
approach: (1) prevent water moisture from entering the structure, and (2) allow moisture
that has entered the structure to dry out [54]. In compact roofs, drying is generally not
considered feasible as the roof features a vapour-tight layer both on the external (the roof
membrane) and the internal side (the vapour barrier). Preventing moisture from entering
the structure then becomes all the more vital. In Norway, it has been found that 50% of all
building defects are discovered more than 5 years after the building has been handed over
to the owner [50]. However, note that this number includes defects that occur during the
use phase of the building.

2.4. Norwegian Legislation

The Norwegian legal framework for buildings is described by Lisø et al. [55]. Gov-
ernmental regulatory measures are grounded in the Planning and Building Act [56] and
specified in the Technical Regulations, last updated in 2017 [57]. The regulations are given
as performance-based requirements, meaning that the requirements are not affected by
the solutions chosen to meet them. Other governmental regulatory measures include
guidelines, circulars, and other official reports. Additionally, it is mandatory for a build-
ing project to verify these regulatory measures. Independent analysis is always required.
Another means of verification is to confer with pre-accepted solutions, for instance those
presented in the SINTEF Building Research Design Guides [58].

2.5. Actors in the Building Process

The design and construction of a building is a complex process involving a multitude
of actors across several disciplines. The roles and responsibilities of the various actors
depend on the chosen contract strategy, but a building project usually involves the actors
illustrated in Figure 2. The figure illustrates a typical design-build (DB) model, but other
models generally tend to include the same actors and principal activities.

Note that not every actor will be a stakeholder in every case of building defects. The
question of responsibility for building defects depends on many factors, including the type
of defect, when it occurs, and contractual obligations.
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2.6. Requirements and Goals for a Quality Risk Reduction Framework

Requirements for risk management systems are outlined in the international stan-
dard ISO 31000 [41], while ISO 9001 [60] describes requirements for quality management
systems. Central to the latter is the PDCA cycle, standing for Plan-Do-Check-Act. Qual-
ity management is thus a cyclical process in which methods are continuously evaluated
and improved.

Grynning et al. [8] constructed a framework with a scope similar to the one described
in this article, formulating four requirements a framework of this scope would have to
meet, paraphrased here: (1) compliance with relevant national standards, (2) compliance
with relevant ISO standards, (3) “The framework should be generic and thus applicable at all
scales and for all actors ( . . . )”, and (4) The framework should be specifically applicable in a
national context.

Examples of risk reduction frameworks in use in Norway include the Norwegian
standard for moisture safe design [61] and guidelines for procurement of climate-adapted
buildings [62]. Both documents highlight the importance of procedures and communi-
cation about main concerns across disciplines. The level of detail in a guideline may be
relatively low, as it is more intended as a tool to coordinate disciplines rather than teach
the disciplines.

2.7. Information Perception

A subject that has received little attention in engineering design literature is the
limitations to the capacity of the human brain when it comes to absorbing, retaining,
and being able to remember large amounts of information. However, the capacity of
working memory has been extensively studied within the field of psychology [63]. It is
indicated by [64] that the human brain struggles to effectively process information when
presented with more than 100–150 data points at a time. Guidelines that attempt to be as
comprehensive as possible may thus end up becoming too cumbersome for practical use,
particularly if they are intended for use among non-professionals in the disciplines they
address. A multi-disciplinary guideline will hence need to be simple and get its main points
across as easily as possible since, by definition, most of its information will be outside the
main field of expertise of its readers. Sorting the information into a limited number of
elements or categories is helpful to make information easier to process. It is indicated by
Miller [65] and Saaty and Ozdemir [66] that the upper limit on human capacity to reliably
process information on simultaneously interacting elements is seven, plus or minus two
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elements. It is therefore sought to keep the number of main categories in the quality risk
reduction framework within this range.

3. Methods

This article summarizes the main conclusions of a PhD research project concerning
risks assessment of blue-green roofs. Blue-green roof quality risk elements were identified
and assessed through a combination of different methods, outlined in the paragraphs
below. The overall purpose of the work is to comprehensively assess building technical
quality risk elements for blue-green roofs across several technical disciplines and relevant
project phases, and to address the risk elements through a risk reduction framework.

The quality risk reduction framework for blue-green roofs aims to provide a tool
or a checklist to consult in the various phases of the building project. It is designed to
be simple to use while also covering most practical aspects of the roof construction. As
such, it is not intended to comprehensively address the minute details of roof design and
construction—as this is already covered by, e.g., the SINTEF Building Research Design
Guides—but rather guide the user towards information relevant to the topic and project
phase in question. It is therefore to be used as a supplement to existing literature rather
than a replacement.

