Markovnikov at Gold: Nucleophilic Addition to Alkenes at Au(III)

${ }_{2}$ Marte Sofie Martinsen Holmsen, ${ }^{\dagger}$ Franziska Stefanie Ihlefeldt, ${ }^{\dagger}$ Sigurd Øien-Ødegaard, ${ }^{\dagger}$ © ${ }_{3}$ Eirin Langseth, ${ }^{\dagger, \S}$ Yannick Wencke, ${ }^{\dagger}$ Richard H. Heyn, ${ }^{\dagger}$ and Mats Tilset ${ }^{*, \dagger}{ }^{\dagger}$ ©
$4{ }^{\dagger}$ Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
$5{ }^{\ddagger}$ SINTEF Industry, P.O. Box 124 Blindern, N-0314 Oslo, Norway

(S) Supporting Information

Abstract

The reactivity of $\mathrm{Au}\left(\mathrm{OAc}^{\mathrm{F}}\right)_{2}($ tpy $)\left(1, \mathrm{OAc}^{\mathrm{F}}=\mathrm{OCOCF}_{3}\right.$; tpy $=2-(p$-tolyl $)$ pyridine) toward a wide variety of different alkenes with varying substitution patterns and different oxygen-based nucleophiles has been investigated. These reactions are two-step processes where a ligand substitution is followed by a nucleophilic addition furnishing Au (III) complexes with $\mathrm{C}\left(s p^{3}\right)$ ligands. In this work we have found that the reactions always occur trans to tpy- N while the $\mathrm{OAc}^{\mathrm{F}}$ ligand remains in place trans to tpy-C. The nucleophilic addition takes place exclusively at the most substituted side of the double bond, in a Markovnikov manner, and the nucleophilic addition occurs in an anti fashion as can be seen from the reaction with the 2,3 -disubstituted alkene trans-2-hexene. This study has provided valuable insight into the scope and regiochemistry of Au (III) mediated nucleophilic additions, which is of great importance for further development of Au (III) catalysis and alkene functionalization.

- INTRODUCTION

The interest in gold and its rich chemistry has increased rapidly the last $20-30$ years. ${ }^{1-9}$ Gold is known for its ability to activate alkenes and alkynes toward nucleophilic attack and addition of nucleophiles to coordinated unsaturated species at gold are key steps in gold catalysis. ${ }^{1-12}$ Functionalization of alkenes and alkynes under mild conditions is of great interest because readily available hydrocarbon building blocks can be converted into useful compounds. Catalytic Au functionalization of heavily functionalized, unsaturated precursors into complex organic structures has been widely investigated. ${ }^{2,4-6}$ The more simple precursors, such as ethylene and other small alkenes, have however received less attention.
There are only a few examples of ethylene functionalization at $\mathrm{Au}(\mathrm{III})$ in the literature. Atwood and co-workers reported that ethylene could be stoichiometrically functionalized at $\left[\mathrm{Au} \text { (bipy) } \mathrm{Cl}_{2}\right]^{+}$(bipy $=2,2^{\prime}$-bipyridine) to furnish Au (III) hydroxyalkyl complexes that were observed in solution by ${ }^{1} \mathrm{H}$ NMR but not isolated. ${ }^{13}$ Bochmann and co-workers reported that ethylene undergoes a slow formal insertion into the Au$\mathrm{OAc}^{\mathrm{F}}\left(\mathrm{OAc}^{\mathrm{F}}=\mathrm{OCOCF}_{3}\right)$ bond in a diarylpyridine CNC pincer complex. ${ }^{14}$ Bourissou and co-workers recently reported coordination-insertion reactions of norbornene ${ }^{15-17}$ and ethylene, ${ }^{17,18}$ the latter followed by β-hydride elimination, into $\mathrm{Au}-\mathrm{C}\left(s p^{3}\right)$ and $\mathrm{Au}-\mathrm{C}\left(s p^{2}\right)$ bonds in (P,C)-cyclometalated $\mathrm{Au}(\mathrm{III})$ aryl and alkyl complexes. Following this, the same group very recently reported a double insertion of ethylene into an $\mathrm{Au}-\mathrm{C}\left(s p^{2}\right)$ bond in a (N, C) cyclometalated Au (III) complex; in this case no β-hydride elimination occurred. ${ }^{19}$ Recently Russell, Bower and co-workers reported an oxidative 1,2-difunctionalization of ethylene via gold catalysis where one
of the proposed key steps involves addition of an alcohol to 50 ethylene at Au (III). ${ }^{20}$

51
We previously reported a detailed mechanistic study 52 combining experiments and DFT calculations of the formal 53 insertion of ethylene into the $\mathrm{Au}-\mathrm{O}$ bond trans to tpy- N in 54 $\mathrm{Au}\left(\mathrm{OAc}^{\mathrm{F}}\right)_{2}($ tpy $)(1$, tpy $=2$-(p-tolyl $)$ pyridine) furnishing 255 (Scheme 1, top). ${ }^{21}$ When the reaction was performed in 56 s1 $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH} 3$ was formed instead of $2 .^{21}$ These reactions are 57 two-step processes where a ligand substitution is followed by a 58 nucleophilic addition to the double bond to furnish a $\mathrm{Au}-59$ $C\left(s p^{3}\right)$ bonded complex. In contrast to the formal insertion 60 process, the coordination-insertion process reported by 61 Bourissou and co-workers is a one-step concerted process. ${ }^{15-18} 62$
In order to gain further insight into the scope and 63 regiochemistry of the reaction, substituted alkenes and different 64 oxygen based nucleophiles were investigated. Herein we report 65 the $\mathrm{Au}(\mathrm{III})$ mediated nucleophilic addition to a wide variety of 66 alkenes (Scheme 1, bottom) at $\mathbf{1}$, furnishing a wide range of 67 $\mathrm{Au}(\mathrm{III})$ complexes with $\mathrm{C}\left(s p^{3}\right)$ bonded ligands.

RESULTS AND DISCUSSION

69
Substituted Alkenes with ${ }^{-}$OAc $^{\text {F }}$ as Nucleophile. The 70 reaction of 1 with 1-hexene provides two different positions at 71 which the nucleophilic addition can occur (Scheme 2), either at 72 s 2 the internal position of the double bond leading to $\mathbf{4 a}$ (in a 73 Markovnikov manner) or at the terminal position of the double 74 bond leading to $4 \mathbf{a}^{\prime}$. When monitoring the reaction of $\mathbf{1}$ with 1-75 hexene in DOAc ${ }^{\mathrm{F}}$ by ${ }^{1} \mathrm{H}$ NMR, a clean transformation of $\mathbf{1}$ into 76 one product, $\mathbf{4 a}$ (vide infra), was observed within minutes. It 77

[^0]Scheme 1. Top: Formal Insertion of Ethylene into the $\mathbf{A u}-\mathrm{O}$ Bond trans to tpy-N in $\mathrm{Au}\left(\mathrm{OAc}^{\mathrm{F}}\right)_{2}(\mathrm{tpy})\left(1, \mathrm{OAc}^{\mathrm{F}}=\right.$ $\mathrm{OCOCF}_{3} ;$ tpy $=2$ - $(p$-tolyl $)$ pyridine) Furnishing 2 and $3 ;^{21}$ Bottom: Reactivity of $\mathrm{Au}\left(\mathrm{OAc}^{\mathrm{F}}\right)_{2}(\mathrm{tpy})$ toward a Range of Alkenes and Nucleophiles Furnishing β-Functionalized Alkyl Complexes of Au (III)

Previous work

In this work:

$\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}=\mathrm{H}$, alkyl or aryl
$\mathrm{NuH}=\mathrm{HOAc}^{\mathrm{F}}, \mathrm{HOAc}, \mathrm{MeOH}, \mathrm{EtOH}, i-\mathrm{PrOH}, t-\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$

Scheme 2. Formal Insertion of 1-Hexene into the $\mathbf{A u}$ - \mathbf{O} Bond trans to tpy-N in a Markovnikov Manner Furnishing $4 a^{a}$

${ }^{a}$ Complex $4 \mathbf{a}^{\prime}$ was not observed. $[\mathrm{Au}]=\left[\mathrm{Au}(\mathrm{tpy})\left(\mathrm{OAc}^{\mathrm{F}}\right)\right]^{+}$. The atoms in the former 1-hexene unit are here labeled a-f to simplify the NMR discussions.

78 was not possible to isolate $\mathbf{4 a}$ from the $\mathrm{DOAc}^{\mathrm{F}}$ solution because 79 it decomposes upon removal of the solvent. Complex 4a could
however be characterized in a mixture of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and $\mathrm{HOAc}^{\mathrm{F}} 80$ (ca. $2 \mathrm{vol} \% \mathrm{HOAc}^{\mathrm{F}}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) by standard NMR techniques. 81

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ exhibits some 82 characteristic resonances; at $\delta 5.40$ a resonance with a complex 83 splitting pattern originating from H^{b} (see numbering, Scheme 84 2) is observed which indicates the formation of $\mathbf{4 a}$ and not $4 \mathbf{a}^{\prime} 85$ (in the case of $4 \mathbf{a}^{\prime} \mathrm{H}^{\mathrm{b}}$ would be expected at a lower ppm value). 86 Furthermore, at $\delta 2.42$ and ca. $\delta 2.5$ the resonances of the two 87 diastereotopic $\mathrm{H}^{\text {a }}$ (the latter overlapping with tpy- CH_{3}) are 88 observed $\left({ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right)$, again indicating the formation of 4 a 89 and not $4 \mathbf{a}^{\prime}$, since in $\mathbf{4 \mathbf { a } ^ { \prime }}$ these two diastereotopic protons 90 would be expected at significantly higher ppm values. At $\delta 1.9491$ H^{c} is observed, at $\delta 1.20-1.50$ the overlapping resonances of 92 H^{d} and H^{e} are observed, and finally, at $\delta 0.91$ a triplet belonging 93 to the methyl group at the end of the alkyl chain is observed. 94 The ${ }^{19} \mathrm{~F}$ NMR of a sample of 4 a gave two resonances at $\delta 95$ -77.1 and -78.0 , similar to the chemical shifts observed for 296 and corresponding to the two OAc ${ }^{\mathrm{F}}$ groups. $\mathrm{A}^{19} \mathrm{~F}-{ }^{1} \mathrm{H}$ HOESY 97 experiment (see SI) established that the resonance at $\delta-77.198$ arises from the $\mathrm{OAc}^{\mathrm{F}}$ ligand trans to tpy-C. As in the reaction of 99 1 with ethylene (Scheme 1), the insertion occurred in the 100 position trans to tpy- N as could be seen from a NOESY 101 experiment (see SI) where a NOE was observed between $\mathrm{H}^{\mathrm{a}} 102$ and $\mathrm{H}^{6 \prime}$, and between H^{b} and $\mathrm{H}^{6 \prime}$ (for atom numbering, see 103 Scheme 2).

