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ABSTRACT

To model two-phase flows in industrial applications, for example
the raceway zone in a blast furnace, an Eulerian two-fluid model is
usually the method of choice. It has proven to predict the behavior
of gas-solid flows well and has a justifiable computational demand.
Although, it is already widely used, there are still some deficiencies
which arise from the averaged equations. Especially the continuity
equation needs some special care compared to single phase flows.
The consistency and boundedness need to be ensured, which is not
straightforward. One widely used approach to target this problem is
to use the relative velocities in the continuity equation. A drawback
is, that this modified equation is non-linear in the phase fraction
and therefore needs to be solved iteratively if solved implicitly. We
propose to solve the discretized equation by combining an implicit
solution step with (an) explicit corrector step(s). This new approach
was implemented in the open source software OpenFOAM® and
compared with the standard implementation. The new algorithm
gives good prediction results for several test cases and this implicit
approach could lead to larger time steps through better stability of
the solution procedure.

Keywords: Two-Fluid Flow, Euler-Euler Approach, Raceway
Simulation .

NOMENCLATURE

Greek Symbols

o Phase fraction, [—]

7 Constant = 2 [—]

K Solid conductivity [<9/m.s]

A Blending coefficient [—]

£ Coupling term, [s7!]

P Density, [F9/m?]

T Stress tensor, [k9/ms?]

¢  Angle of internal friction [o]
¢ Velocity, [™/s]

Latin Symbols

p  Pressure, [Pa.

t Time, [s]

A Diagonal contributions

F  Flux [m/s]

Fr  Constant = 0.05 [—]

K Drag coefficient [k9/m?s]
P Constant =5 [—]
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S
v

(I D)_l/ ? 2nd-order deviatoric shear stress tensor

Source term
Cell volume[—]

g  Gravitational acceleration [m/s?]
S Surface normal vector [—]
U  Velocity, [7/s]
Sub/superscripts

e Explicit

f Face value

g Gas

1 Implicit

n Time step

P Center value

r Relative value

S Solid

C  Convective

H  High order

L Low order

fric Frictional

ktgf Kinetic theory of granular flows

min Minimum for frictional effects

maz Maximum (packing) limit

* Quantity enlarged with decoupling terms

INTRODUCTION

Industrial processes often incorporate two- or multi-phase
flows, for example: fluidized beds for pyrolysis (Papadikis
et al., 2008) or the blast furnace for pig iron production (Ab-
hale et al., 2020). The simulation of such processes using
computational fluid dynamics (CFD) helps to understand and
improve them. To accurately and efficiently predict the phe-
nomena dominating the operation, well calibrated models and
numerical procedures are essential.

In general, the solid phase in a two-phase flow could be
described by using Lagrangian or Eulerian models. The La-
grangian models offer more detail, since they are able to
resolve particle interactions on a per particle basis (van der
Hoef et al., 2008; Agrawal et al., 2001). Although, com-
puter power is and has been increasing, the computational
demand is still limiting. Therefore, this approach is usu-
ally only applied to small scales or low solid concentrations.
For the many two-phase flows in industry, which incorporate
dense solid flows, the Eulerian models are the way to go,
(van der Hoef et al., 2008). Here, both (gas and solid) phases
are treated as interpenetrating continua. Particle interactions
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can not be resolved using those models but the models have
proven to correctly predict phenomena in two-phase flows.
Compared to single-phase flows, the coupled equations are
more difficult to solve and need special treatment, (Passalac-
qua and Fox, 2011; Weller, 2005). To further speed-up sim-
ulations the community is constantly trying to improve the
algorithms to solve the equations. In this paper we suggest
an alternative algorithm for the solution of the continuity
equation in two-phase flows.

The algorithmic approach is described in the following sec-
tion. The new approach was implemented in OpenFOAM®
and tested on several test cases. The results are presented
and provide promising results for the application of the new
algorithm.

