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ABSTRACT
Hydrogenation, oxidation and alkylation are just some of the pro-
cesseswhich are performed in bubble columns. One of the reasons to
use a bubble column for these processes is the high interfacial mass
transfer coefficients. Trying to simulate the mass transfer around the
bubbles is however challenging due to the typically high Schmidt
numbers of liquids, meaning that the mass boundary layer is very
thin compared to the momentum boundary layer. To resolve this
thin mass boundary layer, a subgrid scale model can be used. This
work focuses on improving the subgrid scale model that we have
embedded in our in-house front tracking framework of Claassen et
al., AIChe J 2019. In the current implementation the unphysical nu-
merical back diffusion at the grid into the bubble has been prevented
with a staircase immersed boundary implementation. A verification
has been performed by comparing the simulated, local and global
Sherwood number with the analytical solution in creeping and po-
tential flow regimes. Furthermore, the model was validated for 20
free rising bubbles of different shapes at industrial relevant Schmidt
numbers (103-105). The model was able to correctly predict the
Sherwood numbers.

Keywords: Computational Fluid Dynamics, bubble columns,
Front Tracking, mass transfer, subgrid scale modeling, boundary
layer, Direct Numerical Simulation .

NOMENCLATURE

Greek Symbols
δ Boundary layer thickness, [m]
γ Strain rate (−∂un

∂n2 ), [1/s]
κ Viscosity ratio
ρ Density, [kg/m3]
τ Stress tensor, [kg/ms2]
θ Angle from the top of the bubble to the bottom, [rad]

Latin Symbols
c Concentration, [kg/m3]
D Diffusion coefficient, [m2

/s]
F Force density, [kg/m2s2]
g Gravity constant, [m/s2]
M0 Total mass density in the model boundary layer region

of a marker, [kg/m2]
n Normal coordinate from the interface, [m]
p Pressure, [kg/ms2]
Pe Peclet number, [−]

Re Reynolds number, [−]
Sh Sherwood number, [−]
t Time, [s]
u Velocity, [m/s]

Sub/superscripts
δ0 At the model boundary layer thickness
σ Surface tension
n Normal direction from the interface
0 Model/bubble