104
Nucleophilic addition to the more sterically crowded alkene 105 3-methyl-1-butene could also be achieved (Scheme 3). Upon 106 s3

Scheme 3. Formal Insertion of 3-Methyl-1-butene into the $\mathrm{Au}-\mathrm{O}$ Bond trans to tpy-N in 1^{a}

${ }^{a}$ The atoms in the former 3-methyl-1-butene unit are here labeled a-e to simplify the NMR discussions.
reacting $\mathbf{1}$ with 3 -methyl-1-butene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ complex $\mathbf{5 a}$ was 107 formed. 5a was significantly more stable than $\mathbf{4 a}$ and could 108 easily be isolated in $60-77 \%$ yield. 5 a was characterized by 109 NMR, MS, X-ray crystallography (as a CHCl_{3} solvate, vide 110 infra), and elemental analysis. Also in this reaction, nucleophilic 111 addition occurred at the internal position of the alkene. In the 112 ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{a} \mathrm{H}^{\mathrm{b}}$ is found at $\delta 5.31$, similar to $4 \mathrm{a}{ }_{113}$ where H^{b} is found at $\delta 5.40$. The two diastereotopic H^{a} are 114 found at $\delta 2.60$ and $\delta 2.32\left({ }^{2} J_{\mathrm{HH}}=10.7 \mathrm{~Hz}\right) . \mathrm{H}^{\mathrm{c}}$ is found at $\delta{ }_{115}$ 2.21 and the two diastereotopic methyl groups $\left(\mathrm{CH}_{3}{ }^{\mathrm{d}}\right.$ and 116 $\left.\mathrm{CH}_{3}{ }^{\mathrm{e}}\right)$ are found at $\delta 1.07$ and $\delta 1.05$. In the ${ }^{19} \mathrm{~F}$ NMR of 5 a 117 two resonances at $\delta-77.0$ and -77.9 , similar to 4 a and 118 corresponding to the two $\mathrm{OAc}^{\mathrm{F}}$ ligands, were observed. In the 119 ${ }^{13} \mathrm{C}$ NMR of 5 a two sets of two quartets corresponding to the 120 carbons in the two $\mathrm{OAc}^{\mathrm{F}}$ ligands were observed at $\delta 161.3$, 121 157.6, 118.2, and 115.0, with $J_{19 \mathrm{~F}-13 \mathrm{C}}=37.3,41.6,290.1$, and 122 286.4 Hz , respectively. As in 4a, a NOESY experiment 123 established that the reaction had occurred in the position 124 trans to tpy- N (see SI), where a NOE was observed between $\mathrm{H}^{\mathrm{a}} 125$ and $\mathrm{H}^{6 \prime}$, and between H^{b} and $\mathrm{H}^{6 \prime}$ (for numbering, see Scheme 126 2).

139 corresponding acetate and ethoxy products 6 and 7 (Scheme 4)

Scheme 4. Au(III) Mediated Nucleophilic Addition of $\mathrm{HOAc}_{a^{a}} \mathrm{MeOH}$, and EtOH to Ethylene Furnishing 6, 7, and 8^{a}

${ }^{a}$ All the reactions depicted in this scheme were performed at ambient temperature.
The disubstituted and trisubstituted alkenes 2-methyl-1butene and 2-methyl-2-butene were also investigated under the same reaction conditions as for $\mathbf{5 a}$, however no insertion products could be isolated.

Ethylene with Other Nucleophiles. The formal insertions performed in $\mathrm{HOAc}^{\mathrm{F}}$ showed a limited scope and gave products of variable stability. To extend the scope of these reactions, it was desired to investigate other nucleophiles. Acetic acid (HOAc) and ethanol were investigated in the ethylene reaction (Scheme 1, top) and it turned out that upon simply bubbling ethylene through a mixture of 1 in HOAc or ethanol followed by stirring at ambient temperature, the

could be obtained. The reaction in HOAc was rather slow and 12 days were needed in order to obtain full conversion into product. The reaction in ethanol was faster but in this case byproduct formation complicated the reaction (see SI for details). Methanol was also tested as a nucleophile, and upon bubbling ethylene through a mixture of 1 in methanol 8 could easily be obtained in a good yield (Scheme 4).
Complexes 6 and 8 were characterized by NMR, MS, X-ray diffraction analysis (vide infra), and elemental analysis. Complex 7 was characterized by NMR and MS. All complexes 6, 7 , and 8 contain the characteristic resonances for the $\mathrm{CH}_{2} \mathrm{CH}_{2}$ moiety originating from ethylene in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 4.42$ and $\delta 2.38$ for $\mathbf{6}$, at $\delta 3.74$ and $\delta 2.40$ for 7 , and at $\delta 3.68$ and $\delta 2.39$ for 8 . In the ${ }^{1} \mathrm{H}$ NMR spectrum of 6 the resonance corresponding to the acetate group is observed at $\delta 2.04$, in 7 a quartet and a triplet corresponding to the OEt group are seen at $\delta 3.55$ and $\delta 1.19$, respectively, and the resonance corresponding to the methoxy group of 8 is observed at $\delta 3.38$. A NOE correlation between the $\mathrm{CH}_{2} \mathrm{CH}_{2}$ protons and $\mathrm{H}^{6 \prime}$ (see Scheme 2 for numbering) was observed for all three complexes, indicating that the reactions had all occurred trans to tpy-N.
When investigating the complexes by ${ }^{19} \mathrm{~F}$ NMR it became evident that the $O A c^{F}$ group trans to tpy- C has remained in all of the three complexes. No exchange of the $\mathrm{OAc}^{\mathrm{F}}$ group trans
to tpy-C with either OAc, OMe, or OEt could be observed. For 166 all three complexes, a single resonance at $\delta-77.0$ in the ${ }^{19} \mathrm{~F} 167$ NMR spectra and a set of two quartets in the ${ }^{13} \mathrm{C}$ NMR spectra 168 could be observed, corresponding to the $\mathrm{OAc}^{\mathrm{F}}$ group trans to 169 tpy-C.

The more sterically crowded nucleophiles, $i-\mathrm{PrOH}$ and $t-171$ BuOH were also investigated (Scheme 5). In this case, 172 s5

Scheme 5. Au(III) Mediated Nucleophilic Addition of i PrOH and $t-\mathrm{BuOH}$ to Ethylene Furnishing 9 and 10^{a}

(a)

$i-\mathrm{PrOH}$
3 d , ambient T

9

${ }^{a}$ Complexes 2 and 11 were formed as byproducts in both reactions.
competition from the $\mathrm{OAc}^{\mathrm{F}}$ ligand that has to dissociate from 173 $\mathbf{1}$ was observed, leading to formation of the previously reported 174 complex 2^{21} together with 9 and 10. Furthermore, another 175 byproduct, which is assigned to be complex 11 (see SI for 176 details), was observed. Complex 11 may originate from 177 addition of water to ethylene at Au. Despite repeated efforts 178 to exclude water from the reaction 11 was always formed. Small 179 amounts of $11(<15 \%)$ were also formed when preparing 7. 180

Complexes 9 and 10 were characterized by NMR and MS. In 181 the ${ }^{1} \mathrm{H}$ NMR spectrum of 9 and $\mathbf{1 0}$ the resonances of the 182 $\mathrm{CH}_{2} \mathrm{CH}_{2}$ unit were found at $\delta 3.74$ and $\delta 2.37$ for 9 and $\delta 3.70183$ and $\delta 2.32$ for $\mathbf{1 0}$. Furthermore, the diagnostic resonances of 184 the $i-\operatorname{Pr}$ and $t-\mathrm{Bu}$ methyl groups were found at $\delta 1.16$ and $\delta 1.21185$ respectively. A NOE correlation between the $\mathrm{CH}_{2} \mathrm{CH}_{2}$ protons 186 and $\mathrm{H}^{6 \prime}$ (for numbering, see Scheme 2) was observed for both 187 complexes, indicating that the reactions had occurred trans to 188 tpy- N. In the ${ }^{19}$ F NMR spectra of $\mathbf{9}$ and $\mathbf{1 0}$ one resonace was 189 observed at $\delta-77.0$ corresponding to the $\mathrm{OAc}^{\mathrm{F}}$ ligand trans to 190 tpy-C.

Interestingly, in all complexes 6-10 the $\mathrm{OAc}^{\mathrm{F}}$ ligand remains 192 in place trans to tpy-C even in the presence of large excess of 193 other possible ligands which could have coordinated instead. 194 This strong preference for $\mathrm{OAc}^{\mathrm{F}}$ trans to tpy-C was further 195 demonstrated in an experiment where $\mathbf{1}$ was refluxed in HOAc 196 for 7 days (see SI for details), leading to a nearly selective 197 exchange of the $\mathrm{OAc}^{\mathrm{F}}$ group trans to tpy- N with OAc while the 198 $\mathrm{OAc}^{\mathrm{F}}$ group trans to tpy-C remained in place. Thus, while the 199 site trans to tpy- C is kinetically more accessible, ${ }^{21}$ the 200 thermodynamic preference of a low trans influence ligand 201 (i.e., $\mathrm{OAc}^{\mathrm{F}}$ over OAc and other possible ligands) controls the 202 observed product selectivity. The same selectivity was observed 203

204 in MeOH , as stirring $\mathbf{1}$ in MeOH led to a slow exchange of the 205 206 207 success of 208 enough to be isolated, the reaction of 1 -hexene with 1 was 209 repeated in methanol. After 1 d, the stable product $4 \mathbf{b}$ could be 210 isolated in good yield (Scheme 6). Complex 4b was

Scheme 6. Nucleophilic Addition of MeOH to 1-Hexene at 1 Furnishing $\mathbf{4 b}^{a}$

${ }^{a}$ The atoms in the former 1-hexene unit are labeled a-f to simplify the NMR discussions.
characterized by NMR, MS, X-ray diffraction analysis (vide infra), and elemental analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}$ resembles 4a, but there are some characteristic differences. The signal due to H^{b} is at $\delta 3.52$ in $\mathbf{4 b}$, whereas in $4 \mathbf{a}$ it appears at δ 5.40 due to the more electron withdrawing $\mathrm{OAc}^{\mathrm{F}}$ bound to the same C as H^{b} in $\mathbf{4 a}$. In $\mathbf{4 b}$ the resonance of the OMe group is found at $\delta 3.39$ (similar to the methoxy group in 8 at $\delta 3.38$) and the two diastereotopic H^{a} are found at δ 2.44-2.47 (overlaps with tpy- CH_{3}) and $\delta 2.36\left({ }^{2} \mathrm{~J}_{\mathrm{HH}}=9.9 \mathrm{~Hz}\right.$). Only one resonance is observed in the ${ }^{19} \mathrm{~F}$ NMR at $\delta-77.1$ corresponding to the $\mathrm{OAc}^{\mathrm{F}}$ group trans to tpy-C. A NOE correlation between H^{a} and $\mathrm{H}^{6 \prime}$, and between H^{b} and $\mathrm{H}^{6 \prime}$ (for numbering, see Scheme 2) indicates that the reaction has occurred in the position trans to tpy- N.
We were intrigued by the remarkable stability difference of $\mathbf{4 a}$ and $\mathbf{4 b}$ and sought to gain more insight into this phenomenon. As was previously reported by us, the nucleophilic addition of ${ }^{-} \mathrm{OAc}^{\mathrm{F}}$ to ethylene at $\mathbf{1}$ (Scheme 1 , top) was found to be reversible. ${ }^{21}$ Since ${ }^{-}$OMe is a poorer leaving group than ${ }^{-} \mathrm{OAc}^{\mathrm{F}}$ it was hypothesized that this could slow down the reverse reaction and thus increase the stability of the methoxy products. It was indeed found that upon treating $8-d_{4}$ with unlabeled ethylene, no formation of unlabeled 8 was observed by ${ }^{1} \mathrm{H}$ NMR monitoring over 4 days indicating that the nucleophilic addition is not reversible under these reaction conditions (Scheme 7).