THEORY

Two-Fluid solvers are widely used for dense gas-solid sys-
tems. They treat both the phases as interpenetrating continua
and use the Navier-Stokes equations for their description.
Compared to a single-fluid system, the phase fraction is added
to the descriptive equations. The phase-averaged equations
for the solid phase are given in the following. Eq. 1 shows
the continuity equation and Eq. 2 the momentum equation,
where oy is the solid phase volume fraction, Uy the solid
velocity and U, the gas velocity, p the solid density, 7, the
solid stress tensor, p the pressure, ps the solid pressure, g
the gravitational acceleration and K, the drag interaction
coefficient. The solid pressure ps is modeled based on the
Kinetic Theory of Granular Flows, which is shortly described
in a following section.

0
(asps) + V- (aspsUs) =0

e ey

0
ot (OzspsUs) +V- (OésPsUsUs) =V (asTs) )

—asVp — Vps + aspsg + qu (U(J - US)

The equations for the gas phase are formulated similarly by
using the quantities of the gas phase (gas volume fractioncy,
gas density p, and gas stress tensor 7,):

ot (agpg) +V - (agpgUgy) =0

3

0
- (agpgUg) + V- (agpgUgUyg) =V - (ag7y)

ot 4

—agVp+ agpeg + Ksg (U —Uy)

The two phases are coupled through the momentum exchange
terms. In Eq. 2 and Eq. 4 only the drag term is consid-
ered (K 4 (Uy — Uy)). Furthermore, the following condi-
tion links the phases:

Zai:as—i—ag:l (@)
With the phase-averaged equations, some problems arise in
the solution procedure, because the conservativeness of the
solution and the boundedness of the phase volume fraction
need to be ensured. Rusche (2002) and Oliveira and Issa
(2003) recap different approaches of the discretization of the
continuity equation. Here (and in OpenFOAM® ) we use
an approach presented by (Weller, 2005) and (Passalacqua
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and Fox, 2011) where the equation is reformulated in the
following way:

0 () 4V (0,0) + V- (agasU,) = 0

o (6)

using the average phase velocity U
U=oa,U, +o4,U, @)

and the relative phase velocity U,
U, =U, U, ®)

The derivation of the coupling terms and the phase pressure
yields the modified phase continuity equation, derived by
(Passalacqua and Fox, 2011):

Oas * *
or V(s pe) + V- (agaspry)
1 Ops 1 ©)
-V [as,fﬁs,f <p58as) l7 S|V Oés} =0

Where S is the surface normal vector and the averaged flux
(¢) (Eq. 11) and the relative flux (¢, s) (Eq. 13) are used.
The fluxes (¢ and ¢y, ;) are modified by a term resulting
from the decoupling of the momentum equations:

. 1 Op,
Y = 90+as,f£s7f < P ) |S| vLas (10)
ps Oas )
Y= Qsps T 0gpg (11)
. 1 Ops
Prs = Prs T Es,f ( i > |S| vLas (12)
ps 0o f
Prs = Ps — Pg (13)
1
= (14)
ST K

The partially implicit algorithm (explained by (Weller, 2005)
and (Venier et al., 2018)) is used for the decoupling. The term
&s, ¢ results from this decoupling of the momentum equations
- in Eq. 14 only the drag term (K,,) is mentioned, but also
the implicit part of the virtual mass force term can be added
to & ¢. As is the coefficient matrix arising from the discreti-
sation of the momentum equation.

Boundedness can only be ensured, if a fully implicit so-
lution algorithm is chosen (Rusche, 2002; Passalacqua and
Fox, 2011), but the non-linearity in « (Eq. 9) requires sub-
iterations when using an implicit approach.

An upwind differencing scheme can also ensure the bound-
edness of the solution of Eq. 9. A drawback from the upwind
schemes is numerical diffusion and consequently unsatisfy-
ing results. Therefore, an algorithm, called MULES (Mul-
tidimensional Universal Limiter with Explicit Solution) for
blending high-order and upwind solution has been introduced
in OpenFOAM® . The MULES algorithm is described in the
next section.