INTRODUCTION

Bubbly flows are frequently encountered in many industries
such as in the metallurgical, biochemical and chemical in-
dustry. In these industries, the bubbles are used to introduce
mixing and/or supply reactants or remove reaction products.
The efficiency of the last two processes depends on the mass
transfer characteristics which are not thoroughly understood
in bubbly flows. One of the reasons is the high Schmidt num-
bers typically found in gas-liquid systems. As the Schmidt
number is high, the mass boundary layer is very small com-
pared to the momentum boundary layer making it difficult to
capture experimentally and to resolve numerically. Neverthe-
less, the subject has still been heavily studied in the past two
decades.
For numerical studies, four different techniques have been
used to resolve the boundary layer. The first technique uses
the same uniform grid for solving the momentum equation
and the advection-diffusion equation which ensures an easy
coupling between the two equations. The disadvantage, how-
ever, is that both equations are solved with the grid size that
is required to resolve the smallest boundary layer of the two.
With this approach Bothe et al. (2004); Bothe and Warnecke
(2005); Onea et al. (2009); Alke et al. (2009) and Hayashi
and Tomiyama (2011) studied the mass transfer from single
(deformable) bubbles, Taylor bubbles or bubble trains. Be-
cause the computational costs are high in this approach, sev-
eral simplifications are made: the Schmidt number was kept
low (Onea et al., 2009; Alke et al., 2009), an axisymmetric
domain was used (Bothe et al., 2004; Bothe and Warnecke,
2005;Alke et al., 2009;Hayashi andTomiyama, 2011), and/or
the simulations were performed in 2D (Bothe and Warnecke,
2005; Alke et al., 2009; Hayashi and Tomiyama, 2011).
The disadvantage of this first technique is reduced when two
separate grids are used. The two grids are uniform and regular
but have the size required for resolving the boundary layer of
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the solved field. Since both grids are regular and uniform,
interpolating the value of one grid to the other grid is still
easy. With this technique, Davidson and Rudman (2002)
investigated themass transfer of deformable bubbles. Koynov
et al. (2005) and Radl et al. (2007, 2008) also investigated
the mass transfer of deformable bubbles with this technique,
but they included a reaction. Whereas these studies used 2D
domains, Darmana et al. (2006) simulated a single bubble in
full 3D, but with a low Schmidt number of unity. Roghair
et al. (2016) simulated a bubble swarm in 3Dwith the Schmidt
number equal to unity.
This second technique only refines the field which requires
refinement. However, refinement is only required at specific
locations. The most important location is the boundary layer
at the interface (although the concentration wake might also
benefit from refinements). The refinement at the interface
can be imposed by unstructured grids or techniques such as
Adaptive Mesh Refinement (AMR). Unstructured grids have
been used by Jung and Sato (2001, 2005); Dani et al. (2006);
Wylock et al. (2011); Colombet et al. (2013); Deising et al.
(2016) and Hayashi and Tomiyama (2011). Most of these
researches simulated fixed bubble shapes due to the difficulty
of moving the unstructured mesh with the bubble oscilla-
tions. Panda et al. (2020) showed the potential of AMR with
simulations of forced-convection mass transfer from single
bubbles at high Prandtl numbers (O(102)). Mass transfer of
moving deformable bubbles with industrial relevant Schmidt
numbers in the range of O(103) -O(105) is however still a
challenge, due to the high level of refinement that is required.
The last approach that is being used for the simulation of
mass transfer from bubbles is different from the previous ap-
proaches. This approach does not resolve the boundary layer
with a small enough grid size, but uses a subgrid scale (SGS)
model to approximate the concentration boundary layer. So
far two different SGS models for the mass transfer of bubbles
have been developed. The Center of Smart Interfaces and
the Institute for Mathematical Modeling and Analysis groups
in Darmstadt have worked on a SGS model which is imple-
mented in the Volume of Fluid framework. Their first model
uses an analytical solution to the advection-diffusion equa-
tion which is simplified by assuming curvature effects to be
negligible, convection to be dominant parallel to the interface
and diffusion to be dominant tangential to the interface. The
mass boundary layer thickness, used as a free model param-
eter, is then fitted from the simulation data and with that the
convective and diffusive fluxes in interface cells are corrected
(Alke et al., 2010; Bothe and Fleckenstein, 2013; Gründing
et al., 2016; Weiner and Bothe, 2017). In one of the most
recent publications, the analytical solution is no longer used.
It is replaced by a solution provided by a machine learning
method. With the result from the machine learning model the
fluxes are corrected (Weiner et al., 2019).
The other subgrid scale model has been developed at the
University of Notre Dame by Aboulhasanzadeh et al. (2012).
This subgrid scale model has been implemented in the Front
Tracking (FT) framework. It makes use of the same as-
sumptions as the other subgrid scale model to simplify the
advection-diffusion equation. The advection-diffusion equa-
tion in a specific region normal to a FT marker is solved with
an approximate boundary layer model. If the surface concen-
tration in the boundary layer passes a certain threshold only
then the mass is transferred to the grid that deals with the
species transport in the remainder of the domain.
In this research, we chose to improve this latest model. First
of all, we ensure species conservation in the SGS model

during the crucial remeshing operations. Secondly, we make
use of the exact analytical solution in the form of the error
function instead of the second order polynomial that is used
by Aboulhasanzadeh et al. (2012). And lastly, we prevent the
numerical diffusion back into the bubble.
This article will first explain the details of the Front Track-
ing method. Next, the subgrid scale model and the made
improvements will be elaborated on. Subsequently, the cor-
rectness of the improvedmodel is shownwith verification and
validation of the method.

MODEL DESCRIPTION

Front Tracking

In Direct Numerical Simulations (DNS), two types of inter-
face representations are encountered. The first are so-called
front capturing methods in which the interface is not explic-
itly tracked but reconstructed from other quantities such as a
color function for Volume of Fluid and a distance function
for Level-Set. The second type are so-called front tracking
methods in which the interface is explicitly tracked via La-
grangian points. One of these methods is the FT method in
which the Lagrangian points are connected to form a closed
triangular mesh. This method is used in this study.
In FT, the bubble moves by advecting the Lagrangian marker
points with the local velocity, which is calculated via piece-
wise cubic spline interpolation of the Eulerian velocity field.
As a result of the individual advection of the marker points,
the mesh quality decreases. To correct this a remeshing al-
gorithm is performed after the point positions are updated
(Roghair et al., 2016). When the distance between two
marker points is too long and/or the edge shows local un-
dulations, a point is added to give a high point concentration
in curved parts (edge splitting). On the other hand, when
the distance between two marker points is too short and/or
the mesh is locally very flat, a point is removed which leads
to a lower resolution in flat parts (edge collapsing). To en-
sure a good mesh quality (preferably equal lateral triangles),
the connection between two markers might change from an
edge between two points to an edge between the opposite
two points (edge swapping). Lastly, to reduce the amount of
remeshing operations that are needed all the marker points
are evenly distributed over the interface while any volume
changes due to the remeshing operations are corrected via the
volume restoration/conservation method described by Kuprat
et al. (2001) (edge smoothing). These crucial remeshing op-
erations are graphically shown in Figure 1.
In FT, theNavier-Stokes equation and the continuity equation,
given in equations 1 and 2, are then solved on a staggered
Cartesian grid with a one-fluid formulation where the density
is obtained via volume weighing averaging and the viscosity
via harmonic averaging with the phase fraction.