Substituted Butenes with Methanol as Nucleophile. Four butenes with different degrees of substitution were investigated. It was possible to perform a nucleophilic addition of MeOH to the monosubstituted alkene 3-methyl-1-butene, the disubstituted alkene 2 -methyl-1-butene, and even the

Scheme 7. Treating 8- d_{4} with Unlabeled Ethylene Did Not Lead to Any Formation of 8

8

Not formed
trisubstituted alkene 2-methyl-2-butene furnishing $\mathbf{5 b}, \mathbf{1 2}$, and 242 13 respectively (Scheme 8). However, the yields drop with 243 s 8

Scheme 8. Nucleophilic Addition of MeOH to a Series of Mono-, Di-, and Trisubstituted Butenes at 1 Furnishing 5b, 12 , and 13^{a}

1

13
33-44\%
${ }^{a}$ All the reactions depicted in this scheme were performed at ambient temperature. The atoms in the former alkene units are labeled $a-e$ to simplify the NMR discussions.
increasing alkene substitution. In 5b, 12, and 13 the 244 nucleophilic addition occurs at the most substituted site of 245 the double bond in agreement with previous observations. The 246 tetrasubstituted alkene 2,3-dimethyl-2-butene (not shown in 247 Scheme 8), did not react with $\mathbf{1}$ under these conditions (see SI 248 for details).

Complex 5b was characterized by NMR, MS, X-ray 250 diffraction analysis (vide infra), and elemental analysis. The 251 ${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 b}$ is rather similar to that of $\mathbf{5 a}$, the most 252 prominent change being the shift of the resonance of H^{b} from $\delta 253$ 5.31 in $\mathbf{5 a}$ to $\delta 3.35$ in $\mathbf{5 b}$ which is rather similar to what was 254 observed for H^{b} in $\mathbf{4 b}(\delta 3.52)$ and $\mathrm{CH}_{2} \mathrm{OMe}$ in $\mathbf{8}(\delta 3.68)$. 255 The resonance of the OMe group is found at $\delta 3.40$ consistent 256 with what was observed in $\mathbf{4 a}$ and $\mathbf{8}$. The two diastereotopic $\mathrm{H}^{\mathrm{a}} 257$ are at $\delta 2.43-2.46$ (overlaps with tpy- $\left.\mathrm{CH}_{3}\right)$ and $\delta 2.30\left({ }^{2} J_{\mathrm{HH}}=258\right.$ 10.0 Hz) and the two diastereotopic methyl groups are found 259 as two partly overlapping doublets at $\delta 0.98-1.00$. A NOE 260 correlation could be observed between H^{a} and $\mathrm{H}^{6 \prime}$ and H^{b} and 261 $\mathrm{H}^{6 \prime}$ (see Scheme 2 for numbering) indicating that the reaction 262 has occurred in the position trans to tpy-N.

For the syntheses of $\mathbf{1 2}$ and 13, a prolonged reaction time 264 compared to $\mathbf{5 b}$ was needed. Complexes $\mathbf{1 2}$ and $\mathbf{1 3}$ were 265 prepared in moderate to low yields and were characterized by 266 NMR, MS, and elemental analysis. 13 was also characterized by 267 X-ray diffraction analysis (vide infra). In the ${ }^{1} \mathrm{H}$ NMR spectrum 268 of $\mathbf{1 2}$ the OMe resonance is found at $\delta 3.19$, at slightly smaller 269 ppm than that observed for $\mathbf{4 b}, \mathbf{5 b}$, and $\mathbf{8}$. The two 270 diastereotopic H^{a} are found at $\delta 2.59$ and $\delta 2.53\left({ }^{2} \mathrm{~J}_{\mathrm{HH}}=10.3271\right.$ $\mathrm{Hz}), \mathrm{CH}_{3}{ }^{\mathrm{e}}$ is a singlet at $\delta 1.33, \mathrm{CH}_{3}{ }^{\mathrm{d}}$ is an apparent triplet at $\delta 272$ 0.95 , and the two diastereotopic H^{c} are at $\delta 1.75$ and $\delta 1.70$. A 273 NOE correlation could be observed between H^{a} and H^{61} and 274 $\mathrm{CH}_{3}{ }^{\mathrm{e}}$ and $\mathrm{H}^{6 /}$ (for numbering, see Scheme 2) indicating that 275 the reaction has occurred in the position trans to tpy-N. In the 276
${ }^{1} \mathrm{H}$ NMR spectrum of $13 \mathrm{H}^{\mathrm{a}}$ is found as a quartet at $\delta 2.91$, at slightly larger ppm than what was observed for H^{a} in $\mathbf{5 b}$ and $\mathbf{1 2}$. The three methyl groups $\mathrm{CH}_{3}{ }^{\mathrm{c}}, \mathrm{CH}_{3}{ }^{\mathrm{d}}$, and $\mathrm{CH}_{3}{ }^{\mathrm{e}}$ are found as overlapping signals at $\delta 1.28-1.36$ and the OMe resonance is found at $\delta 3.21$ similar to what was observed for 12. For all three complexes $\mathbf{5 b}, \mathbf{1 2}$, and 13 one signal corresponding to the $\mathrm{OAc}^{\mathrm{F}}$ ligand trans to tpy-C is observed in the ${ }^{19} \mathrm{~F}$ NMR spectra at $\delta-77.0,-77.1$, and -77.3 respectively.

Styrene with Methanol as Nucleophile. We were interested to see if the conjugated double bond in styrene would react in the same way as the alkenes described herein. It turned out that it was possible to perform a nucleophilic addition of MeOH to styrene furnishing 14 (Scheme 9). The reaction occurred trans to tpy- N and the nucleophilic addition occurred at the internal position of the double bond in agreement with previous findings.

Scheme 9. Nucleophilic Addition of MeOH to Styrene at 1 Furnishing 14^{a}

1

1 d , ambient T

68-72\%
${ }^{a}$ The atoms in the former double bond are labeled $a-b$ to simplify the NMR discussions.

Complex 14 was characterized by NMR, MS, X-ray diffraction analysis (as the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate, vide infra), and elemental analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 14 the characteristic resonances of the phenyl substituent are observed at $\delta 7.44, \delta 7.36$, and $\delta 7.28$. The OMe resonance is found at δ 3.23 , similar to what was observed for 12 and 13 , and at slightly smaller ppm values than those for $\mathbf{8}, \mathbf{5 b}$, and $\mathbf{4 b}$. A doublet of doublets at $\delta 4.55$ corresponds to H^{b} which is at larger ppm values than those observed for $\mathbf{4 b}(\delta 3.52), \mathbf{5 b}(\delta 3.35)$, and $\mathbf{8}$ $\left(\mathrm{OCH}_{2} \delta 3.68\right)$, probably due to the electron withdrawing phenyl group. The two diastereotopic H^{a} are found at $\delta 2.63$ and $\delta 2.50\left({ }^{2} J_{\mathrm{HH}}=10.3\right.$ and 10.2 Hz$)$. One signal at $\delta-77.0$ was observed in the ${ }^{19} \mathrm{~F}$ NMR spectrum corresponding to the $\mathrm{OAc}^{\mathrm{F}}$ ligand trans to tpy-C.
trans-2-Hexene with Methanol as Nucleophile. Throughout this study, we have observed a selectivity for the nucleophilic addition to occur at the most substituted site of the double bond. We were therefore interested in the preferred selectivity with the 2,3-disubstituted alkene trans-2-hexene. When performing the reaction a mixture of the two isomers 15 and 16 (Scheme 10) was obtained in an approximately $1: 1$ ratio as could be observed by ${ }^{1} \mathrm{H}$ NMR of the reaction mixture (see SI). Several of the resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum of the two isomers are at similar chemical shifts and are therefore overlapping, but for some signals there is a significant difference. In the tpy ligand, the difference between the two isomers is clearly seen for H^{6} and $\mathrm{H}^{6 \prime}$ (see Scheme 2 for numbering). The difference between the two isomers is also clearly discernible for the OMe resonance, the triplets and doublets belonging to the two CH_{3} units in the C_{6}-alkyl chain and $\mathrm{H}^{\mathrm{b}} . \mathrm{H}^{\mathrm{b}}$ is found at $\delta 2.62$ in $\mathbf{1 5}$ and $\delta 3.55$ in $\mathbf{1 6}$, the larger ppm value of H^{b} in 16 compared to 15 indicates that the

Scheme 10. Nucleophilic Addition of MeOH to trans-2Hexene Furnishing a Mixture of the Two Isomers 15 and 16 in an Approximately 1:1 Ratio ${ }^{a}$

1

3 d, ambient T

15
16
$15: 16$ (1:1)
Combined yield: 68-75\%
${ }^{a}$ The two isomers originate from nucleophilic addition at both sites of the double bond. The atoms in the former trans-2-hexene unit are labeled a-f to simplify the NMR discussions.
nucleophilic addition has occurred at C^{b} in 16 and at at C^{c} in 325 15. No interconversion of the two isomers could be observed 326 by ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ over time, in agreement with the 327 nonreversibility of the ethylene reaction in MeOH described 328 previously. Crystallization of the isomer mixture led to 329 formation of two types of crystals with different morphology; 330 large crystals belonging to $\mathbf{1 5}$ and small crystals belonging to 16331 (see SI). These two isomers could be separated by picking 332 crystals under a microscope and single crystal X-ray diffraction 333 analyses (vide infra) and NMR characterization were performed 334 using the crystals of both isomers.

We previously reported that the nucleophilic addition of 336 $-\mathrm{OAc}^{\mathrm{F}}$ to ethylene ${ }^{21}$ and acetylene ${ }^{22}$ at 1 occurred in an anti 337 fashion. In 15 and 16 it is also possible to distinguish whether 338 the nucleophilic addition occurs in an anti or syn fashion from 339 the solid state structures of $\mathbf{1 5}$ and 16. One pair of 340 diastereomers will be formed from anti addition (R, S and 341 S, R) and another pair would be formed from syn addition (S,S 342 and R, R). In the solid state structures of $\mathbf{1 5}$ and $\mathbf{1 6}$ (vide infra) 343 it is clear that the nucleophilic addition of MeOH to trans-2- 344 hexene occurred in an anti fashion, in agreement with previous 345 findings.

