
Service-Aware Virtual Network Function placement
in Software Defined Networks

Elin Sundby Boysen
University of Oslo, SINTEF Digital
Email: elinsundby.boysen@sintef.no

Joakim Flathagen
Norwegian Defence Research Establishment (FFI)

Email: joakim.flathagen@ffi.no

Josef Noll
University of Oslo

Email: josef.noll@its.uio.no

Abstract—Current mobile units have multiple network inter-
faces and can connect to multiple access points simultaneously.
This represents new opportunities. Choosing the right network,
and the optimal route through that network, requires knowl-
edge about the state of the network. With Software Defined
Networking where control plane and data plane are separated,
SDN controllers can have a good overview over a wide variety of
network parameters. Thus, traffic from a service with specific
service parameter requirements can be routed so that these
requirements are likely to be met. In this paper we have
investigated how the optimal placement of a network function in
SDN varies based on service parameters such as latency, price,
packet loss and throughput. We present a method to choose the
best placement based on a service profile according to the current
network state. The results are validated by implementing the
methods in an emulated SDN network.

I. INTRODUCTION

Mobile units that can connect to multiple access points
simultaneously (as illustrated in Figure 1) represent new
opportunities. One example scenario where this can be useful
is for public transportation such as ferries and tourist buses
where the transport company provide Internet access to its
passengers. Network availability, capacity, speed or quality
will vary throughout the journey, but can be improved using
multiple access points simultaneously. Services such as video
streaming or delay-sensitive applications (interactive games)
have different requirements with regard to parameters such as
security, reliability, bandwidth, packet loss, latency or even
cost. In the rest of this paper we will refer to these parameters
as service parameters.

Choosing the right network, and the optimal route through
that network, requires some knowledge about the network’s
state. With the introduction of Software Defined Networking
(SDN) [1] where control plane and data plane are separated,
SDN controllers can have a good overview over the situation in
their own network. Thus, the traffic of a service with specific
service parameter requirements can be routed so that these
requirements are likely to be met.

Available networks and their parameters will vary over time.
For our mobile unit in the example scenario, one or more of
the following situations can occur:

1) From the available networks available, one is considered
the most likely to meet the service’s parameter require-
ments. The SDN controller sets up an end-to-end path
between the ambulance and the hospital.

Figure 1. Target scenario

2) Due to mobility, a running session between ambulance
and hospital is experiencing degrading quality, and an-
other available network can be accessed. However, even
though the SDN controller has information on the general
state of this network, the access link quality should be
assessed through a make-before-break handover. Such a
solution is described in [2].

3) Capacity requirements for a given service that is needed
between the ambulance and the hospital cannot be met
by any single available network, but by a combination
of them. Thus, the mobile node connects through more
than one accessible network, and a traffic splitter function
is required to route traffic via the two or more paths
connecting to the ambulance.

The first of our three situations is a routing problem where
[3] and [4] are among many offered solutions. The focus of
this paper lies on situations 2) and 3), where both require
a functionality somewhere in the network that can duplicate
packets or split packet streams. The physical placement of this
functionality would until recently have been restricted by the
service providers’ server installations, and thus represented a
trade-off between service latency and installation costs. Now,
SDN in combination with Virtual Network Functions (VNF)
has the potential for service providers to meet the end users’
service requirements [5]. As the SDN control plane consists
of one or more SDN controllers that has a global view of the
entire network it rules, the SDN controller can be contacted
by SDN applications that present their requirements of net-
work resources or network behaviour. VNFs - the process of
moving network services away from dedicated hardware into
a virtualized environment - are complementary to SDN. SDN
in combination with VNFs, makes it possible to establish on-
demand network functions such as the functions we describe
in our example situations 2) and 3), in optimal distance to the

2019 IEEE Wireless Communications and Networking Conference (WCNC)

978-1-5386-7646-2/19/$31.00 ©2019 IEEE

Figure 2. SDN network with one core network and two operator networks

user, and to update routing schemes and placement of network
functions according to varying user needs or network state. A
service provider can utilize a set of nodes and establish an
overlay to connect these nodes. SDN provides the functionality
to create such an overlay on top of the physical network, as
depicted in Figure 2.