3.1. Literature Reviews

The research was guided by the results of an initial, extensive literature review of green
roof research [10]. A scoping study [67] was conducted across five scientific databases,
identifying 100 articles for in-depth study. The literature review identified a general lack of
literature concerning the service life, resilience, durability, or technical risks of green roofs,
although many of its articles contained useful information of one or more practical aspects
relevant to risk management.

Seven defect cases for compact roofs and green roofs were qualitatively examined.
The sample is limited by the availability of in-depth case descriptions in English and
Norwegian. It was sought to find defect cases for green and blue-green roofs, but no
domestic results could be found for green roofs and no international cases for blue-green
roofs. Given the novelty of blue-green roofs, this lack of data is to be expected. General
lessons from the defect cases have been incorporated in the Results section.

Risk reduction frameworks in other, related disciplines were also studied to better
assess how a risk reduction framework for blue-green roofs would appear. A small
scoping study, following the methodology outlined by Arksey and O’Malley [67], was also
conducted on the topic of quality risk.

3.2. Semi-Structured Interviews

Seven actors representing various disciplines in the Norwegian building sector were
interviewed to obtain a qualitative understanding of the common defects and challenges
observed on green roofs and other compact roofs. Semi-structured interviews were carried
out over the phone or in person, and were loosely formed around a set of questions mailed
to respondents ahead of the interviews, an approach called grounded theory [68]. The
represented organizations included two public property developers, an insurance company,
a material supplier, and a governmental advisory body. The individuals all had many years
of experience in construction or material science and knowledge of the practices in the
Norwegian building sector. Two of the individuals were involved in a major defect case on
the roof of a university building. Information learning from the interviews were published
in a separate article [69]. The interview scheme is attached to this article as Appendix B.

3.3. In-Depth Study of National Recommendations

In Norway, a common tool to aid building design is found in the Building Research
Design Guides issued by the research organization SINTEF. The SINTEF Building Research
Design Guides is a list of some 800 guideline documents (a number varying constantly as
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outdated design guides are updated and may be split from or merged into other guides)
detailing design principles, practical experience, and construction techniques for various
individual building elements. Comparable document series found abroad are the Danish
BYG-ERFA series [70], the Finnish Rakennustieto [71] or the moisture safe design guidelines
by the Swedish RISE [72]. While no single design guide covers blue-green roofs, principles
for their design and construction may be gleaned from other guides on similar topics, such
as the design guides for compact roofs, roofing membranes, Sedum roofs, and terraces.

The list of SINTEF Building Research Design Guides was assessed and nine design
guides relevant to compact roofs and green roofs were chosen for in-depth study. Each of
the 337 paragraphs of text in these design guides was labelled according to the main topic
of its subject. Concerns and recommendations for compact and green roofs were grouped
into 12 categories, which were later reduced to nine following discussions with experts
and the recommendation from psychology literature [65] to keep the maximum number of
main elements lower than 10.

The recommendations were also sorted according to the project phase for which they
had the greatest relevance. This grouping of recommendations was used to create a draft
for the risk reduction framework table.

It was noted that the existing guidelines made little distinction in their grouping of
information, with recommendations sorted by building element rather than by project
phase or discipline. This lack of sorting may make the large number of individual rec-
ommendations difficult to process in a practical fashion, as is suggested by psychology
literature [64]. The issue of information overload in the SINTEF Building Research Design
Guides has been treated in a separate study [73].

3.4. Identified Challenge Categories

It was chosen to organize the challenge categories as listed in Table 1, elaborating on
categories defined by Skjeldrum and Kvande [74] as well as SINTEF Building Research
Design Guides. While the categories may be closely related to the various disciplines and
areas of responsibility in a project (e.g., structural loads being the chief concern of the
structural engineer) it is chosen not to label them as such, to prevent a situation where
a reader of the framework will only focus on the content sorted under their own area of
responsibility. Several of the listed concerns interface with several disciplines, for instance,
the question of the water storage capacity of the roof. This design load will be a main
concern both from a hydrology and structural engineering perspective and vital to guide
further design decisions in both disciplines throughout the project.

Table 1. Topic categories for attentions in the quality risk framework.

Category Description

Blue-green functionality Retaining the retention and detention functionality of the roof. Survival of plants.

Organization Issues related to the project’s sub-processes, participants, and coordination thereof.

Material integrity Retaining the integrity of the materials used in the roof, most crucially the roofing layer.

Moisture-proof design Creating a roof design based on building physical principles and safe from moisture
problems other than those caused by leaks.

Drainage and drains
Ensuring that water leaves the roof without causing issues. “Drainage” refers to the path of

the water from where precipitation lands until it reaches the drains, “Drains” covers the
drains themselves and the downpipes connected to the roof.

Structural loads and wind Mechanical forces acting on the structure. Wind flow may generate low pressure areas,
which may loosen materials.

Fire protection All issues related to fire.

Maintenance Maintenance and maintainability of the roof.