Crystallographic Structure Determination. Complexes 347 $\mathbf{4 b}, \mathbf{5 a}$ (as the CHCl_{3} solvate), $\mathbf{5 b}, \mathbf{6}, \mathbf{8}, \mathbf{1 3}, \mathbf{1 4}$ (as the $\mathrm{CH}_{2} \mathrm{Cl}_{2} 348$ solvate), 15, and $\mathbf{1 6}$ have been characterized by X-ray 349 diffraction analysis and their ORTEPs are given in Figure 1350 fl and Figure 2 together with selected metrical parameters in 351 f 2 Table 1 and Table 2. In 6 and $\mathbf{1 4}$ the asymmetric unit consists 352 t 1 t2 of two complexes, and the metrical parameters are given for 353 both complexes. As expected, all the structurally characterized 354 complexes reported herein have the nearly square planar 355 geometry that is commonly observed for Au (III) complexes. 356 The structures are in full agreement with the NMR data and 357 verify that the reactions have occurred trans to tpy- N while the 358

Figure 1. ORTEP plot of $\mathbf{4 b}, \mathbf{5 a}, \mathbf{b}, \mathbf{6}$, and $\mathbf{8}$ with 50% ellipsoids. For $\mathbf{5 a}$, the CHCl_{3} solvent of crystallization was removed for clarity.

Figure 2. ORTEP plot of $13-16$ with 50% ellipsoids. For 14 , the $\mathrm{CH}_{2} \mathrm{CH}_{2}$ solvent of crystallization was removed for clarity. In 13 and 14 the OAc ligand is disordered (see SI).
$359 \mathrm{OAc}^{\mathrm{F}}$ ligand remains in place trans to tpy-C. In the solid state 360 structures of $\mathbf{4 a}, \mathbf{5 a}, \mathbf{b}, \mathbf{1 3}$ and $\mathbf{1 4}$ it is evident that the 361 nucleophilic additions have occurred at most substituted site of
the double bond. A slight deviation of the $\mathrm{N} 1-\mathrm{Au} 1-\mathrm{C} 1$ chelate 362 angle from the idealized 90° is observed in all the complexes, 363 ranging from $81.1(3)$ in 6 to $81.95(10)^{\circ}$ in 14, in agreement 364

Table 1. Selected Bond Distances [\AA] and Angles $\left[{ }^{\circ}\right]$ for 4b, 5a,b, 6, and 8^{a}

	4b	5a	5b	6	8
Au1-N1	2.117 (7)	2.110(5)	2.108(8)	2.104(6), 2.094(6)	2.089(11)
Au1-C1	1.999(8)	2.013(5)	1.998(9)	2.002(7), 2.014(7)	2.018(10)
Au1-O1	2.109(6)	2.114(3)	$2.115(7)$	2.087(6), 2.101(5)	2.102(9)
Au1-C2	2.025(9)	2.045(5)	2.055(9)	2.043(7), 2.023(8)	2.012(15)
C2-C3	1.517(13)	1.512(7)	1.526(13)	1.521(11), 1.522(10)	1.522(17)
C3-O2	1.426(13)	1.503(6)	1.433(13)	1.463(9), 1.447(9)	1.41(2)
O1-Au1-N1	96.0(3)	93.88(15)	96.4(3)	93.3(2), 92.1(2)	95.1(4)
N1-Au1-C1	81.6(3)	81.57(19)	81.5(4)	81.3(3), 81.1(3)	81.5(4)
C1-Au1-C2	96.6(4)	94.9(2)	96.2(4)	96.1(3), 95.7(3)	92.0(5)
C2-Au1-O1	85.8(3)	89.55(18)	86.0(3)	89.4(3), 91.0(3)	91.5(5)
C1-Au1-O1	177.1(3)	174.82(18)	177.5(4)	174.2(3), 173.1(3)	176.4(5)
N1-Au1-C2	177.9(3)	176.02(18)	175.3(3)	177.2(3), 176.3(3)	173.3(5)

${ }^{a}$ In 6 the asymmetric unit consists of two complexes and the metrical parameters for both complexes are given.

Table 2. Selected Bond Distances $[\AA]$ and Angles $\left[{ }^{\circ}\right]$ for $13-16^{a}$

	13	14	15	16
Au1-N1	2.137(3)	$\begin{gathered} 2.113(2) \\ 2.126(2) \end{gathered}$	2.131(2)	2.127(3)
Au1-C1	2.012(3)	$\begin{gathered} 2.002(2) \\ 2.010(2) \end{gathered}$	2.007(3)	2.009(4)
Au1-O1	2.111(2)	$\begin{gathered} 2.1022(18), \\ 2.1159(17) \end{gathered}$	2.110(2)	2.116(3)
Au1-C2	2.080(4)	$\begin{gathered} 2.044(3) \\ 2.054(2) \end{gathered}$	2.069(3)	2.074(4)
C2-C3	1.549(5)	$\begin{gathered} 1.513(3) \\ 1.523(3) \end{gathered}$	1.520(4)	1.522(6)
C3-O2	1.439(5)	$\begin{gathered} 1.424(3) \\ 1.425(3) \end{gathered}$	1.441(4)	1.448 (5)
$\begin{aligned} & \mathrm{O1-} \\ & \text { Au1- } \\ & \text { N1 } \end{aligned}$	89.62(10)	$\begin{gathered} 88.90(8), \\ 91.20(8) \end{gathered}$	91.92(9)	91.94(12
$\begin{aligned} & \mathrm{N} 1- \\ & \mathrm{Au} 1-\mathrm{C} 1 \end{aligned}$	81.38(12)	$\begin{aligned} & 81.95(10), \\ & 81.44(10) \end{aligned}$	81.72(10)	81.44(14)
$\begin{gathered} \mathrm{C} 1-\mathrm{Au} 1- \\ \mathrm{C} 2 \end{gathered}$	93.79(14)	$\begin{gathered} 94.07(11), \\ 92.80(10) \end{gathered}$	95.89(11)	96.81(16)
$\begin{aligned} & \mathrm{C} 2-\mathrm{Au} 1- \\ & \mathrm{O} 1 \end{aligned}$	95.31(12)	$\begin{aligned} & 95.09(9), \\ & 94.63(9) \end{aligned}$	90.39(19)	90.14(14)
$\begin{aligned} & \mathrm{C1}-\mathrm{Au} 1- \\ & \mathrm{O} 1 \end{aligned}$	170.81(12)	$\begin{array}{r} 170.84(10) \\ 172.50(9) \end{array}$	172.19(9)	172.51(13)
$\begin{aligned} & \mathrm{N} 1- \\ & \text { Au1-C2 } \end{aligned}$	173.84(12)	175.07(10)	177.44(10)	173.79(15)

${ }^{a}$ In 14 the asymmetric unit consists of two complexes and the metrical parameters for both complexes are given.

365 with that observed in the related complexes $\mathbf{1},{ }^{23} 2,,^{21} 3,{ }^{21}$ $366 \mathrm{Au}\left(\mathrm{OAc}^{\mathrm{F}}\right)\left(\mathrm{CHCHOAc}{ }^{\mathrm{F}}\right)($ tpy $),{ }^{22} \mathrm{Au}\left(\mathrm{OAc}^{\mathrm{F}}\right)\left(\mathrm{CH}_{2} \mathrm{CHO}\right)-$ 367 (tpy), ${ }^{22}$ and the metallacycle $\left[\mathrm{Au}\left(\mathrm{NH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)\right.$ 368 (tpy) $]^{+}\left[\mathrm{OAc}^{\mathrm{F}}\right]^{-24}$ reported previously. The Aul-N1 ligand 369 distances, the Au1-O1 distances, and the Au1-C1 distances 370 are in the range of, or slightly longer, than that reported for 371 related complexes. ${ }^{21-24}$ The shortest $\mathrm{Au}-\mathrm{C} 2$ ligand distances 372 are those of $\mathbf{8}, 2.012(15) \AA$, followed by $\mathbf{6}$ and $\mathbf{4 b}$ with 2.023(8) 373 and $2.025(9) \AA$ respectively. On the longer side is 13 with 3742.080 (4) Å followed by 15 and 16 with 2.075(4) and 2.069(3) $375 \AA$ respectively. The $\mathrm{Au}-\mathrm{C} 2$ distances in $\mathbf{5 a}, \mathbf{b}, \mathbf{6}$, and 14 range 376 from $2.043(7)$ to $2.055(9) \AA$ and are similar to, or slightly 377 longer, than those of $\mathbf{2}^{21}$ and $\mathbf{3}^{21}$ at 2.042(3) and 2.040(4) \AA, 378 respectively.
379 Relevance for Catalysis. The design of a catalytic process 380 based on the reactions described herein would lead to very 381 useful methods to prepare esters and ethers from simple and 382 readily available building blocks under mild reaction conditions.

However, the reactions discussed herein come to a stop after 383 the first alkene functionalization trans to tpy- N and no catalytic 384 processes could be achieved. Experiments where $\mathrm{HOAc}^{\mathrm{F}}$ was 385 added to a mixture of the insertion product, excess alkene and 386 solvent/nucleophile (see SI for details) did not lead to any 387 catalysis and the complexes remained stable in solution over 388 several days. For example, treatment of 8- \boldsymbol{d}_{3} (generated in situ 389 from 1 and ethylene in $\mathrm{CD}_{3} \mathrm{OD}$) with $\mathrm{HOAc}^{\mathrm{F}}$ in the presence 390 of excess ethylene did not furnish the ether product expected 391 from protodeauration, even after heating at elevated temper- 392 atures $\left(50-60{ }^{\circ} \mathrm{C}\right)$. Also, adding $\mathrm{HOAc}^{\mathrm{F}}$ to a mixture of the 393 more sterically crowded 13 and 2-methyl-2-butene in $\mathrm{CD}_{3} \mathrm{OD} 394$ did not lead to the expected protodeauration product; however, 395 in this case decomposition occurred to unknown products. 396 Based on our recent report of a catalytic functionalization of 397 acetylene with $\mathbf{1}$ as a precatalyst furnishing vinyl trifluor- 398 oacetate 22 it seems that two main challenges must be overcome 399 in order to achieve catalysis with the system described herein: 400 (i) the trans to tpy- N vs trans to tpy- C situation must be 401 controlled: in $\mathrm{Au}\left(\mathrm{CHCHOAc}^{\mathrm{F}}\right)_{2}($ tpy $)$ only the vinyl group 402 trans to tpy-C undergoes protolytic cleavage in $\mathrm{HOAc}^{\mathrm{F}}$ while 403 the vinyl group trans to tpy- N remains intact. ${ }^{22}$ (ii) The 404 preference for protolytic cleavage of $\mathrm{Au}-\mathrm{C}\left(s p^{2}\right)$ bonds over 405 $\mathrm{Au}-\mathrm{C}\left(s p^{3}\right)$ bonds must be circumvented (in $\mathrm{Au}($ tpy $) \mathrm{Me}_{2}$ the 406 preference for protolytic cleavage at $\mathrm{Au}-\mathrm{C}\left(s p^{2}\right)$ over $\mathrm{Au}-407$ $\mathrm{C}\left(s p^{3}\right)$ was demonstrated $\left.{ }^{25}\right)$, for example by replacing the 408 $C\left(s p^{2}\right)$-end of the tpy chelate with a $\mathrm{Au}-\mathrm{C}\left(s p^{3}\right)$ bound ligand. 409

- CONCLUSIONS

This work has provided a detailed study of functionalization of 411 alkenes at $\mathrm{Au}(\mathrm{III})$ furnishing several new $\mathrm{Au}(\mathrm{III})$ complexes 412 bearing $\mathrm{C}\left(s p^{3}\right)$ bonded ligands. Insight into the scope and 413 regiochemistry of the nucleophilic addition to alkenes at 414 $\mathrm{Au}(\mathrm{III})$ has been obtained. The reactions of a range of different 415 alkenes with various substitution patterns have been inves- 416 tigated with several different oxygen-based nucleophiles. In all 417 the cases studied, the reactions occur trans to tpy- N reflecting 418 the strong thermodynamic preference of the high trans 419 influence $\mathrm{C}\left(s p^{3}\right)$ group to bind trans to the weaker trans 420 influence tpy- N, and not trans to the high trans influence tpy- 421 $C\left(s p^{2}\right)$. Trans to tpy-C, the lower trans influence $\mathrm{OAc}^{\mathrm{F}}$ ligand 422 always remains in place. Furthermore, the nucleophilic 423 additions exclusively occurred at the most substituted site of 424 the double bond, in a Markovnikov manner. For the 2,3-425 disubstituted alkene trans-2-hexene, where both sites of the 426 alkene bears one substituent, a mixture of the two isomers 427

428 resulting from nucleophilic addition at both sites of the alkenes 429 was obtained. With trans-2-hexene it was also found that the 430 nucleophilic addition occurred in an anti fashion, in agreement 431 with previous findings. ${ }^{21,22}$ The insight gained through this 432 study is of great importance for further developing and 433 understanding Au (III) catalysis and alkene functionalization.

