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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ON THE SURFACING MECHANISM OF BUBBLE PLUMES FROM
SUBSEA GAS RELEASE

Jan Erik OLSEN & Paal SKJETNE
SINTEF Materials and Chemistry, 7465 Trondheim, NORWAY

* E-mail: jan.e.olsen@sintef.no

ABSTRACT

A subsea release of gas poses a risk to humans and assets at the
surface. Assessing this risk requires knowledge on how much
gas reaches the surface and how it is distributed at the surface.
This can be estimated by various modelling techniques, e.g.
CFD. Reported surfacing flux can then be fed into a CFD model
for atmospheric dispersion calculations. This paper briefly
discusses how the surface flux can be calculated by CFD, but
primarily focuses on the surfacing characteristics and discusses
how the surface flux can be reported and issues related to this.

Keywords: CFD, bubbly flows, subsea gas release

NOMENCLATURE

Greek Symbols

o) Mass density, [kg/m’].

o Standard deviation, [m].
Latin Symbols

a Characteristic length, [m].
F Force, [N/m].

g Gravitational acceleration, [m/s?].
J Gas flux, [kg/m’s].

m mass rate, [kg/s].

r radius, [m].

t Time, [s].

u Velocity, [m/s].
Sub/superscripts

0 Centre

b Bubble.

D Drag.

VM Virtual mass.

tot Total

INTRODUCTION

A subsea gas release of hydrocarbons such as methane
presents a risk of fire and explosions when the gas
emerges into the atmosphere. Risk assessments are
normally based on modelling of atmospheric dispersion
of hazardous gases. Modelling of atmospheric dispersion
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relies on a boundary condition which prescribes the flux
of gas escaping from the ocean into the atmosphere. This
flux will vary in time and position, although many
assume it to be constant. In this work we try to
characterize a surfacing profile and provide guidelines on
how this can be represented as a boundary condition in
atmospheric dispersion models.

The ocean surface boundary condition for
atmospheric simulations can be provided by a subsea
model of the bubble plume. Different modelling concepts
are available for this. Traditionally, classical plume
integral models, which are computationally fast, have
been applied for this (Johansen, 2000; Morton et al.,
1956; Zheng & Yapa, 2002). These are based on a series
of assumptions and calibration coefficients, but still have
proven to reproduce experimental results at least at
smaller scales. Transient 3-dimensional CFD modelling
of these plumes are computationally expensive due to the
large length scales involved, but they rely on fewer
assumptions — especially in the surfacing region. The
authors of this work have contributed to the development
of a CFD model for bubble plumes from subsea gas
releases (Cloete et al., 2009; Olsen et al., 2017).

Atmospheric plume

. Sy '\” 5 s oy
Surface zone™\_"* .

Velocity profile

Zone of
established flow

L

1
Zone of flow Wl
establishment

/| Void profile

Depth

Release point

Figure 1: Illustration of subsea gas release.



105 s 210 s

345 s

705 s

Figure 2: Development of the starting plume from 300 m at a constant rate of 30 kg/s.

Gas released from the ocean floor rises as bubbles
towards the surface. If the release rate is sufficient, the
buoyancy of the bubbles will cause the water to
accelerate and travel upwards with bubbles. At the
surface the bubbles enters the atmosphere whereas the
water is forced outwards in a radial flow. The CFD model
quantifies where and when bubbles penetrate the surface
and the strength of the radial outflow.

Here we apply the CFD model for a selected release
scenario and analyse the surfacing characteristics. The
resulting surfacing fluxes and radial outflow velocity are
compared to mathematical profiles to verify if some of
these are representative for the true surfacing profiles.

MODEL DESCRIPTION

The CFD model developed to study large scale bubble
plumes from subsea gas release is based on an Eulerian-
Lagrangian modelling concept. The bubbles are treated
as Lagrangian particles which move according to
Newton's second law. The background fluid, i.e. the
ocean, is governed by the Navier-Stokes equation in an
Eulerian frame of reference. The interface between the
ocean and the atmosphere is tracked by the geo-
reconstruct algorithm. The details are provided in earlier
publications (Olsen & Skjetne, 2016; Olsen et al., 2017).

In a short summary it is worth mentioning that the
model moves bubbles according to Newton's second law

du,, _ 9pp — p)
dt o (1)

where the forces on the right hand side are buoyancy,
drag and virtual mass. The background fluids (ocean and
atmosphere) are mathematically described by the
principles of conservation of mass, momentum and
energy through the continuity-, momentum- and heat-
equation. The bubble motion and the flow of the
background fluids are coupled through the drag term.
Turbulence is modelled with a VLES model where
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turbulent structures larger than the grid size are captured
by the momentum equations and the subgrid turbulence
is modelled by the k-€ model.

A model for the local mean bubble diameter is
implemented accounting for break-up, coalescence, gas
expansion and gas dissolution. Gas expansion is caused
by the decrease in pressure and gas density as the bubbles
rises upwards. Gas dissolution is driven by the difference
in gas solubility and ocean saturation.

The model has been validated against meso scale
experiments at 7, 30 and 50 meters depth and large scale
data from 140 meters depth. The model is consistent with
observations.

RESULTS

The modelling concept mentioned above was applied to
a release of 30 kg/s of methane from a depth of 300
meters with an ocean temperature at 10°C and ocean
salinity of 35 psu. The simulation results have been
analysed to shed light on the surfacing mechanism and to
discuss how these results can be reported as a boundary
condition to atmospheric dispersion modelling.

