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Predicting Strain Engineering Strategies Using iKS1317:
A Genome-Scale Metabolic Model of Streptomyces
coelicolor
Tja�sa Kumelj, Snorre Sulheim, Alexander Wentzel, and Eivind Almaas*
Streptomyces coelicolor is a model organism for the Actinobacteria, a phylum
known to produce an extensive range of different bioactive compounds that
include antibiotics currently used in the clinic. Biosynthetic gene clusters
discovered in genomes of other Actinobacteria can be transferred to and
expressed in S. coelicolor, making it a factory for heterologous production of
secondary metabolites. Genome-scale metabolic reconstructions have suc-
cessfully been used in several biotechnology applications to facilitate the
over-production of target metabolites. Here, the authors present iKS1317, the
most comprehensive and accurate reconstructed genome-scale metabolic
model (GEM) for S. coelicolor. The model reconstruction is based on previous
models, publicly available databases, and published literature and includes
1317 genes, 2119 reactions, and 1581 metabolites. It correctly predicts wild-
type growth in 96.5% of the evaluated growth environments and gene
knockout predictions in 78.4% when comparing with observed mutant
growth phenotypes, with a total accuracy of 83.3%. However, using a
minimal nutrient environment for the gene knockout predictions, iKS1317
has an accuracy of 87.1% in predicting mutant growth phenotypes.
Furthermore, we used iKS1317 and existing strain design algorithms to
suggest robust gene-knockout strategies to increase the production of acetyl-
CoA. Since acetyl-CoA is the most important precursor for polyketide
antibiotics, the suggested strategies may be implemented in vivo to improve
the function of S. coelicolor as a heterologous expression host.
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of new antibacterial drugs is amajor threat to
global health.One reason for the lack of novel
drugs is that the traditional method of
bioprospecting, involving cultivation and
high-throughput screening, is no longer
efficient, partly because of a high rate of
rediscovery.[1–3] A promising approach for
discovery and production of novel bioactive
metabolites is based on the heterologous
expression of biosynthetic gene clusters in
specialized expression host strains. One
organism in which this already has been
achieved is Streptomyces coelicolor.[4–8]

The genusStreptomyces is one of themost
important sources of bioactive, microbial
metabolites.S. coelicolor is amodelorganism
for this genus[9] with a capacity to produce31
different secondary metabolites,[10] includ-
ing four antibiotics: actinorhodin, calcium-
dependent antibiotic, undecylprodigiosin
and methylenomycin.[11,12] Note that none
of these four antibiotics are of medical
relevance. Thus, it has a metabolic machin-
ery capable of providing precursors for a
large range of different classes of bioactive
metabolites,which is anecessary feature of a
host for heterologous expression of biosyn-
thetic gene clusters and production of the
encoded compounds. An improved S. coeli-
color strain for heterologous expression has
already been developed by removing two plasmids naturally
present in S. coelicolor A3(2) and four major biosynthetic gene
clusters from the chromosome,[13] resulting in a reduced
metabolic and bioactive background. To further improve this
tzel
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organism as an expression host, it is necessary to develop a more
comprehensive understanding of the metabolism.

A genome-scale metabolic model (GEM) is a network represen-
tationof themetabolic capabilitiesofanorganism,constructed from
an annotated genome by using inferred or proven gene-protein-
reaction relations, in addition to transport reactions, and an
estimated biomass composition. A detailed reconstruction protocol
is described in ref. [14]. Thenetwork of reactions andmetabolites in a
GEMcanbemathematically representedbya stoichiometricmatrix.
Using a variety of constraint-based modeling approaches, this
stoichiometricmatrix serves as a core input to predict phenotypes of
the organism subject to perturbations or its behavior in different
growth environments. GEMs have been used successfully to direct
strain engineering of organisms (e.g., see ref. [15] for a review).

Currently, there exist three genome-scale metabolic models
for S. coelicolor; the iIB711,[16] the iMA789,[17] and the
iMK1208,[18] with the most recent being published in 2014.
The iMA789 is an improved version of iIB711, and it includes a
more comprehensive reconstruction of pathways for the
production of antibiotics. The iMK1208 was reconstructed de
novo based on annotations in StrepDB,[19] Kyoto Encyclopedia of
Genes andGenomes (KEGG),[20] BioCyc,[21] and TransportDB,[22]

and with updated biomass and ATP-maintenance reactions [18].
Here, we present iKS1317, a more validated and comprehen-

sive GEM of S. coelicolor based on the previous model
iMK1208,[18] appended and corrected with knowledge obtained
from iMA789,[17] KEGG,[20] and BioCyc.[21] Both reactions and
metabolites are annotated with KEGG-identifiers when possible,
and they are named according to guidelines and existing names
in BiGG.[23] The recent transposon mutagenesis study by Xu
et al.[24] enabled a thorough evaluation of the model’s accuracy in
predicting single gene knockout growth phenotypes. iKS1317 is
written in the SBML format (level 3) and is compatible with both
the COBRA Toolbox for Matlab and COBRApy.[25,26]