- EXPERIMENTAL SECTION

$435 \mathrm{Au}(\mathrm{III})$ complexes 1 and 2 were prepared by previously reported 436 procedures. ${ }^{21,23} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was purified using a MB SPS-800 solvent 437 purifying system from MBraun. $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}, \mathrm{EtOH}, i-\mathrm{PrOH}$, and $438 t$ - BuOH were dried over $3 \AA$ molecular sieves. $\mathrm{HOAc}, \mathrm{HOAc}^{\mathrm{F}}, \mathrm{DOAc}$, $439 \mathrm{DOAc}^{\mathrm{F}}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{CD}_{3} \mathrm{CD}_{2} \mathrm{OD}$, and pentane were used as received. 440 Ethylene 3.5 was purchased from Hydro Gas. All complexes were 441 synthesized in air and inert atmosphere was only utilized for the 442 storage of the complexes and the work up of 7,9 , and 10 . For the 443 synthesis of 7,9 , and 10 dry conditions were needed in order to 444 minimize byproduct formation. In these cases all equipment and 445 chemicals were dried prior to use and ethylene was dried by passing it 446 through a $3 \AA$ molecular sieve trap. As a precaution, all syntheses were 447 performed in the absence of light. NMR spectra were recorded on 448 Bruker Avance DPX200, DPX300, AVII400, DRX500, AV600, 449 AVII600, and AVIIIHD800 instruments at ambient temperature. ${ }^{1} \mathrm{H}$ 450 and ${ }^{13} \mathrm{C}$ NMR spectra have been referenced relative to the residual 451 solvent signals $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2} \delta\left({ }^{1} \mathrm{H}\right) 5.34, \delta\left({ }^{13} \mathrm{C}\right) 53.84 ; \mathrm{HOAc}^{\mathrm{F}} \delta\left({ }^{1} \mathrm{H}\right)\right.$ 452 11.50; $\mathrm{CD}_{3} \mathrm{OD} \delta\left({ }^{1} \mathrm{H}\right) 3.31, \delta\left({ }^{13} \mathrm{C}\right) 49.00 ; \mathrm{CD}_{3} \mathrm{CD}_{2} \mathrm{OD} \delta\left({ }^{1} \mathrm{H}\right) 1.11$, 453 3.55; HOAc $\left.\delta\left({ }^{1} \mathrm{H}\right) 2.03\right) .{ }^{19} \mathrm{~F}$ has been referenced to CFCl_{3} by using $454 \mathrm{C}_{6} \mathrm{~F}_{6}\left(-164.9 \mathrm{ppm}\right.$ with respect to CFCl_{3} at 0 ppm$)$ as an internal 455 standard by adding ca. $0.5-1 \mu \mathrm{~L}_{6} \mathrm{~F}_{6}$ to the NMR sample. The peaks 456 in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were assigned by the aid of 2D 457 NMR techniques such as HSQC, HMBC, COSY, NOESY, and $458{ }^{19} \mathrm{~F}-{ }^{1} \mathrm{H}$ HOESY according to the numbering scheme shown in Figure 459 3. Mass spectra (ESI) were obtained on a Micromass QTOF II

Figure 3. Numbering scheme used for reporting the NMR data. 485 484 contained $\operatorname{ppyD}_{2}^{+}$(confirmed by spiking the sample with commercial
spectrometer and a Bruker maXis II ETD spectrometer by Osamu Sekiguchi, University of Oslo. Elemental analysis was performed by Microanalytisches Laboratorium Kolbe, Mülheim an der Ruhr, Germany. For each compound the typical yield range is given. In some cases, yields outside of these ranges were obtained. The purity of isolated complexes $4 \mathbf{b}, \mathbf{5 a}, \mathbf{b}, 6,8,12,13$, and 14 were assessed by elemental analysis, high field ${ }^{1} \mathrm{H}$ NMR (600 or 800 MHz), and ${ }^{19} \mathrm{~F}$ NMR (188 MHz). For the remaining complexes, purity was only assessed by high field ${ }^{1} \mathrm{H}$ NMR $(500,600$, or 800 MHz$)$ together with ${ }^{19} \mathrm{~F}$ NMR (188 MHz). For the complexes not characterized by elemental analysis (due to sample instability or formation of product mixtures), the presence of NMR silent impurities cannot be excluded. Homogenous NMR samples were always used when assessing the purity by NMR

The synthesis and characterization of some selected complexes are given here below. For all experimental procedures, see SI.

Generation of Complex 4a in DOAc ${ }^{\mathrm{F}} .1(6.0 \mathrm{mg}, 0.010 \mathrm{mmol}$, 1.0 equiv) was dissolved in $\mathrm{CF}_{3} \mathrm{COOD}$ and transferred to a NMR tube. 1,2-dichloroethane ($0.5 \mu \mathrm{~L}$) was added as an internal standard (ISTD). 1-Hexene ($1.0 \mu \mathrm{~L}, 0.0081 \mathrm{mmol}, 0.8$ equiv) was added and the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR (500 MHz). After $<10 \mathrm{~min}$, all of $\mathrm{Au}\left(\mathrm{OAc}^{\mathrm{F}}\right)_{2}($ tpy $)$ is consumed and $4 \mathbf{a}$ has been formed. $\mathbf{4 a}$ is unstable in DOAc ${ }^{\mathrm{F}}$, and after $3 \mathrm{~h} \mathrm{ca} 40 \$.$% of 4 \mathrm{a}$ had decomposed. After tpyH), and several other unidentified decomposition products. Due to
its instability, $\mathbf{4 a}$ was not isolated. Generation of $\mathbf{4 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with 486 $\mathrm{HOAc}^{\mathrm{F}}$ added. 1 ($14.0 \mathrm{mg}, 0.0237 \mathrm{mmol}, 1.0$ equiv) was dissolved in 487 $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. $\mathrm{HOAc}^{\mathrm{F}}$ ($10 \mu \mathrm{~L}, 0.13 \mathrm{mmol}, 5.5$ equiv) and 1-hexene ($2.0 \mu \mathrm{~L}, 488$ $0.016 \mathrm{mmol}, 0.7$ equiv) were added. The reaction was monitored by 489 ${ }^{1} \mathrm{H}$ NMR (600 or 500 MHz) and when it was complete, 490 characterization by NMR was performed. For the ${ }^{19} \mathrm{~F}$ NMR, a sample 491 without excess $\mathrm{HOAc}{ }^{\mathrm{F}}$ was prepared. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 492$ 8.36 (br. d, $1 \mathrm{H}, J=4.6 \mathrm{~Hz}, \mathrm{H}^{6}$), 8.08 (ddd, $1 \mathrm{H}, J 1.6,7.9,7.9 \mathrm{~Hz}, \mathrm{H}^{4}$), 493 $7.97\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}^{3}\right)$, $7.67\left(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}^{3}\right), 7.52$ (ddd, 494 $\left.1 \mathrm{H}, J=1.2,5.6,7.5 \mathrm{~Hz}, \mathrm{H}^{5}\right), 7.46\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 7.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, 495$ $\left.\mathrm{H}^{4}\right)$, $5.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 2.46-2.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}_{3}\right.$ and $\left.\mathrm{H}^{\mathrm{a}}\right), 2.42(\mathrm{dd}, 496$ $\left.1 \mathrm{H}, J=10.4,6.9 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right), 1.88-2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right), 1.20-1.50(\mathrm{~m}, 4 \mathrm{H}, 497$ H^{d} and $\left.\mathrm{H}^{\mathrm{e}}\right)$, $0.91\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}{ }^{\mathrm{f}}\right)$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , 498 $\left.\mathrm{HOAc}^{\mathrm{F}}\right) \delta 8.38\left(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{H}^{6}\right), 8.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 7.93(\mathrm{~d}, 1 \mathrm{H}, 499$ $\left.\mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}^{3}\right), 7.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}^{3}\right)$, $7.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 7.27500$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{6 \prime}\right), 7.20\left(\mathrm{~d}, 1 \mathrm{H}, J=7.9, \mathrm{H}^{4}\right), 5.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 2.59(\mathrm{dd}, 501$ $\left.1 \mathrm{H}, J=11.4,4.8 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right) .2 .46\left(\mathrm{dd}, 1 \mathrm{H}, J=11.1,8.9 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right), 2.38(\mathrm{~s}, 502$ $\left.3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.92-2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right), 1.31-1.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{d}}+\mathrm{H}^{\mathrm{e}}\right), 503$ $0.88\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}{ }^{\mathrm{f}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 160.7$, 504 146.5, 143.4, 142.3, 140.5, 135.7, 132.5, 129.8, 126.1, 124.6, 120.5, 505 81.4, 36.4, 33.7, 28.0, 22.7, 21.9, 13.9. Due to the excess $\mathrm{HOAc}^{\mathrm{F}}$ in the 506 sample the carbons arising from the two $\mathrm{OAc}^{\mathrm{F}}$ groups could not be 507 assigned (see SI). ${ }^{19} \mathrm{~F}$ NMR $\left(188 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-77.1\left(\mathrm{OAc}^{\mathrm{F}}\right.$ trans 508 to tpy-C), -78.0 ($\mathrm{OAc}^{\mathrm{F}}$ trans to tpy-N).

