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Abstract 

Ab initio calculations of the solid-state diffusivity of solute atoms in bulk aluminium have 

previously been based on transition-state theory (TST), employing systematic assessments of 

single jumps, and transition-state searches and using an approximate model of jump frequencies 

and correlation factors like the five-frequency model. The present work compared TST 

benchmark predictions of diffusivities with first-principles molecular dynamics (FPMD). The 

TST calculations were performed at unprecedented high precision, including the temperature-

dependent entropy of vacancy formation which has not been included in previous studies of 

diffusion in Al; this led to improved agreement with experimental data. It was furthermore 

demonstrated that FPMD can yield sufficient statistics to predict the frequency of single jumps, 

and FPMD was used to successfully predict the macroscopic diffusivity of Si in Al. The latter is 

not possible in systems with higher activation energies, but it was demonstrated that FPMD in 

such cases can identify which jumps are prevalent for a given defect configuration. Thus, 

information from FPMD can be used to simplify the calculation of correlation terms, prefactors 

and effective transition barriers with TST significantly. This can be particularly important for the 

study of more complicated defect configurations, where the number of distinct jumps rapidly 

increases to be intractable by systematic methods.  

1 Introduction 

Diffusion is a controlling process for many metallurgical reactions, in particular during heat 

treatment of alloys. In-depth understanding of the diffusion mechanism of different alloying 

elements and precise experimental measurement/calculation of their diffusion constants are 

critical for development of reliable microstructure simulation models of alloys.   

Modelling of diffusion of impurity elements in Al alloys has until quite recently been 

performed using empirical or semi-empirical approaches.1, 2 This can give good correspondence 

with experimental data, but the transferability to other systems and predictive power of such 

methods are limited. However, increased computational power and development of efficient 

methods have made calculations from first principles (FP) on such systems feasible. While this 

has usually relied on experimental input for some of the parameters,3-7 it is possible to calculate 

the diffusion coefficients entirely from first principles, with excellent correspondence with 

experimental data.8, 9 This approach entails the hopping frequency calculated with transition state 

theory (TST),10 computing the rate of hopping from the energy of transition states and vibration 

frequencies. This is combined with a correlation factor incorporating the conditional probability 

of the direction of a hop given the direction of the last hop. The transition state is typically 

computed with the nudged elastic band method (NEB),11 in which the saddle point is located by 

minimizing the energy perpendicular to the transition path, while at the same time maximizing it 

along the transition path. The transition barriers of single solute atoms in face-centered cubic (fcc) 

Al were calculated by Simonovic et al. within this scheme, using a simplified version of the five-

frequency model; they calculated all relevant transition barriers, but picked out only the lowest 
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ones as the rate-limiting step in the diffusion process.9 This simplified the calculations 

significantly, and they were thus able to calculate effective diffusivities for a large range of solute 

elements, including all transition metals.  

When such a task has been finished, there is an urge to move further to more complicated 

systems like multiple component alloys with more than one solute. A main challenge with the 

approach above is then that one needs to compute the transition states, their energies and 

vibrational spectra for all relevant inequivalent types of jumps. The complexity of this assignment 

rapidly increases with the dimensionality, and there is no available technique similar to the five-

frequency model even for the ternary system, containing two different solutes. As the symmetry 

decreases further, the ensemble of possible transition states can grow to sizes which are not easily 

accessible with traditional methods. 
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Figure 1. The surroundings of a vacancy and a nearby solute atom. Here the vacancy is 

shown at a nearest neighbour position (NN) to the solute. Also illustrated are representative 

second (NN2), third (NN3) and fourth (NN4) nearest neighbours. 

One alternative path to map out all the possible diffusion routes within a complicated system is 

kinetic Monte Carlo (KMC), creating a library of jump rates for inequivalent jumps and 

propagating the system randomly based on these rates.12, 13 This has many advantages; it can in 

principle be upscaled to macroscopic scales, and it can easily handle rare events since the barriers 

are calculated. 

In the present work, we have chosen a somewhat different approach: first-principles molecular 

dynamics (FPMD) simulations for direct prediction of the diffusivities. This requires no 

information about different inequivalent jumps, and has the potential to be much less labour-

intensive than a systematic approach for complicated defect structures. It will also work in 

systems without well-defined sites, like in amorphous materials.14 We have investigated whether 

such a parameter-free and automatic technique based on DFT can be used to assess the diffusivity 

of solutes in Al. If successful, this can give access to much more complicated systems without the 

need to define and quantify a large set of possible transition states. It can even give valuable 
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information about systems where there are no well-defined transition states, or where they change 

with time. A further advantage is the correct identification of unintuitive, yet actual, 

configurations, which may be missed by other techniques. 