Using iKS1317 as the basis for constraint-based optimization
analyses, we suggest engineering strategies that may increase the
heterologous production of polyketide antibiotics because of
increased availability of the primary precursor acetyl-CoA. We
predict the optimal yield of acetyl-CoA for S. coelicolor in response
to single, double and triple reaction deletions in three different
growth environments. Furthermore, we compare the results from
OptKnock[27] andGeneticDesign throughLocalSearch (GDLS),[28]

the two strain engineering methods used in this study.
Table 1. Origin of reactions and metabolites in the reconstructed
metabolic network iKS1317.

Reactions Metabolites

iMK1208 1853 1435

iMA789 167 68

KEGG 87 69

BioCyc 12 9

A detailed overview of all reactions and their origin is found in S2, Supporting
information.
2. Experimental Section

2.1. iKS1317 Model Reconstruction

The GEM presented here, iKS1317, is based on the iMK1208
model by Kim et al.[18] An overview of the origin of reactions and
metabolites in iKS1317 is given in Table 1. Of the 1859 reactions
in iMK1208, 1852 were included in iKS1317 with no or minor
changes. Four out of the seven removed reactions consisted of
lumped reactions that we replaced by detailed, multi-reaction
steps. One reaction was a duplicate, and two reactions in the
actinorhodin pathway were mapped to reactions R09312 and
R09313 in KEGG.[20] A complete list of the removed reactions is
provided in S1, Supporting information.
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Based on the original biomass reaction in iMK1208, a second
biomass reaction were constructed where the amino acids have
been replaced by their respective tRNA-charged versions. The
corresponding released tRNAmolecules were added as products
to balance the equation, and we adjusted the stochiometric
coefficients of ATP, ADP, water, protons, and phosphate to
account for the energy consumed by the reactions charging the
amino acids with tRNA molecules. The content of both biomass
reactions is given in S2, Supporting information.

Metabolites in iMA789 and reactions in both iMA789 and
iMK1208 were mapped to KEGG-identifiers,[20] making it
possible to directly compare the two models.[17,18] The
iMK1208 reconstruction is not based upon the iMA789, and
we found 167 reactions in iMA789 not present in iMK1208 that
we chose to include in iKS1317. Themetabolites weremapped to
KEGG-identifiers based on their name and chemical formula,
and the reactions were mapped based on name, reactants,
products, and co-factors. With the reactions annotated with
KEGG-identifiers we could compare the content of iKS1317 with
the list of reactions in KEGG associated to genes in the genome
of S. coelicolor A3(2). This allowed us to find reactions in KEGG
not already present in the model, and this investigation resulted
in another 87 reactions appended to iKS1317. We assumed that
the annotations in KEGGwere correct if the reactions fitted well
with the existing content of the model. If the KEGG-annotations
were in contradiction to our existing model or involved a new
pathway, they were further evaluated by using BioCyc, published
literature, BRENDA, or Uniprot-SwissProt.[21,29,30]

The metabolite formulas in iMA789 and KEGG are given in
neutral (non-charged) form, while charged formulas are used in
iMK1208. Most metabolites are charged in the cellular environ-
ment and this is also recommended in the 96-step protocol for
model reconstruction by Thiele and Palsson.[14] We calculated the
charged chemical formula of the metabolites added from KEGG
and iMA789 at pH 7 using eQuilibrator.[31] Since not all chemical
formulas could be calculated in this fashion, the formula for some
metabolites were inferred by comparing neutral and charged
formulas for similar metabolites.

eQuilibrator was also used to calculate the change inGibbs free
energy at standard conditions to infer reaction directionality in
reactions from KEGG and iMA789. Because the concentration of
each metabolite in the cell is unknown, we cannot accurately
predict the change in Gibbs free energy of a reaction. Hence, we
assumed most reactions to be reversible unless eQuilibrator
predicted a large (>30 kJmol�1)[32,33] change in Gibbs free energy
of the reaction.
uthors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
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By using the excellent review of the biosynthetic pathways in
S. coelicolor by Challis,[11] we added pathways for three secondary
metabolites (geosmin, albaflavenon, methylenomycin) and
extended the undecylprodigiosin pathway to include streptor-
ubin. Most of these reactions were also described in BioCyc.[21]

Fifty new transport reactions were added from iMA789, one of
them transporting sucrose into the cytoplasm. The latter reaction
enabled growth with sucrose as the sole carbon source, but
according to Hodgson[34] (as referred to by Borodina et al.[16]) S.
coelicolor is unable to catabolize sucrose. However, S. coelicolor is
supposed to easily take up sucrose to balance the osmotic
pressure (Bibb, 1985, as cited by Elibol, 1998).[35,36] To avoid this
erroneous in silico prediction, the uptake reaction rate for the
sucrose-transport reaction was set to zero.
2.2. Validation of iKS1317