Since this MULES algorithm requires quite small time step-
ping, < 0.25 (Wardle and Weller, 2013), we wanted to sug-
gest a new algorithm to possibly combine the benefits of a
fully implicit and the MULES algorithm. This suggested and
newly implemented algorithm, named ICMULES, is intro-
duced afterwards and tested on several benchmark cases.
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MULES Algorithm

MULES is the abbreviation for "Multidimensional Universal
Limiter with Explicit Solution" and is an iterative algorithm
to solve hyperbolic equations (Tacconi, 2018). The method
explicitly integrates in time and uses a blending of first-order
upwind and high-order schemes for the calculation of the
fluxes. This ensures the boundedness while keeping the in-
fluence of numerical diffusion low.

In the OpenFOAM® Code the MULES:explicitSolve function
is used to partly solve the modified continuity Eq. 9. The
function solves Eq. 9 without the consideration of the last
term, see Eq. 15. F% f denotes the convective fluxes, which
correspond to the second and third term in Eq. 9. The fluxes
are calculated with consideration of the lower (a« = 0) and
upper (Qtq.) limits of the phase fraction. S; and S, represent
the source terms of the continuity equation arising from f.ex.
phase change or compression.

an+1 _an

s a n n+1
— Ve D FE = allSi 5. (19)
f

The fluxes are blended by fluxes calculated with a low order
discretisation scheme FZ and fluxes calculated with a high
order discretisation scheme F//. The low order and an antid-
iffusive flux A are summed up, see Eq. 17. The antidiffusive
flux is calculated as:

A= (F - F}) (16)
A limiter function A, based on the limits of s and the neigh-

boring cell values is computed, which determines the degree
of blending.

O(n+1 _n

s Qg n,L n+1
Vet FOF A ArA = alf
f f

S;+S. (17)

More details on the computation of the limiter A are given in
(Tacconi, 2018).

ICMULES Algorithm

The suggested new algorithm combines an implicit solution
step with a corrector step using MULES. Therefore, it will
be called ICMULES (Implicit Corrected by MULES) in the
following. The implicit step solves Eq. 9. In the present
paper the following discretization schemes are used: implicit
Euler in time, limited linear for the convective term with the
relative flux, pure upwind for the other flux, a linear scheme
for the gradient and linear with correction for the laplacian
term.

The MULES algorithm is used in the next step to calculate an
antidiffusive flux A, as previously, to ensure the boundedness
of the solution. This antidiffusive flux is used to correct alpha
similarly to Eq. 17:

corr __ ai

s s 1

PV Y M A= oS4 s, (18)
f

If the corrector step is used multiple times, an underrelaxation

factor of 0.5 for all but the first iteration is introduced. It is
usually applied three times in the following test cases.
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Kinetic Theory Models

The solid phase fraction and its movement are modeled by
the Kinetic Theory of Granular Flows (KTGF) (Gidaspow,
1994). A granular temperature O is used to model the solid
phase viscosity and the particle pressure. Usually, a par-
tial differential equation (PDE) for the granular temperature
is constructed and solved (see (Gidaspow, 1994) or (Venier
et al., 2018) for further details).

If dissipation is assumed to be equal to production of the gran-
ular temperature, an algebraic equation is derived and solved
instead of the PDE. (This is denoted in the OpenFOAM®
settings by equilibrium=on).

For the solid viscosity (i 1t and the solid conductivity k4
different models using the radial distribution function g, the
granular temperature O, and the restitution coefficient ey
exist.

Different models were proposed in literature for the calcu-
lation of the granular pressure, the frictional stress and the
radial distribution function. A short recap of the used models
is given below:

Granular Pressure Models

(a) Lun

Ps = psases + 20504390@3 (1 + es) (19)
For the granular pressure the relation presented by (Ding and
Gidaspow, 1990) is used, which is derived based on Lun’s
velocity relations in a collision (Lun ef al., 1984).