The main challenge with FPMD is to obtain sufficient statistics. Long simulation times may be 

needed to achieve adequate data for accurate predictions of diffusivities. In order to capture the 

diffusion of a solute with a reasonable accuracy, it is necessary to obtain at least a handful of the 

most relevant jumps within the simulation timescale, which presently is limited to 10-100 ps, 

depending on the system size and available computational resources. (One simulation time step is 

typically in the order of 1 fs, which requires a computational resource of at least 100 CPU seconds 

if the present system is to be calculated self-consistently within DFT using contemporary 

supercomputing resources.) A typical trial frequency of a jump is ~10 THz, and we would need 

jump frequencies at least in the order of 0.1 THz to obtain some statistics of jumps. If the 

simulation temperature is restricted by the melting temperature of Al (933 K) and by a reasonable 

number of simulation steps (say, ~106 steps of 1 fs each, costing ~104 CPU seconds), the highest 

transition barrier which can be described by DFT (that is, with at least a few jumps in average per 

simulation) is ~75 kJ/mol. The activation energies for solute diffusion in Al are between 100 and 

250 kJ/mol (representing a large number of solutes),9 and the corresponding transition barriers are 

between 40 and 200 kJ/mol. This means that some but not all jumps will be available by FPMD 

with the restrictions above. For the highest barrier of 200 kJ/mol, the average simulation time 

between each diffusive jump would cost ~1011 CPU hours by using state-of-the-art DFT based 

MD. 

It is fortunately possible to run simulations at higher temperatures without melting within the 

relevant time spans. As we will see later in this paper, simulations can be performed in Al at 

temperatures up to 1800 K without the structure melting during the time scale of the simulation. A 

superheated temperature of 1800 K gives access to transition barriers up to ~140 kJ/mol given the 

restrictions mentioned above. This is still not enough to describe the complete diffusion process; 

the CPU cost of an average diffusive jump with a transition barrier of 200 kJ/mol would be  ~106 

hours. Also, it is very likely that the structure will melt during such time spans. 

Nevertheless, this illustrates that single jumps with low barriers should be accessible through 

simulations lasting for several ps. The cost of such simulations would be some thousands of CPU 

hours, which is clearly within reach with current massively parallel supercomputers. Thus, there is 

a good prospect of using first-principles based MD for qualitative assessments of the relative 

abundance of different jumps. In some lucky cases, one can also anticipate quantitative results 

from such simulations. 

We have in the present paper compared the usefulness of transition state theory and FPMD for 

calculating solute diffusivities. In particular, we have focused on the possibility of using FPMD to 

simplify the systematic calculations of jump frequencies and correlation factors within the TST 

framework. In order to have a proper benchmark system we have also performed TST calculations 

of high precision. 

2 Methodology 

We assessed the diffusivity of Mn, Si and Fe in Al using transition state theory (TST) and first-

principles molecular dynamics (FPMD). Both techniques were based on density functional theory 

(DFT), using the Vienna ab initio simulation package (VASP).15, 16 We used the local density 

approximation (LDA),17, 18 since this has been shown to give best correspondence with 

experimental data.8 This is probably caused by the better surface energies provided by LDA 

(because of fortuitous cancellations of errors), which gives better vacancy energies. 
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Transition state theory within the five-frequency model was employed in a similar manner as in 

Refs. 8, 9. This takes into account the probability of various jumps in the vicinity of a solute atom, 

as shown in Figure 1. The jump frequencies of the different kinds of jumps are here marked by wn. 

The diffusion is vacancy mediated, and the rate limiting step is either by the vacancy and solute 

interchanging places ("solute jumps") or by the vacancy and a neighbour Al interchanging places. 

Thus, the model can be formulated as follows:  

  kTGGawfD dissocvac /exp2

22   (1) 

The diffusivity D depends on a correlation factor f2, the frequency of solute jumps w2, the jump 

length a, the free energy of vacancy formation Gvac, the free energy of vacancy-solute dissociation 

Gdissoc, and the temperature T. k is the Boltzmann constant. The jump frequencies were calculated 

using DFT from the following formula 10: 

.exp* 








 


Tk

H
w

B

m   (2) 

The effective frequency * is the product of the vibrational frequencies of the initial state 

divided by those of the transition state. This was obtained from the Hessian matrix using density 

functional perturbation theory. The jump barrier Hm is the change in enthalpy of the system 

between the initial state and the transition state; in practice this is the difference in calculated total 

electronic energy between the two states calculated by DFT with the nudged elastic band (NEB) 

formalism. 