In this paper we have investigated how the optimal place-
ment of a network function in SDN vary based on service
parameters and present a method to choose the best placement
based on the user’s choice. The results are validated by
implementing the method in an emulated SDN network.

The rest of this paper is organized as follows. In section
2 we present related work and provide a background for
our contribution. Section 3 describes our target scenario and
requirements, before we present our virtual network function
and our algorithms for optimized virtualized network function
placement based on metric-specific weight functions. Our pro-
totype implementation is described in section 4, and evaluation
and analysis of the results are presented in section 5. In section
6, we conclude and give some prospects for future work.

II. RELATED WORK

The first approach to address mobility for Internet appli-
cations was Mobile IP. Since the introduction of Mobile IP
(MIPv6) in 2002, various enhancements have been proposed
[6], [7], [8] to mitigate high signalling overhead, long latency
or packet loss. However, they all require some form a mobility
anchor, either as centralized function or as functions in the
local networks. The placement of this anchor function is
based on implementation on physical routers and the QoS
experienced by the end user cannot be altered by the anchor
function itself. Even with the improvements proposed by
PMIPv6, QoS suffers during handovers. Kukliński et al. [9]
have considered the following aspects of SDN as beneficial
for mobile services: Direct operations on dataflows, handover
that can be based on multiple criteria, no need to change IP
address of the mobile node and faster handover operations. As
SDN can make it possible to dynamically establish a network

function that can act as an anchor point, its placement can be
dynamic and thus changed according to current requirements
and network state. This is discussed in [10], but their solution
does not take the combination of service and user requirements
fully into consideration as we do here.

Several works that discuss virtual network placement are
grounded in the need for placing and chaining traditional
network functions such as firewalls and load balancers and
turn to linear programming [11], [12] or genetic algorithms
[13] to solve the problem. However, as we target a network
with limited nodes and paths, we aim for a simpler solution
in our work.

III. NETWORK MODEL AND PROBLEM STATEMENT

In this section we give a short description of the challenges
we wish to solve and describe our basic model.

A. Target scenario and design requirements

We consider a mobile node (MN) that has multiple commu-
nication interfaces, such as the tourist bus in our introduction.
Typically, each of these interfaces use different technologies
and connect to separate networks maintained by different
operators - here we call them ”operator networks” - as depicted
in Figure 1. Nevertheless, these networks are connected to a
larger network (i.e., the Internet) where the desired services are
available. The MN can, in other words use any of its interfaces
to connect to a desired service, and should be able to choose
the interface that provides the optimal combination of service
parameters as defined in our introduction. As these parameters
can be subject to change at any time, selecting the appropriate
interface is a non-trivial problem. In addition, the chosen
interface may also lose connection to its operator network at
any given time. It is in the interest of both the MN and the
service provider (at CN) that the MN utilizes its interfaces
in the best possible way to ensure optimal service delivery.
This could involve automatic service handover between the
interfaces, or some sort of manual interaction performed by the
user. A solution relying merely on IP routing would not suffice,
even if interfaces are chosen based on QoS primitives, as the
IP handover would cause service interruption. Our solution
must therefore solve the problem at a higher level, involving
the service provider, including some awareness of both the
core and the operator networks.

As depicted in Figure 1 our mobile node has two interfaces
and can connect to two different networks and reach the
corresponding node through a core network. Both the core
network and the two operator networks consist of a vast
number of routers and possible paths. We assume that a
virtual network is created on top of the physical network, for
instance using network slicing techniques and that this overlay
is controlled by a common SDN-NFV as in in Figure 2.

B. Virtual Network Function

Our network demonstrator is a simplified version of a VNF,
and merely consists of flow rule manipulations for layer 3
packets. It serves the purpose for this study, and it is easy

2019 IEEE Wireless Communications and Networking Conference (WCNC)

Figure 3. 1: A path is set up betweeen CN and MN. 2: SDN controllers sets
up a duplication point. 3: A second path is set up from the duplication point
to MN.

to envision enhancements such as application layer proxy
mechanisms that could extend the functionality in the future.
For that reason, we call this mechanism a network function
despite its simplicity.