A listing of growth phenotyping data is available in the paper
describing iMA711.[16] Through additional literature review, we
were able to identify growth data for 63 conditions for wild-type or
mutant strains.[16,34,37–44] The transposon mutagenesis data
published by Xu et al.[24] provide a valuable resource for model
validation and improvement. This data set includes the growth
phenotyping for497differentgeneknockoutmutants, fromwhich
365 are considered to be non-essential and 132 considered to be
essential, unconditionally of the growth environment. The non-
essential genes are confirmed by the ability of their knockout
mutants to grow. The 132 unconditionally essential genes are
identifiedby their lackofpresence inanyof thecultivatedknockout
mutants. Because the probability of having a gap in the genome in
the transposon mutagenesis data increases with decreasing gap
length, only gaps, and thus only genes, longer than 1.9 kb were
included in the list of unconditionally essential genes.[24] One
hundred thirty-seven of these 497 different genes are present in
iKS1317, of which 77 are non-essential and 60 are considered
unconditionally essential genes. The transposon mutagenesis
studywas carried out on theS. coelicolorX737mutant, fromwhich
all genes in the actinorhodin gene cluster are removed. We
therefore removed these genes from our in silico model before
computing the gene knockout growth phenotypes of iKS1317. In
this study, we have assumed that the observations from the
transposonmutagenesis study are absolutely correct, however this
kind of large scale knockout experiments is difficult and can
contain errors. A detailed overview of all tested growth conditions
is found in S3, Supporting information.

Weperformed the comparison of in silico and in vivo growth in a
binary fashion, classifying each condition as either growth or no
growth. To compare growth rates in different environmental
conditions we constrained the total uptake of carbon and nitrogen
to 12.6 and 1.85mmol gdryweight�1 h�1, respectively. This
corresponds to the maximal experimentally observed uptake of
glucose (2.1mmol g dryweight�1 h�1)[45] and the simulated corre-
sponding ammonium uptake (1.85mmol g dry weight�1 h�1). The
specific uptake rates for each of the evaluated environments are
given in S3, Supporting information. When we compared in silico
predictions with experimental data, we needed to impose a lower
threshold for the experimentally measurable growth rate. The
measured growth rate for the maximal uptake rate of glucose is
Biotechnol. J. 2019, 1800180 1800180 (3 of 10) © 2018 The A
0.128h�1,[45] corresponding to a doubling time of about 5.4h.
Consequently, we considered growth with a doubling time of more
than 1 day as a reasonable lower threshold. This choice of threshold
value only affected the growth on L-phenylalanine as carbon source,
with a computationally predicted doubling time of 70h.

For comparing our in silico predictions with growth data from
the transposon mutagenesis study,[24] we used a threshold of 50%
of the in silico wild-type growth rate in the complex cultivation
medium todecide the binary growth versusnogrowth test.[46] This
relatively large thresholdwas considered tobe appropriatebecause
of the methods used in a transposonmutagenesis study. We used
the second biomass reactionwhere the amino acids in the primary
biomass function are replaced by their respective tRNA charged
versions to predict the knockout phenotypes. This enabled correct
phenotypepredictionformutantswhere theknockedoutgenesare
related to tRNA charging of amino acids.

The transposon mutants were sporulated and grown in
complex media (SFM[47] and YBP,[48] respectively). This has
direct implications for the modeling, since it is difficult to
determine the carbon and nitrogen sources that actually were
available and utilized by the organism. We therefore assumed
that all carbon and nitrogen sources with an exchange reaction
present in iKS1317 were available, a detailed list is given in S3,
Supporting information. However, to shed light on some of the
limitations of the use of the transposon mutagenesis data, we
also included a comparison where the in silico growth of
mutants was predicted with only glucose and ammonium
available as the carbon and nitrogen source, respectively.
2.3. Suggesting Optimal Knockout Strategies with iKS1317

Two different strain design algorithms, OptKnock[27] and
GDLS,[28] were used to predict genetic manipulations for target
overproduction. The methods use constraint-based optimization
to suggest reaction knockout (constraining themetabolic flux of a
reaction to zero) strategies to gain targeted overproduction while
optimizing internal (biomass yield) and external (product yield)
cellular objectives. A direct consequence of these algorithms
design is that overproduction of the target becomes an obligatory
by-product of growth.[27,28] These methods are accessible through
theCOBRAToolbox v3.0[25] inMatlab. The suggested reactions can
be removed in vivo by knocking out one or more of the genes
encoding the enzymes catalyzing the reaction.