Calculation of f2 was done according to Eq. 2 in Ref. 8, requiring jump frequencies of the 

dissociation step w3. As can be seen in Figure 1, there are three such steps (from NN to NN2, 

NN3, or NN4). We calculated all these possibilities, and report here the ones with highest 

frequency at 400 K; usually this was the one with lowest transition barrier. The barrier between 

the three w3 options differed by up to 16 kJ/mol, and the jumps to NN3 and NN4 always exhibited 

smaller barriers than jumps to NN2. 

All DFT calculations used a super cell consisting of 3x3x3 cubic conventional cells containing 

106 Al atoms, one vacancy and one solute atom. This prevented artificial interactions between 

periodic images of the defects. The Al lattice constant was always kept at the LDA relaxed value 

of 0.399 nm. The solute atom was Si, Fe or Mn. The TST calculations were performed at two 

different levels of accuracy, in order to compare directly to previously published data and to the 

FPMD simulations which were performed at rather low accuracy. The high-accuracy calculations 

employed a plane wave cutoff of 350 eV and a k point density of 7x7x7, corresponding to a 

distance between k points of 0.012 Å-1 in each direction. The k point density is the most critical 

parameter for achieving numerical convergence in this system, and reducing the sampling to 

5x5x5 (k point distance of 0.017 Å-1) introduced large errors for some configurations – e.g. for 

Mn-vacancy exchange, the barrier changed by 36 kJ/mol when increasing the k point density from  

5x5x5 to 7x7x7. Increasing the density further is not necessary; the high-accuracy computations 

using 7x7x7 k points reproduced 9x9x9 k-point barriers for Mn-vacancy exchange to within 0.3% 

(less than 1 kJ/mol). This was hence postulated to be a sufficiently accurate benchmark level. Spin 

polarization was included in cells with odd numbers of electrons, since this has previously been 

demonstrated to be important.9 The low-accuracy calculations used similar numerical parameters 

as those described below for the MD simulations.  

The FPMD simulations were performed with 1 fs time steps for 25 ps. The vacancy and solute 

started as nearest neighbours.  Temperatures were fixed with a micro canonical ensemble at 

temperatures in steps of 100 K from 900 K to 2000 K (12 simulations). Computations were 

performed using the gamma point only for the k point sampling. The plane wave energy cutoff 
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was 184.3 eV for Si, 201.0 eV for Fe and 202.5 eV for Mn diffusion in Al. All FPMD calculations 

were performed without allowing spin polarization. 

We tracked the vacancy during the FPMD run, and all single jumps of the vacancy were 

identified. Furthermore, the time spent by the vacancy at the various sites (nearest neighbour of 

the solute NN1, NN2, etc.) was quantified. The jump frequency was then calculated simply as the 

number of jumps divided by the total dwelling time at the initial site of the jump. The advantage 

of this method is that the anisotropic site occupancy (the initial state of the vacancy was always 

the NN1 site) will be cancelled out when dividing with the dwelling time.  

3 Results and discussion 

3.1 Transition state theory 

First the enthalpy of formation of the solute, the vacancy, the solute-vacancy binding energy 

and the difference energy between solutes and vacancies being nearest neighbours and n'th nearest 

neighbours were calculated. They are defined as follows: 

),()Al()1()Al( 1sol XEENXEH N    

),Al()1()VacAl( 1vac ENEH N    

),NN Vac;Al()NN1 Vac;Al( 22NN nXEXEE NNn    

),VacAl()Al()()NN1 Vac;Al( 112vac-sol   NNN EXEAlNEXEE  

where E is the total electronic energy as calculated by VASP, X is the solute, and Vac is the 

vacancy. A configuration where the solute and vacancy are n'th nearest neighbours is designated 

by NNn.  The results are shown in 
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Table 1, with the enthalpies and energies given in kJ/mol. 
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Table 1. The enthalpy of formation of a vacancy Hvac, a solute Hsol, and the interaction 

energy between the solute and the vacancy Esol-vac calculated by DFT, as defined in the text. 

Also shown is the calculated energy difference between the solute and vacancy being nearest 

neighbours and n'th nearest neighbours ENNn.  All enthalpies and energies are given in 

kJ/mol. The calculations were performed at  high level of precision for benchmarking . The 

results have been compared to previous calculations and experiments.  

Solute Enthalpies (kJ/mol) This work 
Previous 

calculations  
Expt. 