Environmental issues Concerns about the environmental performance of the roof, including pollutants,
biodiversity, and waste disposal issues.
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3.5. Joint Workshops with Experts

An initial outline of the framework was compiled by the authors based on recom-
mendations from the building design guides, the results of the literature study, and the
qualitative findings from the interviews. A joint workshop was then arranged, featuring
experts from different disciplines related to building science and civil engineering. The
participants included the authors, a consulting engineer of building physics, two experts in
stormwater management, and two experts in property development and operation. The
goal of the workshop was to provide feedback on and refine the framework in a quali-
tative manner. Participants were shown the initial outline of the framework in advance
of the workshop and encouraged to discuss its content and provide suggestions for its
improvement. The ninth topic category, environmental issues, was added as a result of
this workshop.

4. Results
4.1. Critical Points in Blue-Green Roof Design and Construction

Figure 3 illustrates the main points of weakness for a blue-green roof, based on inter-
views and literature. Interviewees noted that material failure was a somewhat uncommon
occurrence, barring wrongful use of the materials. Complex transition details, such as
transitions between the roof and parapets or adjoining walls, were noted as common loca-
tions of leaks. Roof leaks may also appear around perforations in the roofing membrane,
such as drains or fastening points for equipment. Another common location of moisture
intrusion into roofs is the top of parapets. Areas with high traffic (illustrated with a person
in Figure 3) may also take damage over time, although this is mainly confined to the upper
layers of the blue-green roof, i.e., the plants themselves.
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4.2. Outline of the Risk Reduction Framework

Results from the literature were sorted according to the identified challenge categories
and to the research phase in which they have the greatest relevance. The resulting matrix
is forming the basis of a quality risk reduction framework, in the form of a “checklist”
to be consulted when making key decisions in a blue-green roof project. The principal
structure of the risk reduction framework is presented in Figure 4. For a full description of
the categories, see Table 1.
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Figure 2.

The following sections outline the identified challenges and quality risks of blue-
green roofs as expressed through the nine challenge categories. They summarize the main
content of the risk reduction framework, which is attached as Appendix A to this article.
In the appendix, the results are formulated as checklist items and sorted according to
project phases.

4.2.1. Blue-Green Functionality

Quality risk challenges in this category include the growth/survival of plants and
the stormwater management capabilities of the roof. It was found by MacIvor and Lund-
holm [75] that the selection of plants to grow on the roof greatly affects both of these
concerns. Native plants generally have generally been found to have better survivability
than non-native plants. The selection of plant species was also found by [75] to have an
influence on stormwater detention, although the difference between species may be less
significant than the capacity of the water storage layer of the blue-green roof.

The assembly of the roof is critical to its survival in the early phases. Sedum roofs
are usually delivered as mats of live vegetation stacked on pallets, a state in which the
plants will not survive for long. It is imperative that the roof is assembled on the day of its
delivery; therefore, project managers should be very careful to schedule the delivery so
that the construction site is ready to receive and assemble the roof immediately [76].

Maintenance of the roof is also critical. The German Research Society for Landscape
Development and Landscape construction (FLL) recommends 2–4 maintenance procedures
per year, even for extensive green roofs [77]. The roof must be designed and built to
accommodate regular access by maintenance personnel, and a maintenance plan must be
made and followed. Irrigation systems may also be necessary, depending on the climate.
Note that wind may dry out roofs even in cold and wet climates.
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4.2.2. Organization

This category concerns the organization of the blue-green roof project and the relations
between the involved actors. Many different disciplines are involved in the design and
construction of a building roof, so coordination is essential to avoid misunderstandings
or conflicts of interest. Mitigating measures may be instated as early as in the choice of
contract strategy for the project. Defining a matrix of responsibility and appointing a roof
manager for the project helps clarifying interface problems between disciplines during
design and construction.

Among the two cases of complete collapse of green roofs found among the case studies,
one in Hong Kong was found to originate from poor organization of the roof’s construction.
Unclear building instructions and responsibility interfaces caused the roof’s as-built weight
to greatly exceed what was originally designed [78].

4.2.3. Material Integrity

This category comprises defects caused by material failure. Interviewees noted that
properly designed and built roofs rarely experience material failure, but improper use or
assembly of materials may lead to their design specifications being exceeded. A common
defect seen in compact roofs is leaks along seams between roofing sheets. This is more
common in corners or along edges than on a flat roof, due to the geometry being more
challenging for the roofer to work with [79].

Leaks are also somewhat common around perforations in the roofing membrane, e.g.,
drains or fastening brackets. While these can be made waterproof, and usually are, having
a high number of them on a roof will increase the risk of leaks occurring.