The reaction knockout strategy was constrained with upper
and lower bound on the ATP-maintenance reaction set to
2.65mmol g dry weight�1 h�1[18] and with a lower bound on the
biomass growth rate of 0.05/h. The uptake rate of available carbon
and nitrogen sources were set to 0.8mmol g dryweight�1 h�1,
except for the uptake of ammonium which was unlimited. We
constrained OptKnock and GDLS to only allow knockout of
enzymatic reactions with one or more associated genes, that is,
all exchange reactions, 90 transport reactions, the biomass
reactions, and the ATP-maintenance reaction were restricted
frombeing removed.Additionally, 18 reactions related to oxidative
phosphorylation were neither allowed to be knocked out (see S4,
Supporting information, for details). The triple knockouts with
OptKnock were computed on one node of an HPC platform
with access to two Intel Xeon E5-2660 v3 CPUs.
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We implemented the strain design algorithms with iKS1317
in three different growth environments: 1) a basic environment
with glucose and ammonium; 2) a glucose-based environment
enriched with nitrogen sources, that is, glutamate, nitrate, and
ammonium; and 3) an environment enriched with carbon
sources, that is, galactose, glycerol, mannitol, and with
ammonium as the nitrogen source. An overview is given in
Table 3A. By comparing the predicted strain engineering
strategies in these three environments, we could evaluate the
consistency of the suggested genetic modifications.

3. Results

The genome-scale metabolic model iKS1317 of S. coelicolor,
contains 1317 genes (16% of the protein-coding genes in the
genome),[49–51] 2119 reactions and 1581 metabolites. An
overview of the iKS1317 composition is given in Figure 1B.
Both the model reactions and metabolites are now consistently
annotated with KEGG IDs whenever possible. Reactions are
annotated to 96 different pathways within 10 different
subsystems, as defined by KEGG (Figure 1B).[20,53] The
additional reactions and genes relative to iMK1208 are mostly
located in primary metabolism. However, we have also added
pathways allowing the production of geosmin, albaflavenon,
coenzyme F420, and methylenomycin, none of which are
present in the previous model, iMK1208.[18]

3.1. 83.3% Accuracy in Predicting Growth and Knockout
Phenotypes

When we test the ability of our model to correctly predict
experimental growth phenotypes, we find correct predictions in
Figure 1. A) The table displays a side-by-side comparison of the two most
minimal cultivationmediumwith glucose and ammonium as the only carbon
details. B) The pie chart shows how reactions in iKS1317 are distributed ove
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96.5% (55/57) of the tested growth environments for thewild-type
S. coelicolor (Table 2). Another approach for assessing the quality of
a genome-scale reconstructedmetabolic network, is to compare in
vivowith insilicopredictionsofgrowthphenotypes for single-gene
knockout mutants. This test is assessing the quality of the
reconstruction of alternative metabolic pathways, and thus, is a
complementary test to that of wild-type growth phenotyping. We
found that iKS1317 predicts the correct knockout phenotype in
78.4% (120/153) of the compared conditions (Table 2). Eight of the
correctly predicted knockout phenotypes are related to tRNA
charging of the amino acids and would be false if the primary
biomass reaction was used in the validation. In sum, iKS1317 has
been evaluated in 210 different conditions and has an accuracy of
83.3% (175/210) in predicting growth and knockout phenotypes.
The iMK1208 provides similar accuracy for predicting growth
phenotypes (96.5%) and a 71.4% (105/147) accuracy for knockout
mutants, resulting in an overall accuracy of 78.4% (160/204)
(Figure 1A). Six of the 153 knockout phenotypes could not be
evaluated by iMK1208 because the genes were not present in the
model. A spreadsheet describing all growth comparisons is
provided in S3, Supporting information.
3.2. OptKnock and GDLS Predicts Approximately 2-Fold
Increase of Acetyl-CoA Production for Double-Knockout
Mutants

Since the pyruvate dehydrogenase (PDH) reaction produces
acetyl-CoA from pyruvate and coenzyme A (CoA), we selected it
as the target reaction for the strain engineering analyses. The two
strain engineering strategies, OptKnock[27] and GDLS,[28]

predicted identical reaction knockouts as the optimal solution
recent genome-scale metabolic models for S. coelicolor. When assuming
and nitrogen source, iKS1317 has a total accuracy of 90%. See Section 4 for
r the main KEGG pathways, as well as exchange and transport reactions.
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for single, double and triple knockouts in environments 1 and 3.
For environment 2, both the single and double knockouts were
identical, but GDLS provided a sub-optimal solution for the
triple-knockout.

OptKnock also provides alternative solutions when several
strategies are optimal (Strategy 7 and 8, Table 3B) and a pre-
determined number of sub-optimal solutions (S4, Supporting
information). The predicted production rates of acetyl-CoA
through the PDH reaction are reported as the ratio of the rate in
the knockout mutant to the rate in the wild-type in the same
growth environment (Figure 2A, Table 3B). Absolute production
rates, growth rates, associated genes, and sub-optimal solutions
are provided in S4, Supporting information.