Preparation of Complex 4b. MeOH (5 mL) was added to $\mathbf{1} 510$ ($50.0 \mathrm{mg}, 0.0846 \mathrm{mmol}, 1.0$ equiv). 1-Hexene ($21 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 2.0511$ equiv) was added. The flask was sealed with a glass stopper and the 512 reaction mixture was stirred at ambient temperature in the absence of 513 light for 1 d . The volatiles were removed under reduced pressure and 514 the remaining solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was 515 removed under reduced pressure furnishing $\mathbf{4 b}(40.0 \mathrm{mg}, 0.0674516$ $\mathrm{mmol}, 80 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.43$ (d, 517 $\left.1 \mathrm{H}, \mathrm{J}=4.68 \mathrm{~Hz}, \mathrm{H}^{6}\right), 8.04\left(\mathrm{ddd}, 1 \mathrm{H}, J=8.0,8.0,1.56 \mathrm{~Hz}, \mathrm{H}^{4}\right), 7.96(\mathrm{~d}, 518$ $\left.1 \mathrm{H}, J=8.16 \mathrm{~Hz}, \mathrm{H}^{3}\right), 7.68\left(\mathrm{~d}, 1 \mathrm{H}, J=7.92 \mathrm{~Hz}, \mathrm{H}^{3}\right.$), 7.49 (ddd, $1 \mathrm{H}, J 519$ $\left.=7.32,5.58,1.02, \mathrm{H}^{5}\right), 7.44\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\prime}\right), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, 520$ H^{4}), $3.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.44-2.47\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{a}} 521\right.$ and ArCH_{3}), $2.36\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.9,6.7 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right), 1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right)$, 522 $1.50-1.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{d}}\right.$ and $\left.\mathrm{H}^{\mathrm{e}}\right), 0.91\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}{ }^{\mathrm{f}}\right) .{ }^{13} \mathrm{C} 523$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 161.2\left(\mathfrak{q}, J=36.8, \mathrm{OCOCF}_{3}\right), 160.7,524$ 146.6, 142.5, 141.7, 141.1, 136.8, 132.8, 129.1, 125.7, 124.3, 120.2, 525 118.3 ($q, J=290.1$, OCOCF3), 81.3, 56.8, 38.3, 36.7, 28.4, 23.2, 22.0, 526 14.3. ${ }^{19} \mathrm{~F}$ NMR ($188 \mathrm{MHz}, \mathrm{CD} 2 \mathrm{Cl} 2$) $\delta-77.1\left(\mathrm{OAC}^{\mathrm{F}}\right)$. MS (ESI, 527 $\mathrm{MeOH}) \mathrm{m} / \mathrm{z}$ (rel. \%) 1053 (41), 538 (100), $480\left(\left[\mathrm{M}-\mathrm{OAc}^{\mathrm{F}}\right]^{+}, 49\right] .528$ HRMS (ESI, MeOH) found: 480.1593; calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{AuNO}: 529$ 480.1596. Elemental analysis Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{AuNO}_{3} \mathrm{~F}_{3}$: C, 530 42.51 ; H, 4.25 ; N, 2.36. Found: C, 42.52 ; H, 4.21; N, 2.30. The sample 531 for the elemental analysis was taken from the bulk material prepared as 532 described above. The batch used for the elemental analysis was 533 obtained in 58% yield.

Preparation of Complex 5a. $1(50.0 \mathrm{mg}, 0.0846 \mathrm{mmol})$ was 535 dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$). 3-Methyl-1-butene (ca. $20 \mu \mathrm{~L}$) was 536 added and the flask was sealed with a glass stopper. The reaction 537 mixture was stirred at ambient temperature in the absence of light for 1538 d. The volatiles were removed under reduced pressure and the 539 remaining solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. The solvent was 540 removed under reduced pressure furnishing 5 a $(43.2 \mathrm{mg}, 0.0653541$ $\mathrm{mmol}, 77 \%)$ as a white solid. Due to the volatility of 3-methyl-1-542 butene it could not be measured out with a microliter syringe and it 543 was added with a glass pipet (ca. 1 drop) instead. The reaction with 3-544 methyl-1-butene has to be performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and not in $\mathrm{HOAc}^{\mathrm{F}} 545$ due to the instability of the alkene in the acidic media. ${ }^{1} \mathrm{H}$ NMR (600546 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.40\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=0.7,5.5 \mathrm{~Hz}, \mathrm{H}^{6}\right), 8.06(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=547$ $1.6,7.9,7.9 \mathrm{~Hz}, \mathrm{H}^{4}$), $7.96\left(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}^{3}\right), 7.66(\mathrm{~d}, 1 \mathrm{H}, J=7.9548$ $\left.\mathrm{Hz}, \mathrm{H}^{3 \prime}\right), 7.50\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=1.1,5.6,7.4 \mathrm{~Hz}, \mathrm{H}^{5}\right), 7.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6 \prime}\right)$, 549 $7.25\left(\mathrm{dd}, 1 \mathrm{H}, J=0.3,7.9 \mathrm{~Hz}, \mathrm{H}^{4}\right)$, 5.31 (ddd, $1 \mathrm{H}, J=4.2,6.3,7.7 \mathrm{~Hz}$, 550 H^{b}), $2.60\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.3,10.7 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.32551$ (dd, $\left.1 \mathrm{H}, J=7.8,10.7 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right), 2.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right), 1.07(\mathrm{~d}, 3 \mathrm{H}, J=6.8552$ $\mathrm{Hz}, \mathrm{CH}_{3}{ }^{\mathrm{d}}$ or $\mathrm{CH}_{3}{ }^{\mathrm{e}}$), $1.05\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}{ }^{\mathrm{d}}\right.$ or $\left.\mathrm{CH}_{3}{ }^{\mathrm{e}}\right) .{ }^{13} \mathrm{C}$ NMR 553 $\left(151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 161.3 \mathrm{ppm}\left(\mathrm{q}, J=37.3 \mathrm{~Hz}, \mathrm{OCOCF}_{3}\right), 161.0$, 554 $157.6\left(\mathrm{q}, J=41.6 \mathrm{~Hz}, \mathrm{OCOCF}_{3}\right), 146.5,143.1,142.1,140.8,136.5$, 555

556 132.6, 129.4, 125.9, 124.4, 120.4, $118.2\left(\mathrm{q}, J=290.1 \mathrm{~Hz}, \mathrm{OCOCF}_{3}\right)$, $557115.0\left(\mathrm{q}, J=286.4 \mathrm{~Hz}, \mathrm{OCOCF}_{3}\right), 85.2,33.7,30.5,21.9,19.2,16.7$. $558{ }^{19} \mathrm{~F}$ NMR $\left(188 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-77.0\left(\mathrm{OAc}^{\mathrm{F}}\right.$ trans to tpy-C), -77.9 $559\left(\mathrm{OAc}^{\mathrm{F}}\right.$ trans to tpy-N). MS (ESI, MeCN) m/z (rel. \%) 548 ($[\mathrm{M}-$ $\left.\left.560 \mathrm{OAc}^{\mathrm{F}}\right]^{+}, 6\right), 493$ (100), 474 (13), 434 (54), 423 (13). HRMS (ESI, 561 MeCN) found: 548.1103; calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{AuF}_{3} \mathrm{NO}_{2}$: 548.1106. 562 Elemental analysis: Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{AuNO}_{4} \mathrm{~F}_{6}$: C, 38.14 ; H, 563 3.05; N, 2.12. Found: C, 38.54; H, 3.30; N, 2.20. The sample for the 564 elemental analysis was taken from the bulk material prepared as 565 described above. The batch used for the elemental analysis was 566 obtained in 55% yield.