The resulting plume from the release is illustrated in
Figure 2 as predicted by the CFD simulation. Turbulent
eddies with gas bubbles surface after roughly 4 minutes.
The eddies cause a fluctuating surface rate and flux which
would not have been captured by a RANS turbulence
model. Observations of ocean bubble plumes confirms
the fluctuating behaviour qualitatively. The surfacing
rate is plotted in Figure 3. The surfacing rate (kg/s) is the
area integral of the surface flux (kg/m?s). It averages at
1.6 kg/s indicating that gas dissolution is significant since
only 5% of the released gas reaches the surface. The
fluctuations are also significant.



Surface rate - kg/s

10
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Figure 3: Surfacing rate as function of time, red line indicates
average surfacing rate.

If we focus on the surfacing flux which varies in both
time and space, we see that the fluctuations are even more
significant. The resulting averaged surface flux using
different averaging intervals are depicted in Figure 5
(next page). The two top plots are both with an averaging
interval of 1 second, but from two different times (650
and 750 secs after release). There is a big difference in
the peak flux and total surface rate between these two
periods.

The flux is quite noisy. As the averaging interval
increases, the flux distribution becomes more smooth and
starts looking like a Gaussian distribution. Note that with
an averaging period of 800 seconds the peak is less than
Y4 of the maximum peaks in the fastest fluctuations. It is
the long-averaged surface flux fitted to a Gaussian profile
which is normally applied as a boundary condition in
atmospheric dispersion modelling. This practice stems
from modelling experiences with integral models and
CFD models with RANS turbulence models. These
models do not capture the fluctuations seen in Figures 3
and 5. Thus it can be questioned whether the
conveniently long-averaged Gaussian profile is a proper
boundary condition.

If we assume that a Gaussian profile is sufficiently
representative of the surfacing flux, there are still some
issues related on how to report the coefficients in the
Gaussian expression. The Gaussian flux profile is given
by

J =]06_T2/2‘72 )
where ], is the centre flux (or peak flux) and o is the
standard deviation. If the long-averaged surface flux is
truly Gaussian, a perfect fit between the surface flux from
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the CFD simulation and a Gaussian profile exists. This is
unfortunately not true.

All gas surfacing within the radius defined by the
standard deviation amount to 39% of all gas surfacing in
total (see Appendix). By analysing the surface flux from
the CFD simulation, the radius within which 39% of the
gas surfaces can be extracted and reported as a standard
deviation. Applying the principle that the Gaussian
profile shall fulfil mass conservation, the centre flux is
obtained from

mtot = 27-[]00-2 (3)

From this procedure we get /,=0.165 g/m?s and 0=28
m. Alternatively we can quantify the coefficients by
matching the Gaussian centre flux with the true peak flux
and finding the standard deviation from mass
conservation with Eq.(3). From this procedure we get
Jo=0.39 g/m?s and =18 m. The true long-averaged
profile and the Gaussian curve fits are plotted below in
Figure 4.

The two procedures for obtaining the Gaussian
coefficients obviously produces two quite different sets
of coefficients. From this we can conclude that the profile
is not truly Gaussian. For a true Gaussian, both
procedures would have resulted in the same set of
coefficients. This gives rise to an important question;
which procedure provides the most representative
Gaussian profile for the long-averaged surface flux?
Visually it is probably the procedure based on the centre
flux which seems superior (see Figure 5). However, it is
also fair to question whether a Gaussian profile is truly
representative

Figure 4: Surface flux
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Figure 5: Surface flux for various averaging intervals. All averaging starts at 650 secs after start of release except top left
example.
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CONCLUSIONS

A CFD model with a transient VLES model
representing turbulence has been applied to study the
surfacing mechanism of an ocean plume caused by a
subsea gas release. The resulting surface rate and
surface flux is clearly fluctuating. A surface flux
profile based on time-averaging over 800 seconds
has a smooth shape which can be fitted to a Gaussian
profile, although a perfect fit cannot be achieved.
This indicates that the surface flux is not truly
Gaussian even if similarities exist. Two different
procedures for quantifying the Gaussian profile
yields two different sets of Gaussian coefficients.

A consequence of these findings is to further
study which profile best matches the true surface
flux with respect to a risk assessment (e.g.
conservatism). Sensitivity studies with atmospheric
dispersion modelling could reveal the significance
on how to report the surfacing profile. This includes
assessments on both the fluctuating nature of the
surfacing mechanism and the influence of how the
time averaged profile is represented.
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APPENDIX A
A Gaussian flux profile is given by

J = JoeT /2" )
The total gas rate through the entire surface is given
by
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0

The total gas rate through a surface limited by an
outer radius R, is

2

R 2
21 f Joe 202 rdr
0
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21,02 (1-e 202)

The ratio of mass surfacing inside a radius R and the
total mass is thus

mh R?
= 1-e 202

(7

Mot

The relative amount of gas surfacing within the
radius defined by the standard deviation, R = o, is
thus

Mg 1
- =1-e2=0.39
Mo ()

This means that 39% of all gas surfaces within a
radius equal to the standard deviation, and
subsequently 86% within 2 standard deviations and
99% within 3 standard deviations. Bear in mind that
this is only true if the surfacing profile is perfectly
described by a Gaussian profile.

This might come as a surprise since some might
believe that the amount represented by the
distribution within the extent of the standard
deviation is 68%. This number comes from statistics
where they perform a straight integration of the
profile without multiplying with r.

° 2

e 20% dr

2 ——=1068
fooo e20% dr

)

This is in principle a 1D version of the above derivation
which holds for a 2D case.