Frictional Stress Models

The kinetic theory of granular flows does not model parti-
cle interactions with multiple neighboring particles near the
packing limit, (Srivastava and Sundaresan, 2003; Venier ez al.,
2018). Therefore, models to account for friction, frictional
stress models, were introduced near the packing limit (when
Qs > Qunin). A frictional pressure and a frictional viscosity
are added to the solid pressure and the solid viscosity:

Ps = Ds,ktgf + Ps, fric (20)

Hs = Ms ktgf + Ms, fric (21)

Passalacqua and Fox (2011) and Venier et al. (2018) compare
different frictional stress models and their influence on the
simulation. Commonly used models are:

(a) Johnson Jackson (Johnson et al., 1990)

(as - Oémin)n

DPs, fric = Fr P (22)
(as,maw - as)
Hs, fric = 0~5ps,fr7,'c Sln(¢) (23)
(b) Schaeffer (Schaeffer, 1987)
Ps,fric = 1025 (as - as,min)lo (24)
Hs, fric = O~5ps,f’r'ic (IQD)_1/2 sin ((b) (25)

The angle of internal friction ® was set to 28 for the Schaefter
model and to 28.5 for the Johnson Jackson model in the
simulations.
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Radial Models

Different models to calculate the radial distribution function
go used in the granular pressure formulation (Eq. 19) have
been proposed: (a) Carnahan Starling (Carnahan and Starling,
1969)

1 3a a?
= + — + . (26)
P e, T2 21—
(b) Lun Savage (Lun and Savage, 1986)
a —2.50max
go = (1 -— ) (27)
amaz

(c) Sinclair Jackson (Lun and Savage, 1986; Sinclair and

Jackson, 1989)
1/3\ ~1
()]

It has to be noted, that the Carnahan Starling model does
not take the maximum packing limit a4, into account, also
emphasized by (Venier et al., 2016). Therefore, the choice of
the frictional stress model in conjunction with this model is
essential, which will also be shown in the Results section.

RESULTS

Common test cases for two-fluid models are chosen to test
the stability of the newly proposed algorithm. The results
are compared to simulations with MULES. Furthermore, the
influence of different frictional stress and radial models was
tested to ensure the applicability of the ICMULES with dif-
ferent settings.

The test cases and the corresponding models used are sum-
marized in Table 1. The abbreviations there correspond to the
test cases: falling block=f.b., settling suspension=s.s., bubble
growth=b.g. and raceway=r.w.. The letters (a)/(b)/(c) corre-
spond to the models described in the section about the kinetic
theory.

In the following subsections the chosen test cases are de-
scribed and their results are presented.

Qg

(28)

amam

Table 1: Models for the kinetic theory used for the different test
cases and the chosen parameters

Model f.b. S.S. b.g. r.W.
equilibrium off off off off
viscosity (a) (b) (b) (b)
conductivity (a) (b) (b) (b)
granular pressure  (a) (a) (a) (a)
frictional stress (@) (a/(b) (b) (b)
radial (a) (c) (a)/(b) (©)
Parameters

packing limit 0.63 0.60 0.63 0.63
Qmin 0.60 055 varying 0.6
restitution coeff.  0.80  0.80 0.95 0.95

Falling Block (f.b.)

The falling block test case is chosen to check the stability
of the algorithm. It was also used by (Passalacqua and
Fox, 2011) and (Venier et al., 2013). A block (dimensions:
0.026 m x 0.08 m) with a solid volume fraction of 0.58 is in-
troduced at a height of 0.012 m in a 2D-domain with 0.05 m
width and 0.2 m height. It falls down solely by gravity. A
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hexahedral mesh with 10 x 40 cells is used for the simulation
in OpenFOAM® .

The particles have a diameter of 0.4 mm and a density of
2000 kg/m®. The fluid phase viscosity is 1.84-10~° Pa-s and
a Prandtl Number of 0.7 is used. No virtual mass effects are
taken into account and the drag is modeled as suggested by
(Gidaspow, 1994), blending the Ergun and the Wen-Yu drag
models.

The velocity boundary conditions are set as Dirichlet bound-
ary conditions at the bottom and top for particle velocity and
at the walls and the bottom for the air velocity. A Neumann
boundary condition is set for the air velocity at the top and

the particle velocity at the walls.