Al Hvac 67 72a, 69b 65c 

Si Hsol 31 
 

 

ENN2 -6  
 

E NN3 -4  
 

E NN4 -6  
 

Esol-vac -4 5a, 11b 3d 

Mn Hsol -26 

 

 

ENN2 9  
 

E NN3 6 
 

 

E NN4 12 
 

 

Esol-vac 8 -6a  

Fe Hsol -51 

 

 

ENN2 1 
 

 

E NN3 -1  
 

E NN4 2 
 

 

Esol-vac 2 -2a  

a Ref. 9 

b Ref. 8 

c Ref. 19 

d Ref. 20 

 

We first note that the calculated values in the present work are comparable to previously 

published studies (see Ref. 21 and references therein.) The enthalpy of formation for solutes is 

negative for Mn and Fe, but this is a result of the choice of the pure elements in their standard 

state for the reference energies. This would change if we e.g. also took into account the possibility 

of oxide formation. The solute-vacancy interaction is slightly attractive for Si, while it is clearly 

repulsive for Mn. In the case of Fe, the interaction energy is so low that no effective repulsion or 

attraction can be inferred. Since adjacent vacancies are necessary for solute diffusion to take 

place, this will contribute to decreasing the diffusivity of Mn in Al, since the solute-vacancy 

repulsion will lead to a small number of solute-vacancy pairs. The relatively small discrepancy 

with previous calculations may be ascribed to different level of theory (Ref. 8 modified their LDA 

results with a surface energy correction, while Ref. 9 used GGA.) 

To elucidate how the vacancy may dissociate from the solutes we have also computed total 

energies of the solute-vacancy pair with varying distances.  This is shown in 



  

8 

 

 

Table 1 as the energy difference between having the vacancy as the n'th nearest neighbour of the 

solute NNn and having it as the nearest neighbour NN1. The interaction energy Esol-vac then 

corresponds to ENNn when n is very large. The calculations were performed at the higher level of 

accuracy  described in the methods section.  As we can see, the energy profile is relatively flat; in 

no case is the energy difference greater than 12 kJ/mol. We also see that the interaction between 

the solute and vacancy does not change monotonously as their distance increases; in the case of Fe 

there is e.g. a weak attractive force between the solute and vacancy when they are third-nearest 

neighbours (NN3), while it is repulsive at all other calculated distances.  

The jump barriers and frequencies of the various jumps shown in Figure 1 were then calculated 

and represented on the form defined in Eq. (2). The jump barriers Hm are presented in 
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Table 2 and the prefactors * in 
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Table 3. We first note that the calculated jump barriers Hm are not very sensitive to the level of 

accuracy – the very cheap calculations with low precision differ by less than 20% or 20 kJ/mol 

from those of the benchmark level, which means that the low level calculation can be used with 

enough confidence to distinguish high barriers from low ones. The low level calculations could 

thus in all cases identify the rate-limiting step.  

When we compare our calculations to previous ones using comparable techniques, there are 

significant differences. Our calculated transition barriers are consistently around 20% higher than 

those of Ref. 9, most probably due to the use of LDA in the present study and GGA in Ref. 9. A 

notable exception is the diffusion of Mn, where our predicted Eb of w2 is 184 kJ/mol, compared to 

90 kJ/mol in Ref. 9. It is difficult to explain why this is so, even after performing thorough tests of 

various accuracy parameters. Adding spin polarization did not change our result by far as much as 

in Ref. 9.  

The frequencies * listed in 
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Table 3 are very sensitive to the precision. They are clearly unreliable when calculated by TST at 

the low precision level, in some cases differing by several orders of magnitude from those 

calculated at high numeric precision. This reflects the high sensitivity of frequencies with respect 

to energies; small errors in energies can result in large errors in frequencies, since the latter are 

calculated from rather small energy changes to ensure that the potential energy is in the harmonic 

region. The frequencies have therefore not been reported at the low precision level from TST in 
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Table 3.  



  

13 

 

 

Table 2. DFT calculated energy barriers Hm in kJ/mol of the single jumps defined in 

Figure 1; w0 (Self-diffusion), w1 (NN1-NN1 rotation), w2 (Solute-vacancy exchange), w3 

(NN1-NNn dissociation), w4 (NN1-NNn association). The numbers have been obtained with 

first-principles molecular dynamics (FPMD) simulations and transition state theory (TST) 

at two levels of precision; the same low level as the FPMD calculations, and a higher level. 

Refer to the Methodology section for details. The results are compared to previous 

publications. 

Solute Jump FPMD TST (Low prec.) TST (High prec.) TST (previous calcs.) 