Our communication client on the MN communicates with
the SDN controller via the service provider through a north-
bound REST-interface. The SDN controller then establishes a
“duplication point” in one of the nodes and transmits flow-
rules using OpenFlow [14] via the southbound interface, see
Figure 3. Routes are established via the Intent-framework
in ONOS SDN controller platform. Our architecture thus
provides the MN with the capability to establish a streaming
session on two interfaces simultaneously by communicating
directly with the SDN-server which establishes a “duplication
point”. In a full setup, direct communication between MN and
SDN controller may not be feasible as this feature may be
limited by the SLAs between service providers and between
service providers and end user. However, for the scope of
this work, our solution solves the challenge in the following
way. We allow direct communication between the MN and an
intermediate node. This node represent the service provider in
our case, which handles SLAs from the services and allows
to send control messages to the SDN controller.

First, we define a virtual network function that bridges both
operator networks and can direct traffic from the CN on both
networks towards the MN. Second, we create an algorithm that
can find the optimal position of this network function based
on the requirements set by the user application on MN.

C. Network Function Placement

We are searching for the optimal placement for the network
function that will either duplicate packets or increase capacity
from the CN to the MN over the two networks that MN
connects to. At first sight, the placement may intuitively be on
the node that provides the least hops to each of the operator
network nodes that connect to MN. However, each connection
has a certain latency and a max capacity, other traffic in the
network will influence the available paths, capacity or packet
loss. Monetary cost (price) is also a factor that must be taken
into consideration. The optimal placement of the network
function depends on these metrics and on the requirements
set either by the individual service MN is accessing or by the
MN itself. These requirements also indicate the importance
and/or constraints of the metrics when running a service. We
assume that the SDN controller has updated information about
the metrics on each link in the core network, and can obtain

the same metrics from the SDN controllers in the two operator
networks.

When considering the metrics described above, we can de-
scribe the network as a weighted graph G = (V,E, l, pr, pl, c),
where V = {v1, v2, . . .} correspond to the nodes MN, CN and
all the nodes in the operator networks and core network, and E
are edges that connect the nodes. The weight functions l, pr, pl
and c describe the metrics on each of the edges, where l =
latency (ms), pr = price (AC), pl = packet loss (%) and c =
capacity (Mbps).

When the network function is placed on a certain node vi
in the core network, the paths from CN to MN consist of the
paths PCN i from CN to the node i, Pi NW1 from node vi
to MN via Network 1, and Pi NW2 from node vi to MN via
Network 2, see Figure 3. Although we use two networks in our
description, this is not a limitation of the model. The number
of interfaces of the MN gives the practical limitation of the
number of operator networks involved.

Let P be a path in the graph G with a set of vertices and
edges. The edges F in the path P are a subset of E (F ⊆ E).
The cost of the path P with respect to each of the metrics
described above can be described as follows:

Latency on the path P :

L(P) =
∑
ej∈F

l(ej) (1)

where l(ej) is the latency on the edge ej

Price of the path P :

Pr(P) =
∑
ej∈F

pr(ej) (2)

where pr(ej) is the price of the edge ej

Packet loss on the path P :

Pl(P) = 1−
∏
ej∈F

(1− pl(fj)) (3)

where pl(ej) is the packet loss on the edge ej

Max throughput on the path P ::

C(P) = min
ej∈F

c(fj) (4)

where c(ej) is the capacity on the edge ej
To calculate the path with the least weight we use Dijkstra’s

algorithm [15]. However, to use this algorithm, we must be
able to add the weights. Hence, to calculate the packet loss
in any path we find an alternative function for the packet loss
where we use the sum of logarithms. As the packet loss on a
link 0 ≤ pl(ej) ≤ 1⇒ logb(1− pl(ej)) ≤ 0.

Packet loss on the path P :

Pl(P) = b
−

∑
ej∈F M(ej) (5)

where M(ej) = (−1) logb(1−pl(ej)) and pl(ej) is the packet
loss on the edge ej

2019 IEEE Wireless Communications and Networking Conference (WCNC)

The highest absolute values of logb(1−pl(ej)) represent the
highest packet loss, and as Dijkstra’s algorithm is searching
for a minimum path, we multiply each logarithm with −1 to
get M(ej). Thus, we can both work with positive weights, and
find the lowest values on the links with the least packet loss.
We use M(ej) as our weight function for calculating packet
loss in the following.