A numbering of the suggested strain engineering strategies
and the reactions suggested for knockout are given in Table 3B.
The name, KEGG ID and related pathway of these reactions are
given in Table 3C. In the following section we refer to the
strategies by the numbering and the reactions by their name.

The triple knockout in Environment 2 (Strategy 1) disrupt the
synthesis of glutamate from alpha-ketoglutarate and provide the
largest maximal relative production of acetyl-CoA (2.84).
However, this strategy is not recommended for in vivo
experiments because the minimal possible relative flux through
PDH in this strategy is zero (Figure 2A). The double knockout in
this environment (Strategy 2) provide a better solution: a large
maximal relative rate of acetyl-CoA production (2.62) and a
minimal relative equal the wild-type strain. In this strategy
succinyl-CoA synthetase and glycine hydroxymethyltransferase
is removed, and the effect on the flux distribution in the TCA
cycle and central metabolism is displayed in Figure 2B. The
reactions with major increase and decrease in flux is highlighted
in red and blue, respectively. The removed succinyl-CoA
synthetase is marked by a red X, and it is obvious that this
has major impact on the flux distribution in the TCA cycle. We
observe that the flux is rerouted out of the TCA cycle, into
glyoxylate cycle to produce succinate and malate through
isocitrate lyase and malate synthase. This increases the flux
through the PDH reaction because malate is converted to
pyruvate by malate dehydrogenase. Glycine hydroxymethyl-
transferase converts serine to glycine and is not shown in this
figure, but the removal reroutes the synthesis of glycine through
threonine. It is not obvious how this connects to the flux change
in the TCA cycle, and this illustrates well why a computational
Table 2. This table details the result of the comparison between in
silico predictions and in vivo observations.

Growth environments Knockout mutants

In silico Growth No growth Growth No growth

In vivo Growth TP: 51 FN: 0 TP: 78 FN: 6

No growth FP: 2 TN: 4 FP: 27 TN: 42

The left part displays the growth phenotypes for 57 different growth environments
and the right part display growth phenotypes for 153 different knockout mutants.
The two false positive predictions for the growth environments are with glutamine
and aspartate as the sole carbon source. The 27 false predictions for the knockout
mutants are examined in the Discussion section. The following abbreviations are
used: true positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN).
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approach is necessary to identify the optimal engineering
strategies.

Both the double and triple reaction knockouts in Environ-
ments 1 and 3 (Strategy 3–5) give similar changes in the flux
distribution as Strategy 2 (Figure 2B). The overall pattern is that
succinyl-CoA synthetase is knocked out along with either
glutamate dehydrogenase or glycine hydroxymethyltransferase.
The triple knockouts provide the largest predicted maximal
production of acetyl-CoA in these environments (1.97 and 1.79
for Environments 1 and 3, respectively), but the small gain
compared to Strategy 4 (1.80 and 1.71 for Environments 1 and 3,
respectively) will probably not be worth the extra effort required
to perform the additional knockout in vivo. The single reaction
knockout strategies provide almost no increase in the production
of acetyl-CoA (Figure 2A).
4. Discussion

This work presents iKS1317, an updated genome-scale meta-
bolic network for S. coelicolor, providing more accurate
predictions than any previous genome-scale reconstruction for
this organism (Table 1). The iKS1317 network is also more
comprehensive, more thoroughly annotated, and better validated
than previous models.

Many of the discrepancies between in vivo growth and in silico
predictions present in previous metabolic reconstructions of S.
coelicolor are related to the degradation and biosynthesis of
branched-chain amino-acids, and they have been resolved in
iKS1317. It is known that the S. coelicolor Δvdh (SCO4089)
knockout mutant is unable to grow with L-valine, L-leucine, or L-
isoleucine as the sole carbon source,[43] an observation not
supported by iMK1208.[18] However, by only changing the L-
valine (R01214), L-leucine (R01090), and L-isoleucine (R02199)
transaminase reactions from reversible to irreversible, these
reactions are prevented from participating in the degradation of
branched-chain amino acids, and these experimental results are
recovered in iKS1317. In contradiction, the estimated changes in
Gibbs free energy at 1mM concentration and standard
conditions are 3.2� 6.9, �1.2� 3.2, and �4.7� 6.9 kJmol�1

for R01214, R01090, and R02199, respectively,[31] not indicating
that the reactions are irreversible in any direction. However,
different metabolite concentrations and the efficiency of
upstream and downstream reactions have a major impact on
these values.