02 02

0I | -I
% 0.05

0.05
d)02s

0.2
0.1

%

005
(¢)0.15s

00s %

)

(@0s (b)0.1s

Figure 1: Falling block using MULES algorithm

The results using MULES and ICMULES are shown in Fig-
ure 1 and Figure 2, respectively. The results are very similar
for the both algorithms. The particles are slightly denser
packed when using the ICMULES algorithm. The snapshot
at 0.2 s is not the finally settled bed.

The difference in the maximum packing could be related to
the chosen radial and frictional stress model. The used radial
model (Carnahan Starling) does not take the maximum pack-
ing limit into account. It is also discussed by (Schneiderbauer
et al., 2012), that the maximum packing limit is ensured by
the divergence of the frictional stresses, when the Carnahan
Starling or a similar model is used for the radial distribu-
tion function. The MULES algorithm is still enforcing the
packing limit by accounting for it in the flux reconstruction.
The correction step in the ICMULES is not enforcing this
limit. The question remains if this property is related to a
physical model or it is a "numerical” trick in the MULES
algorithm. Probably, one should anyways aim to choose a
physically valid combination of radial model and frictional
stress model, which ensures the packing limit.

Settling Suspension (s.s.)

The settling supension case uses also a 2D-setup with 0.05 m
width and 0.3 m height and is discretized by 8 x 40 hexahedral
cells. The whole column is initialized with a solid volume
fraction of 0.3. Through gravity, the particles settle after time
until they reach the packing limit (a4, = 0.6). Passalacqua
and Fox (2011) use this case to test an implicit solution.
Venier et al. (2016) use it to compare partial elimination
with partially implicit approach for the decoupling of the
momentum equations.

The properties of the solid and fluid fraction are the same as
for the falling block case, except that the Prandtl number was

Qparticles
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005 % 005 % 0.05

@O0.2s

(@0s

(b)0.1s

(¢)0.15s

Figure 2: Falling block using ICMULES

set to unity for both phases. The boundary conditions as well
as the virtual mass and drag effects are treated in the same
way as for the falling block case.

The solid void fraction profiles after different settling times
are shown in Figure 3. The two algorithms are compared
to the literature data from (Passalacqua and Fox, 2011) and
(Venier et al., 2016). Here, two different frictional stress
models, the Johnson and Jackson (a) and the Schaeffer (b)
model were applied.

Figure 3 shows, that the MULES and ICMULES case agree
very well at the later settling times. In the beginning, at
t = 0.1 s, there is a difference at the top of the column.
We are not entirely sure, what is causing those differences
between the MULES and ICMULES results. Because the
ICMULES algorithm fits better to the presented literature
data the presented algorithm seems valid. One reason for
the differences at the beginning and the top of the column
could be that numerical diffusion is more pronounced when
applying the MULES algorithm.

At later times, the major difference between the solutions
results from the different frictional stress models. The Scha-
effer (b) model limits the phase fraction already to the vy,
value. The results from the JohnsonJackson (a) model agree
well with the results from literature and the results from IC-
MULES and MULES are virtually identical for the later time
steps (t = 0.6 seconds).

Bubble Growth (b.g.)

The 2D bubble growth case checks the bubble growth in a
fluidised bed with a central jet. Venier et al. (2018) studied
the influence of the third dimension and did not find a signif-
icant impact, therefore, we only use the 2D case here. The
geometry is 0.57 m wide and 1 m high and is discretized by
112 x 200 cells, which was determined to be the "best" mesh
regarding the trade-off between calculation time and accuracy
(Venier et al., 2018).

First, the bubble formation with no frictional stress - or more
precisely pmin > Qo to avoid the contribution of frictional
stresses was studied, see previous section about the frictional
stress models. This was done to eliminate the influence of the
chosen frictional stress model on the test results and solely
study the influence of the radial model.