ρ
∂u

∂t
= −∇p− ρ∇ · (uu)−∇ · τ + ρg + Fσ (1)

∇ · u = 0 (2)

The connection between the interface representation and the
Cartesian grid is made via the surface tension force inside the
incompressible Navier-Stokes equation. The surface tension
is calculated at every FT marker as the sum of the tensile
forces the marker exerts on its neighboring markers, i.e. the
pull force method (Tryggvason et al., 2001). This force is
mapped to the nearby Eulerian cells using a mass-weighing
function (Deen et al., 2004).
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To solve the equations, a projection-correctionmethod is used
to first solve for the velocity with equation 1 and then correct
the velocity with equation 2. The convective term in the
Navier-Stokes equation is discretized via a second order flux-
delimited Barton scheme and treated explicitly. The diffusive
term, on the other hand, is discretized using a second order
central difference scheme and treated semi-implicit such that
the velocities in all three directions can be solved separately.
Further numerical details can be found in Dijkhuizen et al.
(2010) and Roghair et al. (2016).

Mass Transfer

For the mass transfer, the advection-diffusion equation, given
in equation 3, is solved on the same Cartesian grid as the
hydrodynamics. The diffusion term is discretized with a sec-
ond order central difference scheme and treated implicitly,
while the convection term is discretized with the Van Leer
scheme and treated explicitly. Since the SGS model deals
with the mass transfer from the bubble interface to the liq-
uid, the whole concentration field on the Eulerian grid is
uniformly initialized to the initial concentration in the liq-
uid. The concentration is assumed to not influence the fluid
properties.

∂c

∂t
+ u · ∇c = D∇2c (3)

Subgrid-scale model
The subgrid-scale model describes the concentration profile
close to the bubble interface, in a region of width δ0, bymeans
of a boundary layer approximation. The advection-diffusion
equation in the boundary layer is simplified by assuming neg-
ligible curvature effects, dominant convection parallel to the
interface and dominant diffusion tangential to the interface.
Next to that, a Taylor expansion of the velocity is applied. This
leads to the following simplified equation for each marker
(Aboulhasanzadeh et al., 2012):

∂c

∂t
= nγ

∂c

∂n
+D

∂2c

∂n2
(4)

Figure 1: The remeshing operations that are used tomaintain a good
mesh quality.

The first term on the right hand side indicates the concentra-
tion change as a result of compression or expansion of the
boundary layer due to the flow field and the second term in-
dicates a concentration change as a result of diffusion normal
to the interface.
Equation 4 is solved for every marker via the zeroth moment
of the concentration in the model boundary layer region, i.e.
M0 =

∫ δ0
0
c(n)dn. The evolution of the zeroth moment over

time is given in equation 5.

dM0

dt
= −γM0 −D

∂c

∂n

∣∣∣∣
0

+ γcδ0δ0 +D
∂c

∂n

∣∣∣∣
δ0

(5)

Aboulhasanzadeh et al. (2012) assumed a second order con-
centration profile to evaluate this equation explicitly. We
will use the concentration profile given by the error function
(equation 6). The concentration profile depends on the (real)
boundary layer thickness (δ). When assuming a second order
concentration profile the boundary layer thickness can easily
be calculated from the total mass and the concentration pro-
file. For the error function profile, this is however not the case
as the error function can not be inverted. Therefore Newton-
Rapson’s method is used to calculate the real boundary layer
thickness.

c(n)

c0
= erfc

(√
π
n

δ

)
(6)

The above given concentration profile only holds in the region
close to the bubble interface. The Eulerian grid should solve
the remainder of the concentration field. Note that equation
6 is the analytical solution of equation 4 for an semi-finite
domain with concentration zero at infinity. As mentioned
before the whole concentration field in initialized uniformly.
The Eulerian grid only gets a concentration when the bound-
ary layer thickness at a marker becomes larger than the model
boundary layer thickness. When this happens the latter two
terms in equation 5 are added to the Eulerian grid as a source
term in equation 3 via polynomial weighing (Darmana et al.,
2006). There is a one-way coupling between the boundary
layer SGS model and the bulk concentration field: the SGS
model determines the molar flux into the fluid bulk, but the
concentration in the bulk fluid does not influence the bound-
ary layer development.