Al w0 47 50 60 49a, 56b 

Si w1 47 42 52 46a, 50b 

w2 41 47 53 44a, 53b 

w3 55 50 60 54a, 64b 

w4 
 

45 55 53b 

Mn w1 
 

19 23 
 

w2 
 

203 184 90a 

w3 71 60 62 
 

w4 
 

61 68 
 

Fe w1 40 17 22 
 

w2 
 

188 167 131a 

w3 67 60 62 
 

w4 
 

53 61 
 

a Ref. 9 

b Ref. 8 
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Table 3. DFT calculated prefactors * in THz of the single jumps defined in Figure 1; w0 

(Self-diffusion), w1 (NN1-NN1 rotation), w2 (Solute-vacancy exchange), w3 (NN1-NNn 

dissociation), w4 (NN1-NNn association). The numbers have been obtained with first-

principles molecular dynamics (FPMD) simulations and transition state theory (TST) at two 

levels of precision; the same low level as the FPMD calculations, and a higher level. Refer to 

the Methodology section for details. The results are compared to previous publications. 

Solute Jump FPMD TST (High prec.) TST (previous calcs.) 

Al w0 38 6 17a 

Si w1 16 5 11a 

w2 5 4 16a 

w3 49 6 22a 

w4 
 

5 14a 

Mn w1 
 

2  

w2 
 

19  

w3 167 5  

w4 
 

11  

Fe w1 40 2  

w2 
 

b  

w3 55 6  

w4 
 

9  

a Ref. 8 

b This jump exhibited non-harmonic behaviour at the transition state, so the prefactor was 

undefined. See the text for details. 

 

One of the jump prefactors could not be calculated with density functional perturbation theory; 

the solute-vacancy exchange w2 of Fe in Al. In this case the frequency of the phonon mode 

perpendicular to the transition path was very small, and a reliable number for the prefactor could 

not be obtained. The reason was most likely that the magnitude of this frequency was similar to 

that of the numerical uncertainty due to limited k point density. This is thus not reported in Table 

3. When calculating the total diffusivity below, we have estimated the Fe diffusivity by roughly 

allocating the value 10 THz to w2. This is probably too low (since the transition state is broad 

perpendicular to the jump direction), but it gives an estimate of the order of magnitude. This 

problem was not detected at lower precision (less k points); the frequency was then calculated to 

be significantly larger (but strongly dependent on the k point density), which may explain why 

this has not been reported previously. 

The resulting overall diffusivity D generally exhibits Arrhenius behaviour: 

.exp0 








 


Tk

Q
DD

B

  (3) 

The activation energy Q is given by8 

fBvac TkEHHQ  vac-solm , (4) 

where  
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)(ln 2

Td

fd
T f  .   (5) 

The contribution from fBTk  is temperature dependent, and the values for Q in Table 4 have been 

calculated at T = 400 K. For Si diffusion, the value of fBTk  increases from 0.2 to 0.9 kJ/mol when 

T increases from 400 to 1000 K, while it is less than 10-5 kJ/mol even at 1000 K for Mn and Fe 

diffusion.  

The prefactor D0 can be written as8 

















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


 



Tk

Tk

k

S
af

D

B

fB

B

f

exp

exp*2

2

0



 (6) 

The denominator of this expression is very close to 1 for all relevant temperatures, and has 

therefore been neglected. The correlation factor f2 was calculated to be almost identical to 1 for 

Mn and Fe. For Si, it varied from 0.64 at 400 K (which was used in the following calculations) to 

0.75 at 1700 K. The entropy of vacancy formation is in the supercell approach given by4 

,
1

2
perfvacf S

N

N
SS




   (7) 

where Svac and Sperf are the vibrational entropy of the supercell with a vacancy and the perfect 

lattice, respectively. N is the number of atoms in the perfect supercell (108 in our case), and the 

term (N–2/N–1) follows from the number of degrees of freedom, which is (3N – 3) for the perfect 

and (3(N – 1) – 3) for the cell with vacancy. Each of these entropies are given as 

  
   













i

Bi

BiB

i
B Tkh

TkhTk

h
kS /exp1ln

1/exp





. (8) 

The sum runs over all phonon frequencies i. This means that fS  is temperature dependent; a 

plot of this is displayed in Figure 2. It stabilizes around 2.5 kB above 300 K, and we have used the 

value at 400 K to calculate D0:    K 400TS f  2.51 kB, and 






 

B

f

k

S
exp 12.3. These results 

are very similar to those obtained for Li.4 

In the high-temperature limit the entropy can be approximated as  

    
i

BiB TkhkS /expln1  ,22  and the contribution to D0 from Sf then becomes  














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







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

 









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1

1
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N

i

v

i

N

N
N

i

p

i

B

f

k

S





, (9) 

where p

i  and v

i  are the phonon frequencies of the perfect lattice and lattice with vacancy, 

respectively. In this limit, we get that    TS f  2.60 kB, and 






 

B

f

k

S
exp 13.5. Note that 

this value is quite different from that of previous studies.23, 24  With our more detailed 

methodology, higher k point density and larger unit cell, we were unable to confirm the 

previously published values for Sf.  
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Figure 2. The entropy of vacancy formation Sf as function of temperature, calculated 

according to Eq. 7 and 8. kB is Boltzmann’s constant. The value at 400 K (2.51 kB) was used 

for calculating the prefactor D0 in Eq. 6. The dashed line designates the high-temperature 

limit corresponding to Eq. 9. 