Algorithm 1: Finding optimal placement from weight
function W using Dijkstra on positive weighted edges
Data: Weight function W as an array,
List of nodes in core network Core nodes
Result: Node in Core network at which the Network

Function should be placed
begin

N = Size of Core nodes;
W1 = W with all edges involving Network 2 set
to -1;
W2 = W with all edges involving Network 1 set
to -1;

for i = 0 to N do
Use Dijkstra’s algorithm on edges with weight
>= 0 to find the cost of the shortest path
from Core nodes[i] to MN using W1;

Use Dijkstra’s algorithm on edges with weight
>= 0 to find the cost of the shortest path
from Core nodes[i] to MN using W2;

Calculate mean cost for Core nodes[i];
Find node with lowest mean cost n mean;
Return n mean;

The optimal placement of our Network function can be
calculated with respect to either latency, price or packet loss
using the weight function l(ej), pr(ej) or M(ej) as input to
the pseudo code in Algorithm 1.

To calculate the path from the Network Function to the MN
via each of the operator networks that MN connects to, we
use Dijkstra’s algorithm for shortest path twice; once with all
edges involving Network 1 removed (W1 in Algorithm 1), and
once with all edges to Network 2 removed (W1 in Algorithm
1). By using this method for each of the core nodes where
our Network Function can be placed, we find a cost associated
with the placement for each of the connecting networks.

The method in Algorithm 1 has its shortcomings as it only
returns the best placement based on one parameter, i.e. W is
either price - pr(ej), latency - l(ej) or packet loss - M(ej).
It also does not take into consideration that there might be
restrictions on the min/max values of certain edges in the
path, such as minimum bandwidth. To compensate for this,
we use Algorithm 2. In this algorithm we introduce the term
importance weight IW - for each of the metrics (latency, price
and packet loss) to identify which metrics are of importance
to the type of service that uses the Network Function. Thus,
we can either define the importance of each metric (IW) for

each new stream or we can define traffic classes that have
predefined weight profiles.

Algorithm 2: Calculating aggregated weight function
W based on metric-specific weight functions
Data: Weight functions c(ej), l(ej), pr(ej) and

M(ej) as arrays of size N ,
Importance weights IWl, IWpr, IWM as integers
where

∑
i=l,pr,M IWi = 100,

Edge threshold values Tc, Tl, Tpr, TM (if any)
with indication on whether they are max or min
thresholds

Result: Aggregated weight function W to be used in
Algorithm 1

begin
// Check if threshold is violated and then

find normalized value f ′ from f:

foreach f(ej) = (c(ej), l(ej), pr(ej),M(ej)) do
Find fmax;
Find fmin, fmin >= 0;
for i = 0 to N do

if f(ei) < 0 OR f(ei) exceeds given
threshold then

f ′(ei) = −1;
else

f ′(ei) =
f(ei)−fmin

fmax−fmin
=⇒

0 <= f ′(ei) <= 1 ;

// Calculate aggregated weight function:

for i = 0 to N do
if l′(ej) >= 0 AND pr′(ej) >=
0 AND M ′(ej) >= 0 then

W (ei) = l′(ej)× IWl + pr′(ej)× IWpr +
M ′(ej)× IWM ;

else
W (ei) = −1 ;

Return W ;

IV. PROTOTYPE IMPLEMENTATION

The prototype of our architecture is developed based on the
ONOS SDN controller [16]. ONOS is an open-source project
supported by a large community of both network operators and
vendors and is also considered stable for production networks.

Although our scheme is developed with ONOS in mind,
we implemented the prototype as an application separate to
ONOS. This was done for the following reasons: First, we
wanted to ensure compatibility to a broader spectrum of
SDN controllers. To ensure this, we wanted to avoid a tight
integration to the Java based app framework in ONOS. Second,
there is a tendency to move SDN northbound applications off-
plattform to save controller resources and provide isolation.
The gRPC technique can provide this via efficient language-
agnostic communication. As we will explore this direction in
the future, we developed a separate application in Python.