Preparation of Complex 5b. MeOH (5 mL) was added to $\mathbf{1}$ 568 ($50.0 \mathrm{mg}, 0.0846 \mathrm{mmol}$). 3-Methyl-1-butene (ca. $20 \mu \mathrm{~L}$) was added 569 and the flask was sealed with a glass stopper. The reaction mixture was 570 stirred at ambient temperature in the absence of light for 1 d . The 571 volatiles were removed under reduced pressure and the remaining 572 solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. The solvent was removed 573 under reduced pressure furnishing $5 \mathbf{5 b}(39.4 \mathrm{mg}, 0.0680 \mathrm{mmol}, 80 \%)$ as 574 a white solid. Due to the volatility of 3-methyl-1-butene it could not be 575 measured out with a microliter syringe and it was added with a glass 576 pipet (ca. 1 drop) instead. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.42$ (d, $5771 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{H}^{6}$), 8.03 (ddd, $\left.1 \mathrm{H}, J=7.9,7.9,1.6 \mathrm{~Hz}, \mathrm{H}^{4}\right), 7.96$ (d, $\left.5781 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}^{3}\right), 7.68\left(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}^{3 \prime}\right), 7.48(\mathrm{ddd}, 1 \mathrm{H}, J=$ $\left.5791.0,5.6,7.4 \mathrm{~Hz}, \mathrm{H}^{5}\right), 7.45\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6 \prime}\right), 7.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}^{4 \prime}\right)$, $5803.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.35$ (ddd, $\left.1 \mathrm{H}, J=4.4,5.6,7.7 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}\right), 2.43-$ $5812.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}_{3}\right.$ and $\left.\mathrm{H}^{\mathrm{a}}\right), 2.30\left(\mathrm{dd}, 1 \mathrm{H}, J=7.9,10.0 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right), 2.01$ $582\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right), 0.98-1.00\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{d}}\right.$ and $\left.\mathrm{H}^{\mathrm{e}}\right) .{ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz}$, $\left.583 \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 161.2\left(\mathrm{q}, J=36.9 \mathrm{~Hz}, \mathrm{OCOCF}_{3}\right), 160.7,146.6,142.5$, 584 141.7, 141.0, 136.9, 132.7, 129.1, 125.7, 124.3, 120.2, 118.3 (q, $J=$ $585290.2 \mathrm{~Hz}, \mathrm{OCOCF}_{3}$), 86.2, 57.8, 35.4, 33.2, 22.0, 18.7, 17.7. ${ }^{19}$ F NMR $586\left(188 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-77.0\left(\mathrm{OAc}^{\mathrm{F}}\right) . \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}) \mathrm{m} / z(\mathrm{rel} . \%)$ 5871025 (34), 524 (100), 466 ($\left[\mathrm{M}-\mathrm{OAC}^{\mathrm{F}}\right]^{+}, 50$). HRMS (ESI, MeOH) 588 found: 466.1441 ; calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{AuNO}$: 466.1440. Elemental 589 analysis: Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{AuNO}_{3} \mathrm{~F}_{3}$: C, $41.46 ; \mathrm{H}, 4.00 ; \mathrm{N}$, 590 2.42. Found: C, 41.71 ; H, 4.18 ; N, 2.52. The sample for the elemental 591 analysis was taken from the bulk material prepared as described above. 592 The batch used for the elemental analysis was obtained in 80% yield. 593 Preparation of Complex 6. HOAc (5 mL) was added to $\mathbf{1}$ (75.4 $594 \mathrm{mg}, 0.128 \mathrm{mmol}, 1.0$ equiv). Ethylene was bubbled through the 595 solution for 2 min , and the flask was sealed with a glass stopper. The 596 reaction mixture was stirred at ambient temperature in the absence of 597 light. After 11 days, ethylene was bubbled through the solution for 1 598 min and after a total of 12 days the solution was filtered and the 599 volatiles were removed under reduced pressure furnishing $6(60.8 \mathrm{mg}$, $6000.108 \mathrm{mmol}, 84 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.601 \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.40\left(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}^{6}\right), 8.05(\mathrm{ddd}, 1 \mathrm{H}, J=1.5,8.0,8.0$ $\left.602 \mathrm{~Hz}, \mathrm{H}^{4}\right), 7.95\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}^{3}\right), 7.66\left(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}^{3 \prime}\right)$, 6037.49 (ddd, $\left.1 \mathrm{H}, J=1.0,5.5,7.5 \mathrm{~Hz}, \mathrm{H}^{5}\right)$, $7.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6 \prime}\right), 7.23(\mathrm{~d}, 1 \mathrm{H}$, $\left.604 \mathrm{~J}=7.9 \mathrm{~Hz}, \mathrm{H}^{4 \prime}\right), 4.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.38(\mathrm{~m}$, $6052 \mathrm{H}, \mathrm{AuCH}_{2}$), 2.04 (s, $3 \mathrm{H}, \mathrm{OAc}$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 606 171.3, 161.3 (q, $J=37.0 \mathrm{~Hz}, \mathrm{OCOCF}_{3}$), 160.9, 146.4, 143.0, 141.9, $607140.8,136.6,132.4,129.3,125.8,124.4,120.3,118.3(\mathrm{q}, J=290.2 \mathrm{~Hz}$, $608 \mathrm{OCOCF}_{3}$), 64.3, 29.4, 22.0, 21.3. ${ }^{19} \mathrm{~F}$ NMR ($188 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $609-77.0\left(\mathrm{OAc}^{\mathrm{F}}\right)$. MS (ESI, MeCN) m / z (rel. \%) 997 (30), 510 (100), 610452 ($\left.\left[\mathrm{M}-\mathrm{OAc}^{\mathrm{F}}\right]^{+}, 71\right]$). HRMS (ESI, MeCN) found: 452.0919; 611 calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{AuNO}_{2}$: 452.0919. Elemental analysis: Anal. Calcd for $612 \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{AuNO}_{4} \mathrm{~F}_{3}$: C, 38.24; H, 3.03; N, 2.48. Found: C, 38.36; H, 613 3.05; N, 2.46. The sample for the elemental analysis was taken from 614 the bulk material prepared as described above. The batch used for the 615 elemental analysis was obtained in 84% yield.
616 Preparation of Complex 7. $\mathrm{EtOH}(5 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{ca} .2 \mathrm{~g})$, 617 as a water absorbent, were added to a round-bottom flask and stirred 618 for 5-10 min. $1(50.3 \mathrm{mg}, 0.0851 \mathrm{mmol})$ was added and the solution 619 was stirred for 15 min . Ethylene was bubbled through the solution for 6201 min and the solution was stirred for 3 d at ambient temperature in 621 the absence of light. The volatiles were removed under reduced 622 pressure and the remaining solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered 623 under Ar. The solvent was removed under reduced pressure furnishing $6247(35 \mathrm{mg}, 0.063 \mathrm{mmol}, 74 \%)$ as a white solid. Small amounts of 11 $625(<15 \%)$ were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of 7 which
presumably originate from the reaction of $\mathrm{Au}\left(\mathrm{OAc}^{\mathrm{F}}\right)_{2}$ (tpy) with 626 ethylene and water. Due to the presence of 11, the yield of 7 is 627 overestimated. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.41$ (ddd, $1 \mathrm{H}, J=5.6,628$ $1.3,0.6 \mathrm{~Hz}, \mathrm{H}^{6}$), 8.04 (ddd, 1H, $J=8.0,7.7,1.6 \mathrm{~Hz}, \mathrm{H}^{4}$), 7.95 (d, 1H, J 629 $=8.2 \mathrm{~Hz}, \mathrm{H}^{3}$), $7.67\left(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}^{3 \prime}\right), 7.49(\mathrm{ddd}, 1 \mathrm{H}, J=7.5,630$ $\left.5.5,1.2 \mathrm{~Hz}, \mathrm{H}^{5}\right), 7.38\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6 \prime}\right), 7.22(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=7.9,1.5,0.8 \mathrm{~Hz}, 631$ $\left.\mathrm{H}^{4 \prime}\right), 3.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OEt}\right), 3.55\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 632$ $2.45(\mathrm{~s}, 3 \mathrm{H} \mathrm{ArCH} 3), 2.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{AuCH}_{2}\right), 1.19(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, 633$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 161.2(\mathrm{q}, J=36.8 \mathrm{~Hz}, 634$ OCOCF_{3}), 160.7, 146.5, 142.7, 141.8, 141.0, 136.6, 132.3, 129.2, 635 125.7, 124.3, 120.2, 118.3 ($\left.q, J=290.2 \mathrm{~Hz}, \mathrm{OCOCF}_{3}\right), 69.6,66.1,32.4,636$ 22.0, 15.5. ${ }^{19} \mathrm{~F}$ NMR $\left(188 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-77.0\left(\mathrm{OAC}^{\mathrm{F}}\right)$. MS (ESI, 637 $\mathrm{EtOH}) \mathrm{m} / \mathrm{z}\left(\right.$ rel. \%) $438\left(\left[\mathrm{M}-\mathrm{OAc}^{\mathrm{F}}\right]^{+}, 100\right)$. HRMS (ESI, MeCN): 638 Found 438.1138; calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NOAu}$: 438.1132 .

Preparation of Complex 8. MeOH (5 mL) was added to $\mathbf{1}$ (50.0 640 $\mathrm{mg}, 0.0846 \mathrm{mmol}$). Ethylene was bubbled through the solution for 2641 min , and the flask was sealed with a glass stopper. The reaction 642 mixture was stirred at ambient temperature in the absence of light for 1643 d. The volatiles were removed under reduced pressure and the 644 remaining solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was 645 removed under reduced pressure furnishing $8(32.9 \mathrm{mg}, 0.0612 \mathrm{mmol}, 646$ $72 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.37(\mathrm{~d}, 1 \mathrm{H}, J=647$ $\left.5.5 \mathrm{~Hz}, \mathrm{H}^{6}\right), 8.02\left(\mathrm{ddd}, 1 \mathrm{H} . J=1.5,8.0,8.0, \mathrm{H}^{4}\right), 7.94(\mathrm{~d}, 1 \mathrm{H}, J=8.2,648$ H^{3}), $7.65\left(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}^{3 \prime}\right), 7.47$ (ddd, $1 \mathrm{H}, J=0.8 \mathrm{~Hz}, 5.4,7.5649$ $\left.\mathrm{Hz}, \mathrm{H}^{5}\right), 7.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6 \prime}\right), 7.21\left(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}^{4 \prime}\right), 3.68(\mathrm{~m}, 2 \mathrm{H}, 650$ $\left.\mathrm{OCH}_{2}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.39(\mathrm{~m}, 2 \mathrm{H}, 651$ AuCH_{2}). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 161.3(\mathrm{q}, J=36.8 \mathrm{~Hz}, 652$ OCOCF_{3}), 160.7, 146.4, 142.7, 141.8, 140.9, 136.5, 132.1, 129.2, 653 125.8, 124.3, 120.2, $118.3\left(\mathrm{q}, J=290.3 \mathrm{~Hz}, \mathrm{OCOCF}_{3}\right), 72.0,58.3,32.1,654$ 22.0. ${ }^{19} \mathrm{~F}$ NMR $\left(188 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-77.0\left(\mathrm{OAc}^{\mathrm{F}}\right) . \mathrm{MS}(\mathrm{ESI}, 655$ $\mathrm{MeOH}) \mathrm{m} / z(\mathrm{rel} . \%) 941$ (36), 482 (100), 424 ([$\left.\mathrm{M}-\mathrm{OAc}^{\mathrm{F}}\right]^{+}, 33$). 656 HRMS (ESI, MeOH) found: 424.0973; calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{AuAuNO}: 657$ 424.0970. Elemental analysis: Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{AuNO}_{3} \mathrm{~F}_{3}$: C, 658 38.00; H, 3.19; N, 2.61. Found: C, 38.31; H, 3.06; N, 2.64. The sample 659 for the elemental analysis was taken from the bulk material prepared as 660 described above. The batch used for the elemental analysis was 661 obtained in 61% yield.

Preparation of Complex 12. MeOH (10 mL) was added to 1663 ($103.7 \mathrm{mg}, 0.1754 \mathrm{mmol}, 1.0$ equiv). 2-Methyl-1-butene ($20 \mu \mathrm{~L}, 0.19664$ mmol, 1.1 equiv) was added. The flask was sealed with a glass stopper 665 and the reaction mixture was stirred at ambient temperature in the 666 absence of light for 2 d . The volatiles were removed under reduced 667 pressure and the obtained solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. 668 The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was layered with pentane and left in a 669 refrigerator (ca. $10{ }^{\circ} \mathrm{C}$) overnight furnishing a white precipitate. The 670 solution was collected and filtered, and the volatiles were removed 671 furnishing $12(44.7 \mathrm{mg}, 0.0771 \mathrm{mmol}, 44 \%)$ as a white, slightly oily, 672 solid. In the elemental analysis of $\mathbf{1 2}$, the $\% \mathrm{C}$ obtained is outside of the 673 recommended $\pm 0.4 \%$ range. ${ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.43$ (d, 674 $1 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{H}^{6}$), 8.02 (ddd, $1 \mathrm{H}, J=8.1,7.4,1.5 \mathrm{~Hz}, \mathrm{H}^{4}$), 7.95 (d, 675 $\left.1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}^{3}\right), 7.65\left(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}^{3 \prime}\right), 7.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6 \prime}\right), 676$ 7.48 (ddd, $\left.1 \mathrm{H}, J=7.5,5.4,0.9 \mathrm{~Hz}, \mathrm{H}^{5}\right), 7.21\left(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}^{4 \prime}\right), 677$ $3.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.59\left(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right), 2.53(\mathrm{~d}, 1 \mathrm{H}, J=678$ $\left.10.3 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right), 1.70(\mathrm{~m}, 1 \mathrm{H}, 679$ $\left.\mathrm{H}^{\mathrm{c}}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{e}}\right), 0.95$ (apparent $\left.\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}{ }^{\mathrm{d}}\right) .{ }^{13} \mathrm{C} 680$ NMR ($201 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.6,22.1,25.7,32.9,43.5,49.5,79.2,681$ $118.4\left(\mathrm{q}, J=290.2 \mathrm{~Hz}, \mathrm{OCOCF}_{3}\right), 120.1,124.2,125.6 .129 .0,134.5,682$ 137.1, 141.0, 141.7, 142.1, 146.3, 160.9, 161.2 (q, $J=36.6 \mathrm{~Hz}, 683$ $\left.\mathrm{OCOCF}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(188 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta-77.1\left(\mathrm{OAc}^{\mathrm{F}}\right) . \mathrm{MS}(\mathrm{ESI}, 684$ $\mathrm{MeOH}) m / z(\mathrm{rel} . \%) 1025$ (11), 524 (34), 526 (11), 466 ([M - 685 $\left.\mathrm{OAc}^{\mathrm{F}}\right]^{+}, 100$), 434 (16). HRMS (ESI, MeOH) found: 466.1440; calcd 686 for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{AuNO}: 466.1440$. Elemental analysis: Anal. Calcd for 687 $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{AuF}_{3} \mathrm{NO}_{3}$: C, 41.46; H, 4.00; N, 2.42. Found: C, 42.19; H, 688 3.71; N, 2.14. The sample for the elemental analysis was taken from 689 the bulk material prepared as described above. The batch used for the 690 elemental analysis was obtained in 60% yield.