 

The TST-calculated activation energies are shown in 
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Table 4. We first note that they are quite similar to those calculated in previous studies, as well as 

those found in experimental studies. Diffusion of Mn is again an exception, originating from the 

large difference in w2 discussed above. The experimental value of Q in Mn (211.5 kJ/mol) is in 

between the values calculated in the literature (between 168 and 269 kJ/mol), and can thus not be 

used to distinguish between the results. 

Turning to the TST-calculated prefactors D0 which are shown in Table 5, we see that our TST-

calculated values are also in quite good correspondence with previous studies. This is despite the 

very high sensitivity of calculated frequencies on the accuracy and methodology. Choosing LDA 

or GGA can influence this significantly, as can changing the k point density, force relaxation 

criterion or other numerical parameters. Thus, the numbers are reliable only within an order of 

magnitude or so. Our results differ significantly from the experimental values presented in Table 

5, particularly in the case of Mn and Fe. One reason may be the abovementioned uncertainties of 

our calculations, or that our idealized unit cell does not represent the system properly. But the 

measurements may also involve large uncertainties. As an example, literature data on Fe diffusion 

in Si contain prefactors from 5E-03 to 90 m2/s,25-29 a spread of more than 4 orders of magnitude. 

This still indicates that our values are too low compared to experimental data. It is difficult to 

identify the reasons for such a large discrepancy with certainty. 
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Table 4. The activation energy Q in kJ/mol of Al self-diffusion and Si, Mn, and Fe diffusion 

in Al is given, calculated by DFT according to Eq. 4. Two levels of theory are reported: DFT 

based molecular dynamics (FPMD) and TST at high accuracy (Hi-TST). The results are 

compared to previous calculations and experiments. Reference 25 is a critical review of 

several experimental studies, and the numbers presented in this table represent the best fit. 

Solute 
FPMD (this 

work) 

TST (High prec., 

this work) 
TST, previous calcs. Expt. 

Al 115 117 121a 120.6d 

Si 119 124 111a, 113b, 98c  117.6e 

Mn 
 

243 168b, 171c, 269f 211.5e 

Fe   233 205b, 206c, 246f 214.0e 

a Ref. 8 

b Ref. 9 

c Ref. 30 

d Ref. 31 

e Ref. 25 

f Ref. 32  

 

 

Table 5. The diffusivity prefactor D0 in m2/s of Al self-diffusion and Si, Mn, and Fe diffusion 

in Al is given, calculated by DFT according to Eq. 6. Two levels of theory are reported: DFT 

based molecular dynamics (FPMD) and TST at high accuracy (Hi-TST). The results are 

compared to previous calculations and experiments. Reference 25 is a critical review of 

several experimental studies, and the numbers presented in this table represent the best fit. 

Solute FPMD 
TST (High 

prec.) 
TST, previous calcs. Expt. 

Al 3.0E-06 6.1E-06 7.0E-06a 1.10E-05c 

Si 3.9E-07 2.7E-06 3.7E-06b 1.38E-05d 

Mn 
 

1.9E-05 2E-05e 1.35E-02d 

Fe 
 

1.E-05f 3E-05e 3.62E-01d 

a Ref. 8 

b Ref. 9 

c Ref. 31 

d Ref. 25 

e Ref. 32  

f This is only an estimate of the order of magnitude, assuming that * = 10 THz for w2. See the text for 

details. 

 

3.2 First-principles molecular dynamics 

All temperatures used in the FPMD runs were above the melting point of Al which is 933.47 

K.  The high temperatures were chosen in order to increase the frequency of jumps, to improve 

statistics from 25 ps MD runs. However, if the system were to actually behave as molten, one 
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would get molten diffusion. Then, the diffusion mechanism is qualitatively different from that of 

vacancy mediated diffusion, and the diffusion data hence found would be irrelevant. Yet, even 

though the temperatures are higher than the melting point, the system does not necessarily melt. It 

is well-known that significant over-heating (that is, heating above the melting point without 

melting) can occur during MD simulations lasting for several picoseconds when using crystalline 

models like the ones studied here. 