Remeshing

This subgrid scale model is implemented at the individual
FT markers where the markers should store the mass den-
sity (M0) to evaluate the change over time. When markers
are removed, added or reshaped as a result of remeshing, the
mass density of the changed markers should be adjusted ac-
cordingly to prevent numerical mass gain or loss. For every
remeshing operation, we have implemented an algorithm to
restore the total mass.
The first considered remeshing operation is edge splitting that
occurs when an edge becomes too long and/or is not capable
to capture the local curvature (Figure 1a). When an edge
is split two markers are divided into two new markers each.
These new markers will have the same mass density as the
marker they originated from.
For edge swapping, a similar algorithm is used. With edge
swapping two markers change how they are connected (Fig-
ure 1c). In this case, the average mass density is calculated
and the mass density of both markers will be equal to this
average after the remeshing.
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For edge collapsing the algorithm is a little less straightfor-
ward as there are more markers involved. Edge collapsing is
performed when an edge is too short and/or the local curva-
ture is very low. This means the resolution can be reduced
by removing an edge and hence removing two markers (Fig-
ure 1b). All the markers with one point connected to the to be
removed edge will consequently change shape. To correct for
the removed mass from the two markers the total mass before
and after removal is calculated. The difference in mass is then
distributed over all markers that have grown in size weighted
by their size increase.
The last remeshing operation, edge smoothing, follows the
same algorithm as for edge collapsing. Edge smoothing
slightly changes the position of the two edge endpoints to
yield a better local node distribution (Figure 1d). As a re-
sult, all markers that contain one of those nodes will slightly
change in size, similar to what happens for edge collapsing.
Hence the algorithm here is again: calculate the total mass
before and after smoothing and distribute the difference over
all involved markers that increased in size weighted by their
size increase.

IBM

In our previous work (Claassen et al., 2019) as well as in the
work of Aboulhasanzadeh et al. (2012) an unphysical mass
flux into the bubble was found. On the grid the convection-
diffusion equation, equation 3, is solved using a one-fluid ap-
proximation. This means the concentration can diffuse from
the fluid to the gas phase without a problem. A concentration
gradient appears into the bubble at δ0 when mass is trans-
ferred from the SGS model to the Eulerian grid on which the
concentration inside the bubble is initialized to zero. A source
is thus introduced close to the bubble interface resulting into
a flux to the bubble. To prevent this flux, we have further
improved the model by implementing an immersed boundary
at the end of the boundary layer. At this boundary a Neumann
boundary condition is enforced using a staircase Immersed
Boundary Method (IBM) (Tseng and Ferziger, 2003; Mizuno
et al., 2015; Seo and Mittal, 2011) to prevent molar fluxes
into the bubble. Before the IBM can be implemented, the
cells that are outside the bubble and boundary layer region
should be determined. Only to these cells, the source term
from the SGS model should be forced.
To determine the cells outside the bubble and boundary layer
region, we adopted the approach of Mittal et al. (2008) in
which for every cell the vector to the closest marker is identi-
fied. The dot product of this vector and the marker’s normal
vector determines where the cell center is located. To take
into account the mass boundary layer, the marker’s center is
temporary transposed a distance of δ0 in its normal direction.
Performing this procedure for every cell at every time step
will result in quite some computational overhead. However,
since markers move maximally one grid cell in one time step,
the computational time can be reduced significantly by only
considering the eight cells neighboring a marker.
To map the mass flux that comes out of the SGS model
the polynomial weighing procedure Darmana et al. (2006) is
slightly adapted. The flux is only mapped to the cells that
lay outside the model boundary layer. The same polynomial
weighing is used but corrected by the total weight of the cells
that lay outside the boundary layer.
To prevent the unphysical flux into the bubble, the implicit
matrix coefficients and the explicit source vector are adjusted
for cells outside of the bubble and the boundary layer that
have a neighbor inside the bubble or boundary layer and for