2019 IEEE Wireless Communications and Networking Conference (WCNC)

Figure 4. Connection details in test setup

Regardless of the choice of SDN controller, the placement
algorithm must access the essential topology information
repositories. In particular, the algorithm needs information
about all links (i.e., the current topology), the remaining
capacity on all links in the topology, and the latency over
these links. The entire network topology can be retrieved
from the link database in ONOS. This database is typically
updated by the Link Layer Discovery Protocol (LLDP), which
is exchanged frequently on all links. Link capacities can be
retrieved from the port statistics, which are requested per
switch using OpenFlow. We have not found a method to obtain
link latencies from ONOS. However, this can possibly be
measured by extending the LLDP protocol with piggybacked
time stamps as proposed in [17]. Alternative methods are also
proposed in [18], but further investigations in this direction is
beyond the scope of this paper. In our prototype, link latencies
are therefore entered manually into the algorithms.

Notice that in an SDN network, the MN can not com-
municate directly with the SDN controller, since the MN is
only aware of the data-plane. Hence, we used a dual-interface
network node that could communicate both with the control
plane and the data plane. When the MN requests for example
a ”gold service” for its connection with CN, it sends a mini-
SLA message to this intermediate node, which communicates
with the SDN controller via its northbound REST interface.
At the controller, the placement of the network function is
decided and subsequently installed on the designated switch
via OpenFlow messages.

The Python code implements algorithms 1 and 2.The net-
works we use in the evaluation are based on Open vSwitch
switches within the Mininet emulator. We used ONOS 1.10,
OpenFlow 1.3 and Open vSwitch 2.8.0 in the experiments.

V. EVALUATION AND ANALYSIS

To evaluate the efficiency of our system, we have con-
structed a simple network layout consisting of nine switches in
a core network, and two operator networks consisting of three
switches each, as depicted in (Figure 4). The core network
in our simulations consists of a 3x3 matrix of nodes. Each
node in Operator Network 1 connects to one column of nodes
in the core network, while each node in Operator Network 2
connects to one row of nodes in the core network. The CN
has a direct path to each node in the core network. Thus, each
node in the core network have connection to one node in each

Figure 5. Traffic received at MN before, during, and after invoking the
network function.

of the two operator networks and to the CN. The MN connects
to one node in each of the two operator networks.

We chose this particular network layout to accommodate
a great variety of metric combinations and possible network
function positions in a rather compact layout manageable in
Mininet emulations. The weight functions l, pr, pl and c in G
were assigned a variety of values that allowed us to investigate
various combination of metrics.

A. Network function proof of concept

To demonstrate the network function, a real-time traffic flow
is sent between CN and MN via Operator Network 1. Some
packet loss is observed at the MN, which degrades the QoE.
Hence, after a while, at MN, a control message (mini-SLA)
is sent to the SDN controller to initiate a ”gold service”,
which installs the network function on one of the switches in
the core network. In this experiment the network function is
installed at a1,1. Subsequently a1,1 starts to duplicate packets
going from MN to CN and utilises Operator Network 2 in
addition to Operator Network 1. The throughput measured at
the MN is shown in Figure 5. As illustrated in this figure,
the transmission of the command to the SDN node did indeed
result in a doubling of received traffic at the MN. After a
while, the ”gold service” is no longer necessary, and the MN
requests standard service through the same interface.

After ten trials, the install time was measured to 47 ± 12
ms. The time is measured from a request message is initiated
at the MN to the duplicated streams are received at MN.
Uninstallation is merely a different mini-SLA and in practice
the same process. Consequently, the time consumption for
this process is identical. Notice that there is no latency on
the individual links in this particular test. Admittedly, a more
advanced network function would involve code execution,
which can prolong the setup time substantially. However, it is
worth noting that our simple function can be initiated without
service interruption since the original data flow can continue
simultaneous with the new flow via the duplication point.

B. Network function placement based on one metric

We now evaluate the network placement algorithm. We
consider the one-metric case first, while the multi-metric case
is discussed in the next section. For the evaluation, we use the
network presented in Figure 4.