Second, the ΔmsdA (SCO2726) knockout mutant is incapable
of growth in vivo, with L-valine as the sole carbon source. The
gene msdA encodes for the enzyme methylmalonate-semi-
aldehyde dehydrogenase which catalyze the reactions methyl-
malonate-semialdehyde: NADþ oxidoreductase (R00935) and
3-oxopropanoate:NADþ oxidoreductase (R00705). Removing
the reaction methylmalonate semialdehyde: NADþ oxidoreduc-
tase disrupts the primary degradation pathway of L-valine, but
according to the metabolic reconstruction L-valine can also be
degraded through the pathways for biosynthesis and degradation
of L-leucine. This connection is possible because of the enzyme
catalysing the reaction 2-isopropylmalate synthase (R01213). We
have in iKS1317 introduced a redox coupling (acetyl-CoA/CoA)
between 3-oxopropanoate: NADþ oxidoreductase (R00705) and
uthors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 2. A) Predicted relative production rate ranges of the primary antibiotic precursor acetyl-CoA through the pyruvate dehydrogenase (PDH)
reaction for single, double, and triple reaction knockout mutants in the three different growth environments (Table 3A). Each bar spans between the
minimum and maximum computed rates, relative to the rate of the PDH reaction for the wild-type in the same growth environment. OptKnock[27] and
GDLS[28] provided identical predictions except for the triple knockout in environment 3, where GDLS returned sub-optimal solutions. B) The predicted
change in flux distribution when succinyl-CoA synthetase (marked by red X) and glycine hydroxymethyltransferase (not in figure) are knocked out
(Strategy 2, Table 3B). The flux is rerouted out of the TCA cycle and into the glyoxylate cycle to produce succinate and malate. This increases the flux
through malate dehydrogenase and pyruvate dehydrogenase. The map is drawn using Escher and display only the TCA cycle and related reactions in
iKS1317.[52] The reactions with major increase and decrease in flux are highlighted in red and blue, respectively.
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Table 3. An overview of the strain engineering environments and results.

(A) Environments

Environment no. Carbon sources Nitrogen sources

1 Glucose Ammonium

2 Glucose Glutamatea, nitrate, ammonium

3 Galactose, glycerol, mannitol Ammonium

(B) Strain engineering predictions

Strategy no. Environment no. Reactions Max production

1 2 R00114, R00093, R00248 2.84

2 2 R00405, R00945 2.62

3 1 R00405, R00658, R00945 1.97

4 1 R00405, R00248 1.80

5 3 R00405, R00248, R00955 1.79

4 3 R00405, R00248 1.71

6 2 R00844 1.05

7 1 R04780 1.04

8 1 R01070 1.04

9 3 R00248 1.03

(C) KEGG ID, name and pathway of suggested reactions

KEGG ID Reaction name Pathway

R00093 Glutamate synthase Glutamate metabolism

R00114 Glutamate synthase Glutamate metabolism

R00248 Glutamate dehydrogenase Glutamate metabolism

R00405 Succinyl-CoA synthetase TCA-cycle

R00658 Enolase Glycolysis/gluconeogenesis

R00844 Glycerol-3-phosphate dehydrogenase Glycerophospholipid metabolism

R00945 Glycine hydroxymethyltransferase Glycine, serine and threonine metabolism

R00955 Uridyl transferase Galactose metabolism

R01070 Fructose-bisphosphate aldolase Glycolysis

R04780 Fructose 1,6-bisphosphatase Gluconeogenesis

Table 3A display the carbon and nitrogen sources of the three environments. Table 3B display the predicted optimal strain engineering strategies: The maximal production
is the relative rate of the pyruvate dehydrogenase reaction (PDH) with respect to the maximal rate of this reaction for the wild-type in the same growth environment.
Table 3C display the KEGG ID, name and pathway of each of the reactions in the suggested strategies. The absolute minimal and maximal production rates, growth rates,
associated genes, and sub-optimal solutions are provided in S4, Supporting information. a)Glutamate is a source of both carbon and nitrogen.
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2-isopropylmalate synthase (R01213) which blocks the latter
reaction for the ΔmsdA knockout mutant and solves this
discrepancy between in vivo observation and in silico prediction.
A detailed description is given in S5, Supporting information.

While our analysis and manual curation of the metabolic
network reconstruction has removed the two before men-
tioned discrepancies, we are still left with an incorrect growth
prediction of the ΔmsdA (SCO2726) mutant with propionate
as the sole carbon source. In contrast to in vivo experi-
ments,[37] the iKS1317 predicts no growth, since the
introduced coupling also disrupts the synthesis of L-leucine,
which is an essential amino acid. Further research is required
to fully understand the regulatory mechanisms involved in the
synthesis and degradation of the branched-chain amino acids
in S. coelicolor.
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In iKS1317, we propose a new, possible pathway for the
biosynthesis of L-isoleucine: four intermediate steps cataboliz-
ing pyruvate to 2-oxobutanoate. According to KEGG, S. coelicolor
is missing the initial reaction of this pathway, R-citramalate
synthase. However, upon conducting a protein BLAST
(BLASTP) search,[54] we uncovered a sequence similarity of
47% (E-value: 2e-168) between SCO5529 and the cimA gene in
Geobacter sulfurreducens, where this pathway has been experi-
mentally validated.[55] The same reaction has also been identified
in vivo in Cyanobacteria, and it has been suggested that this
pathway may be present in other organisms.[56] The output from
our BLASTP search is available in S6, Supporting information.