all cells inside the bubble or boundary layer. This last step
is not necessary but is expected to speed up the computation.
For cells outside the bubble and boundary layer that have a
neighbor inside the bubble or boundary layer the implicit dif-
fusive flux between those cells are set to zero. The explicit
convective flux, discretized with the Van Leer scheme, de-
pends on four cells: the cell at which the flux is calculated
(i), the neighboring cell on one side (il = i− 1) and the two
neighboring cells on the other side (ih = i+1, ihh = i+2).
In case the cell at which is being calculated (i) is inside the
bubble or the boundary layer, the flux is set to zero. If the
i− 1 cell is inside the bubble or the boundary layer, the flux
is calculated with the concentration of i at the place of il. If
ih is inside the bubble or the boundary layer, then the flux is
set to zero. Lastly, if ihh is inside the bubble or the boundary
layer, the flux is calculated with ih at the place of ihh. The
procedure for il and ihh is analogous to the flux calculation
when those cells would be outside of the domain. All cells
inside the bubble or boundary layer are always forced to have
a zero concentration (although this is not strictly necessary as
the IBM will already prevent mass from going there).

RESULTS

Verification

To check the implementation of this new model we used a
test where a bubble is placed in Stokes flow and a test where
the bubble is placed in potential flow. For these tests the
velocity field is not solved but imposed from the Hadamard-
Rybczynski solution (Hadamard, 1911; Rybczynski, 1911)
and Clift et al. (1978), respectively. Since we use a moving
frame of reference (Deen et al., 2004) the velocity and pres-
sure field are only set at initialization. Further simulations
settings are given in Table 1.

Table 1: Settings used for the verification tests.

Bubble diameter 3.2 mm
Bubble resolution 40 Grid cells
Domain size 2.5 × 2.5 × 2.5 de
Time step 0.000001 s
Simulation time 6.0 s
Viscosity ratio 0.185 -
Velocity 0.05 m/s
Peclet number 160, 000 -

To verify the correct implementation the local and global
Sherwood number obtained in the simulations are compared
with the analytical solution. In the simulations the Sherwood
number is calculated as dc

dn

∣∣ = − 2c0
δ at every marker. The

analytical local and global Sherwood number are obtained
from equation 7 and 8 for Stokes flow and equation 9 and 10
for potential flow.

Sh(θ)√
Pe

=

√
3

π

1 + cosθ√
2 + cosθ

√
1

1 + κ
(7)

Sh√
Pe

=

√
4

3π

1

1 + κ
(8)

Sh(θ)√
Pe

=

√
3

π

1 + cosθ√
2 + cosθ

√
3 (9)

Sh√
Pe

=

√
4

π
(10)

In Figure 2, the computed local Sherwood number averaged
over the last 2s of the Stokes flow simulation are plotted to-
gether with the analytical solution. Figure 3 shows the same
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plot but for potential flow. For comparison, we also per-
formed a simulation with our improved SGS model with the
second order profile as described by Aboulhasanzadeh et al.
(2012). The results of these simulations are also included in
the graphs. As can be seen, in both cases our SGS model
predicts the local Sherwood number correctly especially at
the top of the bubble. At the bottom of the bubble, there’s a
small mismatch both with the erf function profile as well as
with the second order profile. This is attributed to the fact
that at the bottom of the bubble the model boundary layer is
almost completely saturated which makes it difficult to cor-
rectly fit the concentration profile. Nevertheless, the global
Sherwood number prediction is still accurate. With our SGS
model with the error function, the Sherwood number was un-
derestimated by 0.9% and 0.6% in Stokes flow and potential
flow, respectively. This is almost half the error compared to
the second order profile which overestimated the Sherwood
number by 1.6% and 1.7%, respectively.

Figure 2: Local Sherwood number in the Stokes flow test. Averaged
over the last 2s of the simulation.

Figure 3: Local Sherwood number in the potential flow test. Aver-
aged over the last 2s of the simulation.

Validation

To validate our code, we have performed the same set of
simulations as in Claassen et al. (2019). The cases are in-
dicated in the Grace diagram in Figure 4. The simulations
have been performed with a moving frame of reference (Deen
et al., 2004). The simulations settings are the same as in our
previous work and are summarized in Table 2.
Since the hydrodynamics of the code was already validated
in Claassen et al. (2019), the focus here is only on the mass
transfer. To validate the mass transfer the time-average global
Sherwood number calculated from the simulations is com-
pared with literature correlations. For spherical and slightly

Table 2: Simulations settings for the 20 cases depicted in Figure 4.
Z is the domain height in the rise direction and is case
dependent.