2019 IEEE Wireless Communications and Networking Conference (WCNC)

Table I
RELATIVE IMPORTANCE OF METRICS IN TWO TRAFFIC PROFILES

Profile A Profile B
Latency 15% Latency 75%
Price 50% Price 10%
Packet loss 35% Packet loss 15%
Capacity (Threshold) 3 Capacity (Threshold) 2

Corresponding weight functions have been used in both
the emulated SDN network and as input to the Pyhton-
implementation of Algorithm 1. Using Algorithm 1 we have
calculated the mean costs of latency, capacity, packet loss
and price respectively related to the paths from CN to MN
via each of the nine core nodes. By running traffic from
CN to MN in the emulated network (set up with the same
characteristics as used in calculations), the measured latency,
capacity and packet loss could be compared to the calculations.
To generate the traffic, we used UDP with Iperf. Each of
the nine nodes have been traversed twice; once with only
Operator Network 1 connected, and once with only Operator
Network 2 connected, as described in Algorithm 1, and the
mean value was calculated. Let’s first consider the results when
the network function placement is optimised based on the
latency metric. Figure 6a illustrates both the estimated and the
measured latency between CN and MN for each of the possible
placement alternatives. The optimal placement, identified by
the algorithm, is shown in the figure outlined with a red circle.
We observe that there is very good correlation between the
estimated and the measured latencies illustrating the soundness
of the placement algorithm.

In the same way, we can instruct the algorithm to optimize
for capacity rather than latency. Figure 6b shows both the
measured and the estimated capacities. The measured values
are consistently lower than the estimated, since some of the
paths have high packet loss, which reduces the measured
capacity. The algorithm does not translate the accumulated
packet loss along a path to reduced capacity. However, the
result show that this does not necessarily impact the practical
applicability of the placement algorithm. The result show
that the algorithm can effectively pick the optimal placement
(marked in the figure).

Following this further, we can investigate packet loss as the
optimization metric in Figure 6c. In Figures 6d and 6e the
results of considering the number of hops or price as metrics
are presented. As illustrated by the graphs in the figures, the
optimal placement of network function will vary depending
on which metric is considered important.

C. Network function placement based on multiple metrics

When optimizing with respect to a traffic class, the graphs
presented in Figures 6a - 6e represent extremities, where only
one metric is considered in each case. However, for practical
purposes, more than one metric can be considered important,
and optimization will be a trade-off between relevant metrics.
Using the weight functions for each of the metrics price,
latency, packet loss, as input to Algorithm 2 along with a
traffic profile description, we can see that the optimal network

(a)

(b)

(c)

(d)

(e)

Figure 6. Optimal placement of Network Function with respect to various
metrics.

2019 IEEE Wireless Communications and Networking Conference (WCNC)

Table II
OPTIMAL NETWORK FUNCTION PLACEMENT BASED ON COMBINED AND

WEIGHTED METRICS

Profile A Profile B
Node a4,2 a3,2

function placement varies again. For the experiment, we have
created two different profiles. In these profiles, price, latency,
and packet loss are each given an importance weight that
add up to 100% (Table I). The capacity metric is used as
a threshold value, indicating a minimum required available
capacity on any link in a path. Links with capacity lower than
the threshold is assigned a negative value and will not be
considered by the algorithm. The resulting optimal network
function placements are summarized in Table II.

VI. DISCUSSION AND CONCLUSION

In the solution we have proposed, we assume a simple
setup where the MN can notify the SDN controller of its
need for a new anchor point. In our proof-of-concept we
have not performed in-depth studies of the setup time for the
virtual network function, the signalling overhead or practical
implementation of signalling between the MN, the CN (service
provider) and the SDN controller. When SDN is used for data
center networks, SDN control signalling would often be on
dedicated links. In our case, where the user is mobile, this
is generally not possible. Thus, the signalling must be in-
band and must run on top of the data that it try to configure,
and could be restricted by loss or congestion on the links.
One solution to this is discussed in [19] and should be
subject to further research. Ways to communicate Service level
agreements (SLAs) between MN, CN and SDN controllers
should also be studied in more detail as control signalling
routes can add to the time of setup for a VNF in a new
placement, and should be as short as possible. Also, further
research is needed to study how the placement of a VNF
which is optimal for a single MN (or a small group of MNs),
influences overall network quality and traffic balance, and how
these interests of the individual users and the network as a
whole can be met.