Repairs costing tens of millions of Euros were caused by water intrusion through
fastening systems and parapets in a Norwegian university building [69]. The building
had been designed with exposed and visible ventilation equipment on its roof, as an
architectural signal of the technical specialization of the university campus. This choice
increased quality risk substantially, as the equipment had to be fastened at thousands
of points perforating the roofing membrane. Even assuming a leak rate as low as 0.1%
per fastening point, the roof would still be statistically expected to have several intrusion
points for moisture spread across its roof—which also turned out to be the case in practice.
With this probability of failure, a roof with only a hundred perforations would only have a
1-in-10 probability of containing an intrusion point at all.

Damage to the roof membrane itself may also occur during the construction and
use phases. Several interviewees stressed the importance of keeping the roof clean of
debris. Small, sharp objects like screws, metal clippings, washers, or pebbles may be
dropped by workers on the roof, or stuck underneath the soles of shoes, and perforate the
roofing membrane if stepped on. Such a defect will be particularly difficult to discover in
a blue-green roof post assembly as it will be hidden underneath the blue-green layers. It
is therefore of vital importance to ensure the integrity of the roof before and during the
assembly of the blue-green layers. If the roof is designed and assembled correctly, the
potential for roof membrane damage is drastically decreased after full assembly, as the
membrane is shielded from exposure. A watertightness test of the roof is recommended
before the blue-green layers are assembled, to make sure of the integrity of the roofing
before it is buried.

4.2.4. Moisture-Proof Design

This category comprises moisture damages not caused by material failure. Notably
among these is defects where running water passes around the roofing. This is usually
caused when the membrane fold along parapets and adjoining walls is too low, combined
with water pooling on the roof. Wind may then drive the water up against and over the
fold [79]. Terrace doors level with the terrace are particularly susceptible to this type of
water intrusion. Driving rain may also push rain droplets through joints and underneath
drip edges in flashings, causing water intrusions around parapets.
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Leaks of indoor air into the roof is another notable cause of defects in compact
roofs [79]. A case was found wherein condensation of humid indoor air ruined a compact
roof within 15 years of the building’s construction, to the point that a complete renovation
had to be carried out [21]. Hutchinson [80] describes a case wherein condensation of water
vapour in indoor air caused significant rot to a compact wooden roof in Chicago. One root
cause of the defects was a notable lack of awareness of the basic principles of building
physics. The case makes evident that information which may increase or mitigate risks
may not always be known to those involved in a project, despite being publicly available.

4.2.5. Drainage and Drains

Water pooling on the membrane due to insufficient drainage sloping is also considered
a defect, which may not in itself cause damage to the building but has the potential to
cause or exacerbate other defects. Overflow drains are essential, but incorrect installation
may also cause defects. The drain seen on Figure 3 is arguably placed too low, making
it difficult to waterproof by using a sleeve. Its low placement also causes water to flow
through it in unintended situations, such as when wind pushes roof water up against the
parapet. As overflow drains are mainly intended as an emergency measure, the façade
beneath the drain is rarely protected against soiling or discoloration from dripping water.

A defect specific to cold climates is that of ice build-up, forming icicles or ice chunks
that pose a risk to passers-by beneath the roof. It is caused by snow being melted by the
heat flux through the roof, and re-freezing once the snowmelt runs away from the heated
part of the roof, e.g., eaves or overhangs. The phenomenon may also create a dam of ice,
creating a large pool of snowmelt on the roof, which may cause water damage or even a
risk of structural failure [81]. It is not known to what degree blue-green roofs are vulnerable
to ice build-up, as no literature has been found on the subject.

The second case of complete collapse of a green roof in literature was caused by
drainage failure. Snowmelt from a roof overhanging a green roof overflowed from the roof
gutter falling onto a section of the green roof where it re-froze, and ice piled up over time.
The roof’s capacity was finally exceeded by a heavy snowfall on top of the ice, followed by
rain [82].

A peculiar case of a compact roof collapsing was found in Norway, caused by the
weight of accumulated rainwater after an errant football had blocked the singular drain on
a flat compact roof [83]. A simple leaf grate or emergency overflow drain would have been
sufficient to prevent this collapse case, highlighting the risk inherent in systems with single
points of failure.

Insufficient design and operation of an advanced roof downpipe system caused
flooding and large moisture damages in a Norwegian school building [84].

4.2.6. Structural Loads and Wind

The weight of a green roof is perhaps the quality risk issue that has received the most
attention in investigated literature. Especially for retrofits, adding extra mass to the roof
may present the risk of deformations, drainage failure, and in extreme cases, collapse. It is
crucial to account for the expected load from the blue-green roof—including the weight of
detained water and snow if applicable—and the capacity of the structure from the early
stages of the design process. Fortunately for the management of quality risk, structural
loads are quantifiable and can be designed for, unlike for instance the risks of leakage, poor
workmanship, or faulty maintenance.

In the investigated cases of roof collapse [78,82,83], collapse was not triggered during
normal states of operation, but because the loads imposed on the roof greatly exceeded
design levels due to accidental circumstances. The root causes of collapse were not caused
by poor structural engineering, but by poor communication or compromised drainage.