 

 

Figure 3. The pair distribution function (PDF) at different temperatures in K for Si 

diffusion in Al. The PDF is calculated for an ensemble of 15000 time steps at the specified 

temperature, after an initial equilibration of 10000 time steps. Each time step is 1 fs. The 

melting point of our simulation is between 1800 K and 2000 K. Staying at or below 1800 K 

should therefore give vacancy mediated diffusion. 

To determine whether the system has melted, we used the pair distribution function, which 

gives the probability of finding an atom at a given distance from another atom. In a crystal at T=0 

K, the pair correlation function will consist of high and sharp peaks. As the temperature increases, 

thermal vibration will smear the peaks out, but they will still be well-defined. That changes when 

the sample melts. There will be no long-range ordering in the sample and therefore most of the 

peaks will be smeared out. In Figure 3, we display the pair correlation function for the Al106Si 

system at temperatures from 1000 K to 2000 K. We see that there is a dramatic change in the 

smearing when going from 1800 K to 2000 K, indicating that this is the point where the sample 

melts (at our level of theory and constraints, as discussed above). Therefore, as long as we keep 

ourselves at or below 1800 K, the diffusion mechanism should be the same as at lower 

temperatures. Going above this “melting point” however, we risk studying molten diffusion 

instead. 
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The results for Si diffusion are shown in Figure 4. They are based on around 320 distinctive 

jumps distributed among 10 simulations at different temperatures. The total simulation time for all 

the simulations was 250 ps. The most common jump was self-diffusion of Al (after complete 

dissociation of the solute-vacancy pair) with around 100 jumps. The solute-vacancy exchange 

only happened three times, at three different temperatures. We see that almost all the jumps have 

relatively well-defined exponential fitting curves, which have been used to calculate the prefactor 

and transition barrier for each jump. The exception is the jump back to NN1 (restoration of the 

solute-vacancy pair), which has too large spread in the values for the fit to be well-defined. The R2 

value for this fit was 0.0006. Also note that even if the solute-vacancy exchange is very well-

behaving (with R2 = 0.93), this is rather fortunate. With only three jumps contributing to the plot, 

small changes in e.g. one of the dwelling times could have changed the situation considerably. 
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Figure 4. Arrhenius plots of the calculated frequencies as a function of temperature for 

different atomic jumps in the FPMD simulations with a Si solute. The jumps are, from left 

to right: exchange of the solute and vacancy (w2, "Sol-vac"), nearest neighbours rotating 

around the solute (w1, NN1-NN1), dissociation of the solute-vacancy pair (w3, jump of the 

vacancy from NN1 to any of NN2, NN3, or NN4), reestablishment of the solute-vacancy pair 

(w4, jump of the vacancy from any of NN2, NN3, or NN4 to NN1), and self-diffusion of Al 

when the vacancy is located further away from the solute than NN4 (w0). Fitting of the data 

to exponential functions is shown by the dashed curves. 

Nevertheless, the FPMD results of Si diffusion gave four temperature dependent jump 

frequencies, all displaying both a prefactor and a transition barrier. They are presented in 
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Table 2 and 



  

22 

 

 

Table 3 and compared to similar numbers from transition state theory, both made in this and other 

studies.8, 9 It is encouraging to see that all the energies calculated by FPMD are within a few 

percent away from those from TST. Most of the frequencies are also in fair agreement with the 

TST results. This is very promising, given the notorious difficulty of calculating and measuring 

such frequencies with high precision. The diffusivity of Si in Al, presented in 
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Table 4, is also in very good correspondence with our TST calculations as well as previous 

calculations and experimental results. 

FPMD simulations using the other solutes gave less valuable outcomes. In the case of Mn, only 

the dissociation jump (NN1-NNn) gave good enough statistics to calculate an energy barrier with 

prefactor for w3 from an Arrhenius plot fit like those in Figure 4. This reflects the repulsive 

interaction between Mn and the vacancy, and means that neither w1 nor w2 were available from 

FPMD. However, this does not mean that the results are useless. The rapid dissociation of the 

solute-vacancy pair means that the solute-vacancy exchange should be the rate-limiting step. Also, 

in one of the simulations (at 1800 K) the vacancy exhibited several rotation steps before 

dissociating. This gives only one point in the Arrhenius plot, and no fitting can be performed. But 

since the activation energy of such a jump was calculated by TST, we can estimate the trial 

frequency from Eq. 2 by inserting the FPMD calculated frequency at the given temperature; * = 

3.8 THz. Unfortunately, no solute-vacancy exchange was observed for Mn, except for unphysical 

jumps immediately after starting the simulations, probably originating from instabilities of the 

initial configuration. This means that we have failed to quantify the diffusivity of Mn using 

FPMD. Nevertheless, we have qualitatively established the rate limiting step, which means that 

the task of calculating the complete diffusivity from TST can be significantly simplified – only 

one set of vibrational frequencies needs to be calculated, not four. 