We have used published transposon mutagenesis data[24] to
validate and correct our model predictions for essential genes. In
contradiction to the iMK1208 model predictions,[18] the
uthors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
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transposon study indicates that SCO5626 is an essential gene
encoding the ATP/UMP phosphotransferase. According to the
gene annotations in iMK1208, the cmk gene (SCO1760) also
encodes for this enzyme.However, the enzyme encoded by cmk is
highly specific for the ATP/CMP phosphotransferase in prokar-
yotes.[57] Consequently, we removed it from this gene-reaction
rule in iKS1317. Another apparently essential gene is SCO3894,
encoding a transmembrane protein involved in the murein
biosynthesis. This differs in KEGG and iMK1208, which suggest
that theenzymeencodedbySCO2709 isan isozymeof theenzyme
encodedbySCO3894.ABLASTPsearchof themurJgene inE. coli,
where the function of the encoded protein is shown,[58] showhigh
similarity with both SCO2709 (E-value 3e-13) and SCO3894
(E-value 1e-20), and we have therefore kept SCO2709 and
SCO3894 as isogenes in iMK1208. The output from our BLASTP
search is available in S7, Supporting information.

The disagreements between our model predictions and in
vivo observed wild-type growth phenotypes are associated with
the utilization of glutamine and aspartate as carbon
sources.[34] These erroneous phenotypes are also predicted
in iMA789 and iMK1208, and it has previously been suggested
that this lack of in vivo growth is caused by regulatory
effects.[16] It is surprising that S. coelicolor is unable to grow on
L-aspartate, because it is observed in vivo that it can utilize L-
asparagine as a carbon source,[34] which is then degraded to L-
aspartate. Thus, by only taking the topology of the metabolic
network into account, the organism should be able to grow on
L-aspartate as well.

Contrary to our predictions, S. coelicolor is unable to grow with
glutamine as the carbon source ([34] as cited in ref. [16]). However,
glutamine can be used as a nitrogen source, providing
ammonium through conversion to glutamate by glutaminase
intracellularly. Glutamate is further decarboxylated into γ-
aminobutanoate upon uptake.[59] Borodina et al.[16] suggested
that the intracellular glutamate provided by glutaminase cannot
be further degraded, explaining why glutamine can function as a
nitrogen source but not a carbon source. On the other hand, a
ΔglnA (SCO2198) mutant, lacking glutamine synthase, can
utilize glutamine as a carbon source.[39] According to optimi-
zation theory it is not possible to increase the metabolic
repertoire of a GEM through a gene knockout, since a gene
knockout reduces the solution space.[60] This observation is in
support of the suggestion that a regulatory effect is the cause for
the observed lack of utilization of glutamine as a carbon source
in vivo.

The growth predictions for knockout mutants may seem less
accurate (78.4%) than the growth phenotype predictions (96.5%).
The erroneous predictions are mostly false positives, that is,
iKS1317 predicts growth for knockout mutants that do not grow
in vivo. This indicates that the model is too flexible and contains
optional pathways or isogenes when an in vivo essential gene is
knocked out. As is customary for constraint-based modeling,
unless explicit knowledge is present, one does not account for
possible differences in reaction rates between alternative
enzymes or pathways.[60] Thus, a pathway providing a perfect
replacement in silico may actually be too slow to support
detectable growth in vivo. While it is possible to use enzyme
kinetics to limit the reaction rates in a GEM, it is difficult to
acquire reliable values.[61]
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We determined 27 false positive predictions for the different
knockout mutants, that is, 27 genes that are observed as
essential in vivo but not in silico. Fourteen of the false positive
predictions can be traced back to uncertainty of the nutrient
environment, more specifically the available carbon and
nitrogen sources present in the complex growth medium in
which the transposon mutagenesis mutants were cultivated.[24]

One example is the knockout of the gene ddl (SCO5560),
encoding the D-alanine-D-alanine ligase, which is observed to
be an essential gene in the transposon mutagenesis study, in
contradiction to the iKS1317 predictions. However, by simply
removing D-alanyl-D-alanine from the growth medium in
silico, iKS1317 correctly predicts no growth for the Δddl
mutant. These 14 false positives are changed to the true
negative category if we assume a minimal medium with
glucose and ammonium as the sole carbon and nitrogen
sources, respectively. With this assumption, iKS1317 has an
accuracy of 87.1% (134/153) for predicting knockout pheno-
types, resulting in a total accuracy of 90% (189/210). This
demonstrates a challenge with the typical use of transposon
mutagenesis data for model curation and validation.