The impact of wind on the roof should also be analysed. Wind suction may pose a
challenge, particularly along roof edges and in corners, where it may be advisable to weigh
down the green roof with ballast or a mechanical attachment [76].
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4.2.7. Fire Protection

Green roofs are seen to be adequately resistant to sparks and radiated heat [76,77]. To
mitigate the spread of fire, a gravel belt may be established along the edges of the roof.
This also helps weigh the roof down against wind and prevents plant roots from reaching
the edge folds of the roof membrane. Dead plants and dry leaves should be removed from
the roof as part of regular maintenance.

If the blue-green roof is used as part of a public green space and accessible to visitors,
an evacuation plan for the roof must also be established. Local fire codes may impose
additional requirements and should always be consulted.

4.2.8. Maintenance

Proper maintenance is imperative to the long-term operation of a green roof [77]. The
roof needs to be designed with maintenance in mind, including access for maintenance
personnel. Green roofs require extra maintenance in the establishment phase, typically the
two first years of operation.

It was noted by interviewees that roofs that are not visible from vantage points nearby
are susceptible to maintenance failures—eventual defects such as dead plants or pooling of
water may not be noticed.

4.2.9. Environmental Concerns

While not necessarily a defect in the traditional sense, it is important to note environ-
mental concerns of the green roof as this does influence its quality. Primary concerns are
biodiversity (avoid the use of black-listed species of plants [85]), seepage of pollutants from
roof runoff, and the deposit of construction waste such as packaging.

Preliminary research on carbon emissions associated with building defects—primarily
caused by the energy requirements for building dryers—suggest that the carbon emissions
associated with building defect repairs are large and under-estimated [39]. Ensuring a
defect-free roof may thus arguably count as a sustainability measure.

4.3. Roof Defect Responsibility

Comprehensive statistics on the root causes of roof defects could regrettably not be
found. Anecdotally, two of the interviewees who were working with roof defects claimed
to have experienced in their work an approximately even split between design flaws and
build flaws. Other interviewees with experience in green roof assembly noted that it was
uncommon for them to arrive to a swept and cleaned roof on the day of assembly.

The examined case studies show defects originating in different phases and disciplines,
without any clear trend evident in the small sample size. However, one can note a general
lack of coordination between disciplines in the defect cases. Several defects could have
been avoided if information known to one actor had been available to guide the decisions
of another. Perhaps most notable was the case described by Hutchinson [80], where
basic mistakes of building physics caused and exacerbated severe damage to a compact
wooden roof. The damage could have been avoided if the roof contractor had consulted
known information about moisture safe design. This case highlights both the need and the
potential for widely available and understandable guidance documents to help reduce the
number of defects in the construction sector.

4.4. When Defects Occur

Defects may originate in any stage of the construction process (as described in
Figure 2), even on the concept stage. For instance, a chosen roof concept may necessi-
tate a high number of perforations or challenging geometries, leading to an increased
quality risk compared to a more conventional concept. Such a failure of concept was
observed in one of the case buildings [69]. The main stages in which defects can be said to
originate are the pre-design, design, and construction stages. However, measures may be
taken in earlier stages to mitigate the risks, for instance by selecting a design with fewer
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potential points of failure, or one that is easier to build. Flaws can also be mitigated or cor-
rected in the use phase, through maintenance or adapting the use to the design’s tolerance
limits. Once again, there is evident a need for decision-makers to consult information from
several disciplines to avoid decisions that increase the quality risk of the project. The risk
reduction framework is hence presented as a matrix where checklist items are presented
according to project phases as well as according to disciplines.

5. Discussion

This article has investigated the following research questions: What are the main
quality risks associated with blue-green roofs, in which stages of the building process
may they be mitigated, and what are the main challenges to addressing the quality risks
through a risk reduction framework. The research questions are discussed separately in
the paragraphs below.

5.1. What Are the Main Quality Risks Associated with Blue-Green Roofs?

The main quality risk associated with blue-green roofs is that of water intrusion into
the roof structure. Recall the definition of quality risk as a synthesis of consequences and
probability of defects. It is known from experience that water intrusion does occur in a
substantial number of compact roofs—the probability of defects occurring is high. It is
also known from the literature that defects in green roofs may be difficult to discover and
expensive to repair, leading to high consequences should they occur. In sum, the risk
associated with green roofs needs improved management. To reduce risk, it is therefore
imperative to reduce the probability of water intrusion. According to the characterization
of building defects by [50], three approaches are possible to this end: (1) avoiding flaws
in design and construction, (2) conducting proper maintenance (mostly in the use phase,
although maintainability needs to be considered in all the earlier phases), and (3) avoiding
situations where the building’s design parameters are exceeded (in the use phase). As can
be seen, all the defect categories are heavily affected by the design and construction of the
building, making these phases the most critical to the building’s integrity.