When using the ICMULES algorithm, the choice of the radial
model determines if the packing limit is ensured, as discussed
in the previous section. The ICMULES can enforce the pack-
ing limit when using the radial distribution models of Lun

QAparticles
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Figure 3: Solid volume fraction s after t = 0.1, 0.15 and 0.6 sec-
onds settling time (from top to bottom), (a) and (b) refer
to the frictional stress model



E. Wartha, M. Bosenhofer, M. Harasek

Savage or Sinclair Jackson, because there o4, is used in
the formulations. The contribution of the radial function g
has a singularity at the packing limit and avoids overpacking
in that way. When the Carnahan Starling model is used, the
ICMULES cannot enforce the packing limit, see Figure 4 (d).
The results in Figure 4 (d) show clearly, that the ICMULES
is not applicable without a proper frictional stress model near
the packing limit.

The MULES algorithm can always enforce the packing limit,
because 4, is given as an input parameter for the flux
calculation and ensures « values between 0 and oy, 4, through
the algorithmic implementation.

When the results without frictional stress with the Lun Savage
radial model are compared, they are identical for the explicit
and implicit algorithm, see Figure 4. The agreement with the
experiments seems though to be best for the Carnahan Starling
model using the explicit algorithm. Comparing the simulated
and measured bubble detachment time, Table 2 indicates that
the Lun Savage model agrees better with the experiments.

Table 2: Bubble detachement time in seconds. Experimental values
from (Kuipers et al., 1991). Simulations without frictional
stress model

Exp. MULES ICMULES
(a) (b) (a) (b)  radial model
0.17 0.19 0.15 0.31 0.15

The simulations without frictional stress model were con-
ducted to highlight the differences of the algorithmic ap-
proaches. For simulations near the packing limit it is usually
not advised to ignore the frictional stresses, because the ki-
netic theory can not account for multiple particle interactions.
Therefore, we also studied the bubble formation with a fric-
tional stress model. We chose the Schaeffer frictional stress
model, because it can be applied with the Carnahan Starling
radial model. The results of the bubble formation at t = 0.1,
0.14 and 0.18 s are also shown in Figure 4. The minimum
frictional packing was set to auy,;, = 0.6.

Kuipers et al. (1991) presented also the bubble diameter ratio
of the experiments. Figure 5 compares those ratios with the
ones from the simulation without frictional stress. In the
simulation the bubble was measured as the region with a void
fraction below 0.2. The bubble shape with the Lun Savage
radial model and no frictional stresses is predicted in line with
the experiments for the first 0.15 seconds. Then, the vertical
stretch is over and/or the longitudinal stretch under predicted.
The same comparison was made for the bubble prediction us-
ing the Schaeffer frictional stress model, see Figure 6. Here
the longitudinal stretch of the bubble seems way overpre-
dicted. This is already visible in Figure 4. Nevertheless, the
bubble diameter ratio shows, that the algorithm is not influ-
encing the results. The deviations between simulation and
experiments are most likely related to the models and settings
chosen therein.

2D Raceway (r.w.)

The last studied test case in this paper is a 2D Raceway
formation test case. The test case was first presented by
(Feng et al., 2003). They studied the raceway formation in
a simple 2D-setup by DEM simulation. Here, we test the
applicability of an Euler-Euler algorithm in the prediction of
the raceway formation in comparison with those DEM results.
Furthermore, we test the proposed algorithm ICMULES and
study the simulation time in comparison with the original
algorithm.
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Experiments from (Kuipers ez al., 1991)
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Figure 4: Single Bubble after 0.1, 0.14 and 0.18 seconds (column-
wise).
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The raceway is simulated as a 2D raceway, same as by (Feng
et al., 2003). The bed is 1 m high and 0.3 m wide. It was
discretized by a uniform mesh using 200x60 cells. The jet
inlet is positioned 0.1 m above the bottom of the bed and is
0.02 m wide. Table 3 lists the physical parameters for solid
and gas phase used in the simulation.