Diffusion of Fe was quite similar to that of Mn, except that a large number of rotation jumps w1 

(NN1-NN1) took place (more than 130 out of the in total ~300 jumps recorded during the 

simulations) – consistent with a very low barrier for jumps (~20 kJ/mol). In addition to the 

rotations, dissociation of the solute-vacancy w3 was quite frequent, both due to the weak repulsion 

and due to a relatively low diffusion barrier of ~60 kJ/mol. No exchange jumps were recorded in 

this case, which means that we can draw the same conclusion as in the case of Mn: The diffusivity 

should be calculated by TST, but only the w2 jump frequency needs to be calculated, since the 

correlation factor is very close to 1. 

3.3 Discussion 

The three cases of Si, Mn, and Fe represent two typical situations in solute diffusion: rotation 

of the vacancy around the solute w1 as the rate-limiting step (Si) and exchange of the solute and 

vacancy w2 (Mn and Fe). They also constitute two different classes in that all the single jumps in 

Si diffusion exhibited low enough transition barriers to be probed by FPMD, while this was not 

the case for Mn and Fe. This means that FPMD could be used to quantify completely the 

diffusivity of Si in Al, while it could only give qualitative advice to TST calculations in the case 

of Mn and Fe. The gain from this observation is that the number of phonon calculations for jump 

frequency assessments could have been reduced from four to one in both cases. Mathematically, 

this corresponds to the correlation factor f2 = 1. 

This may seem as a small benefit from expensive calculations followed by detailed analyses. 

Also, one can object to the usefulness of the results by pointing to the obvious possibility to 

calculate the same transition barriers by TST. However, most of the analyses can be automated, so 

much of the information can be achieved with minimal investment of human resources.  

The most important significance of this work is linked to how straightforward it is to employ 

similar FPMD calculations to more complicated systems with a large number of possible 

configurations and jumps; even to amorphous structures without well-defined sites. While we will 

not necessarily get out diffusivities from such FPMD simulations, we can hope that they will 

elucidate the rate-limiting mechanisms for diffusion, so that the task of calculating diffusivities 

from TST or related techniques can be considerably simplified. In some cases FPMD calculations 
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can even identify diffusion paths with lower barrier heights than the default ones originating from 

intuition or symmetry arguments. 

As mentioned in the Methodology section, the simulation time needed to obtain even single 

jumps increases dramatically with the barrier height. The lowest single jump frequency in this 

work was that of solute-vacancy exchange in Mn, with w2 = 8.8×107 Hz at 1800 K. This implies 

that a simulation with time steps of 1 fs would need to run in the order of 107 steps per jump. A 

reasonable statistics may thus be feasible if the simulation time per time step is decreased 

significantly, either by reducing the cell size or by employing extra soft basis sets with a small 

number of plane waves per atom.14 This relies on the superheating effect to sustain for such long 

simulation times, which is not obvious. When supercomputing resources and code efficiencies are 

developed further, it can be anticipated that all relevant jump barriers will become available at 

correct temperatures from FPMD with reasonable simulation cost. 

4 Conclusions and outlook 

Density functional theory calculations have been performed to assess the single jump 

frequencies and diffusion coefficients of Si, Fe, and Mn in Al using first principles molecular 

dynamics (FPMD) as well as first principles transition state calculations within the transition state 

theory (TST) formalism. Benchmark calculations using TST gave new values of the diffusivity of 

Si, Mn, and Fe. In particular, the contribution from the entropy of vacancy formation was 

revisited. It was possible to extract the complete diffusivity for Si from all levels of theory, and 

we found very good correspondence between the calculated diffusivity from FPMD and TST, 

with previous calculations and experimental results. The transition barrier of Mn and Fe exchange 

with the vacancy was too high for an appreciable statistics of jumps, and it was thus not possible 

to calculate the diffusivity directly from FPMD. However, the results could have been used to 

reduce the computational load of the TST significantly, since they clearly identified the rate-

limiting step of the diffusion.  

The most promising use of FPMD for solid state diffusion may thus be to clarify the most usual 

jump mechanisms in more complicated systems than that of single solutes diffusing in a perfect 

fcc lattice. This can be systems consisting of several interacting solutes, or solutes interacting with 

higher-dimensional defects like twins, stacking faults, or grain boundaries. 
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