5.2. In Which Stages of the Building Process May the Different Quality Risks Be Mitigated?

The greatest potential for quality risk mitigation lies in the pre-design, design, and
construction stages of the project. With currently available data, it is not possible to point
to any single participant or actor in a blue-green roof project to be statistically more at fault
than any others. However, it is noted that most registered defects are well known both in
literature and to the actors in the industry, as are the ways to mitigate them. The “correct
solution”—or at least sound principles of design—for most conceivable building details is
known information, and theoretically available to all participants in the project.

As such, the key question regarding roof defects is not “what goes wrong?”, but “why
does it go wrong?” Few construction projects venture into unknown territory in terms of
design challenges. Building science has come far enough that building a compact roof
does not require improvisation or guesswork. While roof construction may not be an exact
science, the general principles for a moisture safe and defect-free roof have long since been
identified. Yet, for various reasons, they are not always applied, and roof defects occur as
a result.

Thus, it is not required of a risk reduction framework to advance the limits of knowl-
edge of building science. Rather, it is to bridge the knowledge gaps existing within the
body of known information and communicating known information to the actors who
need to know it. This is seen for instance in the Norwegian standard for moisture-safe
building design, whose main body of text only considers planning, procedures, routines,
and delegation of responsibility rather than building physics [61].

Most notably, design concerns must be communicated between the various technical
disciplines to find solutions that meet their various requirements. This is also true when
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weighing risk against functionality. A moisture-safe roof that fails to retain water is not an
effective blue-green roof.

5.3. What Are the Main Challenges to Be Addressed by a Quality Risk Reduction Framework?

The research suggests that the challenges remaining to be solved regarding building
quality risk do not lie on the technical level. The common types of defects and their causes
are well known, at least qualitatively, as are the technical solutions required to meet them.

Instead, the potential to mitigate risk lies on the processual level. Raising awareness
of the relevant challenges and issues may help avoiding basic, but impactful mistakes.
This was also noted in earlier research, for instance by [25]. For instance, prioritizing
membrane integrity during the construction process and performing a watertightness
test. A framework may also help in telling which lines of communication will have to be
established within the project.

How the process itself is controlled may also be improved. This may include a
clarification of what types of decisions will have to be made by project leaders at the
different stages in the process. The main component of the risk reduction framework, the
matrix of key decisions, is presented in Section 4.2 and attached in full as Appendix A to
this article.

6. Conclusions

The research shows that technical risks associated with blue-green roofs are numerous,
but overall manageable. Technical issues are known in the building industry and described
in technical and scientific literature. The most notable risk is that of water intrusion into the
roof structure, which may happen as a result of several different defects, and is challenging
to identify and repair. Weak points of green roofs that should receive extra attention during
planning, design, construction, and maintenance include drains and emergency drains,
fastening systems for roof equipment, and transitions between building elements such as
the roof and its adjoining parapets and walls.

Many common risks relevant to blue-green roofs are shared with compact roofs, which
have been studied extensively for decades. However, this presentation and application of
knowledge is lacking, as risk elements are varying over a wide range of different disciplines
and areas of responsibility. A good way to manage the risk appears to be lacking, as shown
by the large number of defects found in compact roof structures to this date. Processual
understanding may be the key to addressing these defects effectively.

The outline of a quality risk reduction framework has been presented, listing the
main concerns related to quality risk in a blue-green roof project. It is applicable to new
builds as well as retrofit projects. The framework is not meant to replace existing literature,
but to serve as a supplement by highlighting the main concerns that will require further
consideration to result in reasonably informed decisions. The framework intends to lead
the user to seek information in the existing body of knowledge, for Norway this includes
the SINTEF Building Research Design Guides or other national recommendations. It
also intends to ease and clarify communication on key issues between actors and across
multiple disciplines.

Future work will include refining the framework and to apply it in a blue-green roof
project. The applicability of the framework should be tested for both new builds and retrofit
projects. Lessons learned from the projects will be used to review, refine, and potentially
develop new versions of the framework.
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Appendix A. Risk Reduction Framework Table

Table A1. Matrix of key actions in the risk reduction framework.

Project Phase
Categories Concept Pre-Design Design Construction Use

Blue-green
functionality (incl.

plant survival)
• Determine/

evaluate whether
a blue-green roof
is appropriate for
the project

• Define strategic
goal of the roof
(i.e. aesthet-
ics/stormwater/
“environmental
scoring”)

• Determine
strategy for roof
water reuse

• Determine
whether the roof
shall provide
retention or just
detention

• Select water
storage concept

• Evaluate concept
according to
maintainability
(i.e., roof access)

• Selection of
plants and
substrate to suit
conditions of the
roof (shading,
traffic, wind,
temperature, etc.)