Bubble diameter 1.5− 6.9 mm
Bubble resolution 20 Grid cells
Initial bubble shape Spherical
Domain size 100× 100× Z Grid cells
Initial bubble position 50× 50× 60 %
Interface concentration (c0) 1.0 kg/m3

Time step 10−6 − 10−5 s
Dimensionless simulation time 100 -
Viscosity ratio 48− 66 -
Density ratio 640− 908 -
Eötvos number 0.2− 60 -
log Morton -11− 1 -

ellipsoidal bubbles the correlation of Takemura and Yabe
(1998) (equation 11) and of Lochiel and Calderbank (1964)
(equation 12) are used. For wobbling bubbles the correlation
of Brauer and Mewes (1971) (equation 13) and of Ander-
son (1967) (equation 14) are used. The simulation results
together with predictions from these correlations are shown
in Figure 5 and Figure 6 for spherical/ellipsoidal bubbles
and wobbling bubbles, respectively. For spherical/ellipsoidal
bubbles the Sherwood number is always within 10% of the
literature correlations that have an accuracy of 7% and 12%
for Takemura and Yabe (1998) and Lochiel and Calderbank
(1964) respectively. It may appear as if our simulations are
constantly lower than the correlations, this is, however, due
to the fact that our bubbles or not all perfectly spherical as
the correlations assume. Figueroa-Espinoza and Legendre
(2010) showed that for low Reynolds numbers (<∼ 100) the
Sherwood number decreases with a slightly increased aspect
ratio which supports our results. For the wobbling bubbles
the accuracy is always within 15% of the literature correla-
tions. For this regime the literature correlations mismatch
between one another (this is even more visible in Claassen

Figure 4: 20 simulations of different bubble shapes that have been
performed.
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et al. (2019) wheremore correlations are included), it is there-
fore harder to make a statement about the precise accuracy of
our method.

Sh =
2√
π

√
1− 2

3
(
1 + 0.09Re2/3

)3/4 (2.5 +√Pe) (11)

Sh =
2√
π

√
Pe

(
1− 2 + 3κ

1 +
√
κλ

1.45

Re1/2

)
(12)

Sh =2 + 0.015Re0.89Sc0.7 (13)

Sh =1.2

√
defN
D

with fN = de

√
48σ

π2d3eρl(2 + 3λ)
(14)

Figure 5: Calculated Sherwood number for the spherical/ellipsoidal
cases (markers with errorbars) together with literature
correlations (lines).

Figure 6: Calculated Sherwood number for the wobbling cases to-
gether with literature correlations.

The above-mentioned Sherwood results agree with the results
of our previous work (Claassen et al., 2019). The local con-
centration on the Eulerian grid, however, is different due to
the here implemented IBM. Figure 7 shows the concentration
on the grid with and without IBM for case 1. The figure
shows the diffusion back into the bubble when IBM is not
used, while the model with IBM clearly shows that there is no
diffusion in the bubble. Due to the use of a log scale for the
concentration, a difference in the wake predicted by the two
models becomes visible. The wake of our new model has the
expected thin shape, while the other wake is broader due to
the diffusion back into the bubble and even outside the top of
the bubble.

CONCLUSION

In this paper, the SGS model initially developed by Aboul-
hasanzadeh et al. (2012) is improved by including an algo-
rithm for the SGS model upon remeshing, using the exact
erf function and implementing an IBM to prevent numerical

diffusion into the bubble. To check the implementation, the
predicted Sherwood number of the model is verified for a
bubble in Stokes flow and a bubble in potential flow. The
computed Sherwood number was slightly under-predicted at
the bottom of the bubble, but the global Sherwood number
was still within 1% of the analytical solution. Furthermore,
we validated the new model with 20 free rising bubbles. For
the spherical and ellipsoidal bubbles, the Sherwood num-
ber deviated maximally 10% from literature correlations that
mostly have an accuracy of roughly 10%. For the wobbling
bubbles, the deviation was maximally around 15%, which
is still good considering the accuracy of the correlations in
this regime. We attribute the deviation between our results
and the literature results to the fact that the correlations are
rather strict and only applicable in very specific conditions
such a potential or creeping flow and/or perfect sphericity.
New, more broadly applicable correlations should be devel-
oped for which potentially this model could be used. Lastly,
we compared the concentration profile on the grid predicted
by a model with and without IBM implemented and found
that the numerical diffusion into the bubble also leads to an
incorrect wake which is broader than it should be. While
the numerical diffusion into the bubble could be considered
as negligible as is done in our previous work and the work
of Aboulhasanzadeh et al. (2012), the broader wake is not
neglectable.
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