Another limiting factor is the lower bound of 1.9 kb on the
length of the genes identified as essential reactions. Of the 1317
genes present in iKS1317, only 129 (9.8%) are longer than
1.9 kb. A more extensive transposon mutagenesis study with a
lower threshold would increase value of the data because it
could enable the evaluation of a larger number of essential
genes.

We observe thatmany of the genes annotated to their respective
enzymes, and thus reactions, are inferred from homology with
similar genes indifferent organisms. It is inmost casesnot certain
that these genes actually encode for the same enzymes, potentially
leading to erroneousmodel predictions.Another possibilitywhich
will provide false-positive results is that a gene that ispresent in the
iKS1317 model may not be expressed in vivo. There exist several
methods for using transcriptomics (see Ref. [62] for a comparison)
to restrict themodel solutionspace toonly includegenesexpressed
in the chosen conditions, and such data may improve model
predictions.

By using OptKnock[27] and GDLS[28] we have predicted optimal
single, double, and triple reaction-knockout strategies to increase
the production of acetyl-CoA through PDH. The GDLS algorithm
use heuristics to perform a local search, and it is not guaranteed to
find theoptimal solution.[28]With theGDLSalgorithm the optimal
solution was found for all single and double reaction knockouts,
and in two of the three environments for the triple knockouts.
While OptKnock always find the optimal solution, the CPU-time
for a triple reaction knockout using OptKnock and iKS1317 is
about 160h on a HPC-platform, compared to a few minutes with
GDLS on an average laptop. Thus, for more than three knockouts
with iKS1317, OptKnock becomes practically infeasible when all
possible reactions are considered.

Production of acetyl-CoA was selected as a target for the strain
engineering algorithms because it is the most important
precursor for biosynthesis of polyketides. Increasing the
precursor pool has previously provided increased secondary
metabolite production in S. coelicolor[63,64] and similar strains.[65–
67] Increasing the precursor pool can be combined with
overexpression of the biosynthetic gene cluster encoding the
uthors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
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pathway producing the target compound to further improve the
likelihood of increased production.[68]

Several precise regulatory mechanisms are involved in the
biosynthesis of antibiotics in vivo. Among these mechanisms,
carbon-source interplay appears to be one of the main factors
controlling secondary metabolism.[69,70] Therefore, reaction
deletion strategies for overproduction of polyketide antibiotics
in silico were suggested in various growth environments
(Table 3A), that included different nitrogen and especially
carbon sources. Both Strategy 2 and 4 seem like good
suggestions for in vivo strain optimization: Strategy 2
provides the largest increase in acetyl-CoA production of
these two, but Strategy 4 is more robust to different growth
environments.

When comparing the suggested strain engineering strategies
with experimental data, we find good agreement with the results
from Huang et al.[71] that found increased production of FK506
in a ΔgdhA Streptomyces tsukubaensis knockout mutant. FK506 is
a combined polyketide synthase and non-ribosomal peptide with
acetyl-CoA as one of themain precursors, andΔgdhA encodes for
glutamate dehydrogenase (R00248), one of the suggested
knockouts in Strategy 1, 4, 5, and 9 (Table 3B).

However, when taking the transposon mutagenesis data into
account, some of the suggested strategies are in contradiction to
observed knockout mutants: the sucC (SCO4808) and sucD
(SCO4809) genes encoding the succinyl-CoA synthetase com-
plex are classified as essential genes.[24] Succinyl-CoA synthetase
(R00405) is one of the two knocked out reactions in both Strategy
2 and 4 (Table 3B). According to iKS1317 and protein BLAST
SCO4808 and SCO4809 are not essential because SCO6585 and
SCO6586 are isogenes encoding the same enzyme complex with
E-values of 2e-145 and 1e-156, respectively (S8, Supporting
information). Additionally, iKS1317 predicts less than 2%
reduction in growth rate if succinyl-CoA synthetase is knocked
out. Possible reasons for this discrepancy include: 1) The genes
SCO6585 and SCO6586 may not be expressed in the cultivation
media used in the transposonmutagenesis experiment[24] and 2)
iKS1317 is too flexible and predicts an efficient flux rerouting
when succinyl-CoA synthetase is removed which does not occur
in vivo. Consequently, our computational in-depth analysis of
iKS1317 serves as an example of the systems-biology science
iteration paradigm, by producing further hypothesis that need
experimental follow up.
Abbreviations
GDLS, genetic design through local search; GEM, genome-scale
metabolic model; KEGG, kyoto encyclopedia of genes and genomes.
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