• Fit the delivery
and immediate
assembly of
plants into
construction
schedule

• Assemble the roof
immediately
upon delivery

• Establish and
follow up weed-
ing/maintenance
plan

• Consider service
agreement with
vendor

• Replace dead
plants
periodically

Organization
• Assess the

impetus for the
roof (own initia-
tive/regulatory)
and how this may
affect decisions

• Evaluate
alternative
solutions—Is a
blue-green roof
mandated, or can
stormwater
management be
handled better by
other means?

• Define the
intended use of
the roof

• Choose contract
strategy

• Consider
blue-grey roof if
blue-green roof is
not an option

• Involve relevant
disciplines early
in the decision
process

• Establish
communication
between
disciplines

• Define a matrix of
responsibility,
clarifying the
interfaces
between
disciplines

• Appoint a
manager
responsible for
the roof

• Third-
party/extended
design
verification

• Determine what
adaptations are
necessary if the
blue-green roof is
removed from the
project

• Third-
party/extended
inspection of the
roof

• Schedule delivery
and assembly

• Coordinate
disciplines on site

• Ready the roof for
assembly of
blue-green layers

• Appoint
personnel
responsible for
the roof (on site)
and its readiness
for assembly

• Ensure awareness
of the need for
roof integrity
among workers
on site

• Periodic review
of Maintenance—
Operations—
Management
(MOM) plan

www.klima2050.no
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Table A1. Cont.

Project Phase
Categories Concept Pre-Design Design Construction Use

Material integrity
(primarily roof

membrane)
• Estimate the level

of traffic/activity
on the roof

• Estimate the
thickness and
weight of the roof

• Determine roof
structure design
(conven-
tional/inverted
roof)

• Project owner:
specify the need
for a
watertightness
test of the roof in
contract
documents

• Choose root
protection, roof
membrane, and
insulation
materials
according to
expected loads

• Evaluate the need
for “traffic zones”
to be established
on the roof

• Design
equipment bases
and fastening
points to avoid
stretching the
membrane

• Consider the
installation of
moisture sensors
to locate (future,
potential) leaks

• Ensure that
selected materials
do not react
chemically

• Perform
watertightness
test before the
assembly of
blue-green layers

• Protect the roof
membrane from
traffic and loads.

• Consider
temporary
membrane
protection

• Clear and inspect
the roof before
blue-green layers
are assembled

• Assess the impact
of traffic over
time and the need
for further
protection

• Periodic
inspections if
possible,
especially if
operating
conditions/loads
are changed over
time

Moisture-proof design
• Assess the

complexity of the
roof (geometry,
number of roof
surfaces,
perforations,
installations)

• Identify
equipment on the
roof

• Identify all
installations
perforating the
membrane

• Identify all
installations in
the para-
pet/adjoining
walls (including
doors)

• Identify
flashings/façade
transitions

• Consider
temporary
covering of the
roof during
construction
process

• Review
membrane details
(joints, overlaps,
edges, and
perforations)

• Review special
design details not
covered in design
guides

• Review flashing
details

• Review thermal
bridges

• Control and
verify membrane
transitions and
edges.

• Periodically
inspect
membrane edges
and perforations,
if possible

• Use
thermography to
chart
condensation
risk/leaks

Drainage and drains
• Estimate storage

capacity
needs/ambitions
of water on roof

• Identify drainage
pathways and
connection to safe
floodways

• Specify the
number of drains
and emergency
drains

• Choose whether
to build internal
or external drains
(or a
combination)

• Assess frost
issues with the
chosen solution

• Develop a
schematic for roof
sloping

• Define protection
against
deformation (due
to equipment on
roof, traffic)

• Design drainage
layer to allow
proper drainage

• Determine
placement of
drains and
emergency drains,
including the
height of the
latter

• Design drains for
easy inspection

• Use leaf grates
and sand traps in
drains

• Control the built
solution against
roof sloping
schematic

• Control drainage
paths and
deformations

• Control drains
including
fastening/sleeves

• Periodically
control drainage
function

• Periodically
inspect drains for
blockages
(especially if
extreme rain is
forecast)
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Table A1. Cont.

Project Phase
Categories Concept Pre-Design Design Construction Use

Structural loads and
wind • Estimate weight

of roof
• Estimate weight

of water on roof
• Estimate wind

profiles due to
roof shape

• Estimate added
weight due to
maintenance
equipment/traffic

• Estimate added
weight due to
roof equipment
needs

• Identify loads on
the roof

• Ensure that the
relevant loads are
included in the
early structural
design process.

• Determine total
weight of roof,
assuming full
saturation (or
even
compromised
drainage)

• Specify insulation
stiffness
requirements

• Determine
“ballast effect”
(wind resistance)
of blue-green
layers.