In this paper we have presented a network function and
a method for optimized placement of that virtual network
function in an SDN that takes network state and service
requirements into considerations. By focusing on one vital
service parameter or by defining a specific service requirement
profile, a virtual network function, such as an anchor point,
can be placed according to the service requirements. We have
shown that the chosen service parameter, or a combination of
these in a service requirement profile, will alter the optimal
placement of the virtual network function.

Such a profile can be a part of an initial SLA between
a mobile user and a service provider or it could be part
of a particular request that are transmitted on the fly when
the user experiences service degradation. In this work we
have considered the service parameters latency, price, packet
loss, number of hops, and throughput. With a broader scope,

such parameters could also include values that define the
connections’ security levels [20].

In this paper we propose a next step in using the oppor-
tunities laid out by software defined networks for bringing
”connection everywhere, anytime, to the best service avail-
able” to life, with dynamic flow manipulation not just from a
centralized view, but also for the individual user.

REFERENCES

[1] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114–119, 2013.

[2] E. S. Boysen and T. Maseng, “Seamless handover in heterogeneous
networks using SIP: A proactive handover scheme with the Handover
Extension,” International Journal on Advances in Internet Technology,
vol. 2, no. 1, pp. 184–193, 2009.

[3] D. Bertsekas, “Dynamic behavior of shortest path routing algorithms
for communication networks,” IEEE Transactions on Automatic Control,
vol. 27, no. 1, pp. 60–74, February 1982.

[4] C. W. Ahn and R. S. Ramakrishna, “A genetic algorithm for shortest
path routing problem and the sizing of populations,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 6, pp. 566–579, Dec 2002.

[5] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 236–262, Firstquarter 2016.

[6] R. Koodli, “Mobile IPv6 Fast Handovers,” RFC 5568 (Proposed Stan-
dard), IETF, Jul. 2009.

[7] H. Soliman, C. Castelluccia, K. ElMalki, and L. Bellier, “Hierarchical
Mobile IPv6 (HMIPv6) Mobility Management,” RFC 5380 (Proposed
Standard), IETF, Oct. 2008.

[8] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil,
“Proxy Mobile IPv6,” RFC 5213, IETF, Aug. 2008.

[9] S. Kuklinski, Y. Li, and K. T. Dinh, “Handover management in SDN-
based mobile networks,” in 2014 IEEE Globecom Workshops (GC
Wkshps), Dec 2014, pp. 194–200.

[10] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in 2015 IEEE
4th CloudNet, pp. 255–260.

[11] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “Piecing together the NFV provisioning puzzle: Efficient
placement and chaining of virtual network functions,” in Integrated
Network Management (IM), 2015 IFIP/IEEE International Symposium
on. IEEE, 2015, pp. 98–106.

[12] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization.” in CloudNet, 2015.

[13] G. Xiong, Y.-x. Hu, L. Tian, J.-l. Lan, J.-f. Li, and Q. Zhou, “A virtual
service placement approach based on improved quantum genetic algo-
rithm,” Frontiers of Information Technology & Electronic Engineering,
vol. 17, no. 7, pp. 661–671, Jul 2016.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” ACM SIGCOMM, vol. 38, no. 2, pp. 69–74, 2008.

[15] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[16] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: towards
an open, distributed SDN OS,” in HotSDN. ACM, 2014, pp. 1–6.

[17] Y. Li, Z.-P. Cai, and H. Xu, “LLMP: Exploiting LLDP for latency
measurement in software-defined data center networks,” Journal of
Computer Science and Technology, vol. 33, no. 2, pp. 277–285, Mar
2018.

[18] D. Sinha, K. Haribabu, and S. Balasubramaniam, “Real-time monitoring
of network latency in software defined networks,” in Advanced Networks
and Telecommuncations Systems (ANTS), 2015 IEEE International Con-
ference on. IEEE, 2015, pp. 1–3.

[19] O. I. Bentstuen and J. Flathagen, “On bootstrapping in-band control
channels in software defined networks,” 2018 IEEE International Con-
ference on Communications Workshops (ICC Workshops), pp. 1–6, 2018.

[20] A. Fiaschetti, J. Noll, P. Azzoni, and R. Uribeetxeberria, Measurable
and Composable Security, Privacy, and Dependability for Cyberphysical
Systems: The SHIELD Methodology. CRC Press, 2017.

2019 IEEE Wireless Communications and Networking Conference (WCNC)