691
Preparation of Complex 13. $\mathrm{MeOH}(10 \mathrm{~mL})$ was added to 1692 ($100.0 \mathrm{mg}, 0.1691 \mathrm{mmol}, 1.0$ equiv). 2-Methyl-2-butene ($50 \mu \mathrm{~L}, 0.47693$ mmol, 2.8 equiv) was added. The flask was sealed with a glass stopper 694 and the reaction mixture was stirred at ambient temperature in the 695 697 pressure and the obtained solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. 698 The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was layered with pentane and left in a 699 refrigerator (ca. $10^{\circ} \mathrm{C}$) overnight furnishing a white precipitate. The 700 solution was collected and filtered, and the volatiles were removed 701 furnishing $13(31.9 \mathrm{mg}, 0.0551 \mathrm{mmol}, 33 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $702\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.31\left(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{H}^{6}\right), 8.00(\mathrm{ddd}, 1 \mathrm{H}, J=$ $\left.7031.5,7.6,7.9 \mathrm{~Hz}, \mathrm{H}^{4}\right), 7.96\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}^{3}\right), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=7.9$, $704 \mathrm{H}^{3 \prime}$), $7.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6 \prime}\right)$, 7.45 (ddd, $1 \mathrm{H}, \mathrm{J}=1.1,5.6,7.2 \mathrm{~Hz}, \mathrm{H}^{5}$), 7.21 $705\left(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}^{4}\right), 3.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.91(\mathrm{q}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\left.706 \mathrm{AuCH}^{\mathrm{a}}\right)$, $2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.36-1.28\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{c}}+\mathrm{CH}_{3}{ }^{\mathrm{d}}+\right.$ $707 \mathrm{CH}_{3}{ }^{e}$). ${ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 161.2$ ($\mathfrak{q}, J=36.6 \mathrm{~Hz}$, $708 \mathrm{OCOCF}_{3}$), 160.7, 146.6, 141.8, 141.4, 141.3, 138.0, 132.8, 129.0, $709125.8,124.1,120.1,118.6\left(\mathrm{q}, J=289.5 \mathrm{~Hz}, \mathrm{OCOCF}_{3}\right), 79.1,62.0,49.4$, 710 25.7, 24.7, 22.2, 16.7. ${ }^{19} \mathrm{~F}$ NMR ($188 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta-77.3$ ($\mathrm{OAc}^{\mathrm{F}}$). 711 MS (ESI, MeOH) m / z (rel. \%) 524 (29), 466 ($\left[\mathrm{M}-\mathrm{OAc}^{\mathrm{F}}\right]^{+}, 100$), 712434 (13). HRMS (ESI, MeOH) found: 466.1440; calcd for $713 \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{AuNO}: 466.1440$. Elemental analysis: Anal. Calcd for $714 \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{AuF}_{3} \mathrm{NO}_{3}$: C, 41.46; H, 4.00; N, 2.42. Found: C, 41.69; H, $7153.80 ; \mathrm{N}, 2.51$. The sample for the elemental analysis was taken from 716 the bulk material prepared as described above. The batch used for the 717 elemental analysis was obtained in 33% yield.

Preparation of Complex 14. Styrene ($12 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1.2$ 719 equiv) was added to a mixture of $\mathbf{1}$ ($50.0 \mathrm{mg}, 0.0846 \mathrm{mmol}, 1.0$ equiv) 720 in MeOH (3 mL). The reaction mixture was stirred at ambient 721 temperature in the absence of light for 1 d . The volatiles were removed 722 under reduced pressure and the remaining solid was dissolved in $723 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. The solvent was removed under reduced pressure 724 yielding 14 as a white solid ($35.5 \mathrm{mg}, 0.0579 \mathrm{mmol}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR $725\left(800 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.44$ (ddd, $\left.1 \mathrm{H}, J=5.4,1.6,0.8 \mathrm{~Hz}, \mathrm{H}^{6}\right), 8.03$ 726 (ddd, $\left.1 \mathrm{H}, J=7.9,7.6,1.6 \mathrm{~Hz}, \mathrm{H}^{4}\right), 7.94\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}^{3}\right), 7.64$ 727 (d, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}^{3}$), 7.48 (ddd, $1 \mathrm{H}, J=7.4,5.5,1.1 \mathrm{~Hz}, \mathrm{H}^{5}$), 7.44 $728\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{0}\right), 7.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{m}\right), 7.30\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 7.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{p}\right)$, $7297.19\left(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}^{4}\right)$, $4.55\left(\mathrm{dd}, 1 \mathrm{H}, J=9.0,5.1 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}\right), 3.23$ $730\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.63\left(\mathrm{dd}, 1 \mathrm{H}, J=10.3,5.1 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right), 2.50(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.7318.9,10.2 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $732 \delta 161.3\left(\mathrm{q}, J=36.7 \mathrm{~Hz}, \mathrm{OCOCF}_{3}\right), 160.9,146.7,143.5,142.4,141.7$, 733 140.9, 136.7, 132.7, 129.1, 128.8, 127.9, 127.0, 125.7, 124.3, 120.2, $734118.4\left(\mathrm{q}, J=290.0 \mathrm{~Hz}, \mathrm{OCOCF}_{3}\right), 83.9,56.8,41.2,22.0 .{ }^{19} \mathrm{~F}$ NMR 735 ($188 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta-77.0$ ($\mathrm{OAc}^{\mathrm{F}}$). MS (ESI, MeCN) m / z (rel. \%) 7361113 (100), 1045 (36), 636 ($[\mathrm{M}+\mathrm{Na}]^{+}, 2$), $500\left(\left[\mathrm{M}-\mathrm{OAc}^{\mathrm{F}}\right]^{+}, 78\right)$. 737 HRMS (ESI, MeCN) found: 636.1031; calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~F}_{3} \mathrm{AuNa}$: 738 636.1036. Elemental analysis: Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{AuF}_{3} \mathrm{NO}_{3}$: C, 739 45.04; H, 3.45; N, 2.28. Found: C, 45.06; H, 3.44; N, 2.30. The sample 740 for the elemental analysis was taken from the bulk material prepared as 741 described above. The batch used for the elemental analysis was 742

- ASSOCIATED CONTENT

(S) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organomet.8b00218.

Complete experimental procedures, MS and NMR data are given for all new complexes; Crystallographic methods and crystallographic data for complexes $\mathbf{4 b}$, 5a,b, 6, 8, and 13-16 are given together with elemental analyses for selected complexes (PDF)

Accession Codes

CCDC 1835274-1835282 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: + 441223336033.

AUTHOR INFORMATION

Corresponding Author 761
*E-mail: mats.tilset@kjemi.uio.no. 762
ORCID 763
Sigurd Øien-Ødegaard: 0000-0001-7913-4199 764
Mats Tilset: 0000-0001-8766-6910 765
Present Address 766
${ }^{\text {§ }}$ Jotun A/S, P.O. Box 2021, N-3202 Sandefjord, Norway. 767
Notes768
The authors declare no competing financial interest. 769
ACKNOWLEDGMENTS 770

We gratefully acknowledge financial support from the Research 771 Council of Norway for funding provided through grants 772 185513/I30 and 221801/F20 (stipend to M.S.M.H). The 773 Research Council of Norway is also acknowledged for support 774 through the Norwegian NMR Platform, NNP (226244/F50). 775 This work was supported by the Erasmus programme of the 776 European Union (exchange visit to Oslo for Y.W.). Dr. Ainara 777 Nova is acknowledged for fruitful discussions and Erlend 778 Solbakken Aunan is acknowledged for his contribution of 779 growing crystals suitable for XRD analysis of 5a. Furthermore, 780 we thank Osamu Sekiguchi, University of Oslo, for performing 781 the MS experiments, and University of Oslo NMR center for 782 providing generous access to the NMR facilities.

REFERENCES
784
(1) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 785 45, 7896-7936.
(2) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180-3211. 787
(3) Chiarucci, M.; Bandini, M. Beilstein J. Org. Chem. 2013, 9, 2586-788 2614.
(4) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028-9072. 790
(5) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 791 1657-1712.
(6) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994-2009. 793
(7) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239-3265. 794
(8) Modern Gold Catalyzed Synthesis; Hashmi, A. S. K., Toste, F. D., 795 Eds.; Wiley-VCH: Weinheim, 2012.
(9) Schmidbaur, H.; Schier, A. Organometallics 2010, 29, 2-23. 797
(10) Balcells, D.; Eisenstein, O.; Tilset, M.; Nova, A. Dalton Trans. 798 2016, 45, 5504-5513.
(11) Brooner, R. E. M.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 800

2013, 52, 11714-11724
801
(12) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395-403. 802
(13) Rezsnyak, C. E.; Autschbach, J.; Atwood, J. D.; Moncho, S. J. 803 Coord. Chem. 2013, 66, 1153-1165.
(14) Savjani, N.; Roşca, D.-A.; Schormann, M.; Bochmann, M. 805 Angew. Chem., Int. Ed. 2013, 52, 874-877.
(15) Rekhroukh, F.; Brousses, R.; Amgoune, A.; Bourissou, D. Angew. 807 Chem., Int. Ed. 2015, 54, 1266-1269.
(16) Rekhroukh, F.; Estevez, L.; Bijani, C.; Miqueu, K.; Amgoune, A.; 80 Bourissou, D. Organometallics 2016, 35, 995-1001.
(17) Rekhroukh, F.; Blons, C.; Estevez, L.; Mallet-Ladeira, S.; 811 Miqueu, K.; Amgoune, A.; Bourissou, D. Chem. Sci. 2017, 8, 4539- 812 4545.
(18) Rekhroukh, F.; Estevez, L.; Mallet-Ladeira, S.; Miqueu, K.; 814 Amgoune, A.; Bourissou, D. J. Am. Chem. Soc. 2016, 138, 11920-815 11929.
(19) Serra, J.; Font, P.; Sosa Carrizo, E. D.; Mallet-Ladeira, S.; 817 Massou, S.; Parella, T.; Miqueu, K.; Amgoune, A.; Ribas, X.; Bourissou, 818 D. Chem. Sci. 2018, 9, 3932-3940.
(20) Harper, M. J.; Emmett, E. J.; Bower, J. F.; Russell, C. A. J. Am. 820 Chem. Soc. 2017, 139, 12386-12389.

822 (21) Langseth, E.; Nova, A.; Tråseth, E. A.; Rise, F.; Øien, S.; Heyn, 823 R. H.; Tilset, M. J. Am. Chem. Soc. 2014, 136, 10104-10115.
824 (22) Holmsen, M. S. M.; Nova, A.; Balcells, D.; Langseth, E.; Øien825 Ødegaard, S.; Heyn, R. H.; Tilset, M.; Laurenczy, G. ACS Catal. 2017, 826 7, 5023-5034.
827 (23) Langseth, E.; Görbitz, C. H.; Heyn, R. H.; Tilset, M. 828 Organometallics 2012, 31, 6567-6571.
829 (24) Holmsen, M. S. M.; Nova, A.; Balcells, D.; Langseth, E.; Øien830 Ødegaard, S.; Tråseth, E. A.; Heyn, R. H.; Tilset, M. Dalton Trans. 831 2016, 45, 14719-14724.
832 (25) Langseth, E.; Scheuermann, M. L.; Balcells, D.; Kaminsky, W.; 833 Goldberg, K. I.; Eisenstein, O.; Heyn, R. H.; Tilset, M. Angew. Chem., 834 Int. Ed. 2013, 52, 1660-1663.

[^0]: Received: April 12, 2018