• Avoid storage of
materials or
equipment on the
roof during
construction

• Assess the impact
of wind during
the construction
period

• Evaluate and
limit the
maximum growth
of vegetation

• Inspect for water
pooling due to
clogged drains

• Inspect for water
pooling due to
deformations

• Evaluate roof
vulnerability to
wind under dry
conditions

Fire protection
• Assess how the

shape and
placement of
building affects
fire concerns

• Map main fire
concerns

• Define evacuation
plan (if roof is
open to the
public)

• Define measures
against spread of
fire across the
roof.

• Assess
compliance of
green roof
assemblies with
local fire codes

• Periodic removal
of dead plants,
dry leaves, etc.

Maintenance
• Estimate level of

maintenance for
the roof concept

• Assess funding
for maintenance

• Establish access
for maintenance
person-
nel/equipment

• Owner: provide
clear maintenance
specifications in
tender
documents.

• Detail MOM
plans

• Determine type of
root protection
based on
maintenance
ambitions

• Document any
changes between
designed and
built solutions

• Verify compliance
of material
requirements

• Follow
maintenance
plans

• Periodic
inspections of
roof

Environmental issues
• Define

environmental
ambitions of the
roof

• Assess potential
for/threats
against
biodiversity

• Specify
requirements for
products,
packaging, and
processes

• Demand EPDs for
all materials,
including soil mix
for substrate

• Assess seepage of
chemicals from
materials

• Ensure
responsible
handling of waste
on the
construction site

• Avoid use of salts
to de-ice traffic
zones

• Assess the impact
of fertilizers in
the roof runoff
water

Appendix B. Interview Questionnaire

(Translated from Norwegian)
Part 1: General

1. What is your current position?
2. What is your background and work experience?

Part 2: Practical Quality Risk Management

(1) Do you experience that there are a lot of incorrectly executed roofs in Norway?

(a) What usually goes wrong? Wrong people? Flawed specifications from the owner?
(b) Have you experienced fake or fraudulent materials?
(c) What is the extent of roof damages in Norway?
(d) Composition of workers? How much depends on the construction crew?

(2) What are the common fault mechanisms for incorrectly executed roofs? What goes
wrong when things go wrong?

(a) Holes in materials, loose seams/joints, are the materials not waterproof, etc.?
(b) WHEN do these flaws occur?
(c) How much time do you have to discover the flaws before damage occurs?
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(3) What characterizes incorrectly executed roofs? Structure, materials, which important
materials are not used, etc.

(a) Different operating conditions and prerequisites place different requirements
for design/materials for the roofing. When something goes wrong, what
requirements are most often not met?

(4) Have you experienced cases where it has been built correctly, but with the wrong
materials?

(a) How do you detect the error?
(b) Can it go well?

(5) To what extent do you think that the current regulations ensure the use of the right
roofing materials (prevents you from getting the wrong type of product on the roof)?

(a) Are specific documents required to be attached?
(b) If you were to quit your legitimate job and start as a thug in this sector [i.e.,

exploiting weaknesses in the current system]: Would it be easy to circumvent
the regulations, for those who really want to?

(c) Is anything/enough being done with those who are caught?
(d) What if you discover defects too late?

(6) Do you perceive that the customers/clients work to investigate what kind of products
they want/get?

(7) Proportions, what does a quality product (+quality control?) cost compared to a cheap
product?

(a) What is your perception of the cost of doing an extra quality check?

(8) What perception do you have of the control if the cheaper solution is chosen?
(9) How is the relationship with the competitors in the roofing sector? Do you perceive it

as generally tidy?

(a) Internal justice in the sector?

Part 3: Corporate Governance

1. How can the client protect himself against the use of bad or fraudulent materials?

a. Increased degree of early involvement/interaction with potential suppliers?
b. Use of incentives?
c. Use of agreement regulators as max. supplier link/supply chain structure?

2. What influence does the client have?

a. Follow-up question: How should the client proceed in case of suspicion of
unwanted/sub-standard materials?

b. Follow-up question: How can the project owner secure themselves against poor
supplier choices?

c. Follow-up question: How can the project owner follow up in the implementation
phase?

3. Do you think the protection against such incidents is well enough implemented in
projects that are carried out today?

Part 4: Control

1. What control mechanisms exist today to handle the flow of materials to the construc-
tion site?

a. Follow-up question: Are specific documents required to be attached?
b. Follow-up question: To what extent are background checks/checks carried out

on suppliers?

2. Who is responsible for controlling the quality of the materials?

a. Follow-up question: Who should be responsible?
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3. What control mechanisms should be in place to handle the flow of materials to the
construction site?

Part 5: Closing Questions

1. Do you know specific people, companies or organizations that we should contact
regarding this topic?

2. Are there any aspects of these issue that are little or not addressed in the industry,
and that may be interesting to examine in more detail?

3. Is it okay if we contact you again later, if there is a need for further inquiries?
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