Neumann boundary conditions for the air velocity are set at
the walls and bottom. The inlet velocity is set to 20, 25 and
30 m/s for the different cases studied. At the top, the air pres-
sure is fixed and no inflow is allowed. The particle velocity is
set to zero at the inlet and outlet and a partial slip condition is
used at the wall and bottom (Johnson and Jackson, 1987) with
a specularity coefficient of one. The specularity coefficient
defines the degree of frictional interaction between walls and
particles (specularity coefficient = 0 corresponds to friction-
less walls). The velocity at the boundary is calculated based
on this interaction coefficient. The granular temperature at
the walls and bottom is also treated by the JohnsonJackson-
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Table 3: simulation parameters for the raceway case

Solid phase

diameter m 0.004
density kg/m? 2500
Gas phase

density kg/m3>  1.205
viscosity kg/(ms) 1.8:107°

ParticleTheta conditions, described in (Johnson and Jackson,
1987), using the same specularity coefficient and a restitution
coeflicient of 0.95.

As a result of the previous test cases, we decided to use the
Schaeffer frictional stress model and the Carnahan Starling
radial model for the simulations. The maximum packing limit
was set to (g, = 0.63 and the minimum frictional velocity
to Qupin = 0.6.

Figure 7 and Figure 8 show the results from the raceway for-
mation for two different inlet velocities: 25 and 30 m/s. For
the 20 m/s practically no raceway is formed, which qualita-
tively agrees with the presented results in (Feng et al., 2003).
For the case with 25 m/s inlet velocity, the raceway is reaching
a steady state after some time. For 30 m/s inlet velocity the
bed performs more like a bubbly bed and the raceway does
not seem to reach a steady state. The MULES and ICMULES
algorithms give the same results for the raceway formation.
For these cases a fixed time step of 107° s was used.
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Figure 7: Raceway formation for 25 m/s inlet velocity after 1 s
simulation time for the different algorithms: (a) MULES
(b) ICMULES

We also compare the raceway penetration depths from (Feng
et al., 2003) and the simulations. It is not entirely clear,
how the raceway penetration depth is defined by Feng et al.
(2003). Here it was calculated as the distance from the air
inlet to the region with a void fraction above 0.3. Table 4
shows the results from the simulation and literature. The
penetration depth agrees well for the cases of high velocity
(30 and 25 m/s). For 20 m/s no raceway is formed in the
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Figure 8: Raceway formation for 30 m/s inlet velocity after 1 s
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OpenFOAM® simulations. Better agreement might be ob-
tained, by also accounting for virtual mass effects, which were
neglected here.

Table 4: Raceway penetration depth in mm in comparison

paper explicit implicit
0.30 m/s 42 41 41
0.25 m/s 30 32 32
0.20 m/s 25 - -

The above test cases were all tested with the same time step
sizes for MULES and ICMULES and consequently resulted
in approximately the same computational time. To give an in-
dication on the possible computational improvements through
the ICMULES, we also tested the Raceway case with vari-
able time step using a maximum Courant number of 0.6. The
computational time of the two cases yields 13805 s using
MULES and 4008 s using ICMULES.

Figure 9 shows the results of the simulations with bigger time
steps. This reveals, that the results from MULES with a
bigger time step are not consistent with the results with lower
time step. Contrary, the results from ICMULES agree well
with the results in Figure 8.

CONCLUSION

In nearly all the test cases the newly introduced algorithm
ICMULES gave similar results as the MULES algorithm.
Only for certain model combinations, where the packing limit
is not ensured through the radial or frictional stress model, the
results differ significantly. There, the ICMULES algorithm
fails to enforce the packing limit. This might be a limitation of
the newly proposed algorithm. On the contrary, the question
remains, if the packing limit should be enforced purely by
numerical treatment, if the frictional or the radial model does
not depict this packing limitation.
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Figure 9: Raceway formation for 30 m/s inlet velocity after 1 s
simulation time for the different algorithms using vari-
able time stepping with maxCo = 0.6: (a) MULES (b)
ICMULES

First results were presented, showing that the ICMULES en-
ables considerable speed-up, since it produces consistent re-
sults also for higher Courant numbers, i.e. time steps.

In conclusion, the introduced algorithm can be used for the
simulation of gas-solid systems, also near the packing limit,
if suitable frictional and radial models are chosen.
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